Adaptive Compressed Caching: Design and Implementation

Rodrigo S. de Castiig Alair Pereira do Lagh and Dilma Da Silva

TDepartment of Computer Science
Universidade de & Paulo, Brazil

§IBM T.J. Watson Research Center, USA
rcastro@ime.usp.br, alair@ime.usp.br, diima@watson.ibm.com

http://linuxcompressed.sourceforge.net

Abstract u_sed to stor(_e pages compressed by.data compression algo-
i , rithms. Storing a number of pages in compressed format
In this paper, we reevaluate the use of adaptive CO[jzreases effective memory size and, for most workloads,
pressed caching to improve system performance throygfy enjargement reduces the number of accesses to back-
the reduction of accesses to the backing stores. We Qi store devices, typically slow hard disks. This method
pose a new adaptability policy that adjusts the compressghs advantage of the ever increasing gap between the
cache size on-the-fly, and evaluate a compressed caclifi) processing power and disk latency time, which is
system with this policy through an implementation in &,rently about six orders of magnitude slower to access
widely used operating system, Linux. We also redesigin main memory. This gap is responsible for, among
compressed caching in order to provide performance iginer things, an underutilization of the CPU when the sys-
provements for all the tested workloads and we bellevqérm needs exceed the available memory. An example of
addresses the problems faced in previous works and i}z effect is the Linux kernel compilation. Even when
plementations. Among these fu'ndamental mOdIflcatIOI’I]ﬁany processes of the compiler are run to compile the ker-
our compressed cache is the first one to also COMPrR8Bsource tree, the CPU usage drops substantially if the
file cache pages and to adaptively disable compression,gkijaple memory is not enough for its working set. And
clean pages when necessary. _ this is also true for typical current systems with many hun-
We tested a system with our adaptive compressed Ca&r@ds of megabytes of memory experiencing heavy loads,
under many applications and benchmarks, each one Wifiyh a5 web servers, file servers and database systems.
different memory pressures. The results showed perfgy-ihese scenarios, compressed caching can make a bet-
mance improvements (up to 171.4%) in all of them {f, sage of CPU power reducing accesses to the backing
under memory pressure, and minimal overhead (Up d@yres and smoothing performance drops when the avail-
0.39%) when there is very light memory pressure. We bgsie memory is not enough. The concern with these sce-
lieve this work shows that this adaptive compressed cagiigios when the available memory is not enough is still
design should be actually considered as an effective megfressed in current operating systems by improving their
anism for improvement in system performance. virtual memory systems, in particular their page replace-

1 Introduction ment policies.

Compressed caching is a method used to improve theéhlthough the reduction of accesses due to the compres-
mean access time to memory pages. It inserts a n@@n tends to improve system performance, the reduction
level into the virtual memory hierarchy where a portion ¢ff non-compressed memofynain memory not allocated

main memory is allocated for tteompressed cacland is for the Compressed cache) tends to worsen it. This inher-
— . _ent tradeoff leads us to question of how much memory
This research was supported by FAPESP (Fuadate Ampar@ yjich should be used by compressed cache, which de-

Ciencia do Estado dea® Paulo), through grant 01/01432-4, and CNPB .
(Conselho Nacional de Desenvolvimento Ciéab e Tecnobgico), P€NAS on the workload to achieve the best performance.

through grant 465901. A compressed cache that adapts its size during the system

execution in order to reach a good compromise is calladcess times, has never been so wide.
adaptiveand one with fixed size is callestatic In the following section, we describe the design of the

The use of compressed caching to reduce disk p&g§mpressed cache we implemented and Sejction 3 presents
ing was first proposed by Wilson [20,121], and Appdlur analysis about static compressed caches as well as de-
and Li [2]. Douglis implemented an adaptive compressé8ription of the adaptability policy we propose. Secfipn 4
cache in the Sprite Operating System, achieving Speedgggtains the eXperimental results of our implementation
for some experiments and slowdowns for othErs [4]. and Sectiofi J5 compares this implementation with previ-

Given the inconclusive results of Douglis, the prot?—us works. In Sectiop|6 we point out possible extensions

lem has been revisited by many authors. Russinovich éﬂ&h's work and present our conclusions.
Cogswell implemented a static compressed cache in W'?- Design
dows 95 [[18], which resulted in negative conclusions for

the ziff-Davis Winstone benchmark. On the other hanth this section, we first show an overview of the main
Kjelso et al [7,[8/ 9] empirically evaluated main memeoncepts behind compressed caching and our implemen-
ory compression, concluding that it can improve systd@tion. Second, we discuss the overhead side effects. At
performance for applications with intensive memory réast we give more details and some important design de-
guirements. Kaplan [5, 22] demonstrated through simulgsions in our implementation in the Linux 2.4.18 kernel.
tions that a compressed cache can provide high reducg')ll Overview

in paging costs. His experiments confirm Douglis’ first*

statements about the limitations of a static compresdada compressed caching architecture, the main memory
cache system. Moreover, he proposes an adaptive schismgivided into non-compressed memory and the com-
that detects during system execution how much memamessed cache. When the virtual memory system decides
the compressed cache should use. This scheme warratdedake room for new allocations, it evicts some pages,
benefits for all the six programs he simulated using mermnd they are compressed and stored in the compressed
ory traces. An implementation of a static compressedche. Although it is possible for the page to be stored un-
cache in the Linux operating system was performed bgmpressed when it is incompressible by the compression
Cervera et al[[3]. In spite of the inherent limitations adilgorithm, throughout this paper, any page stored in the
a static compressed cache, they showed performancedompressed cache is said to bepanpressed pageegard-
provements for most of the tested workloads. less of the form it is stored in, and any page in the non-

In this paper, we reevaluate adaptive compressgdnpressed memory is known aen-compressed page
caching through real applications and benchmarks on/¥y attribute that a non-compressed page had at the mo-
implementation in the Linux operating system. This infhent it was evicted is inherited by the compressed page
plementation has been made public and tested by m4f®j €xample, dirtiness).
people in different equipments for many months. We Previous studies and implementations have designed
demonstrate that an adaptive compressed cache can gp§Ipressed caches which only stored pages backed by
vide significant improvements for most applications witgwap. Unlike them, in our implementation all the pages
a design that minimizes its costs and its impact on the v@@cked by a backing store (e.g., file cache pages) are eligi-
tual memory system as well as uses the allocated mem®l§ to be compressed and stored in the compressed cache.
efficiently. Our implementation uses a new adaptabilifghe reason behind this decision will be discussed in Sec-
policy that attempts to identify at run time the amount ¢on2.3.1.
memory the compressed cache should use to provide th# our implementation design, as soon as there is no

best compromise. This policy adds minimal memory arffpace available in the compressed cache to insert a new
CPU overhead to the system. page, either the compressed cache allocates more memory

We also show that the use of compressed caching altré)lrs'tS usage or some compressed pages are fre?‘d- The de-
the behaviour of various parts of the operating system argion on which act_lon S.hOUId.be taken will be dpcussed
that its costs are beyond memory page (de)compressidﬂsg,ecuo'@' Later in this section the former action (allo-

In particular, bad compression ratios for memory pag ting more memory for its usage) is described. When the

are shown to be manageable and do not affect compreéél raction (freeing co.mpressed pages) is taken, the O.Id'
caching performance so severely as stated in previ compressed page is released. However, before being

studies. Furthermore, the adaptive compressed cacrﬂ‘ﬁ&ased' compressed dirty pages must first be written to
|S.relV|3ed in a period when the main reason that mOt'Vat?lehe order the compressed pages are freed is in accordance to the
this idea, the gap between CPU processing power and digkr they were stored into the compressed cache.

