
Department of Telecommunications

BSD Network Stack Virtualization

Marko Zec
zec@tel.fer.hr

University of Zagreb, Faculty of Electrical
Engineering and Computing

BSDCon Europe, Amsterdam, November 2002.

BSD Network Stack Virtualization slide 2 of 25

Department of Telecommunications

Session contents:

♦ Introduction
♦ Design
♦ Implementation
♦ Performance implications
♦ Application scenarios
♦ Future work
♦ Discussion / questions

BSD Network Stack Virtualization slide 3 of 25

Department of Telecommunications

♦ Traditional OS architecture
< General-purpose operating systems (OS) provide

support for a single instance of network stack or
protocol family within the kernel

♦ New concept
< Network stack virtualization – a set of kernel code

modifications and extensions which allow simultaneous
support for multiple independent network stack
instances within a single kernel

Introduction: the idea

BSD Network Stack Virtualization slide 4 of 25

Department of Telecommunications

♦ Research application:
< Network simulation

=Berkeley NS, OPNet modeler (“offline” simulators)
=ENTRAPID, Alpine (network stack implementation in userland)
=Harvard network simulator (address remapping middleware)

♦ Production applications:
< Virtual hosting

= IBM S/390, VMware, BSD jail

< VPN provisioning
=Cisco VRF, Linux VRF, FreeBSD 4.4 VPN patch…

Introduction: the motivation

BSD Network Stack Virtualization slide 5 of 25

Department of Telecommunications

Introduction: design objectives

♦ Take a “general-purpose” approach
< The network stack extensions must fit equally well in

diverse application scenarios

♦ Compatibility with existing userland applications
< Preserve both the application programming and binary

interfaces (API / ABI)

♦ Avoid significant performance degradations
< The users / applications shouldn’t be able to notice the

difference between the standard and modified network
stack

BSD Network Stack Virtualization slide 6 of 25

Department of Telecommunications

Design: the concepts

♦ Virtualize the entire network stack, not just the
selected portions
< Network interfaces
< Packet queues
< Forwarding path, routing tables
< Socket interfaces, protocol control blocks, hash tables
< Statistics / counters
< Sysctl tunable variables
< Advanced features (firewall, traffic shaper…)
< Support for multiple protocol families (not only IPv4)

BSD Network Stack Virtualization slide 7 of 25

Department of Telecommunications

Design: the concepts (continued)

♦ Implement the functional extensions entirely
within the kernel
< Performance
< Resource protection

♦ Kernel support for transparent compatibility with
the userland binaries (API/ABI)

♦ A stable development platform
< FreeBSD 4.x-RELEASE branch selected

BSD Network Stack Virtualization slide 8 of 25

Department of Telecommunications

Design: virtual images

Kernel space

User space

NIC
hardware

Virtual image #0

U
se

r
pr

oc
es

s

Network
interface

U
se

r
pr

oc
es

s

S
oc

ke
t

S
oc

ke
t

TCP UDP raw ...

IP ...

features (ipfw...) ...

Network
interface

S
oc

ke
t

Virtual image #1

U
se

r
pr

oc
es

s

Network
interface

U
se

r
pr

oc
es

s

TCP UDP raw ...

IP ...

features (ipfw...) ...

S
oc

ke
t

Virtual image #2

U
se

r
pr

oc
es

s

Network
interface

S
oc

ke
t

TCP UDP raw ...

IP ...

features (ipfw...) ...

NIC
hardware

NIC
hardware

Network
interface

BSD Network Stack Virtualization slide 9 of 25

Department of Telecommunications

Implementation: kernel data structures

"lo"

p_link

vi[0]

vi[2]
vi[1]

...

struct vimage *vi[]

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

vi_le
vi_name
ifnethead

"master" "bar""foo"

rt_tables[]

...

rt_tables[]

...

rt_tables[]

...

if_link
if_vip

if_name
if_unit

...

0

if_link
if_vip

if_name
if_unit

...

"fxp"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"lo"
0

if_link
if_vip

if_name
if_unit

...

"vlan"
0

p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...

p_link
p_vimage

...

