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Abstract— The ability to classify packets according to pre-defined rules
is critical to providing many sophisticated value-added services, such as se-
curity, QoS, load balancing, traffic accounting, etc. Various approaches to
packet classification have been studied in the literature with accompanying
theoretical bounds. Practical studies with results applying to large number
of filters (from 8K to 1 million) are rare.

In this paper, we take a practical approach to the problem of packet clas-
sification. Specifically, we propose and study a novel approach to packet
classification which combines heuristic tree search with the use of filter
buckets. Besides high performance and reasonable storage requirement,
our algorithm is unique in the sense that it can adapt to the input packet
distribution by taking into account the relative filter usage.

To evaluate our algorithms, we have developed realistic models of large
scale filter tables, and used them to drive extensive experimentation. The
results demonstrate practicality of our algorithms for even up to 1 million
filters.

I. I NTRODUCTION

Multi-dimensional packet classification with a large number
of filter rules is a provably hard problem [4], [7], [8]. Specifi-
cally, previous work has cast it in terms of the range matching
problem in computational geometry [3], where there are various
known algorithms and theoretical results.

Most of these studies, however, focus on worst-case perfor-
mance, and does not take into account actual filter usage statis-
tics, nor the types of commonly occurring filter patterns. More-
over, they provide sparse experimental results. In practice, the
asymptotic complexity does not accurately tell how the algo-
rithms scale to large number (e.g., from 8K to 1M) of filters.

In this paper, we take a more pragmatic approach. Our in-
terest is not as much in analytical results, but in exploring the
practical limits of packet classification and understanding per-
formance through empirical experimentations. Our algorithm
is motivated by intuitive observation on the classification pro-
cess, and is based on an efficient divide-and-conquer approach.
Specifically, we break up the classification procedure into two
main steps. In the first step, our algorithm tries to eliminates
as many filters as possible by examining specific bit positions.
However, instead of eliminating all but one filter, the first step
terminates when the set of remaining filters is less than some
pre-specified maximum. We call this set of filters afilter bucket.
This early termination avoids the explosion that is often the re-
sult of trying to completely differentiate between a few “simi-
lar” filters. In the second step, the filter bucket is processed to
find a match. Because of the limited size of a filter bucket, a
completely different procedure (e.g., (hardware-based) linear or
associative search) can be used. In essence, our algorithm is a
modular composition of two procedures: the first to decompose
large filter table into small filter buckets of a fixed maximum
size (from 8 to 128), and the second to process filter buckets of
limited size to find a match.

Our algorithm is also unique in the sense that it can take into
account the relative usage of the individual filters in a filter table
to build a more optimal search data structure. This is especially
important as usage of individual filters tends to be highly unbal-
anced.

Our algorithm is amenable to implementation in software,
hardware, or a combination of the two. We examine some of
the implementation issues in this paper.

In a nutshell, our contributions are: (1) We propose and study
a novel heuristic approach to packet classification that provides
good average case performance, uses reasonable storage, and can
adapt to the usage of individual filters. (2) We examine different
issues concerning the practical implementation of our approach.
(3) We identify characteristics of realistic filter tables for differ-
ent classes of router devices and develop a framework for mod-
eling them. (4) We provide benchmark results on the practical
performance of our proposed algorithms based on the filter table
models of different router devices.

The balance of the paper is organized as follows. In Section II,
we precisely define the packet classification problem. In Sec-
tion III, we present the details of our algorithms. In Section IV,
we examine implementation issues. In Section V, we present our
experimental results. In Section VI, we compare our approach
to related work. Finally, we conclude in Section VII.

II. T HE PACKET CLASSIFICATION PROBLEM

From an algorithmic perspective, the IP packet classification
problem is simply a concrete instance of the abstract classifi-
cation problem. In the following, we define the latter first and
specialize it to IP in the next subsection.

A. Abstract Classification Problem

A basic filterf is an ordered pair(b;m) of binary strings of
equal length. We callb thepattern, andm themask. m indicates
thesignificantbits in b for matching purpose. For example, the
basic filter (1001, 1010) means that the first and third (counting
from left to right) bits of “1001” are significant for matching pur-
pose. Equivalently, a basic filter can be represented as a ternary
string in the alphabetf0,1,*g. Specifically, all the insignificant
bits in b are replaced by “*,” the don’t care bit. The example
above can be denoted as “1*0*.”

Three special cases of basic filters can be defined. A basic
filter, or equivalently called amask-basedfilter, f = (b;m) is
called (1)exactif m consists of all “1”s; (2)wildcard if m con-
sists of all “0”s; and (3)prefix if m is made up of “1”s followed
by “0”s. Clearly, both exact and wildcard basic filters are special
cases of prefix basic filters; and any basic filter can be repre-
sented as a collection of prefix basic filters. For example, the



basic filter “*0**” is equivalent to the collection of prefix basic
filtersf“00**”, “10**” g.

A binary stringt matchesa basic filterf = (b;m) if t andb
are of equal length and are identical in all significant bit positions
as indicated bym. For example, “1100” matches the basic filter
“1*0*.”

A k-dimensional filterF is a k-tuple of basic filters.1 A k-
dimensional filter table of sizeN is an ordered sequence ofNk-dimensional filters. We typically denote such a tableFT by
the sequenceF1; F2; : : : ; FN . The size of a filter tableFT is
denoted byjFT j, i.e.,jF1; F2; : : : ; FN j = N .

