
Adaptive Compressed Caching: Design and Implementation∗

Rodrigo S. de Castro†, Alair Pereira do Lago†, and Dilma Da Silva
§

†
Department of Computer Science

Universidade de S̃ao Paulo, Brazil
§
IBM T.J. Watson Research Center, USA

rcastro@ime.usp.br, alair@ime.usp.br, dilma@watson.ibm.com

http://linuxcompressed.sourceforge.net

Abstract
In this paper, we reevaluate the use of adaptive com-
pressed caching to improve system performance through
the reduction of accesses to the backing stores. We pro-
pose a new adaptability policy that adjusts the compressed
cache size on-the-fly, and evaluate a compressed caching
system with this policy through an implementation in a
widely used operating system, Linux. We also redesign
compressed caching in order to provide performance im-
provements for all the tested workloads and we believe it
addresses the problems faced in previous works and im-
plementations. Among these fundamental modifications,
our compressed cache is the first one to also compress
file cache pages and to adaptively disable compression of
clean pages when necessary.

We tested a system with our adaptive compressed cache
under many applications and benchmarks, each one with
different memory pressures. The results showed perfor-
mance improvements (up to 171.4%) in all of them if
under memory pressure, and minimal overhead (up to
0.39%) when there is very light memory pressure. We be-
lieve this work shows that this adaptive compressed cache
design should be actually considered as an effective mech-
anism for improvement in system performance.

1 Introduction
Compressed caching is a method used to improve the
mean access time to memory pages. It inserts a new
level into the virtual memory hierarchy where a portion of
main memory is allocated for thecompressed cacheand is

∗This research was supported by FAPESP (Fundação de Amparòa
Ciência do Estado de São Paulo), through grant 01/01432-4, and CNPq
(Conselho Nacional de Desenvolvimento Cientı́fico e Tecnoĺogico),
through grant 465901.

used to store pages compressed by data compression algo-
rithms. Storing a number of pages in compressed format
increases effective memory size and, for most workloads,
this enlargement reduces the number of accesses to back-
ing store devices, typically slow hard disks. This method
takes advantage of the ever increasing gap between the
CPU processing power and disk latency time, which is
currently about six orders of magnitude slower to access
than main memory. This gap is responsible for, among
other things, an underutilization of the CPU when the sys-
tem needs exceed the available memory. An example of
this effect is the Linux kernel compilation. Even when
many processes of the compiler are run to compile the ker-
nel source tree, the CPU usage drops substantially if the
available memory is not enough for its working set. And
this is also true for typical current systems with many hun-
dreds of megabytes of memory experiencing heavy loads,
such as web servers, file servers and database systems.
In these scenarios, compressed caching can make a bet-
ter usage of CPU power reducing accesses to the backing
stores and smoothing performance drops when the avail-
able memory is not enough. The concern with these sce-
narios when the available memory is not enough is still
adressed in current operating systems by improving their
virtual memory systems, in particular their page replace-
ment policies.

Although the reduction of accesses due to the compres-
sion tends to improve system performance, the reduction
of non-compressed memory(main memory not allocated
for the compressed cache) tends to worsen it. This inher-
ent tradeoff leads us to question of how much memory
which should be used by compressed cache, which de-
pends on the workload to achieve the best performance.
A compressed cache that adapts its size during the system



execution in order to reach a good compromise is called
adaptiveand one with fixed size is calledstatic.

The use of compressed caching to reduce disk pag-
ing was first proposed by Wilson [20, 21], and Appel
and Li [2]. Douglis implemented an adaptive compressed
cache in the Sprite operating system, achieving speedups
for some experiments and slowdowns for others [4].

Given the inconclusive results of Douglis, the prob-
lem has been revisited by many authors. Russinovich and
Cogswell implemented a static compressed cache in Win-
dows 95 [18], which resulted in negative conclusions for
the Ziff-Davis Winstone benchmark. On the other hand,
Kjelso et al [7, 8, 9] empirically evaluated main mem-
ory compression, concluding that it can improve system
performance for applications with intensive memory re-
quirements. Kaplan [5, 22] demonstrated through simula-
tions that a compressed cache can provide high reduction
in paging costs. His experiments confirm Douglis’ first
statements about the limitations of a static compressed
cache system. Moreover, he proposes an adaptive scheme
that detects during system execution how much memory
the compressed cache should use. This scheme warranted
benefits for all the six programs he simulated using mem-
ory traces. An implementation of a static compressed
cache in the Linux operating system was performed by
Cervera et al [3]. In spite of the inherent limitations of
a static compressed cache, they showed performance im-
provements for most of the tested workloads.

In this paper, we reevaluate adaptive compressed
caching through real applications and benchmarks on an
implementation in the Linux operating system. This im-
plementation has been made public and tested by many
people in different equipments for many months. We
demonstrate that an adaptive compressed cache can pro-
vide significant improvements for most applications with
a design that minimizes its costs and its impact on the vir-
tual memory system as well as uses the allocated memory
efficiently. Our implementation uses a new adaptability
policy that attempts to identify at run time the amount of
memory the compressed cache should use to provide the
best compromise. This policy adds minimal memory and
CPU overhead to the system.

We also show that the use of compressed caching alters
the behaviour of various parts of the operating system and
that its costs are beyond memory page (de)compressions.
In particular, bad compression ratios for memory pages
are shown to be manageable and do not affect compressed
caching performance so severely as stated in previous
studies. Furthermore, the adaptive compressed caching
is revised in a period when the main reason that motivated
this idea, the gap between CPU processing power and disk

access times, has never been so wide.
In the following section, we describe the design of the

compressed cache we implemented and Section 3 presents
our analysis about static compressed caches as well as de-
scription of the adaptability policy we propose. Section 4
contains the experimental results of our implementation
and Section 5 compares this implementation with previ-
ous works. In Section 6 we point out possible extensions
to this work and present our conclusions.

2 Design
In this section, we first show an overview of the main
concepts behind compressed caching and our implemen-
tation. Second, we discuss the overhead side effects. At
last we give more details and some important design de-
cisions in our implementation in the Linux 2.4.18 kernel.

2.1 Overview
In a compressed caching architecture, the main memory
is divided into non-compressed memory and the com-
pressed cache. When the virtual memory system decides
to make room for new allocations, it evicts some pages,
and they are compressed and stored in the compressed
cache. Although it is possible for the page to be stored un-
compressed when it is incompressible by the compression
algorithm, throughout this paper, any page stored in the
compressed cache is said to be acompressed page, regard-
less of the form it is stored in, and any page in the non-
compressed memory is known asnon-compressed page.
Any attribute that a non-compressed page had at the mo-
ment it was evicted is inherited by the compressed page
(for example, dirtiness).

Previous studies and implementations have designed
compressed caches which only stored pages backed by
swap. Unlike them, in our implementation all the pages
backed by a backing store (e.g., file cache pages) are eligi-
ble to be compressed and stored in the compressed cache.
The reason behind this decision will be discussed in Sec-
tion 2.3.1.

In our implementation design, as soon as there is no
space available in the compressed cache to insert a new
page, either the compressed cache allocates more memory
for its usage or some compressed pages are freed. The de-
cision on which action should be taken will be discussed
in Section 3. Later in this section the former action (allo-
cating more memory for its usage) is described. When the
latter action (freeing compressed pages) is taken, the old-
est1 compressed page is released. However, before being
released, compressed dirty pages must first be written to

1The order the compressed pages are freed is in accordance to the
order they were stored into the compressed cache.

