e Ty . f Yy s
ey EEEaEE PN Rt

Bu g hunting

Vulnerability finding methods in
Windows 32 environments compared

FX of Phenoelit

_—

The goal: Oday

nat we are looking for:
Handles network side input
RUNS ON a remote system

s complex enough to potentially contain
a significant number of vulnerabillities

_—

The environment

Windows NT / 2k / ((2k++)++)++
Closed source hinaries

NT services
= Often large binaries
= Some times ,forking*

Application frameworks
= |IS ISAPIs
= | arge scale framewaorks (eg. SAP)

Widely used clients

_—

Obstacles

Extremely large Win32 API

Large, dynamically linked binaries
Compiler specifics and optimization
Use of library functions in-code
Function inlining

Vendor specific libraries replacing standard
calls

Unknown protocols
Vendor specific obscurities

_—

Testing methods

Manual testing
Fuzzing

Static analysis
Diff and BinDiff
Runtime analysis

_—

Manual Testing

= Using the standard client (or other
counterpart) to access the target service

= Observing the behavior:
* Valid input
* |nvalid input
* Timing
= Network communication
* Pre-authentication handshakes
= Common configuration tasks and failures
= Target administration specifics

Manual Testing [2]

= What you try to determine:
= States in the target
» Reaction to valid input
= Reaction to invalid input
» Reaction to changes in timing

= |[nformation transmitted before and after
authentication

= Runtime environment requirements of the target
= Default configuration and misconfiguration issues
* Logging capabilities

Manual Testing [3]

* Things to look for:

* |nput validation on client side

= |[nput in client rejected
» Input in client accepted but modified before transmission

= Pre-Authentication client data
= Hosthame
= Username

Certificate content

Date/Time strings
Version information (Application, OS)

Manual Testing [4]

= More things to look for: Lengt\h 1
. N.eéwork .prototcct)ll sf,.trlljjct.ure sooocoloc R
ynamic or staliC Tiela SIiZes 4344/45\46/47]00

* Field size determination /.
= Information grouping Length 2
= Numeric 32bit fields

= Timing
= Concurent connections
» Fast sequential connections

_—

Manual Testing [5] - Pros

No need for additional tools
Becoming familiar with the target
Un-intrusive

Uncovers client side security quickly

Easy correlation between user action and
network traffic

Takes configuration into account

High abstraction level, no need to understand
all the internals of the target

_—

Manual Testing [6] - Cons

Slow
Potentially high learning effort

Incomplete coverage — only functionality
configured and used is tested

Often provides only clues where
vulnerabilities might be found

Proving a vulnerability often requires
additional efforts (such as code)

High dependence on the tester

_—

Manual Testing [7]

» Usual findings:
» Cross Site Scripting / Code & SQL injections
* Protocol based overflows and integer issues
= Application logic failures

= Best suited for:
* Web applications
= Java application frameworks
* Proprietary clients
* Internet Explorer (and other browsers)

Fuzzing

= Creating rough clients (or counterparts) to
generate a wide range of invalid input

= Attempts to find vulnerabilities by exceeding the
possible combinations of malformed input beyond
the boundaries of the original client

= Observing the behavior:
= Not as closely as with manual testing
» Responses are some times inspected
= Often only crashes are considered

_—

Fuzzing [2]

= Semi-Manual fuzzing

= Writing scripts or short programs acting as rough
clients

= Manually changing the code for each test
= Running the code and evaluating the response

» Automated fuzzing

= Writing scripts or programs to itterate through a
high number of invalid input

* Running the code and letting it itterate until the
target crashes

Fuzzing [3]

= What you try to determine

= Semi-Manual fuzzing
= Unexpected responses
= Modified data in the response
* Changed timing behavior
» Target crashes

= Automated fuzzing

» Target crashes

Fuzzing [4]

= Semi-Manual fuzzing procedure
= Get your script to work normally
= Change fields one at the time
» Generate output (send data, create file, ...)
» Inspect results
» Change fields again, depending on results
= Generate output
* Repeat last two steps

_—

Example:
Symantec PC AnyWhere 10.5

= Timing issue with frequent
reconnects and initial
handshake

= Fails to synchronize load and
unload of a DLL for the tray bar
Icon

= D0S: connect, handshake and
disconnect about 10 times

Fuzzing [5]

= Automated fuzzing procedure
» Define what vulnerabilities you want to look for

= Create iterator script/program using a fuzzer
framework
= Qutput data for every vulnerability type you want to test
= Qutput data for multiple/combined vulnerabilities
= |terate through all combinations

= Wait until your target crashes

* Needs a debugger attached to the target in case the
vulnerability is hidden by a SEH handling it

» |ssues with ,forking“ processes under Win32

Fuzzing [6] - Frameworks

= SPIKE
= By Dave Aitel, Immunity Inc
*= Currently version 2.9
* Block based fuzzer
= Written in C
* Fuzzing programs need to be in C too