Let t be ak-tuple (t1; : : : ; tk) of binary strings, andF a k-
dimensional filter denoted by(f1; : : : ; fk). We sayt matchesF
if for all 1 � j � k, tj matchesfj . In this case,F is called a
matchingfilter for t.

Given ak-dimensional filter tableFT of sizeN denoted byF1; : : : ; FN , a procedure forabstract classificationtakes an ar-
bitrary inputk-tuplet and returns the firstFi such thatt matchesFi or NIL if there is no match. We callFi the best matching
filter for t.

An equivalent formulation of the problem is to associate each
filter with a distinctcostor priority. In which case, the classifi-
cation procedure should return the matching filter with the least
cost or highest priority.

A simple extension to the classification problem is to asso-
ciate each filterFi with a weightWi. The weight represents the
relative match frequency of a particular filter, and is typically
derived from the distribution of the input tuplet or filter usage
statistics. More precisely, lett be drawn from some fixed input
distribution from which theWi’s are derived. Thenprob(Fi is the best matching filter fort)prob(Fj is the best matching filter fort) � WiWj

Knowledge of the weights may help in constructing more ef-
ficient classification procedures. We call this extended prob-
lem theweighted abstract classification problem. In the sequel,
to avoid repeated definitions, the classification problem without
weights is treated as the weighted classification problem where
all Wi’s are 1.

Filter Covering

Given a filter tableFT , not all filters can potentially be
matched. For example, consider the 1-dimensional filter table
1*, 00, 11, 01, 0*, both the filters “11” and “0*” will never
be returned as a match as any input matching them would have
matched earlier filters, “1*” for the former and “00” or “01” for
the latter.

We can formalize this with a notion calledcovering. A set of
filtersS = fFig is said tocovera filterF if for all input t, if t
matchesF , thent also matches some filterFi in S. Given a filter
tableFT , a subsequence of filtersFi1 ; : : : ; Fim is said tocoverF` if fFi1 ; : : : ; Fimg coversF` andim � `.

Using the covering relation, we can divide a filter tableFT
into two sub-tablesT andT 0 such that (1) filters inT andT 0
are subsequences ofFT ; (2) T andT 0 form a partition ofFT ,
i.e., all filters inFT are in exactly one ofT or T 0; (3) 8F 2T 0; 9Fi1 ; : : : ; Fim 2 T such thatFi1 ; : : : ; Fim coverF ; (4)T 0 is1In other words, a basic filter is equivalent to a 1-dimensional filter.

a maximal subsequence satisfying (1)–(3). We can easily show
that such a division produces a unique pairT andT 0. We call
the process of obtainingT andT 0 reduction, and denote(T; T 0)
as thereductof FT .

A filter tableFT is said to bereducedif its reduct is(FT; ;).
B. IP Packet Classification

The IP packet classification problem can be stated as a spe-
cific instance of the abstract classification problem applied to
the domain of classifying IP packets. The specific instantiation
is defined as follows:� The different dimensions of a filter correspond to the different
fields of interest that can be extracted from an IP packet or its
processing path.
Two forms are more popular: (1) 2-dimensional table with
source and destination IP addresses; and (2) 5-dimensional ta-
ble with source and destination IP addresses, protocol number,
source and destination TCP/UDP port numbers.� For IP packet filtering, a general form of filter called arange
filter, where each dimension is specified as a range (s; f ) (s � f
are integers), is sometimes used. For example, one can specify
a range of port numbers to match using the range filter (6031,
8011).
A range filter is more general than a prefix filter. It is, how-
ever, not directly comparable to a mask-based filter. Specifically,
some range filter (e.g., (9, 11)) can not be expressed as a single
equivalent mask-based filters, and some mask-based filters (e.g.,
“*01*”) can not be expressed as a single equivalent range filter.
In general, any range basic filter can be represented by a collec-
tion (from 1 tof � s+ 1) of mask-based filters.
Our proposed algorithm can potentially handle both mask-based
and range filters because of its modular nature. Specifically, the
tree search phase operates on mask-based filters, while the filter
bucket search phase can process any type of filters.� The weighted IP packet classification is similarly derived from
the corresponding weighted abstract classification problem. In
this case, the weights are derived from the usage counters asso-
ciated with each filter; and for performance evaluation purpose,
the incoming packets are assumed to be distributed in a way con-
sistent with the weights.
The ability to adapt search to incoming traffic is especially im-
portant for IP packet classification as filter usage tends to be
highly unbalanced. This distinguishes our approach from most
existing approaches that can not easily take into account the rel-
ative usage of individual filters.

C. Solution Requirements

In comparing solution approaches, we first fix the complexity
of filters and the number of filter rules. In this paper, we focus
mostly on2 and5-dimensional prefix-based filters and filter table
size of up to 1 million entries. Different solution approaches can
then be differentiated along the following criteria.

Speed of Classification. There are at least 3 measures for
the speed of classification: (1) worst case: the worst case search
time possible for a packet; (2) average case: the average case
search time possible for completely random collection of pack-
ets; and (3) statistical: the average case search time for packets
drawn from some a priori specified packet or filter usage distri-
bution. In this paper, we measure statistical search speed by first



assigning weights to filters,2, then we generate random packet
traffic consistent with the weight distribution, and measure the
average search speed.