2



Main Memory

Pages backed
by Swap

Pages backed
by other

Backing Stores

Compressed Cache

Swap Other Backing
Stores

Backing Stores

Figure 1: Memory Hierarchy with Compressed Caching

the backing store. Depending on the data they hold, com-
pressed dirty pages may have their data decompressed be-
fore undergoing the write operation. In our approach, only
pages backed by swap are written in compressed form, but
we do not have swap space gains since each compressed
page is null-padded to complete the size of a block, as
to avoid swap space fragmentation, which would possi-
bly be a source of overhead. Storing these pages onto the
swap device in compressed form delays the decompres-
sion to the “swapin” operation and avoids decompression
of pages never to be reclaimed by the system.2 Com-
pressed pages not backed by the swap must be decom-
pressed before being written since a file system assumes
that the data will be stored in its natural form.

Compressed pages requested back by any kernel oper-
ation in order to be immediately used are said to bere-
claimed. This includes a page reclaimed by a page fault
and a page holding data of a block cached in memory.
Reclaimed compressed pages are removed from the com-
pressed cache, decompressed, and their data are placed
in newly allocated memory pages. If a compressed page
was eventually back stored and is not present in the com-
pressed cache (nor in the non-compressed memory), it
is read from the backing store, and decompressed if the
backing store is the swap. In this case, it is not added to
the compressed cache when read from the backing store.
See Figure 1 for the complete hierarchy.

An adaptive compressed cache must allocate memory
in such a way that permits its memory usage to change
during system execution. For this reason, we provide
a simple infrastructure for management of the memory
space allocated for compressed caching through paging.

2Pages that are read in advance (“read-ahead”) are only decom-
pressed if any process faults in them, i.e., they are mapped back by a
process page table.

In the compressed cache, the smallest amount of memory
that can be allocated or deallocated is known as acell. A
cell is formed by a constant number ofcontiguous memory
pagesand is used to store one or more compressed pages.
It is important to notice that two consecutively allocated
cells do not have necessarily contiguous addresses.

The final free space of a cellis the contiguous region
at the end of the cell that does not store any compressed
page. Whenever a page is compressed into the com-
pressed cache, we search for the cell with the smallest
final free space where the compressed page can fit and
store it at the beginning of the final free space region.
When a page is freed from the compressed cache, either
because the compressed cache is full or because the page
was requested by any kernel operation, it is simply re-
moved from the cell in which it was stored. To avoid un-
necessary overhead, no movement of compressed pages
inside the cell is performed when pages are added to or
removed from the compressed cache, which makes frag-
mentation in the cell a possible issue. Thefree spaceof a
cell consists of the sum of space in all regions in the cell
not used to store any compressed page. See Figure 2.

Compressed Cache
Cell Cell

Memory
Page
Compressed
Page

Final Free
Space

Freed
Compressed
Page

Free Space

Figure 2: A cell in compressed cache

Depending on the compressed cache utilization, we
may be unable to find a cell whose final free space is large
enough to store a new compressed page, but there may be
a cell whose free space is sufficient. In this case, a cell
with the smallest free space where the compressed page
can be stored is selected. Then, this cell iscompacted,
i.e., all compressed pages are moved to the beginning of
the cell, making all free space available as final free space.
Before enlarging the compressed cache or releasing any
compressed page, we always try compaction.

2.2 Overhead Considerations
The time spent by compression algorithms is our pri-
mary overhead concern. Besides the time to compress
and decompress a single page, which will be discussed
later (see Section 4.4), the number of times the system
(de)compresses pages must be taken into account. This
amount depends on how much memory the processes use,
their access patterns, and the memory usage of the com-
pressed cache at a given time. There may be cases where,

3



even if we succeed in reducing the accesses to the back-
ing store, the total time spent (de)compressing pages can
be substantial, notably when many (de)compressions oc-
cur. We may also detect some overhead when there are
processes ready to run in the CPU most of the time, even
if many I/O operations are performed concurrently. In this
particular case, if all the (de)compressions use more than
the CPU idle time, this usage may penalize running pro-
cesses, slowing down their execution.

Since compressed caching allocates an amount of
memory for storing compressed pages, it decreases the
available memory that can be directly mapped by pro-
cess’s page tables. For this reason, the number of page
faults tend to increase. Page allocations also tend to in-
crease for two reasons:(i) more pages are needed to ser-
vice the increasing number of faults;(ii) fewer blocks
are likely to be cached, thus more allocations are needed
to provide pages to blocks that are cached and uncached
more often (see Section 2.3.1). As a consequence, the
overhead introduced by compressed caching is also com-
posed of costs from handling page faults and page evic-
tions. These costs, notably releasing pages, can be sub-
stantial.

Another important effect of the compressed caching is
themetadata overheadit introduces. Every cell allocated
for the compressed cache needs metadata3 about the com-
pressed page(s) it stores. Furthermore, each cell has meta-
data about the compressed pages it holds. Depending on
the number of cells, i.e., the compressed cache size, and
on how many pages are stored in it, the memory space
used by those data structures may be quite significant. A
compressed cache system should also take into account
the metadata costs its implementation requires. For this
reason, simpler algorithms and strategies may be more ef-
fective, particularly if we consider that the system will be
used under memory pressure.

In Linux, pages may be read from or written to a block
device using auxiliary structures named buffers, which
store block data in pages from the page cache (page cache
is explained in Section 2.3.1). When buffers are used,
they are marked as clean or dirty instead of the mem-
ory pages containing their data (I/O operations that do
not use buffers mark the page holding their data itself as
clean or dirty). In the page release process, pages hold-
ing data from dirty buffers must first be written to back-
ing store before being eligible to be freed. Besides, given
that the number of page allocations is higher with com-
pressed caching (as described above), many more dirty

3In comparison to a compressed cache of the same size and cells
composed of one memory page, only half the data structures for those
metadata is needed when cells with two contiguous memory pages are
used.

buffers may have to write their data to allow the pages
storing them to be freed. Therefore, compressed caching,
in an attempt to reduce reads from backing store, may in-
crease the number of write operations. As a matter of fact,
we noticed this behaviour in some of the workloads tested.
However, the impact of write operations on system perfor-
mance is usually lower than of read operations. In partic-
ular, our experiments did not have their performance hurt
by an increase in the number of write operations. Initially,
we added support for storing pages holding dirty buffers
data, but later we removed it for a number for reasons:(i)
it achieved almost no performance gain;(ii) these pages
could not be compressed due to the buffer handling code;
and (iii) the support implied undesirable changes to the
compressed cache structure.

2.3 Design Decisions
In this section, we give more details and some important
design decisions in our implementation.

2.3.1 Page Cache

All previous studies proposed or implemented com-
pressed caches that stored only pages backed by swap.
When a compressed cache like these is used, all system
caches end up being smaller since they have less avail-
able memory to compete for. In Linux specifically, sys-
tem caches are namely the disk cache, which is known
in Linux as page cache, and kernel internal data struc-
ture caches, known generically asslab caches. Examples
of slab caches for kernel internal data structures are the
buffer, inode, dentry and quota caches.

Compressed caching has a strong tendency to influ-
ence the page cache, as it is commonly larger than other
caches. Pages holding data from blocks of all backing
stores (like buffer data, regular file data, file system meta-
data and even pages with data from swap) are stored in
the page cache. Like other system caches, page cache
may be smaller on a system with a compressed cache that
only stores pages backed by swap. As a consequence of
this possible reduction, blocks (usually from regular files)
will have fewer pages with their data cached in memory,
what is likely to increase the overall I/O. That is a sign
that compressed caching should not only be aware of its
usefulness to the virtual memory system, but also how it
might degrade system performance.