Main Menory

o«

Pages backed
by Swap

Pages backed
by ot her
Backi ng Stores

In the compressed cache, the smallest amount of memory
that can be allocated or deallocated is known asla A
cellis formed by a constant numberaafntiguous memory
pagesand is used to store one or more compressed pages.

It is important to notice that two consecutively allocated
cells do not have necessarily contiguous addresses.

7 Thefinal free space of a celk the contiguous region
Conpressed Cache at the end of the cell that does not store any compressed
page. Whenever a page is compressed into the com-
pressed cache, we search for the cell with the smallest
final free space where the compressed page can fit and
store it at the beginning of the final free space region.
When a page is freed from the compressed cache, either
)) _ ~ because the compressed cache is full or because the page
Figure 1: Memory Hierarchy with Compressed Caching,5¢ requested by any kernel operation, it is simply re-
moved from the cell in which it was stored. To avoid un-

the backing store. Depending on the data they hold, copoessary overhead, no movement of compressed pages

.) side the cell is performed when pages are added to or
pressed dirty pages may have their data decompressedrrér%oved from the compressed cache, which makes frag-

fore undergoing the writ ration. In our roach, onl o N
ore undergoing the write ope ation. fn ourapproacn, o B¥ ntation in the cell a possible issue. Thee spacef a
pages backed by swap are written in compressed form, Lﬁ . . ; .

; . cel d:on5|sts of the sum of space in all regions in the cell
we do not have swap space gains since each compreshs0 Uised to store any compressed page. See Figure 2
page is null-padded to complete the size of a block, as y P page. '
to avoid swap space fragmentation, which would possiz ., ,
bly be a source of overhead. Storing these pages onto tlggge g Conpressed Cache |
swap device in compressed form delays the decompresag;rgreSse
sion to the “swapin” operation and avoids decompressio@i nal Free g

. pace
of pages never to be reclaimed by the syster@om- _ __, AN
Free Space

pressed pages not backed by the swap must be decoggggfessed [
pressed before being written since a file system assumes
that the data will be stored in its natural form.

Compressed pages requested back by any kernel oper-

athn n ordgr .to be immediately usgd are said tooe Depending on the compressed cache utilization, we
claimed This includes a page reclaimed by a page fayl,y he unable to find a cell whose final free space is large
and a page holding data of a block cached in memogy,q g to store a new compressed page, but there may be
Reclaimed compressed pages are removed from the came|| whose free space is sufficient. In this case, a cell
pressed cache, decompressed, and their data are plggefihe smallest free space where the compressed page
in newly allocated memory pages. If a compressed pagg, pe stored is selected. Then, this celtdsnpacted

was eventually back §tored and is not present in the COM&:. all compressed pages are moved to the beginning of
pressed cache (nor in the non-compressed memoryjn{ ce||, making all free space available as final free space.

is read from the backing store, and decompressed if Bg¢ore enlarging the compressed cache or releasing any
backing store is the swap. In this case, it is not added pressed page, we always try compaction.

the compressed cache when read from the backing store. ’) _

See Figur€]L for the complete hierarchy. 2.2 Overhead Considerations

~ An adaptive compressed cache must allocate memgfye time spent by compression algorithms is our pri-
in such a way that permits its memory usage to chang@ry overhead concern. Besides the time to compress
during system execution. For this reason, we providgq decompress a single page, which will be discussed
a simple infrastructure for management of the memogye, (see Sectiof 4.4), the number of times the system
space allocated for compressed caching through pagigg)compresses pages must be taken into account. This
2Pages that are read in advance (‘read-ahead”) are only de amount depends on how much memory the processes use,

com- .
pressed if any process faults in them, i.e., they are mapped back @H@'r access patterns., and_ the memory usage of the com-
process page table. pressed cache at a given time. There may be cases where,

A A 4

O her Backi ng
Stores

Swap

Backi ng Stores

Figure 2: A cell in compressed cache

even if we succeed in reducing the accesses to the bamkifers may have to write their data to allow the pages
ing store, the total time spent (de)compressing pages storing them to be freed. Therefore, compressed caching,
be substantial, notably when many (de)compressions otan attempt to reduce reads from backing store, may in-
cur. We may also detect some overhead when there arease the number of write operations. As a matter of fact,
processes ready to run in the CPU most of the time, ewga noticed this behaviour in some of the workloads tested.
if many I/O operations are performed concurrently. In thidowever, the impact of write operations on system perfor-
particular case, if all the (de)compressions use more thmance is usually lower than of read operations. In partic-
the CPU idle time, this usage may penalize running prakar, our experiments did not have their performance hurt
cesses, slowing down their execution. by an increase in the number of write operations. Initially,
Since compressed caching allocates an amountws added support for storing pages holding dirty buffers
memory for storing compressed pages, it decreases daéa, but later we removed it for a number for reasdis:
available memory that can be directly mapped by prit-achieved almost no performance gafii) these pages
cess’s page tables. For this reason, the number of pagald not be compressed due to the buffer handling code;
faults tend to increase. Page allocations also tend to @amd (iii) the support implied undesirable changes to the
crease for two reason§) more pages are needed to secompressed cache structure.
vice the increasing number of fault§j) fewer blocks . . .
are likely to be cached, thus more allocations are nee(?efg’ Design Decisions
to provide pages to blocks that are cached and uncachethis section, we give more details and some important
more often (see Sectign 2.B.1). As a consequence, dlesign decisions in our implementation.
overhead introduced by Co_mpressed caching is also comy 4 Page Cache
posed of costs from handling page faults and page evic-
tions. These costs, notably releasing pages, can be db-previous studies proposed or implemented com-
stantial. pressed caches that stored only pages backed by swap.
Another important effect of the compressed caching\f¢éhen a compressed cache like these is used, all system
the metadata overheait introduces. Every cell allocatedcaches end up being smaller since they have less avail-
for the compressed cache needs met&htiaut the com- able memory to compete for. In Linux specifically, sys-
pressed page(s) it stores. Furthermore, each cell has mi&aL caches are namely the disk cache, which is known
data about the compressed pages it holds. Dependindbkinux aspage cacheand kernel internal data struc-
the number of cells, i.e., the compressed cache size, ##§ caches, known generically siab cachesExamples
on hOW many pages are Stored in |t, the memory Spﬁeslab caches for kernel internal data structures are the
used by those data structures may be quite significantPuffer, inode, dentry and quota caches.
compressed cache system should also take into accouftompressed caching has a strong tendency to influ-
the metadata costs its implementation requires. For tRizce the page cache, as it is commonly larger than other
reason, simpler algorithms and strategies may be moreGiches. Pages holding data from blocks of all backing
fective, particularly if we consider that the system will bgtores (like buffer data, regular file data, file system meta-
used under memory pressure. data and even pages with data from swap) are stored in
In Linux, pages may be read from or written to a blocthe page cache. Like other system caches, page cache
device using auxiliary structures named buffers, whidRay be smaller on a system with a compressed cache that
store block data in pages from the page cache (page ca@fly¥ stores pages backed by swap. As a consequence of
is exp|ained in Sectio@_l)_ When buffers are usébis possible reduction, blocks (usually from regular fI|ES)
they are marked as clean or dirty instead of the meflll have fewer pages with their data cached in memory,
ory pages containing their data (/O operations that #dat is likely to increase the overall I/O. That is a sign
not use buffers mark the page holding their data itself Bt compressed caching should not only be aware of its
clean or d”‘ty) In the page release process, pages h&gefulness to the virtual memory system, but also how it
ing data from dirty buffers must first be written to backhight degrade system performance.
ing store before being eligible to be freed. Besides, giveninstead of letting page cache and compressed cache
that the number of page allocations is higher with coriompete for memory, our approach for this problem con-

pressed caching (as described above), many more digfs of also storing other pages from the page cache (be-
sides the ones holding swap data) into the compressed

°In comparison to a compressed cache of the same size and qellahe This actually increases memory available to all
composed of one memory page, only half the data structures for those

metadata is needed when cells with two contiguous memory pagesRAI€S in page cache, not only to those baCke_d by swap.
used. In Sectior] 4, we show some tests where this design de-

cision is shown to be fundamental. If we do not have rich compressibility, compressed

. cache cells composed of only one memory page may store
2.3.2 Page Ordering only one compressed page, in average. To minimize this
In the compressed cache, our primary concern regardpngblem of poor compression ratios, we propose the adop-
page ordering is to keep the compressed pages in thetion of cells composed of contiguous memory pages. With
der in which the virtual memory system evicted thenfarger cells, it is more likely to have memory space gains
As we verified in experiments on Linux, which uses agven if most pages do not compress very well. For ex-
least recently used (LRU) aproximation replacement p@lmple, if pages compress to 65% in average, we will still
icy, not keeping the order in which the compressed pades/e space gains if we use cells composed of at least two
are stored in the compressed cache rarely improves sy@atiguous memory pages. In fact, in this case, it is pos-
tem performance and usually degrades it severely. sible to fit three compressed pages in one cell.