Amount of Storage. The amount of memory space occupied
by the search data structure is an important consideration. There
is a clear tradeoff between search time and search space.

Large memory space not only means extra cost for memory,
but it may also force the use of slower memory (e.g., DRAM) in
place of faster memory (e.g., SRAM).

Ease of Update. There are 3 possible updates: (1) full
update: this refers to the initial construction of the search data
structure from the filter table, or any re-construction thereafter
from scratch. (2) incremental update: this refers to the incremen-
tal addition or deletion of filters from a search data structure. (3)
reorganization/rebalancing: as filters are added and/or deleted
over time, the search data structure may lose its efficiency. Cer-
tain packet classification approaches may include a procedure to
reorganize the search data structure so as to regain its operating
efficiency.

Since we do not describe the incremental update procedures
in this paper due to space limitation, we do not consider this
further.

III. A LGORITHMS

Our approach consists of 4 algorithms: initial construction, (or
equivalently, full update), incremental insert, incremental delete,
and search. The first 3 are for construction and maintenance
of the search data structure, and the last one for performing the
actual classification. Due to space limitation, we will not discuss
incremental update procedures in this paper.

To motivate our approach, we first make a few key observa-
tions:
1. For efficient search, a search path should seek to eliminate as
many filters as possible from further consideration in the small-
est number of steps. This, however, requires global optimiza-
tion and can be extremely computationally intensive, due to the
amount of look ahead. As an alternative, carefully designed local
optimization techniques can be used to obtain reasonable search
paths.
2. Prolonged search time and/or storage explosion are often the
result of trying to separate “similar” filters. For example, sepa-
rating the filters “0110” and “****” requires examining all 4 bits.
Therefore, to avoid explosion, “similar” filters may be separated
using a different technique.
3. The suitability of a search algorithm is highly dependent on
the total number of filters. For large number of filters (e.g., 8K–
1M), a decompositional technique with a multiplicative decrease
factor can potentially yield an exponentially smaller set of filters
in a linear number of steps. For small number of filters (e.g.,� 128), simplistic search procedures (e.g., a (pipelined) linear
search) can perform as well as more sophisticated schemes. This
suggests that as search progresses, i.e., as the number of remain-
ing filters decreases, a change of the search approach may be
desirable.
4. Filter usage statistics can provide useful hint on construct-
ing efficient search data structures. Most filter implementations2In real life, this comes from the filter usage statistics, or counters associated
with each filter.
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Fig. 1. Search Data Structure

do keep a usage counter for each filter for statistics collection
purpose. An approach that can make use of such statistics is de-
sirable. We call such approachesadaptive, as they can adapt to
input traffic characteristics.
5. There is a clear search speed vs storage tradeoff in most
packet classification approaches. A good approach should allow
flexible and tunable control between search speed and storage.
Specifically, a user should have an explicit means to decrease the
storage requirement if she is willing to accept a higher average
search time, or vice versa.

Our approach addresses each of the above observations. At a
very high-level, our approach organize the search space into 3
layers (Figure 1):� Index jump table — The filters are statically divided into dif-
ferent groups using some initial prefixes of selected dimensions.� Search tree — The filters in each group are then organized in a2m-ary search tree. The search tree is constructed by examiningm bits of the filters at a time, and dividing them into2m groups.
The particularm bits chosen for examination in each step can be
drawn from anym arbitrary unexamined bit positions from any
of the dimensions, and the choice is made to minimize dupli-
cation and maximize “balancedness” of the2m children. Many
different criteria can be defined for the division. Ours takes into
account the filter usage statistics, thus allowing it to adapt to the
distribution of input traffic.
The division process terminates when the number of filters in a
node is less than some pre-defined maximum.� Filter bucket — The set of filters left at the leaf nodes when the
division process terminates is called afilter bucket. Essentially,
a filter bucket contains a set of filters that we do not wish to
further distinguish using the tree. Typically, a different algorithm
is applied to search the filter bucket for a match. In other words,
the filter bucket demarcates the point where the search approach
switches from one to another.
A filter bucket contains at most a pre-defined maximum number
(typically small from 8 to 128) of filters.

Given the search data structure, the search procedure is
straightforward. A packet is first directed to a specific subtree
by indexing via the jump table using the initial prefixes of certain
selected dimensions. Then, it goes through a “sifting” process to
place it further and further down the tree by inspectingm of its
bits each step, until it lands in a filter bucket. A bucket search
procedure is then invoked to match the incoming packet against
the filters in the bucket.

The tree phase is optimized to allow the search to quickly nar-
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row down to a single filter bucket among a large set of filters (up
to 1 million filters in our experiments). The bucket phase is op-
timized to quickly search through a small set of filter (up to 128
filters in our experiments) in a filter bucket to find a match.

Strictly speaking, our approach represents a class of algo-
rithms, rather than a specific algorithm. Specifically, by varying
the criteria for selecting them bits,m itself, and the amount of
lookahead in determining the bestm bits to use, one can obtain
different instantiations of the algorithm. In this paper, we study
the case for a specific bit selection criteria (to be described in
Section III-B),m = 1, and a single step lookahead. The ex-
tension to the general case is straightforward, as the key ideas
remain the same.

In the following, for ease of explanation, the procedures
shown are not optimized. An actual implementation tries to
reuse as much computation as possible at each step (see Sec-
tion IV).