= Rudimentary functions for sending and receiving
data, strings and iterations

= Almost no documentation
= Comes with a number of demo fuzzing programs

Fuzzing [7] - Frameworks

= Peach
= By Michael Eddington, IOActive
= Currently pre-release state
= Written in Python (object oriented)

= Consists of:
= Generators for static elements or protocol messages
» Transformers for all kinds of en/decoding
» Protocols for managing state over multiple messages
» Publishers for data output to files, protocols, etc.
= Groups for incrementing and changing Generators
= Scripts for absctraction of the per-packet operations

= Documented fully, including examples

Fuzzing [8] - Pros

= Semi-Manual fuzzing
= Try-Inspect” Process leads to fast findings
= Same advantages as manual testing
= Ability to prove the vulnerability
* Fuzzing script can be promoted to exploit

= Automated fuzzing
» Process guarantees known level of coverage

= Quickly uncovers a wide range of overflow and format string
vulnerabilities

» Effective when many combinations are possible
= Code reuse for known protocols

Fuzzing [9] - Cons

» Understanding of the underlying protocol required

* |[ncomplete coverage —
only functionality configured and used is tested

= Automated Fuzzing

Test scripts need to be developed

Test scripts need to take potential target specifics into
account

Tester has to rely on fuzzer
Debugger on the target system often required
Can hide a bug behind another bug

Fuzzing [10]

» Usual findings:
= Application level overflows
* Format string vulnerabilities
= Path traversal

= Best suited for:

= Services using documented protocols
= Standard servers: Web, FTP, LDAP, RPC, ...
= Web applications (semi-manual fuzzing)

* Protocols with many field combinations

Static analysis

Disassembly of the target binary in order to
find vulnerabilities.

ldentification of vulnerable code sequences
Independent of their location

In some cases back-translation of the
disassembly into a higher level language
such as C.

Often paired with automatic analysis of calls
to known library functions with vulnerability

potential -

Static analysis [2]

= Always a manual procedure with aid of
several tools
= Requirements:
* Binaries of the target
* Interactive Disassembler (IDA)
= Library reference for the target

* Fluent assembly

Static analysis [3]

= |dentification of vulnerable code

* Find references to functions with vulnerability
potential: strcpy(), sprintf(), ...

= Check the call arguments for each reference if
they suggest a vulnerability
sprintf(buffer, ,%s", ...

= Check if the data can be influenced
sprintf(buffer, ,%s", user_input);
* Find potential limiting factors

sprintf(buffer, ,%s",
strlen(user_input)>(sizeof(buffer)-1)?“big“:user_input);

Static analysis [4]

= Reverse engineering of lower level
protocol handlers

= Find calls to recv(), recvfrom(), WSArecv(),
WSArecvfrom(), ...

= Determine the buffer holding the data

* Follow the program flow to eventually find
the parsing functions

* Reverse engineer the parsing functions
» |dentify potential for parsing mistakes

_—

Automated Static analysis [5]

= Code flow analysis
* Following branches and calls
= Building a flow graph of the binary or subsections
» |dentifies functions, stack variables
* |mproves reverse engineering

= Automated library call identification
* Finds calls to unsafe library functions
= Output needs to be inspected by reverse engineer
= Can automatically identify format string

vulnerabilities

Static analysis [6] - Pros

In depth analysis

Finds vulnerabilities in code normally not
executed

Quickly uncovers most format string
vulnerabilities

Advanced vulnerabillity identification
= |nteger overflows and wraps

= Off-by-one errors
= Complex combined vulnerabilities

Complete coverage of the code inspected-

Static analysis [7] - Cons

Extremely time consuming
Experience and skill required
Disassembly is almost never complete

Library call and inlinded function identification fails
Packed or protected binaries

Multiple level indirect calls to dynamic data (especially in
C++ or Delphi code)

Code flow analysis fails

Structures and other advanced data structures hard to
handle

Not usable for higher level languages (Visual Basic)

Static analysis [8]

» Usual findings:
» Protocol level overflows
= Complex vulnerabilities
* |nteger vulnerabilities

» Best suited for:
* Protocol parsers
= Unknown protocols
= Code using unsafe functions
* |n depth analysis of critical code sections

Example:
Orenosv 0.6.0 HT TP server

= Combined logging buffer
overflow

= Classic case of multiple

sprintf() calls going wrong
= Remote
NT Authority/SYSTEM

Diffing

= |dentification of a vulnerability after it has
been found and fixed.

= The goal here is to identify the fix, in order to
find the vulnerabillity.

= Reasons:

* Vendors do not notify the public of an identified
vulnerability but fix it silently.

» Silent vendor fixes don‘t guarantee security, since
the fix itself could be flawed.

= For various reasons, some still want an exploit for

vulnerabillities that are already fixed -

Diffing [2]

In patches, one needs to first find out what
files are modified
= Single file patches are easily identified

= Higher number file replacements like in Microsoft
hotfixes and Service Packs need to be monitored.

