
Bug hunting

Vulnerability finding methods in
Windows 32 environments compared

FX of Phenoelit

The goal: 0day

§ What we are looking for:
§ Handles network side input

§ Runs on a remote system

§ Is complex enough to potentially contain
a significant number of vulnerabilities

The environment

§ Windows NT / 2k / ((2k++)++)++
§ Closed source binaries
§ NT services

§ Often large binaries
§ Some times „forking“

§ Application frameworks
§ IIS ISAPIs
§ Large scale frameworks (eg. SAP)

§ Widely used clients

Obstacles

§ Extremely large Win32 API
§ Large, dynamically linked binaries
§ Compiler specifics and optimization
§ Use of library functions in-code
§ Function inlining
§ Vendor specific libraries replacing standard

calls
§ Unknown protocols
§ Vendor specific obscurities

Testing methods

§ Manual testing
§ Fuzzing

§ Static analysis
§ Diff and BinDiff
§ Runtime analysis

Manual Testing

§ Using the standard client (or other
counterpart) to access the target service

§ Observing the behavior:
§ Valid input
§ Invalid input
§ Timing
§ Network communication
§ Pre-authentication handshakes
§ Common configuration tasks and failures
§ Target administration specifics

Manual Testing [2]

§ What you try to determine:
§ States in the target
§ Reaction to valid input
§ Reaction to invalid input
§ Reaction to changes in timing
§ Information transmitted before and after

authentication
§ Runtime environment requirements of the target
§ Default configuration and misconfiguration issues
§ Logging capabilities

Manual Testing [3]

§ Things to look for:
§ Input validation on client side

§ Input in client rejected
§ Input in client accepted but modified before transmission

§ Pre-Authentication client data
§ Hostname
§ Username
§ Certificate content

§ Date/Time strings
§ Version information (Application, OS)

Manual Testing [4]

§ More things to look for:
§ Network protocol structure

§ Dynamic or static field sizes
§ Field size determination
§ Information grouping
§ Numeric 32bit fields

§ Timing
§ Concurent connections
§ Fast sequential connections

00 00 00 08 41 42
43 44 45 46 47 00
00 00 00 08 41 42
43 44 45 46 47 00

Length 1

Length 2

Manual Testing [5] - Pros

§ No need for additional tools
§ Becoming familiar with the target
§ Un-intrusive
§ Uncovers client side security quickly
§ Easy correlation between user action and

network traffic
§ Takes configuration into account
§ High abstraction level, no need to understand

all the internals of the target

Manual Testing [6] - Cons

§ Slow
§ Potentially high learning effort
§ Incomplete coverage – only functionality

configured and used is tested
§ Often provides only clues where

vulnerabilities might be found
§ Proving a vulnerability often requires

additional efforts (such as code)
§ High dependence on the tester

Manual Testing [7]

§ Usual findings:
§ Cross Site Scripting / Code & SQL injections

§ Protocol based overflows and integer issues

§ Application logic failures

§ Best suited for:
§ Web applications

§ Java application frameworks

§ Proprietary clients

§ Internet Explorer (and other browsers)

Fuzzing

§ Creating rough clients (or counterparts) to
generate a wide range of invalid input
§ Attempts to find vulnerabilities by exceeding the

possible combinations of malformed input beyond
the boundaries of the original client

§ Observing the behavior:
§ Not as closely as with manual testing

§ Responses are some times inspected

§ Often only crashes are considered

Fuzzing [2]

§ Semi-Manual fuzzing
§ Writing scripts or short programs acting as rough

clients
§ Manually changing the code for each test
§ Running the code and evaluating the response

§ Automated fuzzing
§ Writing scripts or programs to itterate through a

high number of invalid input
§ Running the code and letting it itterate until the

target crashes

Fuzzing [3]

§ What you try to determine
§ Semi-Manual fuzzing

§ Unexpected responses

§ Modified data in the response

§ Changed timing behavior

§ Target crashes

§ Automated fuzzing
§ Target crashes

Fuzzing [4]