Instead of letting page cache and compressed cache
compete for memory, our approach for this problem con-
sists of also storing other pages from the page cache (be-
sides the ones holding swap data) into the compressed
cache. This actually increases memory available to all
pages in page cache, not only to those backed by swap.

In Section 4, we show some tests where this design de-

4



cision is shown to be fundamental.

2.3.2 Page Ordering

In the compressed cache, our primary concern regarding
page ordering is to keep the compressed pages in the or-
der in which the virtual memory system evicted them.
As we verified in experiments on Linux, which uses an
least recently used (LRU) aproximation replacement pol-
icy, not keeping the order in which the compressed pages
are stored in the compressed cache rarely improves sys-
tem performance and usually degrades it severely.

As most operating systems, when a block is read from
the backing store, Linux also reads adjacent blocks in ad-
vance, because reading these subsequent blocks is usually
much cheaper than reading the first one. Reading blocks
in advance is known asread-aheadand the blocks read
ahead are stored in pages in non-compressed memory.

Read-ahead operations alter the LRU ordering since the
pages read in advance are taken as more recently used than
the ones stored in the compressed cache, although they
may even be not used. As a consequence, it is possible
that this change forces the release of pages not in confor-
mity to the page replacement algorithm. For this reason,
whenever a page is read from the compressed cache, a
read-ahead must not be performed.4 It is not worthwhile
to read pages from the compressed cache in advance since
there is no performance penalty for fetching the pages in
different moments. Furthermore, compressed pages read
ahead from swap (which are stored in compressed form,
as described in the Section 2.1) are only decompressed
when explicitly reclaimed by the virtual memory system.

In contrast to the pages read only due to the read-ahead
operation, a compressed page reclaimed for immediate
use preserves LRU page ordering, since it will be more
recently used than any page in the compressed cache.

We also consider essential to preserve the order in
which the pages were compressed to be able to verify
the efficacy of compressed caching. Otherwise the results
would be influenced by this extra factor, possibly mislead-
ing our conclusions.

2.3.3 Cells with Contiguous Memory Pages

We say that thecompression ratioof a compressed page
is the ratio of the size of the compressed page over its
original size (times 100%). We employrich compressibil-
ity, poor compressibility, or quasi incompressibilityif the
average compression ratio is smaller than 50%, between
50% and 70%, or over 70%, respectively.

4The usual behaviour of Linux for pages read from somewhere else
but non-compressed memory is to perform a read ahead, because it as-
sumes they will be read from a slow backing store

If we do not have rich compressibility, compressed
cache cells composed of only one memory page may store
only one compressed page, in average. To minimize this
problem of poor compression ratios, we propose the adop-
tion of cells composed of contiguous memory pages. With
larger cells, it is more likely to have memory space gains
even if most pages do not compress very well. For ex-
ample, if pages compress to 65% in average, we will still
have space gains if we use cells composed of at least two
contiguous memory pages. In fact, in this case, it is pos-
sible to fit three compressed pages in one cell.

However, we should notice that allocating contiguous
memory pages has some tradeoffs. The greater the num-
ber of contiguous pages, the greater the probability of fail-
ure when allocating them, given the system memory frag-
mentation. Furthermore, the larger the cell, the greater the
probability of fragmentation in it and the cost to compact
its compressed pages. As a good side effect, given that
part of our metadata is used to store data about the cells,
the use of larger cells reduces these data structures. Ex-
perimentally, we have concluded that two is the number
of contiguous pages to be allocated that achieves the best
results in our implementation.

In Section 4 we will see some tests where this design
decision is fundamental.

2.3.4 Disabling Clean Page Compression

For some workloads, no compressed cache scheme can
improve system performance. This occurs when very few
or no pages are read from the compressed cache among
all the pages that were compressed. In this case, it is
clear that a large amount of pages were compressed and
freed, without any actual benefit to the system. As a
matter of fact, compressing these pages added inherent
costs like compression, decompression, management, and
metadata.

This scenario can theoretically also happen with dirty
pages, but in our experiments we could only observe it
with clean pages, mainly due to the support for all pages
backed by backing stores (other pages but the ones backed
by swap are usually clean). We were unable to find a
realistic application whose dirty pages had this problem.
Moreover, for clean pages this problem is clearly more
evident since no backing store operation is performed and
the compression costs are highlighted.

In our implementation, we adopt a heuristic to attempt
to detect when clean pages are being compressed with-
out benefit to the system. This heuristic tries to detect the
scenarios where a large amount of pages are compressed,
not requested back by the system, and freed, without ben-
efit to the system. This attempt is done by checking the
relation between how many clean compressed pages are

5



reclaimed by any kernel operation and how many of them
are released from the compressed cache without being re-
claimed. Once the compressed cache detects that many
more compressed pages are released than reclaimed, it
disables compression of new evicted clean pages. From
this moment on, evicted clean pages are freed from non-
compressed memory without being first stored in the com-
pressed cache. As soon as we stop compressing the
evicted clean pages, the compressed cache keeps track of
which were the last clean pages freed without being stored
in the compressed cache. Enough data that identifies these
last freed pages are stored and all the pages read from disk
are verified to match any of these data. When the sys-
tem notices that many pages read from disk have recently
been evicted from memory without being compressed, we
re-enable the clean page compression.

If we release clean pages without compressing them
into the compressed cache, the LRU page ordering is
changed because some of the pages freed by the virtual
memory system will be stored into the compressed cache
and others will not. Nevertheless, since few of the clean
pages were being reclaimed by the system, most of them
would be freed anyway. Hence, it is expected that releas-
ing them earlier does not have a major impact on system
performance. The metadata and processing overhead in-
troduced by this heuristic are insignificant.

The parameters used in these detections (when we dis-
able clean page compression and when we re-enable their
compression) were decided experimentally. In Section 4
we will see some tests where this design decision is very
important to minimize substantially the overhead.

2.3.5 Variable Compressed Cache Size

In our experiments, we analyzed static compressed caches
in many cases, reaching conclusions about them and the
significance of an adaptive compressed cache. Since this
is a key issue in our work, we will discuss, in the following
section, the design decisions related to it.

3 Adaptive Cache Size
We observed in experiments that, given a particular ap-
plication, different sizes for static compressed caches
achieve different cost/benefit ratios. Even the best ratio
among all the static sizes does not necessarily mean that
a static compressed cache provided performance gains in
comparison to a system without compressed cache.

In fact, static compressed caches smaller than the one
with the best cost/benefit ratio provide fewer gains reduc-
ing accesses to the backing store than the optimal size.
Moreover, they still introduce the inherent overhead (see
Section 2.2), and for this reason the system would have

a smaller benefit from the compressed cache use. On the
other hand, static compressed caches larger than the one
with the best cost/benefit ratio provide more gains reduc-
ing accesses to the backing store. But it also introduces
more overhead to the overall system due to the reduction
of non-compressed memory (see Section 2.2). This over-
head hinders it from improving performance proportional
to the gains it is able to provide reducing accesses to the
backing store(s). See static compressed cache cases in
Figure 3 for an illustration of this behaviour.5 The adap-
tive case in this figure will be explained later in this sec-
tion.

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

adaptive static
512 Kb

static
01 Mb

static
02 Mb

static
03 Mb

static
04 Mb

static
05 Mb

static
06 Mb

static
08 Mb

static
10Mb

G
ai

n 
(%

)

 

Linux kernel compilation
Pentium III 1 GHz

System Memory: 18Mb

Figure 3: Comparison of several compressed caches with
a kernel without compressed caching, showing the rela-
tive gains of total time for Linux kernel compilation (j1).
These relative results were obtained for the adaptive com-
pressed cache e for static compressed caches with sizes
ranging from 512Kb to 8Mb.