As most operating systems, when a block is read fromHowever, we should notice that allocating contiguous
the backing store, Linux also reads adjacent blocks in ademory pages has some tradeoffs. The greater the num-
vance, because reading these subsequent blocks is ustigiyf contiguous pages, the greater the probability of fail-
much cheaper than reading the first one. Reading blo¢ke when allocating them, given the system memory frag-
in advance is known a®ad-aheadand the blocks read mentation. Furthermore, the larger the cell, the greater the
ahead are stored in pages in non-compressed memoryprobability of fragmentation in it and the cost to compact

Read-ahead operations alter the LRU ordering since tfecompressed pages. As a good side effect, given that
pages read in advance are taken as more recently used Bfhof our metadata is used to store data about the cells,
the ones stored in the compressed cache, although tHg,use of larger cells reduces these data structures. Ex-
may even be not used. As a consequence, it is possipféimentally, we have concluded that two is the number
that this change forces the release of pages not in conffrcontiguous pages to be allocated that achieves the best
mity to the page replacement algorithm. For this reasdgsults in our implementation.
whenever a page is read from the compressed cache, /& Sectior{ # we will see some tests where this design
read-ahead must not be perfornffett.is not worthwhile decision is fundamental.
to read pages from the compressed cache in advance siige1 Disabling Clean Page Compression

there is no performance penalty for fetching the pages_in
different moments. Furthermore, compressed pages r&Qf SOme workloads, no compressed cache scheme can

ahead from swap (which are stored in compressed fonPfo"e system performance. This occurs when very few

as described in the Sectipn 2.1) are only decompresSed'© Pages are read from the compressed cache among
all the pages that were compressed. In this case, it is

when explicitly reclaimed by the virtual memory system.I that a | * of d and
In contrast to the pages read only due to the read-ah g nat a farge amount ot pages were compressed an
reed, without any actual benefit to the system. As a

operation, a compressed page reclaimed for immedigte : .
use preserves LRU page ordering, since it will be morrréatter of fact, compressing these pages added inherent

recently used than any page in the compressed Cache_cr:;);tasdlgizcompres&on, decompression, management, and

We also consider essential to preserve the order Mrhis scenario can theoretically also happen with dirty
which the pages were compressed to be able to ver] es, but in our experiments we could only observe it

the efficacy of compressed caching. Otherwise the resﬁ I#I clean pages, mainly due to the support for all pages

would be influenced by this extra factor, possibly misleaal—acked by backing stores (other pages but the ones backed
ing our conclusions.

by swap are usually clean). We were unable to find a

2.3.3 Cells with Contiguous Memory Pages realistic application whose dirty pages had this problem.

W that th . fiof q Moreover, for clean pages this problem is clearly more

i Eihsea)r/atig of ﬁl%ms?;isf):‘ophéaég)mSr(e:g;ne%re;asgee g\?gretiﬁ%dent since no backing store operation is performed and
- . . . o compression costs are highlighted.

original size (times 100%). We emplogh compressibil- P ! '9ng

ity poor compressibilityor quasi incompressibilitjf the In our implementation, we adopt a heuristic to attempt
Y. P P orityor qu b - to detect when clean pages are being compressed with-
average compression ratio is smaller than 50%, betw

Gl benefit to the system. This heuristic tries to detect the
0, 0, 0, I '
50% and 70%, or over 70%, respectively. scenarios where a large amount of pages are compressed,
4The usual behaviour of Linux for pages read from somewhere eEOt requested back by the system, and freed, without ben-

but non-compressed memory is to perform a read ahead, because i?ﬁé-tp the system. This attempt is done by checking the
sumes they will be read from a slow backing store relation between how many clean compressed pages are

reclaimed by any kernel operation and how many of themsmaller benefit from the compressed cache use. On the
are released from the compressed cache without beingatirer hand, static compressed caches larger than the one
claimed. Once the compressed cache detects that maitia the best cost/benefit ratio provide more gains reduc-
more compressed pages are released than reclaimethgitaccesses to the backing store. But it also introduces
disables compression of new evicted clean pages. Fromare overhead to the overall system due to the reduction
this moment on, evicted clean pages are freed from nafi-non-compressed memory (see Secfion 2.2). This over-
compressed memory without being first stored in the commead hinders it from improving performance proportional
pressed cache. As soon as we stop compressing tthéhe gains it is able to provide reducing accesses to the
evicted clean pages, the compressed cache keeps tradkacking store(s). See static compressed cache cases in
which were the last clean pages freed without being stoﬂéigure@ for an illustration of this behavidﬂrThe adap-
in the compressed cache. Enough data that identifies thiase case in this figure will be explained later in this sec-
last freed pages are stored and all the pages read from diisk.
are verified to match any of these data. When the sys-
tem notices that many pages read from disk have recently Linux kernel compiation
been evicted from memory without being compressed, we Sysem emon 10
re-enable the clean page compression. 0l

If we release clean pages without compressing them |
into the compressed cache, the LRU page ordering is |

il

changed because some of the pages freed by the virtual
memory system will be stored into the compressed cache :
and others will not. Nevertheless, since few of the clean °
pages were being reclaimed by the system, most of them
would be freed anyway. Hence, it is expected that releas- [
ing them earlier does not have a major impact on system ¢
performance. The metadata and processing overhead in--
troduced by this heuristic are insignificant.

The parameters used in these detections (when we giggre 3: Comparison of several compressed caches with
able clean page compression and when we re-enable thejme without compressed caching, showing the rela-
compression) were decided experimentally. In Se¢ffonide gains of total time for Linux kernel compilatiof].
we will see some tests where this design decision is Véfijese relative results were obtained for the adaptive com-
important to minimize substantially the overhead. pressed cache e for static compressed caches with sizes

2.3.5 Variable Compressed Cache Size ranging from 512Kb to 8Mb.

5k

L L L L L L L L L L
adaptive static static static static static ~ static static static static
512Kb 01Mb 02Mb 03Mb 04Mb O05Mb 06Mb 08Mb 10Mb

_In our experiments, we analyzed static compressed cacheg particular, the compressed cache cost is highlighted
in many cases, reaching conclusions about them and Jere

anifi ¢ dapt d he. Si en the memory allocated for it is barely used. In fact, it
significance of an adaplive compressed cache. since miﬁoduces overhead to the system by reducing the amount
is a key issue in our work, we will discuss, in the foIIowm%f

tion. the desian decisi lated to it available memory for the non-compressed memory, but
section, the desigh decisions refated to it does not provide all the benefits that could be achieved
3 Adaptive Cache Size

with a compressed cache of this size.
In spite of the limitations mentioned above, static