Notations. Before we present the algorithms, some defi-
nitions are in order. LetB be a 2-dimensional (n rows bym
columns) array of ternary digits 0, 1, and *. That is eachB[i; j]
is either 0, 1, or *. We denote thei-th row byB[i; �], and thej-th
column byB[�; j]. In addition, we denote byB�x::y the result-
ingn bym� (y�x+1) array obtained by removing columnsx
throughy fromB. We abbreviateB�x::x byB�x. Lastly, each
row i of B has an associated weight denoted byWi.

For each columnj (1 � j � m), we define 3 quantitiesN0j(B), N1j(B) andN*j(B) as follows:Nxj(B) = X1�i�n;B[i;j]=xWi
wherex could be 0, 1, or *. In words,Nxj(B) is the total
weights of all the rows whosej-th column isx. Furthermore,
we define Dj(B) = jN0j(B)�N1j(B)j
which gives the difference between the total weights of all the
rows whosej-th column is0 and those whosej-th column is1.

Let FT = F1; : : : ; FN be ak-dimensional IP packet filter
table. By concatenating all the dimensions together, it can be
viewed as a 2-dimensional array of ternary digits. In particular,
eachFi is a fixed-length ternary digit string. Using the above
definitions, we associate for each columnj of this array an or-
dered pair(N*j(FT ); Dj(FT ). This is summarized in Figure 2.

We also denote byDmin(FT ) andDmax(FT ) respectively
the smallest and the largest values ofDj(FT ) among all
columns ofFT . N*min(FT ) andN*max(FT ) are defined in
a similar fashion.

*Table function BuildTable (FilterTableFT, int h1, . . . , int hk )f
maxEntries=

Qhj 6=0 2hj ;T = newFilterTable (maxEntries);
foreachFilterFi 2 FT f

for j from 1 to FT.dimensionf
let pj be the prefix in thej-th dimension ofFi ;dj = (hj > numberOfBits (pj )) ?hj - numberOfBits (pj ) : 0;

(1.1) sj = first (hj � dj ) bits ofpj � dj bits of “0”;
(1.2) fj = first (hj � dj ) bits ofpj � dj bits of “1”;g

foreachx1 2 s1::f1; x2 2 s2::f2; : : : ; xk 2 sk ::fk
(1.3) addF�1::hji toT [x1 � x2 � : : :� xk]:filters;g

return T ;g
*Node function BuildTree (FilterTableFT)f

n = newNode ();
(2.1) let (T; T 0) be the reduct ofFT ;

n.reduce= (T; T 0);FT = T ;
if (jFT j � BUCKETDEPTH ) f

(2.2) n.filters= FT;
return n;g

for j from 1 to FT.dimension
(2.3) preference[j] = ComputePreference (FT[�; j]);
(2.4) b = leastj such that for allx: preference[j] � preference[x];
(2.5) FT0 = sub-sequence of all filters inFT whoseb-th bit is “0” or “*”;
(2.6) FT1 = sub-sequence of all filters inFT whoseb-th bit is “1” or “*”;

n.bit = b;
n.filters= NULL ;

(2.7) n.left= BuildTree (FT�b0 ); (n.left).parent= n;
(2.8) n.right = BuildTree (FT�b1 ); (n.right).parent= n;

return n;g
*Table function BuildSearchStructure (FilterTableFT, int h1 , . . . , int hk)f
(1) T = BuildTable (FT, h1 , . . . ,hk);

for x from 1 to jT j f
(2) T[x].tree = BuildTree (T[x].filters);

(T[x].tree).parent= T[x].tree;g
return T ;g

Fig. 3. Initial Construction

A. Filter Bucket

The basic building block in our approach is a filter bucket. A
filter bucket has the following properties: (1) It contains a small
pre-defined maximum number of filters; typical bucket sizes are
8, 16, 32, 64, and 128. (2) The filters in a bucket are “similar”
in some way. Specifically, there is a set of bit positions such that
all filters in the bucket are “similar.”3 (3) A filter may appear
in multiple filter buckets. For example, a range filter typically
appears in multiple filter buckets.

Because of the small number of filters, many techniques can
be used to efficiently search a filter bucket. We describe a few
here:� Linear Search — Though linear search may appear slow in
software, it is a decent choice for hardware implementation. By
searching each of the filters in a pipelined fashion, the through-
put of aM -filter linear search equals that of a1-filter search.
The matching of each dimension in a filter can proceed in paral-
lel by using multiple comparators. In other words, anM -stage
pipeline implementation (with appropriate structuring of the fil-
ters into disjoint memory banks) can search a filter bucket of
depthM in the time of a single comparison.3“*” is considered to be similar to both “0” and “1,” while “0” and “1” are not
“similar.”



� Binary Search — We can represent each dimension of a fil-
ter by an interval. A packet can be matched by first applying a
binary search on all the end points in each dimension, and then
combining the results from all dimensions [8].� Hardware CAM — By using a content address memory
(CAM) to store each dimension (prepended with the bucket ID)
of a filter in a filter bucket, each dimension can be searched in
parallel and then combined in a parallel step to obtain a match.
Hardware CAM is most useful for applications where filter up-
dates are an order of magnitude less frequent than packet for-
warding rates, to avoid frequent reloading of CAM entries.

For the rest of this paper (and in particular the experimental
results), we assume the use of linear search as the search proce-
dure for filter buckets.