In particular, the compressed cache cost is highlighted
when the memory allocated for it is barely used. In fact, it
introduces overhead to the system by reducing the amount
of available memory for the non-compressed memory, but
does not provide all the benefits that could be achieved
with a compressed cache of this size.

In spite of the limitations mentioned above, static
compressed caches may still improve application perfor-
mance. However, even if a static compressed cache with
a certain size is able to improve system performance for
a specific application, given that programs have differ-
ent memory needs during their execution, it does not
mean that this static compressed cache can provide per-
formance improvements for other applications. Further-
more, a static compressed cache with a particular size that
improves the performance for an application may even

5Throughout this text, Kb means 1024 bytes, Mb means 1024Kb and
Gb means 1024Mb.

6



degrade severely the performance for other ones. These
conclusions are in accordance with the analysis already
reported and/or predicted by previous work [4, 18, 5].

A reliable detection, at run time, of how much memory
should be kept compressed in the system is the greatest
challenge for compressed caching to become a general-
purpose solution for the reduction of accesses to the back-
ing store.

We designed and implemented an adaptability policy
for the compressed cache to attempt to detect when it
should change its memory usage in order to provide more
benefits and/or decrease its costs. Our approach is based
on a tight compressed cache, without allocation of su-
perfluous memory. This improves memory usage effi-
ciency, since unused memory does not improve perfor-
mance, possibly even degrades it. The amount of memory
allocated for compressed cache is only increased when
it is full, compacted, and would have to release a com-
pressed page in order to store a new page. The cells used
by the compressed cache are released to the system as
soon as they are no longer needed (e.g., when all com-
pressed pages within a cell are freed). It is important to
notice that, once we release a cell to the system, it is un-
certain that we are going to be able to allocate it again
when necessary, specially cells composed of more than
one page. Page allocations and releases have the inherent
cost of the functions that perform these tasks, but they are
insignificant. This is particularly true because we make
sure that the page allocations and releases of this scheme
are performed without activating the virtual memory sys-
tem to try to force releases, which is expensive. In other
words, we only allocate if the memory pages we need are
available at the allocation time.

In terms of how the compressed cache adapts its size to
system behaviour, we begin with the assumption that com-
pressed caching is useful to the system unless our online
analysis shows otherwise. Hence, the cache starts with a
minimum size at initialization time and, at first, it does not
have limitations to its growth. That is, as soon as the vir-
tual memory system starts to evict pages, the compressed
cache increases its memory usage in order to store them.

Based on the approximated LRU ordering and on the
actual compression ratio (how many pages are stored for
the number of allocated memory pages), the pages in the
compressed cache are split into two lists:expenseand
profit (see Figure 4). The expense list stores the com-
pressed pages which would be in the memory if com-
pressed caching were not used in the system. The profit
list stores the compressed pages that are still in memory
only due to the compressed caching.

The analysis that detects when the compressed cache

System w/o Compressed Caching
Memory

System with Compressed Caching

Memory

Pages freed to backing
stores (e.g., swap, regular files)

Non-Compressed
Memory

Compressed
Cache

Expense
List

Profit
List

Non-Compressed Memory

A B

A B

C

D

C

D
Pages freed to backing
stores (e.g., swap, regular files)

Figure 4: Lists in the compressed cache

has to change its size happens when pages are read from
the compressed cache and is based on decompression of
pages from the expense and profit lists (see Figure 5). In
general, if compressed pages from the expense list are re-
claimed to the non-compressed memory, our policy takes
this as a sign that compressed caching is not being worth-
while, because these pages are being accessed with over-
head. On the other hand, pages reclaimed from the profit
list indicate that compressed caching is beneficial to the
system, since these pages would have had to be read from
disk if the system had no compressed caching.

Memory
Non-Compressed

Memory

Compressed
Cache

Expense
List

Profit
List

(a)

(b)

(a) A page is read from the expense list

(b) A page is read from the profit list

(2nd consecutive page)

Lock compressed cache growth

(3rd consecutive page)

(i) Try to Shrink the compressed
cache relocating fragments

Unlock compressed cache growth (if locked)

(ii) If unable to do (i), free 
a compressed page

Figure 5: Adaptability Heuristic

If two consecutive compressed pages are read from the

7



expense list, the compressed cache is locked to growth,
i.e., the compressed cache will no longer increase its
memory usage. If this scenario persists and the third
consecutive compressed page from the expense list is re-
claimed, we take the following action:(i) if we are able
to relocate enough of the compressed pages from a cell
to other cells, we do the relocation, decreasing the com-
pressed cache memory usage by freeing the initial cell;
otherwise,(ii) we free the oldest compressed page. Once
one of these actions is taken, the growth barrier is re-
moved and the analysis starts again. If a page is read from
the profit list, any existing growth barrier is removed (see
summary of the heuristic in Figure 5).

-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

 0

 50

adaptive static
02 Mb

static
05 Mb

static
07 Mb

static
10 Mb

static
15 Mb

static
20 Mb

static
30 Mb

static
40 Mb

static
50 Mb

G
ai

n 
(%

)

 

MUMmer
Pentium III 1 GHz

System Memory: 340Mb

Figure 6: Comparison of several compressed caches with
a kernel without compressed caching, showing the relative
gains of total time for MUMmer execution. These relative
results were obtained for the adaptive compressed cache e
for static compressed caches with sizes ranging from 2 to
50Mb.

¿From our experiments, we verified that our adaptabil-
ity policy achieves good results. When a static com-
pressed cache provides performance gains in comparison
to a kernel without compressed caching, our adaptability
policy ends up selecting the size that achieves gains usu-
ally very close to the ones obtained by the best static size.
Moreover, in some scenarios, applications may benefit
from the adaptability policy (mainly avoiding superfluous
allocated memory), achieving results better than any static
compressed cache. See Figures 3 and 6 for results of a
comparison relative a kernel without compressed caching
between a static and an adaptive compressed cache.

4 Experimental Results
In this section, we describe the test suite, the methodol-
ogy and the results of our implementation of a compressed
cache in Linux 2.4.18.

The source code of the compressed cache implementa-
tion along with all the used tests programs and input data
are available on our Web site [11]. The results presented
in this paper were run with the 0.24pre5 version of our
code.

4.1 Test Suite Description
Linux Kernel 2.4.18 Compilation [6] A very realis-
tic benchmark with high CPU and memory usage, mainly
when forking its build. The Linux kernel compilation was
run as only one process (j1 ), as two (j2 ), and four (j4 )
concurrent processes. The memory available to the sys-
tem varied from 18 to 48 Mb. The case with 48 Mb almost
does not have memory pressure.

MUMmer 1.0 [15] A scientific application to align
genomes that has a very intensive memory usage. Al-
most all of its memory usage is composed of pages backed
by swap. MUMmer was executed varying the amount of
memory size available to the system from 330 to 500 Mb.
The 500 Mb case almost does not have memory pressure.

Open Source Database Benchmark (OSDB) 0.14
[16] A benchmark that performs several database related
operations using the Postgres database manager and a 40
Mb database. We ran the experiments with 24 and 48 Mb
of memory in the system. The 48 Mb case almost does
not have memory pressure.

httperf 0.8 [14] A tool to measure web server perfor-
mance. Our test using httperf performs a number of re-
quests of a file to a local web server, measuring the num-
ber of resquest served per second. The available system
memory varied from 24 Mb, which has a very intense
memory pressure, to 64 Mb, where there is a very light
memory pressure for this benchmark.