We observed in experiments that, given a particular gmpressed caches may still improve application perfor-
plication, different sizes for static compressed cach@nce. However, even if a static compressed cache with
achieve different cost/benefit ratios. Even the best rafi¢ertain size is able to improve system performance for
among all the static sizes does not necessarily mean tha&pecific application, given that programs have differ-
a static compressed cache provided performance gain§€'ih memory needs during their execution, it does not
comparison to a system without compressed cache. Mean that this static compressed cache can provide per-

In fact, static compressed caches smaller than the dp@nance improvements for other applications. Further-
with the best cost/benefit ratio provide fewer gains redy®°re. a static compressed cache with alpar_tlcular size that
ing accesses to the backing store than the optimal siFaeroves the performance for an application may even
Moreover, they still introduce the inherent overhead (s€€sthroughout this text, Kb means 1024 bytes, Mb means 1024Kb and
Sectior] 2.P), and for this reason the system would havemeans 1024Mb.

degrade severely the performance for other ones. These System w/o Compressed Caching
conclusions are in accordance with the analysis already Memory Non-Compressed Memor
reported and/or predicted by previous wark([4},(18, 5]. | D [B Y

A reliable detection, at run time, of how much memory I_>|
should be kept compressed in the system is the greatdst
challenge for compressed caching to become a general-
purpose solution for the reduction of accesses to the back-

Pages freed to backing
stores (e.g., swap, regular files)

ing store.

We designed and implemented an adaptability policy ~ System with Compressed Caching
for the compressed cache to attempt to detect when it Compressed
should change its memory usage in order to provide more ~Memory Cache

. . . Non-Compressed Expmn
benefits and/or decrease its costs. Our approach is based Memory List List
on a tight compressed cache, without allocation of su- [A —+B

perfluous memory. This improves memory usage effi-
ciency, since unused memory does not improve perfo
mance, possibly even degrades |t._The am_ount of memory Pages freed to backing

allocated for compressed cache is only increased when siores (e.g., swap, regular files)

it is full, compacted, and would have to release a com-

pressed page in order to store a new page. The cellsused Figure 4: Lists in the compressed cache

by the compressed cache are released to the system as

soon as they are no longer needed (e.g., when all com-

pressed pages within a cell are freed). It is important &S to change its size happens when pages are read from
notice that, once we release a cell to the system, it is i€ compressed cache and is based on decompression of
certain that we are going to be able to allocate it agdi@ges from the expense and profit lists (see Fighre 5). In
when necessary, specially cells composed of more tHgeral, if compressed pages from the expense list are re-
one page. Page allocations and releases have the inh&/@#ed to the non-compressed memory, our policy takes
cost of the functions that perform these tasks, but they &M as a sign that compressed caching is not being worth-
insignificant. This is particularly true because we makhile, because these pages are being accessed with over-
sure that the page allocations and releases of this sché@@d. On the other hand, pages reclaimed from the profit
are performed without activating the virtual memory Sygst indicate that compressed caching is beneficial to the
tem to try to force releases, which is expensive. In oth@¥stem, since these pages would have had to be read from
words, we only allocate if the memory pages we need &HK if the system had no compressed caching.

available at the allocation time.

. . Compressed
In terms of how the compressed cache adapts its size temory Cache
system behaviour, we begin with the assumption that com- Non-Compressed Expe' nse Proiit
pressed caching is useful to the system unless our online Memory List List
analysis shows otherwise. Hence, the cache starts with (@) «—
minimum size at initialization time and, at first, it does not (b) +

have limitations to its growth. That is, as soon as the virta) A page is read from the expense list
tual memory system starts to evict pages, the compressed(2nd consecutive page)
cache increases its memory usage in order to store them. Lock compressed cache growth

Based on the approximated LRU ordering and on the (3rd consecutive page)

actual compression ratio (how many pages are stored for (i) Try to Shrink the compressed
. cache relocating fragments

the number of allocated memory pages), the pages in the) _
compressed cache are split into two lisexpenseand O eaae 3 oo (). free
profit (see Figurg }4). The expense list stores the comy) A page is read from the profit list
pressed pages which would be.in the memory if COM- Unlock compressed cache growth (if locked)
pressed caching were not used in the system. The profit
list stores the compressed pages that are still in memory Figure 5: Adaptability Heuristic
only due to the compressed caching.

The analysis that detects when the compressed cachié two consecutive compressed pages are read from the

expense list, the compressed cache is locked to growthThe source code of the compressed cache implementa-

i.e., the compressed cache will no longer increase fisn along with all the used tests programs and input data

memory usage. If this scenario persists and the thawk available on our Web site [11]. The results presented

consecutive compressed page from the expense list isinethis paper were run with the 0.24pre5 version of our

claimed, we take the following actior{i) if we are able code.

to relocate enough of the compressed pages from a cgl . .

to other cells, we do the relocation, decreasing the coﬁ?—i Test Suite Description

pressed cache memory usage by freeing the initial célihux Kernel 2.4.18 Compilation [6] A very realis-

otherwise (ii) we free the oldest compressed page. Ontie benchmark with high CPU and memory usage, mainly

one of these actions is taken, the growth barrier is s@hen forking its build. The Linux kernel compilation was

moved and the analysis starts again. If a page is read fram as only one procesgl(), as two {2), and four {4)

the profit list, any existing growth barrier is removed (sencurrent processes. The memory available to the sys-

summary of the heuristic in Figufé 5). tem varied from 18 to 48 Mb. The case with 48 Mb almost
does not have memory pressure.

MUMmer

semumiiiorz MUMmer 1.0 [15] A scientific application to align
— genomes that has a very intensive memory usage. Al-

ol 1 /. 1. 1.1

| u most all of its memory usage is composed of pages backed
T] by swap. MUMmer was executed varying the amount of
| memory size available to the system from 330 to 500 Mb.
The 500 Mb case almost does not have memory pressure.

=or 1 Open Source Database Benchmark (OSDB) 0.14

| [16] A benchmark that performs several database related

operations using the Postgres database manager and a 40
| Mb database. We ran the experiments with 24 and 48 Mb

500 e of memory in the system. The 48 Mb case almost does

adaptive static static static static static static static static static
02 Ml

b 05Mb 07Mb 10Mb 15Mb 20Mb 30Mb 40Mb 50 Mb not ha.Ve memory pressure.

Gain (%)

Figure 6: Comparison of several compressed caches vitfperf 0.8 [14] A tool to measure web server perfor-

a kernel without compressed caching, showing the relatfi@nce. Our test using httperf performs a number of re-
gains of total time for MUMmer execution. These relativ@uests of a file to a local web server, measuring the num-
results were obtained for the adaptive compressed cack€eof resquest served per second. The available system

for static compressed caches with sizes ranging from 2§mory varied from 24 Mb, which has a very intense
50Mb. memory pressure, to 64 Mb, where there is a very light

memory pressure for this benchmark.

i g,Frlc_Jm ourht_axpenmen;s, we Ke”f"\a/%hat ourtagaptat}{}l-atlab [13] A mathematical tool to perform numerical
Ity policy achieves good resufts. en a stalic COnabmputations and graphics. In our tests, we used a Matlab

pressed cache provides performance gains in compari P&gram that computes the fractal dimensions of an image

to a kernel without compressed caching, our adaptabil Xen as input. This computation may imply in an inten-

policy ends up selecting the size that achieves gains u \a memory and processing time usage. We used three

ally very close to the ones obtained by the best static sgﬁferem images and the virtual address space required by

Moreover, in some sce_narios,_applica_lti_ons may ben ch of them was 80, 256 and 1000 Mb, respectively.
from the adaptability policy (mainly avoiding superfluous

allocated memory), achieving results better than any sta#iert - GNU textutils 2.0 [19] The sort program from

compressed cache. See FigUrgs 3[gnd 6 for results &MU textutils aims at sorting a text file with minimal

comparison relative a kernel without compressed cachifigmory usage. It uses about 2 Mb of memory to sort files

between a static and an adaptive compressed cache. Whose size are more than 100 Mb. The experiment results
were collected with 24 Mb of memory in the system.