§ Semi-Manual fuzzing procedure
§ Get your script to work normally
§ Change fields one at the time
§ Generate output (send data, create file, ...)
§ Inspect results
§ Change fields again, depending on results
§ Generate output
§ Repeat last two steps

Example:
Symantec PC AnyWhere 10.5

§ Timing issue with frequent
reconnects and initial
handshake

§ Fails to synchronize load and
unload of a DLL for the tray bar
icon

§ DoS: connect, handshake and
disconnect about 10 times

Fuzzing [5]

§ Automated fuzzing procedure
§ Define what vulnerabilities you want to look for
§ Create iterator script/program using a fuzzer

framework
§ Output data for every vulnerability type you want to test
§ Output data for multiple/combined vulnerabilities
§ Iterate through all combinations

§ Wait until your target crashes
§ Needs a debugger attached to the target in case the

vulnerability is hidden by a SEH handling it
§ Issues with „forking“ processes under Win32

Fuzzing [6] - Frameworks

§ SPIKE
§ By Dave Aitel, Immunity Inc
§ Currently version 2.9
§ Block based fuzzer
§ Written in C
§ Fuzzing programs need to be in C too
§ Rudimentary functions for sending and receiving

data, strings and iterations
§ Almost no documentation
§ Comes with a number of demo fuzzing programs

Fuzzing [7] - Frameworks

§ Peach
§ By Michael Eddington, IOActive
§ Currently pre-release state
§ Written in Python (object oriented)
§ Consists of:

§ Generators for static elements or protocol messages
§ Transformers for all kinds of en/decoding
§ Protocols for managing state over multiple messages
§ Publishers for data output to files, protocols, etc.
§ Groups for incrementing and changing Generators
§ Scripts for absctraction of the per-packet operations

§ Documented fully, including examples

Fuzzing [8] - Pros

§ Semi-Manual fuzzing
§ „Try-Inspect“ Process leads to fast findings
§ Same advantages as manual testing
§ Ability to prove the vulnerability
§ Fuzzing script can be promoted to exploit

§ Automated fuzzing
§ Process guarantees known level of coverage
§ Quickly uncovers a wide range of overflow and format string

vulnerabilities
§ Effective when many combinations are possible
§ Code reuse for known protocols

Fuzzing [9] - Cons

§ Understanding of the underlying protocol required

§ Incomplete coverage –
only functionality configured and used is tested

§ Automated Fuzzing
§ Test scripts need to be developed
§ Test scripts need to take potential target specifics into

account

§ Tester has to rely on fuzzer
§ Debugger on the target system often required
§ Can hide a bug behind another bug

Fuzzing [10]

§ Usual findings:
§ Application level overflows

§ Format string vulnerabilities

§ Path traversal

§ Best suited for:
§ Services using documented protocols

§ Standard servers: Web, FTP, LDAP, RPC, ...

§ Web applications (semi-manual fuzzing)

§ Protocols with many field combinations

Static analysis

§ Disassembly of the target binary in order to
find vulnerabilities.

§ Identification of vulnerable code sequences
independent of their location

§ In some cases back-translation of the
disassembly into a higher level language
such as C.

§ Often paired with automatic analysis of calls
to known library functions with vulnerability
potential

Static analysis [2]

§ Always a manual procedure with aid of
several tools

§ Requirements:
§ Binaries of the target

§ Interactive Disassembler (IDA)

§ Library reference for the target

§ Fluent assembly

Static analysis [3]

§ Identification of vulnerable code
§ Find references to functions with vulnerability

potential: strcpy(), sprintf(), ...
§ Check the call arguments for each reference if

they suggest a vulnerability
sprintf(buffer, „%s“, ...