Matlab [13] A mathematical tool to perform numerical
computations and graphics. In our tests, we used a Matlab
program that computes the fractal dimensions of an image
given as input. This computation may imply in an inten-
sive memory and processing time usage. We used three
different images and the virtual address space required by
each of them was 80, 256 and 1000 Mb, respectively.

Sort - GNU textutils 2.0 [19] The sort program from
GNU textutils aims at sorting a text file with minimal
memory usage. It uses about 2 Mb of memory to sort files
whose size are more than 100 Mb. The experiment results
were collected with 24 Mb of memory in the system.

PostMark 1.4 [17] A benchmark to measure perfor-
mance for small files in an operating system, by creating a
large pool of files and measuring some transactions rates.
This benchmark was run with 128 Mb of memory in the

8



system.

4.2 Methodology

Our experiments were run on a system with a Pentium
III 1 GHz processor, 768 Mb of system RAM and a 60
Gb, UltraDMA 100, 7200 rpm hard disk. The system
had its memory configuration adapted for each application
in order to force memory pressure and make compressed
caching work. For most tests, an amount of memory under
which the system almost does not have memory pressure
is chosen.

The Linux distribution installed on this system was De-
bian Sarge. Each test was run after a fresh system reboot
to avoid hot cache effects.

4.3 Compression Algorithms

We provided support for two compression algorithms in
our implementation, namely:

WKdm [24] is a variant of WK compression algorithms
family [5, 22] by Paul Wilson and Scott Kaplan designed
for compressing in-memory data rather than file data. It
uses a simple, direct-mapped dictionary of recently seen
words.

LZO [12] is a fast Lempel-Ziv [25, 26] algorithm and
implementation by Markus Oberhumer. In our implemen-
tation, we used the miniLZO, a lightweight version of the
LZO library.

4.4 Performance Results

Global results. The results for the Linux kernel com-
pilation for the various concurrency levels (j1 , j2 , and
j3 ), the MUMmer, the Open Source Database Bench-
mark, httperf and Matlab are displayed in Table 1. In this
table we present the execution time for a kernel without
compressed caching (w/o CC) and various kernels with
compressed caching. (The only two exceptions are httperf
and Matlab, where only the data for the two most im-
portant kernels were collected.) Each compressed cache
kernel has a different configuration (different adaptability
policy, number of pages in a cell, compression algorithm
or the type of pages it stores).

The referencecolumn corresponds to the kernel with
compressed caching that achieved the best results in our
experiments. This means that it introduces improvements
in most workloads, even if other configurations may im-
prove even more in some cases. It uses LZO compression
algorithm, cells composed of two memory pages and the
adaptability policy described in Section 3. In comparison
to the results fromw/o CC, we observe significant gains in
the scenarios with high memory pressure, reaching up to

171.4% of speedup. When it is under light memory pres-
sure, a slight overhead (not more than 0.39%) occurs like
noticed in the cases 30 Mb (kernelj1 ), 48 Mb (kernel
j4 ), 500 Mb (MUMmer) and 48 Mb (OSDB).

We chose some amount of available memory to the sys-
tem in order to verify compressed caching varying from
almost no memory pressure to high memory pressure. For
example, 500 Mb is more than enough to run MUMmer
application, while 330 Mb is very close to degenerate the
application behaviour intensively (with 320 Mb on a ker-
nel without compressed cache, the MUMmer execution
is almost 2 hours, i.e., about 4600% longer than with 330
Mb). As one can see for cases 27Mb of Linux kernel com-
pilation (j1, j2, and j4), if the concurrency level increases,
the memory pressure gets higher and compressed cache
makes a huge difference (notably inj4 case).

We also evaluated the overhead under no memory pres-
sure at all. In order to do so, we run these tests on our sys-
tem without any memory limitation, thus having 768Mb
of RAM available. (For Matlab, we changed the input im-
ages to use less memory, as is seen in the 80 and 256Mb
Matlab cases on the table.) For most cases (kernelj2 ,
MUMmer, OSDB, Matlab (256Mb) and Matlab (80Mb))
no difference was noticed. For two cases (kernelj2 and
httperf), we noticed that compressed caching introduced
an inherent overhead of 0.25-0.27%. For one case (ker-
nel j4 ), we noticed that compressed caching achieved an
improvement of 0.28%. We think it is fair to state that no
overhead is expected by our implementation if the appli-
cation is to be run with no memory pressure at all.

Compressing only pages backed by swap.Compar-
ing columnsonlyswapand referencefrom Table 1, we
can see the importance of also compressing pages not
backed by swap, as discussed in Section 2.3.1. For the
MUMmer cases, one can see thatonlyswapand refer-
enceachieve similar results. In fact, few pages are not
backed by swap in these cases. Nevertheless, we see that
the gain in OSDB 24 Mb case obtained byreferenceis
nullified by onlyswap. The latter produces slowdown for
most kernel compilation cases in contrast with the former,
that achieves gains in most cases. If we run the kernel
compilation tests for static compressed caches of several
fixed sizes that store only pages backed by swap, the same
slowdown is verified. It is also interesting to notice that
kernel compilation and OSDB have higher usage of pages
backed by other backing stores.

Cells composed of one, two and four memory pages.
Comparing the columnscell1, referenceandcell4, we see
the influence of compressed caches with one, two and
four pages in every cell, respectively. One can see that
cells composed of four pages does not perform well in

9



test memory w/o CC reference sluggish aggressive onlyswap wkdm lzowkdm cell1 cell4

Mb seconds gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%)

kernel (-j1)

18 467.8 21.73 18.07 21.46 -4.65 2.11 11.07 19.06 -0.55

21 326.68 8.89 8.20 7.97 -1.01 3.20 5.71 7.33 1.64

24 289.05 0.20 -0.35 0.66 -0.69 -1.44 -0.44 0.49 -1.56

27 280.45 0.11 -0.64 0.17 -0.31 -0.44 -0.09 -0.19 -0.60

30 278.33 -0.23 0.11 0.03 0.46 0.48 0.39 0.35 0.65

48 274 0.18 0.09 0.28 0.47 0.31 0.33 0.26 0.34

768 271.17 -0.27 - - - - - - -

kernel (-j2)

18 1002.62 33.13 11.68 31.76 1.60 0.36 0.30 28.86 -4.97

21 608.98 33.84 21.99 30.40 -4.12 4.76 9.50 25.19 -4.41

24 395.05 18.78 12.55 19.38 1.22 -0.18 11.26 15.59 0.43

27 313.8 5.37 6.80 6.92 0.00 2.72 4.14 6.32 -0.53

30 283.7 1.12 0.92 0.24 -0.00 -1.36 0.60 1.38 -0.23

48 272.3 0.19 0.37 0.28 0.51 0.40 0.36 0.31 0.52

768 269.76 -0.01 - - - - - - -

kernel (-j4)