4 Experlmental Results PostMark 1.4 [17] A benchmark to measure perfor-
In this section, we describe the test suite, the methodoiance for small files in an operating system, by creating a
ogy and the results of our implementation of a compresdadye pool of files and measuring some transactions rates.
cache in Linux 2.4.18. This benchmark was run with 128 Mb of memory in the

system. 171.4% of speedup. When it is under light memory pres-
sure, a slight overhead (not more than 0.39%) occurs like
4.2 Methodology noticed in the cases 30 Mb (kern@l), 48 Mb (kernel
Our experiments were run on a system with a Pentidfh), 500 Mb (MUMmer) and 48 Mb (OSDB).
Il 1 GHz processor, 768 Mb of system RAM and a 60 We chose some amount of available memory to the sys-
Gb, UltraDMA 100, 7200 rpm hard disk. The systerfm in order to verify compressed caching varying from
had its memory configuration adapted for each applicatidhnost no memory pressure to high memory pressure. For
in order to force memory pressure and make compres§@mple, 500 Mb is more than enough to run MUMmer
caching work. For most tests, an amount of memory unddplication, while 330 Mb is very close to degenerate the
which the system almost does not have memory pressa@®lication behaviour intensively (with 320 Mb on a ker-
is chosen. nel without compressed cache, the MUMmer execution
The Linux distribution installed on this system was DdS 8lmost 2 hours, i.e., about 4600% longer than with 330
bian Sarge. Each test was run after a fresh system re§9- As one can see for cases 27Mb of Linux kernel com-

to avoid hot cache effects. pilation (j1, j2, and j4), if the concurrency level increases,
) _ the memory pressure gets higher and compressed cache
4.3 Compression Algorithms makes a huge difference (notablyjé case).

We provided support for two compression algorithms ig\rlzea?;? (IerYilrude:atre?otgg 22)’9fh:?dnliﬂgigr:gsrrseg:]ogyrpée:-
our implementation, namely: u ' » Weru ur sy

tem without any memory limitation, thus having 768Mb
WKdm [24] is avariant of WK compression algorithm®f RAM available. (For Matlab, we changed the input im-
family [5}[22] by Paul Wilson and Scott Kaplan designeages to use less memory, as is seen in the 80 and 256Mb
for compressing in-memory data rather than file data. Ntatlab cases on the table.) For most cases (kgéhel
uses a simple, direct-mapped dictionary of recently seltuMmer, OSDB, Matlab (256Mb) and Matlab (80Mb))
words. no difference was noticed. For two cases (kef@eland

LZO [1Z] s a fast Lempel-ZivI[25,26] algorithm andhttperf), we noticed that compressed caching introduced

: . . an inherent overhead of 0.25-0.27%. For one case (ker-
implementation by Markus Oberhumer. In our implemen-_,
tation. we used the miniLZO. a liahtweiaht version of thgelj4), we noticed that compressed caching achieved an
LZIO I"bv;/arus n - afightweight versi improvement of 0.28%. We think it is fair to state that no

lorary. overhead is expected by our implementation if the appli-

4.4 Performance Results cation is to be run with no memory pressure at all.

Global results. The results for the Linux kernel com-Compressing only pages backed by swap.Compar-

pilation for the various concurrency leved (, j2 , and "9 columnsonlyswapand referencefrom Table[1, we

i3), the MUMmer, the Open Source Database Bencf2" Se€ the |mportan(?e of alsq compressing pages not
mark, httperf and Matlab are displayed in Tgble 1. In thgacked by swap, as discussed in Secfion P.3.1. For the
table we present the execution time for a kernel withofftUMmer cases, one can see tratlyswapand refer-
compressed cachingv(o CC and various kernels with enceachieve S|m.|Iar results. In fact, few pages are not
compressed caching. (The only two exceptions are httpfcked by swap in these cases. Nevertheless, we see that
and Matlab, where only the data for the two most inff'® 9ain in OSDB 24 Mb case obtained ferenceis
portant kernels were collected.) Each compressed caBHUfied by onlyswap The latter produces slowdown for
kernel has a different configuration (different adaptabili ost kernel compilation cases in contrast with the former,

policy, number of pages in a cell, compression algorith at a_chi_eves gains in most cases. If we run the kernel
or the type of pages it stores). compilation tests for static compressed caches of several

The referencecolumn corresponds to the kernel ngixed sizes that store only pages backed by swap, the same

compressed caching that achieved the best results in ggwdown is verified. It is also interesting to notice that
experiments. This means that it introduces improvemiéf‘smeI compilation an_d OSDE have higher usage of pages
in most workloads, even if other configurations may i yacked by other backing stores.

prove even more in some cases. It uses LZO compressieils composed of one, two and four memory pages.
algorithm, cells composed of two memory pages and t@emparing the columnselll, referenceandcell4, we see
adaptability policy described in Sectiph 3. In comparisdhe influence of compressed caches with one, two and
to the results fromv/o CC we observe significant gains infour pages in every cell, respectively. One can see that
the scenarios with high memory pressure, reaching upctlls composed of four pages does not perform well in

test memory w/o CC reference sluggish aggressive onlyswap wkdm Izowkdm celll cellq
Mb seconds gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%)
18 467.8 21.73 18.07 21.46 -4.65 2.11 11.07 19.06 -0.b5
21 326.68 8.89 8.20 7.97 -1.01 3.20 571 7.33 1.64
24 289.05 0.20 -0.35 0.66 -0.69 -1.44 -0.44 0.49 -1.56
kernel (-j1) 27 280.45 0.11 -0.64 0.17 -0.31 -0.44 -0.09 -0.19 -0.40
30 278.33 -0.23 0.11 0.03 0.46 0.48 0.39 0.35 0.65
48 274 0.18 0.09 0.28 0.47 0.31 0.33 0.26 0.34
768 271.17 -0.27 - - - - - - -
18 1002.62 33.13 11.68 31.76 1.60 0.36 0.30 28.86 -4.97
21 608.98 33.84 21.99 30.40 -4.12 4.76 9.50 25.19 -4.41
24 395.05 18.78 12.55 19.38 1.22 -0.18 11.26 15.59 0.43
kernel (-j2) 27 313.8 5.37 6.80 6.92 0.00 2.72 4.14 6.32 -0.53
30 283.7 1.12 0.92 0.24 -0.00 -1.36 0.60 1.38 -0.23
48 272.3 0.19 0.37 0.28 0.51 0.40 0.36 0.31 0.52
768 269.76 -0.01 - - - - - -
18 1826.14 14.98 11.84 9.77 -0.52 6.73 5.01 13.31 -9.91
21 1067.47 15.62 8.38 -1.50 -5.41 -5.67 -5.05 12.31 -11.72
24 826.44 31.85 -2.16 20.60 -0.52 -1.73 -1.98 28.78 -7.65
kernel (-j4) 27 654.83 34.72 7.90 29.08 3.86 1.47 -6.64 33.09 2.01
30 489.67 26.45 13.45 25.47 0.84 0.34 3.14 26.48 5.89
48 274.95 -0.39 -0.84 -0.64 -0.16 -0.56 -0.70 -0.48 -0.66
768 271.23 0.28 - - - - - - -
330 143.5 16.09 16.47 -120.36 -51.03 23.80 -5.93 37.08 -29.84
340 115.21 20.74 21.95 14.47 22.18 23.06 25.23 38.64 13/49
360 82.86 26.25 26.64 24.04 24.33 26.90 26.60 24.13 25,67
380 81.21 16.71 15.66 13.98 12.26 15.66 16.75 38.75 19/10
MUMmer 400 80.55 23.02 23.36 20.21 21.44 23.48 25.95 39.85 20/14
420 58.51 15.11 14.19 14.10 16.34 20.18 20.15 14.80 1048
500 45.35 -0.22 -0.20 0.02 0.02 -0.26 -0.04 0.02 -0.97
768 44.7 -0.09 - - - - - - -
24 1242.4 30.70 31.59 31.91 -1.27 5.51 29.35 1.05 -7.69
OSDB 48 758.97 -0.07 -0.08 -0.63 0.75 0.30 0.08 -0.77 0.26
768 735.5 0.00 - - - - - - -
Matlab (1Gb) 768 5880.36 6.12 - - - - - - -
Matlab (256Mb) 768 1977.83 -0.01 - - - - - - -
Matlab (80Mb) 768 579.30 -0.03 - - - - - - -
test memory w/o CC reference sluggish aggressive onlyswap wkdm Izowkdm celll cell4
Mb regs/sec gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%)
24 38.5 171.38 - - - - - - -
32 117.7 153.40 - - - - - - -
36 1529.1 14.10 - - - - - - -
httperf 40 1849 1.40 - - - - - - -
48 1646.1 14.95 - - - - - - -
64 1819 3.20 - - - - - - -
768 1894.1 -0.25 - - - - - - -