§ Check if the data can be influenced
sprintf(buffer, „%s“, user_input);

§ Find potential limiting factors
sprintf(buffer, „%s“,

strlen(user_input)>(sizeof(buffer)-1)?“big“:user_input);

Static analysis [4]

§ Reverse engineering of lower level
protocol handlers
§ Find calls to recv(), recvfrom(), WSArecv(),

WSArecvfrom(), ...
§ Determine the buffer holding the data
§ Follow the program flow to eventually find

the parsing functions
§ Reverse engineer the parsing functions
§ Identify potential for parsing mistakes

Automated Static analysis [5]

§ Code flow analysis
§ Following branches and calls
§ Building a flow graph of the binary or subsections
§ Identifies functions, stack variables
§ Improves reverse engineering

§ Automated library call identification
§ Finds calls to unsafe library functions
§ Output needs to be inspected by reverse engineer
§ Can automatically identify format string

vulnerabilities

Static analysis [6] - Pros

§ In depth analysis
§ Finds vulnerabilities in code normally not

executed
§ Quickly uncovers most format string

vulnerabilities
§ Advanced vulnerability identification

§ Integer overflows and wraps
§ Off-by-one errors
§ Complex combined vulnerabilities

§ Complete coverage of the code inspected

Static analysis [7] - Cons

§ Extremely time consuming
§ Experience and skill required
§ Disassembly is almost never complete

§ Library call and inlinded function identification fails
§ Packed or protected binaries
§ Multiple level indirect calls to dynamic data (especially in

C++ or Delphi code)
§ Code flow analysis fails
§ Structures and other advanced data structures hard to

handle

§ Not usable for higher level languages (Visual Basic)

Static analysis [8]

§ Usual findings:
§ Protocol level overflows

§ Complex vulnerabilities

§ Integer vulnerabilities

§ Best suited for:
§ Protocol parsers

§ Unknown protocols

§ Code using unsafe functions

§ In depth analysis of critical code sections

Example:
Orenosv 0.6.0 HTTP server

§ Combined logging buffer
overflow

§ Classic case of multiple
sprintf() calls going wrong

§ Remote
NT Authority/SYSTEM

Diffing

§ Identification of a vulnerability after it has
been found and fixed.

§ The goal here is to identify the fix, in order to
find the vulnerability.

§ Reasons:
§ Vendors do not notify the public of an identified

vulnerability but fix it silently.
§ Silent vendor fixes don‘t guarantee security, since

the fix itself could be flawed.
§ For various reasons, some still want an exploit for

vulnerabilities that are already fixed

Diffing [2]

§ In patches, one needs to first find out what
files are modified
§ Single file patches are easily identified
§ Higher number file replacements like in Microsoft

hotfixes and Service Packs need to be monitored.

§ Filemon from Sysinternals
§ Killing the update after the unpacking

procedure but before the copy
§ Static analysis of the patch

Diffing [3]

§ Comparing two versions of a binary by hand
takes very long
§ Find functions that are at the same address
§ Compare the number of functions
§ Compare the size of functions

§ Automated binary diffing is far superior
§ Graph based fingerprinting of functions
§ Automated comparsion
§ Can also be used to port function names
§ Check http://www.sabre-security.com/ for magic

Runtime analysis

§ Running the target in a debugging
environment and inspecting the code
during execution.

§ Identification of vulnerable code
sequences using disassembly, much
like static analysis.

§ Observation of the target code rather
than completely reverse engineering it.

Runtime analysis [2]

§ Manual process with the aid of
debugging tools

§ Requirements:
§ Functioning version of the target

§ Debugger

§ Fluent assembly

§ Library reference for the target system

Phenoelit (dum(b)ug) core

§ Complete and fully open
source Win32 debugger core

§ C++ class architecture

§ PE parsing, disassembly,
thread handling, breakpoints

§ Instant debugger creation
using a few lines of code

§ Complete and fully open
source Win32 debugger core

§ C++ class architecture

§ PE parsing, disassembly,
thread handling, breakpoints

§ Instant debugger creation
using a few lines of code

http://www.phenoelit.de/dumbbug/http://www.phenoelit.de/dumbbug/

Runtime analysis [3]