18 1826.14 14.98 11.84 9.77 -0.52 6.73 5.01 13.31 -9.91

21 1067.47 15.62 8.38 -1.50 -5.41 -5.67 -5.05 12.31 -11.72

24 826.44 31.85 -2.16 20.60 -0.52 -1.73 -1.98 28.78 -7.65

27 654.83 34.72 7.90 29.08 3.86 1.47 -6.64 33.09 2.01

30 489.67 26.45 13.45 25.47 0.84 0.34 3.14 26.48 5.89

48 274.95 -0.39 -0.84 -0.64 -0.16 -0.56 -0.70 -0.48 -0.66

768 271.23 0.28 - - - - - - -

MUMmer

330 143.5 16.09 16.47 -120.36 -51.03 23.80 -5.93 37.08 -29.84

340 115.21 20.74 21.95 14.47 22.18 23.06 25.23 38.64 13.49

360 82.86 26.25 26.64 24.04 24.33 26.90 26.60 24.13 25.67

380 81.21 16.71 15.66 13.98 12.26 15.66 16.75 38.75 19.10

400 80.55 23.02 23.36 20.21 21.44 23.48 25.95 39.85 20.14

420 58.51 15.11 14.19 14.10 16.34 20.18 20.15 14.80 10.48

500 45.35 -0.22 -0.20 0.02 0.02 -0.26 -0.04 0.02 -0.07

768 44.7 -0.09 - - - - - - -

OSDB

24 1242.4 30.70 31.59 31.91 -1.27 5.51 29.35 1.05 -7.69

48 758.97 -0.07 -0.08 -0.63 0.75 0.30 0.08 -0.77 0.26

768 735.5 0.00 - - - - - - -

Matlab (1Gb) 768 5880.36 6.12 - - - - - - -

Matlab (256Mb) 768 1977.83 -0.01 - - - - - - -

Matlab (80Mb) 768 579.30 -0.03 - - - - - - -

test memory w/o CC reference sluggish aggressive onlyswap wkdm lzowkdm cell1 cell4

Mb reqs/sec gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%) gain (%)

httperf

24 38.5 171.38 - - - - - - -

32 117.7 153.40 - - - - - - -

36 1529.1 14.10 - - - - - - -

40 1849 1.40 - - - - - - -

48 1646.1 14.95 - - - - - - -

64 1819 3.20 - - - - - - -

768 1894.1 -0.25 - - - - - - -

Table 1: Table with our results for a kernel without compressed caching (w/o CC) and several versions of kernel with
compressed cache.Referenceis the main compressed cache implementation and any other kernel differs from it in
only one aspect.Wkdmuses WKdm compression algorithm instead of LZO, whilelzowkdmuses LZO and WKdm.
Onlyswaphas a compressed cache that stores only pages backed by swap.Sluggish, andaggressivehave different
adaptability policies, but thencell1andcell4have cells composed of only one and 4 pages, respectively.

10



almost all cases, except for MUMmer. For kernel compi-
lation tests, cells with one page performs as well as cells
with two. In MUMmer tests, where we have rich com-
pressibility, cells with one page perform even better in
almost all cases, achieving gains of up to 39.85%. The
only case wherereferenceis clearly better thancell1 is
the case OSDB 24 Mb since we have poor compressibil-
ity (64.5%), as was discussed in Section 2.3.3. In this
case,cell1 speeds up its performance by only 1.05% and
referenceby 30.70%.

LZO WKdm
compression time 0.09 ms 0.05 ms
decompression time 0.04 ms 0.03 ms
compression ratio (kernel) 39.4% 60.6%
compression ratio (mummer) 35.5% 41.6%
compression ratio (osdb) 64.5% 86.5%

Table 2: Average time to (de)compress a page and average
compression ratios for some tests per compression algo-
rithm.

LZO vs WKdm. ¿From Table 2, we can notice that
the WKdm compression algorithm compresses and de-
compresses a page faster than LZO, but it does not com-
press so tightly as LZO does. Comparing columnswkdm
andreferencein Table 1, one can verify that WKdm per-
forms well in tests where the compression is not so worse
than the one obtained by LZO. This is the case of MUM-
mer 330 Mb, wherewkdm improves its performance by
23.80% andreferenceby 16.09%. Nonetheless, in all
other tests, the compression ratio showed to be more im-
portant than the compression speed. In fact, a better ratio
means that fewer pages will likely be freed and thus more
reads from the backing stores will be saved. It should
be said that MUMmer is a memory intensive application
and all other applications depend much more on the page
cache compression (compare columnsonlyswapandref-
erence). WKdm was designed to compress data segment
pages and was not designed to compress other kind of
pages like those backed by files. For this reason, we tried
an implementation where LZO compression algorithm is
applied to all pages except those backed by swap, which
are compressed by WKdm (see columnlzowkdm). In fact,
this kernel performs better thanreferencefor some cases
of MUMmer, but its results are quite unsatisfactory for
kernel compilations, in particular in thej4 cases. This
may be explained by the fact that the average compres-
sion ratio of swappable compressed pages is 36% with
LZO against 50% with WKdm. Despite this unsatisfac-
tory result, we still believe that one could obtain some
improvement in this direction.

Other adaptability policies. Besides the adaptability
policy we adopted (columnreference), results from other
adaptability policies are shown in Table 1:sluggishand
aggressive. The first policy is less sensible to changes
than reference, trying to take an action when there is
stronger evidences. It provides smaller gains in the tests
performed, except for some few cases. The second pol-
icy, on the other hand, is more aggressive, trying to shrink
the compressed cache at each access to the expense list.
This policy also provides smaller gains thanreferencein
general.

Disabling clean page compression. In order to check
the policy that disables clean pages compression, we per-
formed experiments with the sort program from the GNU
textutils 2.0 and also with PostMark benchmark. Both
these applications have a substantial performance drop
when compressed cache without the policy to disable
clean pages compression is used. The sort program runs
40.9% slower, while postmark takes 49.4% longer to com-
plete (see Table 3). In the latter, possibly because it is a
benchmark, designed for other kind of comparisons, in-
stead of a real application, only 0.06% of all pages in
the compressed cache are read back by the system. Post-
Mark’s scenario is worse because the compression ratio of
99% (almost all pages are incompressible).

system sort postmark
CC - disabling clean 55.28s 329s
pages compression
CC - not disabling clean 80.35s 529s
pages compression
w/o CC 54.38s 330s

Table 3: Sort and postmark results disabling or not the
clean pages compression.

With our policy that disables clean pages compression,
the slowdown noticed running PostMark vanishes and sort
takes only 1.6% more time to complete than a kernel with-
out compressed caching. A minor slowdown is expected
since the compressed cache takes some time to detect that
the compressed cache is not worthwhile for clean pages.

Effect upon scheduling. A subtle consequence of com-
pressed caching is its effect upon the process scheduling.
In our opinion, this side effect is good since the CPU time
sharing among processes is fairer if compressed caching is
present as we will show in this section. In fact, in a kernel
without compressed caching, whenever a fault on a page
stored on a backing store occurs, a read operation is sub-
mitted to the disk. Since reading the page takes some time
to complete, the read operation is submitted and the cur-
rent process relinquishes the CPU. Then another process,

11



if available, is scheduled to take control of the CPU. On
the other hand, in a kernel with with compressed caching,
if a page is stored in the compressed cache, this page will
be decompressed to service any fault on it and unlike a
fault on a page stored on a backing store, this service does
not relinquish the CPU since this operation does not de-
pend on slow devices, such as a hard disk.

Due to compressed caching, applications will likely
have fewer faults on pages stored on the backing stores,
therefore they will relinquish the CPU fewer times to ser-
vice a page fault. If two or more applications are run-
ning on the system and compressed caching saves page
faults of some of them which would generate reads from
the backing store, these applications will run much faster
than on a system without compressed caching. On the
other hand, the applications that had less saved page faults
may run even slower because they will not make use of the
CPU time previously relinquished by the applications that
have more saved faults.