~llemon from Sysinternals

Killing the update after the unpacking
procedure but before the copy

Static analysis of the patch

_—

Diffing [3]

= Comparing two versions of a binary by hand
takes very long
* Find functions that are at the same address
= Compare the number of functions
= Compare the size of functions

= Automated binary diffing is far superior
= Graph based fingerprinting of functions
= Automated comparsion
= Can also be used to port function names
» Check http://www.sabre-security.com/ for magi

Runtime analysis

= Running the target in a debugging
environment and inspecting the code
during execution.

* |dentification of vulnerable code
seguences using disassembly, much
like static analysis.

» Observation of the target code rather
than completely reverse engineering it.

_—

Runtime analysis [2]

= Manual process with the aid of
debugging tools

= Requirements:
* Functioning version of the target
= Debugger
* Fluent assembly
» Library reference for the target system

_—

Phenoelit (dum(b)ug) core

= Complete and fully open

[d“m] source Win32 debugger core
[“g] C++ class architecture

T— PE parsing, disassembly,
umb people [write _ _
dumb ngnuglluars ({0 find] thread handling, breakpoints

lumb bugs Instant debugger creation
using a few lines of code

http://www.phenoelit.deydiiflsisils

Runtime analysis [3]

= Data follow procedure

|dentify functions that produce ,incoming* data,
such as recv() and break there

Follow the data through the program flow to
identify parsing functions

Following the data can be supported by memory
breakpoints

Reverse engineer the parsing function, looking for
mistakes in the programming

Craft data to trigger the suspected vulnerability
and inspect the results

_—

Runtime analysis [4]

= Code follow procedure
» |dentify functions with vulnerability potential

= Break every time such a function is executed and
Inspect the arguments

» Check the arguments if they suggest a
vulnerability in this case

» Check the arguments if they are user supplied
data or derived from it

= For most functions, this is impractical
because of the high number of calls to them

= Often, only one in 100 calls is relevant -

Runtime analysis [5] - Pros

Just in time disassembly
= Correct information at the time of execution
= Known state of registers

Quickly uncovers format string vulnerabilities

Advanced vulnerabillity identification
* |nteger overflows and wraps
= Off-by-one errors

Slightly faster than static analysis, due to
skipping of uninteresting code

Exception catching -

Runtime analysis [6] - Cons

Time consuming
Skill and experience still required

Break-and-Inspect not well suited for
frequently called functions

Requirements (CPU power, binaries, etc)
Timing Issues

= Connection timeout during code inspection

= Other timing related stuff breaking

Detaching of a debugger only in Win2003

_—

Runtime analysis [7]

» Usual findings:
= Application level overflows
= Complex vulnerabilities
* Integer vulnerabilities

= Best suited for:
= All kinds protocol parsers

* Logging and data processing
* Code using unsafe functions

_—

Phenoelit (dum(b)ug) Itrace

= | trace for Windows

[lllllll] = Log calls to any function

[“g] = Before and after states

dumd peapie [write] = Call conventions
dumb debuggers [to find)
dumd bugs * Follows ,forks*
= Stack analysis

= Format string.angal

http://www.phenoelit.deydiiflsisils

[dumip) dumb peaple [write)

(Eug) Trace defs dumh nEIII]IIHI%III!}EI:.I?[IISm fnd]

= Trace definitions used to identify
arguments of traced functions

= Native C notation

= Argument directions
= Return value or output buffer matching

int _ cdecl recv(
[in] int socket, [both] char * buf,
[in] int len, [in] int flags);

,haxor® == int sprintf(
[out] char * buf,

) . _
[1n] fntchar format); Phencelit

Function call tracing

" Pros:
= Extremely fast
* No disassembly
= Recognition of user supplied data
= Automagic format string vulnerability detection

= Cons:
= Incomplete: only called functions traced
= Covers only unsafe functions

= Does not (yet) identify compiled in incarnations
of library functions

Example:
Orenosv 0.6.0 FTP server

Logging buffer overflow

sprintf(buffer,“%02X",...) calls In
a loop going wrong

Very hard to identify with static

analysis

= |gnore previous statement if using
Halvar's tools

Remote
NT Authority/SYSTEM

Combining forces

= Team 1
* Fuzzing using Peach and a well designed script
= Attaching a debugger to catch exceptions
= Team 2
= Call trace using (dum(b)ug) tracer
* Manual testing using existing client
= Script for sending suspected overflow data
= Team 3

» Disassembly using IDA
= Semi-Manual fuzzing according to disassembil

Summary

= Different vulnerabillity testing methods
are available, each with different
properties and areas of application.

= For quick bug finding, automated
methods are best.

= For thorough analysis, manual methods
and static analysis should be preferred.

_—

p ﬂ‘ L . . "HJ . d
Bu] detected... analyzing... Eﬂd‘%’)ﬁ

H D M-G‘O ne [data) adding new bug class 'y

Explaiting...

qu Shimoo