§ Data follow procedure
§ Identify functions that produce „incoming“ data,

such as recv() and break there
§ Follow the data through the program flow to

identify parsing functions
§ Following the data can be supported by memory

breakpoints
§ Reverse engineer the parsing function, looking for

mistakes in the programming
§ Craft data to trigger the suspected vulnerability

and inspect the results

Runtime analysis [4]

§ Code follow procedure
§ Identify functions with vulnerability potential
§ Break every time such a function is executed and

inspect the arguments
§ Check the arguments if they suggest a

vulnerability in this case
§ Check the arguments if they are user supplied

data or derived from it

§ For most functions, this is impractical
because of the high number of calls to them
§ Often, only one in 100 calls is relevant

Runtime analysis [5] - Pros

§ Just in time disassembly
§ Correct information at the time of execution
§ Known state of registers

§ Quickly uncovers format string vulnerabilities
§ Advanced vulnerability identification

§ Integer overflows and wraps
§ Off-by-one errors

§ Slightly faster than static analysis, due to
skipping of uninteresting code

§ Exception catching

Runtime analysis [6] - Cons

§ Time consuming
§ Skill and experience still required
§ Break-and-Inspect not well suited for

frequently called functions
§ Requirements (CPU power, binaries, etc)
§ Timing issues

§ Connection timeout during code inspection
§ Other timing related stuff breaking

§ Detaching of a debugger only in Win2003

Runtime analysis [7]

§ Usual findings:
§ Application level overflows
§ Complex vulnerabilities
§ Integer vulnerabilities

§ Best suited for:
§ All kinds protocol parsers
§ Logging and data processing
§ Code using unsafe functions

Phenoelit (dum(b)ug) ltrace

§ Ltrace for Windows
§ Log calls to any function

§ Before and after states
§ Call conventions
§ Follows „forks“

§ Stack analysis
§ Format string analysis

§ Ltrace for Windows
§ Log calls to any function

§ Before and after states
§ Call conventions
§ Follows „forks“

§ Stack analysis
§ Format string analysis

http://www.phenoelit.de/dumbbug/http://www.phenoelit.de/dumbbug/

Trace defs

§ Trace definitions used to identify
arguments of traced functions

§ Native C notation
§ Argument directions
§ Return value or output buffer matching

int __cdecl recv(
[in] int socket, [both] char * buf,
[in] int len, [in] int flags);

„haxor“ == int sprintf(
[out] char * buf,
[in] fmtchar * format);

int __cdecl recv(
[in] int socket, [both] char * buf,
[in] int len, [in] int flags);

„haxor“ == int sprintf(
[out] char * buf,
[in] fmtchar * format);

Function call tracing

§ Pros:
§ Extremely fast
§ No disassembly
§ Recognition of user supplied data
§ Automagic format string vulnerability detection

§ Cons:
§ Incomplete: only called functions traced
§ Covers only unsafe functions
§ Does not (yet) identify compiled in incarnations

of library functions

Example:
Orenosv 0.6.0 FTP server

§ Logging buffer overflow
§ sprintf(buffer,“%02X“,...) calls in

a loop going wrong
§ Very hard to identify with static

analysis
§ Ignore previous statement if using

Halvar‘s tools

§ Remote
NT Authority/SYSTEM

Combining forces

§ Team 1
§ Fuzzing using Peach and a well designed script
§ Attaching a debugger to catch exceptions

§ Team 2
§ Call trace using (dum(b)ug) tracer
§ Manual testing using existing client
§ Script for sending suspected overflow data

§ Team 3
§ Disassembly using IDA
§ Semi-Manual fuzzing according to disassembly

Summary

§ Different vulnerability testing methods
are available, each with different
properties and areas of application.

§ For quick bug finding, automated
methods are best.

§ For thorough analysis, manual methods
and static analysis should be preferred.