Table 1: Table with our results for a kernel without compressed cachifg@C and several versions of kernel with
compressed cachdreferenceas the main compressed cache implementation and any other kernel differs from it in
only one aspectWkdmuses WKdm compression algorithm instead of LZO, whiewvkdmuses LZO and WKdm.
Onlyswaphas a compressed cache that stores only pages backed by Sluagish andaggressivehave different
adaptability policies, but thecell1 andcell4 have cells composed of only one and 4 pages, respectively.

10

almost all cases, except for MUMmer. For kernel compBther adaptability policies. Besides the adaptability
lation tests, cells with one page performs as well as cglislicy we adopted (columreferencg, results from other

with two. In MUMmer tests, where we have rich comadaptability policies are shown in Taljle $tuggishand
pressibility, cells with one page perform even better mggressive The first policy is less sensible to changes
almost all cases, achieving gains of up to 39.85%. Ttwean reference trying to take an action when there is
only case whereeferenceis clearly better tharcelll is stronger evidences. It provides smaller gains in the tests
the case OSDB 24 Mb since we have poor compressitgerformed, except for some few cases. The second pol-
ity (64.5%), as was discussed in Sectjon 3.3.3. In thig, on the other hand, is more aggressive, trying to shrink
casecelll speeds up its performance by only 1.05% artde compressed cache at each access to the expense list.

referenceby 30.70%. This policy also provides smaller gains thiaafierencein
general.
LZO | WKdm . . .

compression ime 009ms | 0.05ms Dlsabl|pg cIean.page compression. In order tc_> check
decompression time 0.04ms| 0.03ms the policy that disables clean pages compression, we per-
compression ratio (kernel) 39.4% | 60.6% formed experiments with the sort program from the GNU
compression ratio (mummer) 35.5% | 41.6% textutils 2.0 and also with PostMark benchmark. Both
compression ratio (0sdb) 64.5% | 86.5% these applications have a substantial performance drop

Table 2: Average time to (de)compress a page and averé/ggn compressed cache without the policy to disable

compression ratios for some tests per compression al an pages compression 1S used. The sort program runs
rithm .9% slower, while postmark takes 49.4% longer to com-

plete (see Tablg]3). In the latter, possibly because it is a

benchmark, designed for other kind of comparisons, in-
LZO vs WKdm. ¢From Tablg 2, we can notice thaitead of a real application, only 0.06% of all pages in
the WKdm compression algorithm compresses and dge compressed cache are read back by the system. Post-
compresses a page faster than LZO, but it does not co\firk’s scenario is worse because the compression ratio of

press so tightly as LZO does. Comparing columksim 9994 (almost all pages are incompressible).
andreferencein Table[], one can verify that WKdm per-

forms well in tests where the compression is not so worse system sort | postmark

than the one obtained by LZO. This is the case of MUM- CC - disabling clean 55.28s 329s

mer 330 Mb, wheravkdmimproves its performance by pages compression

23.80% andreferenceby 16.09%. Nonetheless, in all CC - not disabling clean/| 80.35s 529s
. . . pages compression

other tests, the compression ratio showed to be more im- wlo CC 54.38s 330s

portant than the compression speed. In fact, a better ratio
means that fewer pages will likely be freed and thus morable 3: Sort and postmark results disabling or not the
reads from the backing stores will be saved. It shoubtean pages compression.

be said that MUMmer is a memory intensive application

and all other applications depend much more on the pag&vith our policy that disables clean pages compression,
cache compression (compare colunamtyswapandref- the slowdown noticed running PostMark vanishes and sort
erencg. WKdm was designed to compress data segmesikes only 1.6% more time to complete than a kernel with-
pages and was not designed to compress other kinco@f compressed caching. A minor slowdown is expected
pages like those backed by files. For this reason, we trigiflce the compressed cache takes some time to detect that
an implementation where LZO compression algorithm e compressed cache is not worthwhile for clean pages.
applied to all pages except those backed by swap, whic#)

are compressed by WKdm (see colutrowkdn). In fact, Eifect upon sghec_jul_lng. A subtle consequence of com-
this kernel performs better thaaferencefor some cases pressed caching is its effect upon the process scheduling.

of MUMmer, but its results are quite unsatisfactory fdln ouropinion, this side eff(_act IS gqod since the CPU tl.me.
kernel compilations, in particular in thé cases. This sharing among processes is fairer if compressed caching is
may be explained by the fact that the average comprQ&esem as we will show in this section. In fact, in a kernel
sion ratio of swappable compressed pages is 36% wWi¥iihout compressed caching, whenever a fault on a page

LZO against 50% with WKdm. Despite this unsatisfacg-tf)reOI ona bgcking_ store occurs, a read operation is S_Ub'
tory result, we still believe that one could obtain sonjgitted to the disk. Since reading the page takes some time
improvement in this direction to complete, the read operation is submitted and the cur-

rent process relinquishes the CPU. Then another process,

11

if available, is scheduled to take control of the CPU. On kernel compilation | number of iterations
the other hand, in a kernel with with compressed caching, (S:yétem Comp'et'og;'g‘oes memload perfmln;z
if a page is stored in the compressed cache, this page will| .~~~ 9064 s a

be decompressed to service any fault on it and unlike a
fault on a page stored on a backing store, this service dgaple 4: Contest 0.51 benchmark results moemload
not relinquish the CPU since this operation does not dead. Our testing system was set to run with 256 Mb of
pend on slow devices, such as a hard disk. system memoryGC is compressed caching above).