As an example of this effect, we present an analy-
sis of the behaviour of contest 0.51, a Linux kernel re-
sponsiveness benchmark [10]. Specifically, we discuss
about the memory load test, which consists of running
a Linux kernel compilation concurrently with a program
(memload) that allocates 110% of the physical mem-
ory size and performs various accesses to this allocated
memory. The main measurement of the benchmark is
the time the Linux kernel takes to compile, but contest
also displays howmemload performed during the kernel
compilation, through the number of iterationsmemload
performed. After some experiments, we noticed that
memload program faults on more pages on the back-
ing stores than the kernel compilation process. There-
fore without compressed caching, the compilation process
takes advantage of the CPU idle time as a consequence of
the scheduling performed bymemload to wait for pages
to be read. With compressed caching,memload does not
have faults on pages stored on the backing stores since its
data is highly compressible. Hence, the kernel compila-
tion may take longer to run on a system with compressed
caching, becausememload uses a fairer CPU share, not
relinquishing it to wait for pages to be read from the back-
ing stores. As a matter of fact,memload runs much often
with the compressed cache (see Table 4).

5 Related Work
In Section 1, we presented a brief history and description
concerning previous works, with or without implementa-
tions, on compressed caching. In this section, we com-
pare as much as possible our implementation with those
works. Moreover, from the understanding obtained with

kernel compilation number of iterations
system completion time memload performs
CC 94.90s 174
w/o CC 90.64 s 41

Table 4: Contest 0.51 benchmark results formemload
load. Our testing system was set to run with 256 Mb of
system memory (CC is compressed caching above).

our own implementation we also contribute with some ini-
tial analysis on these works. We are mainly interested
in the implementations by Douglis [4], Russinovich and
Cogswell [18], Cervera et al [3] and also in Kaplan’s adap-
tive scheme proposal [22, 5].

We tried to compare our implementation with the pre-
vious ones, but neither Douglis’ nor Cervera et al’s im-
plementations made their test suite available. The Win-
stone [23] benchmark used by Russinovich and Cogswell
is available only for Windows operating systems. Among
the implementations, only the one by Cervera et al is
available. However, we were unable to run some of our
tests on a system with it, due to segmentation faults in
kernel space (oopses, in Linux terminology). We were un-
able to find out if we hit new programming errors in their
implementation or Debian Potato distribution tools were
incompatible with the Linux kernel version they used.

The first implementation of compressed cache was per-
formed by Douglis [4] in 1993, achieving inconclusive re-
sults: speedups for some applications (up to 62.3%) and
slowdowns for others (up to 36.4%). He presented some
reasons for these results, namely:(i) poor data compress-
ibility; (ii) locality, that is responsible to make an appli-
cation to fault on pages stored in the compressed cache
which would be accessible without it; and(iii) restric-
tions in I/O operations that do not permit reads to bene-
fit from compression by transferring smaller amounts of
data. At last, Douglis observed that compressed caching
will become more interesting if the gap between CPU
processing power and disk access times keeps growing.
Kaplan [22, 5], later in 1999, pointed out that the ma-
chine Douglis used to evaluate his implementation was
many times slower than current computers, thus the gap
between CPU and disks was much smaller than today.
He also pointed out that the growth of the gap is a ten-
dency in years to come. About the adaptive scheme de-
vised and implemented by Douglis, Kaplan asserted that
it may be maladaptive for many workloads and proposed
a new scheme.

Experimentally, as Douglis, we noticed that poor com-
pressibility was a problem for compressed caching. In
our work we addressed this problem using cells with a
greater number of contiguous memory pages (as seen in

12



Section 2.3.3). Regarding locality, in our implementation,
any application that has many faults on pages that would
be directly accessible without compressed cache (i.e., ac-
cesses on the expense list) and does not have enough ben-
efits (i.e., accesses on the profit list) will force the com-
pressed cache to shrink itself in order to adapt to a size
which does not suffer from locality. We believe that the
I/O restrictions Douglis mentioned do not hinder com-
pressed caching from providing improvements, mostly
because today we have disks with a high transfer rate,
but still slow access times. In Douglis’ implementation,
the order the pages are stored in the compressed cache is
not followed when the compressed cache is full and pages
need to be freed. Therefore, the page replacement order-
ing is changed, what is likely to degrade performance. His
compressed cache only stores pages backed by swap, but
the adaptive scheme also takes into account pages not el-
igible to be compressed. Douglis also implemented sup-
port for storing more than one compressed page on a swap
block, effectively increasing the swap space.

In 1999, Cervera et al [3] implemented a compressed
cache in the Linux 2.0.36 as part of an implementation of
compressed swap. They achieved performance gains for 7
out of the 8 tested benchmarks they reported. In compar-
ison to our implementation, their compressed cache has
a number of limitations. First of all, they implemented
a static compressed cache, which is suitable for a small
range of applications, as also noticed by Douglis and Ka-
plan. Their compressed cache is allocated with cells com-
posed of single memory pages, thus they may have prob-
lems due to poor compressibility since a cell may not be
able to store more than one compressed page. In their im-
plementation, as Douglis’, the order the pages are freed
when the compressed cache is full does not follow the
order they were stored in it. Their compressed cache
stores only pages backed by swap which are marked as
dirty, thus not compressing pages backed by other backing
stores nor any sort of clean page. Moreover it is unclear
how compressed swap and compressed cache separately
influenced their results.

Russinovich and Cogswell could not obtain improve-
ments with their implementation (neither with other com-
mercial products like MagnaRAM 2 and RAM Doubler)
for the Winstone on an Intel 80486 DX2/66 [18] and a
slowdown of 10% was reported. In our opinion, there are
three main reasons for these unsatisfactory results. The
first one is that the used machine was slower and had
a smaller gap between CPU power and disk access time
than current machines, as was already pointed out by Ka-
plan. The second reason is that the obtained compression
ratio was 62.5%. This is a poor compression ratio if com-

pared to the applications and benchmarks we tested. If
there is no specific support for poor compressibility, per-
formance may drop substantially, as we have seen for the
Open Source Database Benchmark when running with 24
Mb of system memory. The third reason is that they re-
port a huge difference between the time spent on page
(de)compression (0.05ms) and the time to service a page
fault (2ms, without the actual seek time). In contrast, this
difference almost does not exist in our experiments on
Linux. They attribute this difference to a bad behaviour in
the operating system used in their simulations (Windows
95). To conclude, a possible fourth reason is that the time
spent on page (de)compression (0.05ms) itself seems to
be too short, as already noticed by Kaplan. Despite our
much faster machine, we obtained a close value only with
WKdm. Since they do not report which compression al-
gorithm they used, this could be a sign of a too fast but
not effective compression algorithm.

Kaplan [22, 5] concluded that an implementation of an
adaptive compressed cache that minimizes the overhead
can provide significant reduction in paging costs. He pro-
posed an adaptive scheme based on a cost/benefit analysis
to detect the amount of system memory the compressed
cache should use. This scheme was utilized in his sim-
ulations to demonstrate that the compressed cache can
provide significant reduction in paging costs. In spite of
proposing a compressed cache only for pages backed by
swap, we think that Kaplan’s adaptive scheme based on
a cost/benefit analysis can be extended in order to detect
the amount of memory that the compressed cache should
use even if it stored all kinds of pages backed by backing
stores. Nevertheless, it is very hard to collect the neces-
sary data for the Kaplan’s cost/benefit analysis efficiently
on current systems. For instance, Linux does not keep
the LRU list of all process data pages that are in memory.
There is no such information and only an approximate
part of this information is obtained when the system is
under memory pressure. Furthermore, the extra memory
required to store these data in the Linux kernel and conse-
quently metadata overhead was not accounted in Kaplan’s
analysis. This may be discouraging since metadata over-
head showed to have strong influence, particularly under
memory pressure. In spite of these problems for Kaplan’s
cost/benefit analysis, his work has a strong contribution
pointing out that previous inconclusive implementations
could be corrected by a good adaptability policy for to-
day’s CPU/disk gap.