B. Initial Construction

For initial construction, we assume we are given ak-
dimensional IP packet filter tableFT , and for each dimension,1 � j � k, the number of bitshj to be used in the index jump
table construction.

The construction consists of two key steps: steps (1) and
(2) of BuildSearchStructure() in Figure 3. In step (1)
(BuildTable()), the set of filters is broadly divided into a
collection of smaller filter sets by examining the firsthj bits of
dimensionj (steps (1.1)–(1.2)). A filter is duplicated into mul-
tiple such filter sets if the prefix length of at least one of its di-
mensionj is less thanhj (step (1.3),� denotes the binary string
concatenation operator).

Typically, thehj ’s are chosen such that it is at most the min-
imal prefix length of thej-th dimension among all filters. The
motivation is that the set of filters sharing the same prefixes in
multiple dimensions is hopefully smaller. Both indexing or hash-
ing can be used to map prefixes into search trees.

In step (2) (BuildTree()), individual subtrees are con-
structed for each smaller filter sets created byBuildTable().
Each filter set is divided recursively (steps (2.7)–(2.8)) until it
can fit into a filter bucket (step (2.2)). Each tree node in a subtree
logically corresponds to a set of filters that is still under consid-
eration. Each child of a tree node contains a subset of the filters
in the parent’s node, and each leaf node contains a filter bucket.

The basic idea of the division is as follows: Given a particular
bit positionb,4 a set of filters can be divided into 2 groups: the
“0”-group containing all the filters whoseb-th bit is “0” or “*,”
(step (2.5)) and the “1”-group containing all the filters whoseb-
th bit is “1” or “*.” (step 2.6)). The rationale is that if theb-th bit
of an input packet is “0,” then it can only match the filters in the
“0”-group and thus only those need to be considered further, and
vice versa for the “1”-group. Thus, the key is to choose “good”
bit positions so that only a small number of division is needed to
reach a leaf node. We describe our bit selection scheme in the
next subsection.

The reduction in step (2.1) can be critical. By “collapsing” fil-
ters in intermediate nodes, the number of nodes generated can be
significantly reduced. To reduce the complexity of reduction, an
incomplete but less expensive form that removes only duplicates
can be used. The use of incomplete reduction can increase the
size of the resulting tree.4We focus only on single bit branching in this paper; our bit selection criteria

int function SearchTree (Packet p, *NodeT )f
if (T = NULL ) return NIL ;
if (T.filters) /* leaf node */

(1.1) return BucketSearch (p, T.filters);
else/* internal node */

if (p[T.bit] = 0) /* go left */
(1.2) return SearchTree (p, T.left);

else/* go right */
(1.3) return SearchTree (p, T.right);g
int function Search (Packet p, *TableT )f

let xj be the firsthj bits in thej-th dimension ofp;
(1) return SearchTree (p; T [x1 � : : :� xk]);g

Fig. 4. Search Procedure

C. Bit Selection

The bit selected at each node determines the overall “shape” of
the tree. Thus, given some global measure of the “goodness” of
a search tree, the bit selected at each node should ideally “grow”
the tree toward some final optimal shape. In abstract terms, we
assign a preference value for each unprocessed bit position (step
(2.3)), and we pick the bit with the highest preference position
(step (2.4)).

For a search tree, a typical “goodness” measure is the
weighted average search path length which is defined in our case
as wa(T ) = Pi(depth of filter bucketi �PFj2filter bucketiWj)

total number of filter buckets

This measure, though concrete and optimal, is computationally
expensive to calculate, as it involves comparing fully constructed
trees.

As a compromise, we try to optimize local measures in a hope
that they cumulatively produce a reasonably “good” global solu-
tion. The “localness” of a measure is defined by the amount of
lookaheads it uses. In this paper, we present results only for the
case where a single bit is chosen at each node and our preference
value is based only on 1 level of lookahead.

The preference metric we study in this paper uses a combi-
nation of 2 values:N*j andDj . The former provides a mea-
sure ofprogress. Specifically, branching based on bitj will not
eliminate more filters from consideration for the amount of traf-
fic proportional toN*j . Thus to maximize progress, the value
N*j should be minimized. The latter provides a measure ofbal-
ancedness. Specifically, a smaller value ofDj means more even
branching of traffic into the next level.

In the experiments we report in this paper, we assign the pref-
erence value of columnj for a filter tableFT as

preference[j] = Dj(FT )�Dmin(FT )Dmax(FT )�Dmin(FT ) + N*j(FT )� N*min(FT )
N*max(FT )� N*min(FT )

Our construction approach is a “greedy” one in that it tries
to optimize only locally. The final tree it constructs can be
“skewed” by the distribution of the bits in the filter set, and may
be far from optimal. However, as we will present in Section V,
the results for even very large number of realistic filters (up to 1
million) are good. In addition, unlike most existing proposals, it
can adapt to the actual usage of the filters.

extends in a straightforward manner to the multibit case.
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D. Search

The search procedure is straightforward. Its code as shown
in Figure 4 is self-explanatory. First, it concatenates the leadinghj bits from each dimensionj of the incoming packet to con-
struct an index into the jump table to retrieve the root of a search
tree. Then, it traverses the search tree by branching according
to the value of the bit position stored in the current node, until it
reaches a leaf node. Finally, the filter bucket is searched to locate
a possible match.