00 1 2

struct ifnet struct ifnetstruct ifnetstruct ifnetstruct ifnet

struct vimage struct vimagestruct vimage

struct proc struct procstruct procstruct proc

IN
TE

R
FA

C
E

S
P

R
O

C
E

S
S

E
S

V
IM

A
G

E
 C

O
N

T
R

O
L

 B
L

O
C

K
S

Virtual
Image #0

Virtual
Image #1

Virtual
Image #2

BSD Network Stack Virtualization slide 10 of 25

Department of Telecommunications

Implementation: struct vimage

struct vimage {
LIST_ENTRY(vimage) vi_le; /* linked list of all vimages */

/* sys/net */
struct radix_node_head *rt_tables[AF_MAX+1]; /* from net/route.c */
struct ifnethead ifnet; /* from net/if.c */
struct ifaddr **ifnet_addrs; /* from net/if.c */
struct ifnet **ifindex2ifnet; /* from net/if.c */
struct rawcb_list_head rawcb_list; /* from net/raw_cb.c */
struct ifnet loif; /* from net/if_loop.c */
struct ifqueue ipintrq;

/* sys/netinet */
struct route ipforward_rt; /* from netinet/ip_input.c */
struct in_ifaddrhead in_ifaddrhead; /* from netinet/ip_input.c */
int ipforwarding;
struct inpcbhead tcb; /* from netinet/tcp_input.c */
struct inpcbinfo tcbinfo; /* from netinet/tcp_input.c */
struct tcp_syncache tcp_syncache; /* from netinet/tcp_syncache.c */
struct inpcbhead udb; /* from netinet/udp_usrreq.c */
struct inpcbinfo udbinfo; /* from netinet/udp_usrreq.c */
struct ipfw_dyn_rule **ipfw_dyn_v; /* from netinet/ip_fw.c */

/* sys/netipx */
struct ipx_ifaddr *ipx_ifaddr; /* from netipx/ipx.c */
. . .

BSD Network Stack Virtualization slide 11 of 25

Department of Telecommunications

Implementation: handling network traffic

♦ Typical event types
< Reception of incoming network frames
< Socket operations / data transmission
< Timeout operations

♦ Handling incoming network frames
< For received frames, the mbuf header contains the

pointer to ingress network interface (struct ifnet)

struct vimage *vip = m->m_pkthdr.rcvif->if_vp;

BSD Network Stack Virtualization slide 12 of 25

Department of Telecommunications

Implementation: handling network traffic

♦ netisr processing
< Processing packets from inbound queues
< example: ipintr()

struct mbuf *m; struct vimage *vip;
LIST_FOREACH(vip, &vi_head, vi_le)

while(1) {
IF_DEQUEUE(&vip->ipintrq, m);
if (m == 0)

break;
ip_input(m);
}

BSD Network Stack Virtualization slide 13 of 25

Department of Telecommunications

Implementation: handling network traffic

♦ requests from userland processes

xxx_connect(foo, bar, struct proc *p) {
struct vimage *vip = vi[p->p_vimage];

♦ periodic/timeout processing
< slowtimo, fasttimo handlers modified to traverse all

virtual images, similar to netisr processing

♦ userland process grouping (hiding)
< jail framework reuse (PRISON_CHECK macro

extension in kern/proc.h)

BSD Network Stack Virtualization slide 14 of 25

Department of Telecommunications

Implementation: creation of virtual images

♦ System startup / autoconfiguration
< Only virtual image #0 (master) exists by default
< Dynamic creation of additional virtual images

♦ Modifications in domain_attach handlers
< standard stack: pr_init(void)
< virtualized stack: pr_init(struct vimage *)

♦ Similar modifications in mod_event handlers
< ipfw, dummynet, ng_ether...