Our compressed caching aims at current standard hard-
ware systems. Nevertheless, we should mention that some
works designed and implemented compressed caching in
hardware. Kjelso et al [7] designed and implemented

13



in hardware a memory compressor. Using simulations,
they demonstrated high performance gains. Abali and
Franke [1] evaluated a system built for compressingall the
main memory data, focusing on memory size increase. In
their system, the whole main memory is compressed and
a cache is used for storing decompressed data.

6 Conclusions and Future Work
We proposed a new and simple adaptability policy for
a compressed caching system, implemented this sys-
tem, and obtained significant performance improvements
for all tested workloads under memory pressure (up to
171.4%) with negligible overhead under light memory
pressure (up to 0.39%). Moreover, almost no overhead
at all was detected if no memory pressure was applied.
This compressed caching system is the first one to address
workloads with poor compressibility and also to compress
pages not backed by the swap device. These features
showed to be fundamental for the improvement of perfor-
mance in some workloads that could not otherwise obtain
benefit from the use of compressed caching.

We also verified that the overhead introduced by meta-
data maintenance may have strong negative impact on
system performance, particularly under memory pressure.
Considering that a compressed cache system tries to ob-
tain improvements right under this scenario, we observed
that our simpler algorithms that require less metadata tend
to obtain better results.

Improvements in the direction of a reduction of over-
head under very light memory pressure were not tried.
They are possible and should be tried in the future.

This implementation should also be extended to take
advantage of multiprocessor architectures. Linux 2.4.18
does not give support to access process information about
any evicted memory page. From this kind of information,
one could try to perform an adaptive analysis that could
also take a per process information into account. This
could be helpful for workloads composed of different pro-
cesses with different behavior.

Many users of our compressed cache system reported
better responsiveness for desktop workloads. They re-
ported smoother system interaction, what cannot objec-
tively be evaluated yet, but is a strong indication of
the benefits of adaptive compressed caching for common
desktop workloads. We believe that good methods that
test responsiveness under desktop workloads should be
developed to scientificly confirm (or not) these very pos-
itive (but still subjective) reports. Considering that desk-
top workloads are the most important workload for most
users, one can see how valuable are these reports and how
important would be such a scientific confirmation.

We also believe that our compressed caching system
will be extremely helpful on effectively extending mem-
ory on devices without swap like many PDA’s that are able
to run Linux. A specific comparison methodology for this
application should be developed and applied.

One can state that memory is getting cheaper and com-
pressed caching is then unnecessary. Based in our exper-
iments, we claim that both, more memory and an adap-
tive compressed caching, are even better. Our experiments
with applications for which all the installed memory is not
enough showed that the obtained performance can save
extra money by delaying another memory expansion.

To sum up, the main goal of the current implementation
was achieved with the speedup verified in all workloads
under memory pressure. For all these reasons we believe
that an adaptive compressed caching must be adopted in
current operating systems, as a mechanism for consider-
able improvement in system performance.

Acknowledgments
We would like to thank greatefully Fabio Kon and Livio
B. Soares for the insightful comments and suggestions
on this paper, Imre Simon for his support, Scott Ka-
plan, Marcelo Tosatti, Paolo Ciarrocchi, Marc-Christian
Petersen and Con Kolivas for their comments and feed-
back from the implementation.

References
[1] B. Abali and H. Franke. Operating system support for fast hard-

ware compression of main memory contents. InMemory Wall
Workshop of the 27th Annual International Symposium on Com-
puter Architecture (ISCA-2000), Vancouver, BC, Canada, 2000.

[2] A. W. Appel and K. Li. Virtual Memory Primitives for User Pro-
grams. InFourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pages
96–107, Santa Clara, CA, USA, 1991.

[3] R. Cervera, T. Cortes, and Y. Becerra. Improving Application Per-
formance through Swap Compression. InUsenix ’99 – Freenix
Refereed Track, 1999.

[4] F. Douglis. The Compression Cache: Using On-line Compression
to Extend Physical Memory. InWinter 1993 USENIX Conference,
pages 519–529, 1993.

[5] S. F. Kaplan.Compressed Caching and Modern Virtual Memory
Simulation. PhD thesis, University of Texas at Austin, 1999.

[6] The Linux Kernel Archives.<http://www.kernel.org> .
[7] M. Kjelso, M. Gooch, and S. Jones. Main memory hardware data

compression. In I. C. S. Press, editor,22nd Euromicro Conference,
pages 423 – 430, September 1996.

[8] M. Kjelso, M. Gooch, and S. Jones. Empirical study of memory
data. In IEE, editor,IEE Proceedings Comput. Digit. Tech., volume
145, pages 63 – 67, January 1998.

[9] M. Kjelso, M. Gooch, and S. Jones. Performance evaluation
of computer architectures with main memory data compression.
Journal of Systems Architecture, 45:571 – 590, 1999.

[10] C. Kolivas. The homepage of contest, The linux kernel responsive-
ness benchmark. URL:<http://contest.kolivas.net> .

[11] Compressed caching. <http://linuxcompressed.-
sourceforge.net/> .

[12] Markus F.X.J. Oberhumer: LZO data compression library.
<http://www.oberhumer.com/opensource/lzo/> .

14



[13] The MathWorks - MATLAB. <http://www.mathworks.com/-
products/matlab/> .

[14] D. Mosberger and T. Jin. httperf A Tool for Measuring Web
Server Performance.<http://www.hpl.hp.com/personal/-
David Mosberger/httperf.html> .

[15] The MUMmer Home Page. <http://www.tigr.org/-
software/mummer/> .

[16] The Open Source Database Benchmark.<http://osdb.-
sourceforge.net/> .

[17] PostMark: A New File System Benchmark.<http://www.-
netapp.com/tech library/3022.html> .

[18] M. Russinovich and B. Cogswell. RAM Compression Analysis.
Technical report, O’Reilly, 1996.

[19] GNU Textutils 2.0 source code.<ftp://ftp.gnu.org/gnu/-
textutils/textutils-2.0.tar.gz> .

[20] P. R. Wilson. Some Issues and Strategies in Heap Management and
Memory Hierarchies. InOOPSLA/ECOOP Workshop on Garbage
Collection in Object-Oriented Systems, 1990.

[21] P. R. Wilson. Operating System for Small Objects. InInternation
Workshop on Object Orientation in Operating Systems, pages 80–
86, Palo Alto, CA, USA, 1991. IEEE Press.

[22] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The case for
compressed caching in virtual memory systems. InSummer 1999
USENIX Conference, pages 101–116, Monterey, CA, USA, 1999.

[23] Business Winstone. <http://www.etestinglabs.com/-
benchmarks/bwinstone/bwinstone.asp> .

[24] WKdm Compression Algorithm source code. <http://-
www.cs.utexas.edu/users/oops/compressed-caching/-
WKdm.tgz> .

[25] J. Ziv and A. Lempel. A universal algorithm for sequential data
compression.IEEE Transactions on Information Theory, 23:337–
343, 1977.

[26] J. Ziv and A. Lempel. Compression of individual sequences via
variable length coding.IEEE Transactions on Information Theory,
24:530–536, 1978.

15


	Introduction
	Design
	Overview
	Overhead Considerations
	Design Decisions
	Page Cache
	Page Ordering
	Cells with Contiguous Memory Pages
	Disabling Clean Page Compression
	Variable Compressed Cache Size


	Adaptive Cache Size
	Experimental Results
	Test Suite Description
	Methodology
	Compression Algorithms
	Performance Results

	Related Work
	Conclusions and Future Work