Each phase of search, namely, index jump, bit branching, and
bucket search, are simple and are amenable to highly efficient
implementation in software or hardware.

IV. I MPLEMENTATION CONSIDERATIONS

In a typical implementation, initial construction and update
are software procedures that run on a standard CPU. They build
and maintain the search data structure in memory, which is in
turn accessed by the search procedure.5 The search itself can
be implemented either as customized hardware (e.g., FPGAs or
ASICs) or as part of the data path software, depending on the
particular design approach.

Mutual exclusion is critical during update of the search data
structure. This can be achieved by double buffering and some
form of atomic switch.

A. Initial Construction

If weights are not available, the initial construction should be
run with all weights set to unity. Then every so often, the con-
struction can be re-run using actual usage statistics. The re-run
can also be triggered by some measure of “balancedness,” the
number of updates, etc.

The two time consuming steps in the initial construction are
the reduction and the preference computation. The former can be
performed inO(N logN) time whereN is the number of filters
to be reduced. The computation can be reused from the parent
to the children.

Preference computation can be sped up by bounding the num-
ber of columns to be examined. This is straightforward for non-
weighted case, asN*j() is an increasing function of the column
numberj within a single dimension.

Fortunately, even though the number of nodes expands at each
layer, the tree construction gets more efficient, as both the num-
ber of filters and the number of columns decrease at each layer.
The former could decrease geometrically while the latter lin-
early.5After appropriate downloading of the structure into the memory of the search
engine.

B. Search

There are 3 keys to optimizing search performance: (1) reduce
the complexity of the basic search step; (2) reduce the number
of memory accesses; and (3) consider pipeline implementation.
We describe each below.

Basic Search Step. Our approach has 3 kinds of basic search
steps, namely, indexing to select the correct subtree to search,
tree traversal based on a particular bit position, and the match-
ing of a packet to a single filter. The first two are extremely
primitive and map directly to hardware instructions even with a
software implementation. The third requires a number of com-
parison proportional to the number of dimensions. In hardware
though, parallel comparators can be used to perform the match
in a single step.

Memory Organization. Careful memory organization is
critical to improving search performance. To reduce data access
time: (1) Data that are needed in the immediate future should be
stored close together (e.g., in the same memory page) so that they
are available without further fetching. For example, a child node
should be stored close to its parent, as that it is available as soon
as the branching decision is made. We have developed a novel
scheme for compressing and storing tree nodes such that the
nodes lying on a frequently visited tree path are stored closely
together in a memory page. We describe our scheme below un-
der Tree Compression in Section IV-C. (2) Multiple separate
memory banks should be used for pipelining (see below).

Pipelining. By dividing the search steps into different
stages, and pipelining through the stages, throughput (or the
number of classifications per second) can be significantly im-
proved.6

An example hardware pipelined implementation of our ap-
proach is shown in Figure 5. There are 4 stages in the pipeline:
(1) input/index jump, which retrieves a packet header from the
input FIFO, and look up the starting address of the appropriate
search tree from the index jump table; (2) tree traversal, which
reads in tree nodes by pages and makes branching decision; (3)
bucket search, which has its own internal pipeline. Each stage
of thisM -stage internal pipeline handlesBUCKETDEPTH /M
filters. For each stage to operate in parallel, each has its own
memory bank for storing the selected section of the filters; (4)
output stage, which retrieves the action data corresponding to
the match.

Using a novel way to partition the search tree into disjoint sec-
tions, it is possible to further pipeline the tree traversal stage. We
omit the details here due to space limitation. The tree traversal
stage can have variable completion time, internal FIFOs are used
to absorb the variation.

C. Storage

The bucket size provides an effective control for the amount of
storage used. A bucket size of 1 means the search tree must dis-
tinguish every single filters from one another, thus a large tree is
needed. A bucket size equal to the size of the filter table requires
the minimal storage, and is equivalent to a linear search.6Though latency may increase slightly because of the transitions between
stages.
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Our algorithm does not provide a non-trivial worst-case stor-
age bound as it depends on the distribution of the “0”, “1”, and
“*” in the given filter table. It is possible to construct a highly
skewed, but unrealistic, filter table that will require a large num-
ber of nodes.

Tree Compression. The search tree can be stored in a highly
compressed form with a pointerless representation [9]. The com-
pression follows 2 steps: (1) The tree is first segmented into sub-
trees of a maximum size (number of nodes), sayX , whereX is
chosen based on the size of a memory page. We use a Huffman-
encoding [1] like procedure for the segmentation. Specifically,
we label each node with a weight: a leaf node’s weight is the
sum of the weights of all filters in its bucket, an internal node’s
weight is the sum of weights of its children. Then we start from
the root collecting nodes into a page by selecting the node with
the largest weight from all the nodes adjacent to some nodes al-
ready in the page.7 This process continues until the page is full.
Then a new page collection is started with one of the adjacent
nodes. Figure 6 shows an example. (2) Each internal tree node
can be encoded using a 3-bit type together withlogW bits (W is
total number of bits in all dimensions) of node information (i.e.,
the bit position to be examined). For source and destination IP
address filters, each internal node can be stored in 9 bits. Each
leaf node need a 1-bit type together with a bucket ID. As we will
see in Section V, a 24-bit bucket ID is far more than enough.

An example encoding of page 1 is shown in Figure 6. We note
that for a page withX nodes, there are at the mostX+1 external
pointers.