Due to compressed caching, applications will likely
have fewer faults on pages stored on the backing stores,)] .) .
therefore they will relinquish the CPU fewer times to seRUr 0Wn implementation we also contribute with some ini-
vice a page fault. If two or more applications are rufidl analysis on these works. We are mainly interested
ning on the system and compressed caching saves pgag8e implementations by Douglis][4], Russmowch and
faults of some of them which would generate reads frorP9swell[18], Cervera et al[3] and also in Kaplan's adap-
the backing store, these applications will run much fasféfe Scheme proposal [22, 5]. o
than on a system without compressed caching. On théNe tried to compare our |mplementat|on with the pre-
other hand, the applications that had less saved page fa(iR§'S ones, but neither Douglis” nor Cervera et al's im-
may run even slower because they will not make use of fplementations made their test swte_ava_llable. The Win-
CPU time previously relinquished by the applications thgone [23] benchmark used by Russinovich and Cogswell
have more saved faults. is available only for Windows operating systems. Among

As an example of this effect, we present an ana@e.implementations, only the one by Cervera et al is
sis of the behaviour of contest 0.51, a Linux kernel révailable. However, we were unable to run some of our
sponsiveness benchmafk [10]. Specifically, we discU§StS 0N @ system with it, due to segmentation faults in
about the memory load test, which consists of runni me'SPace‘i"PseS'” _Lmux tefm'”o'og}’)- we were un-
a Linux kernel compilation concurrently with a prograrfi®€ t0 find outif we hit new programming errors in their
(memload) that allocates 110% of the physical men{_mplemer?tatmn. or Deb_lan Potato dlstr|.but|on tools were
ory size and performs various accesses to this allocafagPmpatible with the Linux kernel version they used.
memory. The main measurement of the benchmark isT he first |mple_ment§1t|on of compre_sse_d cache was per-
the time the Linux kernel takes to compile, but contef@'med by Douglis[[4]in 1993, achieving inconclusive re-
also displays hownemload performed during the kernelSults: speedups for some applications (up to 62.3%) and
compilation, through the number of iteratiomemload Slowdowns for others (up to 36.4%). He presented some
performed. After some experiments, we noticed thigasons for these results, namdfy:poor data compress-

memload program faults on more pages on the baciRility; (ii) locality, that is responsible to make an appli-

ing stores than the kernel compilation process. Thef&tion to fault on pages stored in the compressed cache

fore without compressed caching, the compilation proce¥gich would be accessible without it; arfi) restric-
takes advantage of the CPU idle time as a consequench@tS In 1/O operations that do not permit reads to bene-
the scheduling performed byiemload to wait for pages fit from compression by transferring smaller amounts of
to be read. With compressed cachimgmload does not data. At last, Douglis observed that compressed caching
have faults on pages stored on the backing stores sinc&/fs Pecome more interesting if the gap between CPU
data is highly compressible. Hence, the kernel compil§-0cessing power and disk access times keeps growing.
. . D15 i i -
tion may take longer to run on a system with compress@Plan [22,[5], later in 1999, pointed out that the ma
caching, becausmemload uses a fairer CPU share nothine Douglis used to evaluate his implementation was
relinquishing it to wait for pages to be read from the bacR1any times slower than current computers, thus the gap
ing stores. As a matter of faghemload runs much often 2€tween CPU and disks was much smaller than today.

with the compressed cache (see Téble 4). He also pointed out that the growth of the gap is a ten-
dency in years to come. About the adaptive scheme de-
5 Related Work vised and implemented by Douglis, Kaplan asserted that

it may be maladaptive for many workloads and proposed
In Sectior{ 1, we presented a brief history and descriptiamew scheme.
concerning previous works, with or without implementa- Experimentally, as Douglis, we noticed that poor com-
tions, on compressed caching. In this section, we copressibility was a problem for compressed caching. In
pare as much as possible our implementation with thas& work we addressed this problem using cells with a
works. Moreover, from the understanding obtained witireater number of contiguous memory pages (as seen in

12

Sectior] 2.3.8). Regarding locality, in our implementatiopared to the applications and benchmarks we tested. If
any application that has many faults on pages that wotifebre is no specific support for poor compressibility, per-
be directly accessible without compressed cache (i.e., Bwmance may drop substantially, as we have seen for the
cesses on the expense list) and does not have enough Bgren Source Database Benchmark when running with 24
efits (i.e., accesses on the profit list) will force the conMb of system memory. The third reason is that they re-
pressed cache to shrink itself in order to adapt to a sjzert a huge difference between the time spent on page
which does not suffer from locality. We believe that th@e)compression (0.05ms) and the time to service a page
I/O restrictions Douglis mentioned do not hinder confault (2ms, without the actual seek time). In contrast, this
pressed caching from providing improvements, mostljfference almost does not exist in our experiments on
because today we have disks with a high transfer ratéux. They attribute this difference to a bad behaviour in
but still slow access times. In Douglis’ implementatiorthe operating system used in their simulations (Windows
the order the pages are stored in the compressed cacl@s)s To conclude, a possible fourth reason is that the time
not followed when the compressed cache is full and paggent on page (de)compression (0.05ms) itself seems to
need to be freed. Therefore, the page replacement ordertoo short, as already noticed by Kaplan. Despite our
ing is changed, what is likely to degrade performance. Hisuch faster machine, we obtained a close value only with
compressed cache only stores pages backed by swapWkitim. Since they do not report which compression al-
the adaptive scheme also takes into account pages nogetithm they used, this could be a sign of a too fast but
igible to be compressed. Douglis also implemented supt effective compression algorithm.

port for S‘O”T‘g more than one compressed page on a SWaRaplan [22] 5] concluded that an implementation of an
block, effectively increasing the swap space.

adaptive compressed cache that minimizes the overhead
In 1999, Cervera et al [3] implemented a compressedn provide significant reduction in paging costs. He pro-
cache in the Linux 2.0.36 as part of an implementation pbsed an adaptive scheme based on a cost/benefit analysis
compressed swap. They achieved performance gains foo detect the amount of system memory the compressed
out of the 8 tested benchmarks they reported. In compeache should use. This scheme was utilized in his sim-
ison to our implementation, their compressed cache hdations to demonstrate that the compressed cache can
a number of limitations. First of all, they implementegrovide significant reduction in paging costs. In spite of
a static compressed cache, which is suitable for a snalbposing a compressed cache only for pages backed by
range of applications, as also noticed by Douglis and Kawap, we think that Kaplan’s adaptive scheme based on
plan. Their compressed cache is allocated with cells comeost/benefit analysis can be extended in order to detect
posed of single memory pages, thus they may have prtfiie amount of memory that the compressed cache should
lems due to poor compressibility since a cell may not lnse even if it stored all kinds of pages backed by backing
able to store more than one compressed page. In their gtores. Nevertheless, it is very hard to collect the neces-
plementation, as Douglis’, the order the pages are frezaty data for the Kaplan's cost/benefit analysis efficiently
when the compressed cache is full does not follow t@ current systems. For instance, Linux does not keep
order they were stored in it. Their compressed cactie LRU list of all process data pages that are in memory.
stores only pages backed by swap which are markedTa®re is no such information and only an approximate
dirty, thus not compressing pages backed by other backpayt of this information is obtained when the system is
stores nor any sort of clean page. Moreover it is unclearder memory pressure. Furthermore, the extra memory
how compressed swap and compressed cache separaggjyired to store these data in the Linux kernel and conse-
influenced their results. quently metadata overhead was not accounted in Kaplan’s

Russinovich and Cogswell could not obtain improﬁnags'ﬁ‘ Th(ljstmay be c:|scou.raf(i:1|ng since r?et?d?ta o:;er—
ments with their implementation (neither with other co 1ead showed fo have strong influence, particutarly under

mercial products like MagnaRAM 2 and RAM Doublerfnemory pressure. In spite of these problems for Kaplan’s

for the Winstone on an Intel 80486 DX2/66 [18] and gost/benefit analysis, his work has a strong contribution

slowdown of 10% was reported. In our opinion, there aPé)Intlng out that previous inconclusive |mplementat|ons

three main reasons for these unsatisfactory results. @éﬂd be corrected by a good adaptability policy for to-
h

first one is that the used machine was slower and ha@ ° CPU/disk gap.

a smaller gap between CPU power and disk access tim®ur compressed caching aims at current standard hard-
than current machines, as was already pointed out by Keare systems. Nevertheless, we should mention that some
plan. The second reason is that the obtained compressimnks designed and implemented compressed caching in
ratio was 62.5%. This is a poor compression ratio if corhardware. Kjelso et al_[7] designed and implemented