BSD Network Stack Virtualization slide 15 of 25

Department of Telecommunications

Implementation: userland binary compatibility

♦ kvm_read support for virtualized symbols
< extensions to kldsym() in kern/kern_linker.c
< if the symbol requested cannot be resolved, try to find it

in the appropriate struct vimage

♦ sysctl framework virtualization
< New macros/hooks for manipulating virtualized

symbols – examples:

int sysctl_handle_v_int()
SYSCTL_V_INT

BSD Network Stack Virtualization slide 16 of 25

Department of Telecommunications

Implementation: CPU accounting / scheduling

♦ CPU time and load accounting virtualzation
< system load
< process priority calculation
< idle / interrupt time accounting

♦ CPU usage limiting
< run queues – skipping active processes
< time quantum scaling
< returning to cpu_idle

BSD Network Stack Virtualization slide 17 of 25

Department of Telecommunications

Implementation: management

vmbsd# vimage -c bsdcon #create a new virtual image
vmbsd# vimage –l #list the current virtual images
"master":

30 processes, load averages: 0.15, 0.03, 0.01
CPU usage: 1.81% (0.00% user, 0.00% nice, 1.81% system)
Nice level: 0, no CPU limit, no process limit,
child limit: 7
2 network interfaces, 1 child vimages

"bsdcon":
0 processes, load averages: 0.00, 0.00, 0.00
CPU usage: 0.00% (0.00% user, 0.00% nice, 0.00% system)
Nice level: 0, no CPU limit, no process limit
1 network interfaces, parent vimage: "master"

BSD Network Stack Virtualization slide 18 of 25

Department of Telecommunications

Implementation: management

vmbsd# ifconfig #we are still in the “master” vimage
lnc0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

ether 00:50:56:40:00:47
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet 127.0.0.1 netmask 0xff000000
vmbsd# vimage bsdcon ifconfig #exec ifconfig in “bsdcon”
lo0: flags=8008<LOOPBACK,MULTICAST> mtu 16384
vmbsd# vimage -i bsdcon lnc0 #move lnc0 to “bsdcon”
vmbsd# vimage bsdcon #start a new shell in “bsdcon”
Switched to vimage bsdcon
ifconfig
lnc0: flags=8802<BROADCAST,SIMPLEX,MULTICAST> mtu 1500

ether 00:50:56:40:00:47
lo0: flags=8008<LOOPBACK,MULTICAST> mtu 16384

BSD Network Stack Virtualization slide 19 of 25

Department of Telecommunications

Performance: measurement scenarios

TCP

netperf
client

netperf
server

Virtual image #0

IP

TCP

netperf
client

Virtual image #0

IP

ng0

Virtual image #1

IP

 ng1ng0

TCP

netperf
server

Virtual image #n

IP

 ng0

L
o

o
p

b
ac

k
te

st
N

et
w

o
rk

 s
im

u
la

ti
o

n

Referent machine:

AMD Athlon @ 1200 MHz, 100 MHz FSB
256 MByte SDRAM

FreeBSD 4.7-RELEASE

BSD Network Stack Virtualization slide 20 of 25

Department of Telecommunications

Performance: loopback TCP throughput

BSD Network Stack Virtualization slide 21 of 25

Department of Telecommunications

Performance: latency (ICMP ping)

BSD Network Stack Virtualization slide 22 of 25

Department of Telecommunications

Performance: TCP over multiple virtual hops

BSD Network Stack Virtualization slide 23 of 25

Department of Telecommunications

Implementation: application scenarios

Virtual image #0

fxp0

Virtual image #1

ve0

Virtual image #n

 ve0

Virtual hosting

bridging code

NIC
hw

Virtual image #0

fxp0

Virtual image #1

vlan0

Virtual image #n

vlan0

VPN

vlan mux

NIC
hw

BSD Network Stack Virtualization slide 24 of 25

Department of Telecommunications

Future work

< Implement removal of virtual images (domain_detach?)
< Proper detection of domain attach failures, with

controlled rollback domain detach
< Tunnel interfaces (gif, tun, faith…)
< Resource protection

=Check for correct reuse of jail framework
=Mbufs, userland memory, swap, I/O…

< Migration to FreeBSD 5.0
=Reserve the fields in struct proc & ifnet for future use NOW!

< MP adjustments / testing
< Virtualization of protocols other than IPv4
< Porting to other BSD platforms

BSD Network Stack Virtualization slide 25 of 25

Department of Telecommunications

Conclusion

♦ Experimental implementation – scope of work
< ~190 virtualized symbols (in struct vimage)
< ~5200 lines of new or modified code
< 165 modified files in /sys tree, including new files

♦ Patches against FreeBSD 4.7-RELEASE
available at http://www.tel.fer.hr/zec/

♦ Discussion / questions ?