Using our tree compression, a search tree with even up to 1
million nodes take up at most a few Mbytes of memory, which
is well within acceptable limits in a modern high-end router.

Filter Bucket Compression. Filters common to many filter
buckets need not be stored multiple times. For example, a filter
cache for theM most frequently occurring filters can be kept
in on-chip memory. The cached filters can be represented by a
cache index in the filter buckets they appear.

Wildcard Separation. Wildcard filters are the main contrib-
utors toward storage explosion. If a dimension contains a large
majority of wildcard filters, it may be better off to separate them
out in another table and construct two different search trees that
must both be searched to find a match.

As a concrete example, consider a filter table with source and
destination IP addresses as the 2 dimensions. Instead of con-7This is in a way similar to Dijkstra’s algorithm for computing the shortest
path.

structing a single search structure for all the filters, one can par-
tition the table up into 4 subtables: Table 1: all filters in which
both the source and destination addresses are not wildcards; Ta-
ble 2: all filters in which the source address is a wildcard; Table
3: all filters in which the destination address is a wildcard; Table
4: all filters in which both the source and destination addresses
are wildcards, which contains at most 1 filter. Corresponding to
these 4 subtables, 4 search trees can be built and searched to find
a match.

V. EXPERIMENTAL RESULTS

Evaluating a heuristic algorithm is tricky, as there are always
pathological cases that do not perform well. Evaluating a heuris-
tic approach for packet classification is even worse, as there does
not yet exist real filter table with large number of filter rules.8

Thus, in this paper, we resort to evaluating our algorithms by
modeling what a large filter table would look like. Our model
is based on practical observations on existing filter table, and
projecting on future applications for packet classification. Inter-
estingly, the modeling of packet filter table can be considered a
research topic in its own right, as there are many potential ap-
plications for packet classification with diverse requirements. A
commonly agreed model can serve as a benchmark for the many
packet classification algorithms that have been proposed. Be-
cause applications of packet classification are not yet fully de-
veloped, our model should best be understood as a first attempt
in capturing the potential complexity of a filter table.

In a nutshell, in our modeling approach, network elements
are classified into distinct types, some examples are workstation
hosts, server hosts, subnet border routers, enterprise core routers,
enterprise edge routers, ISP edge routers, ISP core routers, and
ISP peering routers. For each class, the applications and char-
acteristics (e.g., distribution of values in each dimension, filter
specificity, etc.) of their filter tables are identified. A summary
of their key characteristics is presented in Figure 7. These char-
acteristics in turn are “codified” in filter specification files of our
design. Specific filter table instances can then be obtained by
running a filter generation tool that we have built on the filter
specification file.

Our particular modeling approach will certainly be scruti-
nized. It does, however, serve a purpose in establishing the fea-
sibility and baseline performance of our proposed algorithm.

The results we report below are for the case of an ISP edge
router, which, in our opinion, would need to support the largest
number of packet filters. Briefly, our ISP edge router filter spec-
ification consists of 4 sections: (1) VPN filters that has fully
specified source and destination addresses, and port numbers;
(2) ingress filters that apply to sources in a single subnet; (3)
ingress filters that apply to sources in multiple subnets; and (4)
ingress filters that apply to souces in an entire domain.

Our results are obtained by randomly generating a large num-
ber of filter table instances of varying sizes using our ISP edge
router filter specification. For each experiment, we collect the
statistics (e.g., number of filter buckets (leaves), tree depth) of
the tree structure by explicitly constructing it, and the search
performance by running a large number of randomly generated
(obeying the weights) packets through it.8Most existing ones consist of at most hundreds of rules, and they mostly have
a bias toward firewall applications.



Type # of Filters Use Address Characteristics

Workstation Host 8K QoS (by destination IP, applica-
tion)

fixed source IP to any, most traffic goes to a small number of
fixed destination hosts, the rest is uniformly distributed over a
large number of random destinations, about even ingress/egress
traffic

Server Host 8K-64K QoS (by source IP) from any to fixed destination IP, highly unbalanced ingress/egress
traffic ratio, about equal traffic goes to a large number of destina-
tion hosts with a fixed domain prefix (Intranet server) or random
(Internet server)

Subnet Border Router 8K-128K QoS (by L2 label, subnet), secu-
rity (by subnet)

from fixed subnet prefix to any, or from fixed subnet prefix to
fixed subnet prefix

Enterprise Core Router 8K-64K QoS (by physical port, L2 label,
application, TOS)

from fixed subnet prefix to fixed subnet prefix (Intranet), or from
fixed subnet prefix to any (Internet)

Enterprise Edge Router 64K-256K QoS (by destination IP, appli-
cation), security (by source IP),
tunneling (by source and desti-
nation IP)

from fixed domain prefix to fixed destination prefix (VPN), or
from fixed domain prefix to any (Internet), segmented by subnet

ISP Edge Router 512K-1M QoS (by source IP, application,
TOS), consistency (by source
IP), tunneling (by source and
destination IP)

from large set of domain prefixes to another large set of domain
prefixes (VPN), or from large set of domain prefixes to any (In-
ternet), segmented by customers’ logical interfaces

ISP Core Router 8K-128K QoS (by application, TOS,
MPLS label)

transit traffic vs traffic that originates and terminates in the ISP

ISP Peering Router 8K-128K peering agreement enforcement
(by physical port, source IP),
consistency (by physical port,
source IP)

transit traffic vs traffic that originates and terminates in the ISP

Fig. 7. Filter Characteristics by Location

We have focused most of our experiments on 2 cases: (1) 5
dimensions including source and destination IP addresses, pro-
tocol number, and source and destination port numbers; and (2)
2 dimensions with only source and destination IP addresses. The
trends in both cases are similar. For brevity, we present only the
results for the 5 dimension case.