13

in hardware a memory compressor. Using simulations,We also believe that our compressed caching system
they demonstrated high performance gains. Abali andl be extremely helpful on effectively extending mem-
Franke[[1] evaluated a system built for compressilhi¢ghe ory on devices without swap like many PDA's that are able
main memory data, focusing on memory size increase.ttnrun Linux. A specific comparison methodology for this
their system, the whole main memory is compressed amgplication should be developed and applied.

a cache is used for storing decompressed data. One can state that memory is getting cheaper and com-
. pressed caching is then unnecessary. Based in our exper-
6 Conclusions and Future Work iments, we claim that both, more memory and an adap-

We proposed a new and simple adaptability polic 1E(t)i}/e compressed caching, are even better. Our experiments
brop P b Y POICY T00ith applications for which all the installed memory is not

a compresseql cachmg_ system, |mpleme_nted this Sgﬁbugh showed that the obtained performance can save
tem, and obtained significant performance |mproveme|%t

>§tra money by delaying another memory expansion.
for all tested workloads under memory pressure (up fo y by ying y b .
To sum up, the main goal of the current implementation

0 . s .
171.4%) with negligible overhead under light MEMOY as achieved with the speedup verified in all workloads

r r .39%). Moreover, alm no overh .
gteaslfl:/vzs(lézt?ctoe g?f (20 mgme(())r N ,rZSSSf; w(;soae l?&nder memory pressure. For all these reasons we believe
. . yp : P ?I%jat an adaptive compressed caching must be adopted in
This compressed caching system is the first one to address

. - current operating systems, as a mechanism for consider-
workloads with poor compressibility and also to compress .
. able improvement in system performance.

pages not backed by the swap device. These features
showeq to be fundamental for the improvement pf perfoAcknowledgments
mance in some workloads that could not otherwise obtain
benefit from the use of compressed caching. We would like to thank greatefully Fabio Kon and Livio

We also verified that the overhead introduced by mefa- Soares for the insightful comments and suggestions
data maintenance may have strong negative impactamn this paper, Imre Simon for his support, Scott Ka-
system performance, particularly under memory pressupéan, Marcelo Tosatti, Paolo Ciarrocchi, Marc-Christian
Considering that a compressed cache system tries to Betersen and Con Kolivas for their comments and feed-
tain improvements right under this scenario, we observeack from the implementation.

that our simpler algorithms that require less metadata tend
to obtain better results. eferences

Improvements in the direction of a reduction of over{1] B. Abali and H. Franke. Operating system support for fast hard-

head under very light memor ressure were not tried. Wware compression of main memory contents. Memory Wall
y 19 yPp Workshop of the 27th Annual International Symposium on Com-

They are possible and should be tried in the future. puter Architecture (ISCA-2000Yancouver, BC, Canada, 2000.
This implementation should also be extended to tak@l A.W.Appel and K. Li. Virtual Memory Primitives for User Pro-

. . . grams. InFourth International Conference on Architectural Sup-
advantage of multiprocessor architectures. Linux 2.4.18 [tor programming Languages and Operating Systepages

does not give support to access process information about 96-107, Santa Clara, CA, USA, 1991.

any evicted memory page. From this kind of informationl3] R.Cervera, T. Cortes, and Y. Becerra. Improving Application Per-
'~ formance through Swap Compression. Usenix '99 — Freenix

one could try to perform an adaptive analysis that could Refereed Tracki999.

also take a per process information into account. Thig] F.Douglis. The Compression Cache: Using On-line Compression
Id be heloful f Kload d of diff t to Extend Physical Memory. IWinter 1993 USENIX Conference
could be helpful for workloads composed of different pro- 5565519529, 1993,

cesses with different behavior. [5] S.F. Kaplan.Compressed Caching and Modern Virtual Memory

Simulation PhD thesis, University of Texas at Austin, 1999.
Many users of our Compressed cache system report The Linux Kernel Archivesshttp:/iwww.kernel.org> .

better responsiveness for desktop workloads. They rg M. Kjelso, M. Gooch, and S. Jones. Main memory hardware data

r m her tem interaction. what cann iac. compression. Inl. C. S. Press, edi®2nd Euromicro Conference
ported smoother syste eraction, what cannot objec bages 423 - 430, September 1996,

tively be evaluated yet, but is a strong indication ofg] m. Kjelso, M. Gooch, and S. Jones. Empirical study of memory
the benefits of adaptive compressed caching for common cliiga- In IEE'e %dlt%rL?EE Proceefénggss Comput. Digit. Teckiolume
: , pages 63 — 67, January .

deSkmp Worll(loads' We believe that gOOd methods th | M. Kjelso, M. Gooch, and S. Jones. Performance evaluation
test responsiveness under desktop workloads should be of computer architectures with main memory data compression.

i 4 ; _Journal of Systems Architecty45:571 — 590, 1999.
.d.evek)ped .tO SCIQHtIf_ICly confirm (or no_t) th_ese Very poElO] C. Kolivas. The homepage of contest, The linux kernel responsive-
itive (but still subjective) reports. Considering that desk- "~ ness benchmark. URIshttp://contest kolivas.net>]
top workloads are the most important workload for moBfl] Compressed caching. <http:/linuxcompressed.-

ourceforge.net/> .
users, one can see how valuable are these reports and [tfﬂvvz/larkus F.X.J. Oberhumer: LZO data compression library.

important would be such a scientific confirmation. <http:/Aww.oberhumer.com/opensource/Izo/>

14

[13]
[14]

[15]
[16]
[17]
(18]
[29]
[20]

[21]

[22]

(23]
[24]

[25]

[26]

The MathWorks - MATLAB. <http://www.mathworks.com/-
products/matlab/> .

D. Mosberger and T. Jin. httperf A Tool for Measuring Web
Server Performance<http://www.hpl.hp.com/personal/-

David _Mosberger/httperf.html>

The MUMmer Home Page. <http://www.tigr.org/-
software/mummer/>

The Open Source Database Benchmarkshttp:/osdb.-
sourceforge.net/>

PostMark: A New File System Benchmarkshttp://iwww.-
netapp.com/tech _library/3022.htmI> .

M. Russinovich and B. Cogswell. RAM Compression Analysis.
Technical report, O'Reilly, 1996.

GNU Textutils 2.0 source codexftp://ftp.gnu.org/gnu/-
textutils/textutils-2.0.tar.gz> .

P. R. Wilson. Some Issues and Strategies in Heap Management and
Memory Hierarchies. IOOPSLA/ECOOP Workshop on Garbage
Collection in Object-Oriented System$990.

P. R. Wilson. Operating System for Small ObjectsIrnternation
Workshop on Object Orientation in Operating Systepagies 80—
86, Palo Alto, CA, USA, 1991. IEEE Press.

P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systemsSlmmer 1999
USENIX Conferencgpages 101-116, Monterey, CA, USA, 1999.
Business Winstone. <http://www.etestinglabs.com/-
benchmarks/bwinstone/bwinstone.asp> .

WKdm Compression Algorithm source code. <http://-
www.cs.utexas.edu/users/oops/compressed-caching/-

WKdm.tgz>.

J. Ziv and A. Lempel. A universal algorithm for sequential data
compressionlEEE Transactions on Information The@33:337—
343, 1977.

J. Ziv and A. Lempel. Compression of individual sequences via
variable length codingEEE Transactions on Information Theory
24:530-536, 1978.

15

	Introduction
	Design
	Overview
	Overhead Considerations
	Design Decisions
	Page Cache
	Page Ordering
	Cells with Contiguous Memory Pages
	Disabling Clean Page Compression
	Variable Compressed Cache Size

	Adaptive Cache Size
	Experimental Results
	Test Suite Description
	Methodology
	Compression Algorithms
	Performance Results

	Related Work
	Conclusions and Future Work