All results are obtained from pure application-level software
implementations of the algorithms in C on a standard desktop
Pentium II 400MHz with 512K L2 cache. The implementation
is not optimized (e.g., we use 1 byte to represent each filter bit),
especially in regard to the use of linear search for filter buckets.

The results are summarized in Figures 8–10. Figure 8 shows
the general trend as filter table size increases. Figure 9 shows the
effect of filter bucket size on the storage and search performance.
Figure 10 shows the benefits of the first level index jump table.
The notation AxB refers to the use of A and B bits respectively
from the first 2 dimensions (source and destination IP addresses)
to form the jump table. We elaborate on the results below.

We do caution that our results here represent average case per-
formance using our filter table models. It is possible for one to
construct artificial examples whose results deviate significantly
from our average case. Though, as our results show, the filter
bucket size and the index jump table can serve as effective tun-
able controls to temper potential “bad” filter tables.

A. Tree Statistics

From Figure 8(a), we see that the number of filter buckets
grows linearly with the filter table size, while the depth grows
about logarithmically with the filter table size. Even for 1 million
filters, less than 200,000 filter buckets are used.

As expected, the weighted case has a larger tree (number of
filter buckets and depth) than the non-weighted case in general.
The percentage increase is not significant though, and is below
10% in all cases.

From Figure 9(a), we see that the filter bucket size provides
an effective control for storage requirements. A doubling of the
filter bucket size about halves the number of filter buckets.

From Figure 10(a), we see that the use of jump table decreases

tree depth proportionally, though it does increase the total num-
ber of filter buckets. This apparent contradiction is explained by
the fact that certain filters (e.g., a wildcard filters) are duplicated
into multiple subtrees. For example, a wildcard filter is dupli-
cated into2(6+6) = 4096 search subtrees with a 6x6 jump table.

B. Search Performance

From Figure 8(b), we see that the search performance de-
creases sublinearly with increase in filter table size. The perfor-
mance range is from about 261,000 classifications for filter table
size of 8K to 113,000 classifications for filter table size of 1M.
Since these results are from an application-layer program, we
expect many-fold increase in performance in an embedded soft-
ware implementation running on a dedicated CPU, and even bet-
ter performance with a customized hardware implementation.9

We note that the specific search time we obtained is highly
skewed by the time spent in the linear search phase. Specifically,
the tree traversal time is directly determined by the tree size, it
decreases proportionally as the tree reduces in size.

We also observe that the weighted case performs significantly
better than the non-weighted case. In fact, the performance of
the weighted case ranges from 2 to 4 times better than their non-
weighted counterpart, and is relatively insensitive to the filter
table size. This provides evidence to the importance of collect-
ing filter usage statistics and the potential benefits for a packet
classification algorithm to exploit them.

From Figure 9(b), as expected with a linear search of filter
buckets, we see that as the filter bucket sizes increases, the search
rate decreases. The decrease is, fortunately, sub-linear. A double
of filter bucket size does not come close to halving the search
rate.

From Figure 10(b), we see the benefits of using a jump table.
The search rate is higher with the use of jump table. In particular,
the use of an 6x6 jump table can provide a speedup of more than
15% over the case where no jump table is used.9A hardware pipeline implementation using parallel comparators can remove
the key bottlenecks: bit examination and the linear filter bucket search.
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Fig. 10. Trends under various Filter Table Sizes with Jump Table (filter bucket size = 16)

VI. RELATED WORK

Existing approaches to packet classification can be grouped
into 2 broad categories: geometry-based and non-geometry-
based. The former refers to algorithms that interpret filters as

geometric shapes, and map the packet classification problem to
some form of geometric point-location problem. The latter refers
to any other approach based on regular data structures such as
trees and graphs. [8] and [2] belongs to the former, while [7],



[4], [6], [5] and ours belong to the latter.
[8] presents 2 algorithms. The first algorithm admits a hard-

ware implementation but does not readily scale to a large number
of filters. The second algorithm applies only to 2 dimensions,
and it does not appear to easily generalize to higher dimensions.

[2] is based on space decomposition, it has worst-case search
time similar to the best existing schemes, but improves on the
worst-case update time.

[7] also presents 2 algorithms, namely,Grid of Tries and
Crossproducting. The construction of the former appears to be
complicated, and updates can not be easily performed. A cas-
cade update ofswitching pointersmay be triggered by a single
update. Crossproducting, as the authors admit, can suffer from
memory blowup. They introduce an on-demand scheme, but did
not provide extensive results. It would be interesting to compare
the average performance of crossproducting with our approach.

[4] uses an approach based on adirected acyclic graph(DAG).
The approach is simple, but it requiresO(N2) storage. Though
both our scheme and the DAG scheme use bit positions to con-
struct a search tree, the details are significantly different. The
two key components of our algorithm, heuristic bit selection and
the concept of a filter bucket, are unique to ours. Since no for-
mal description was given for the DAG algorithm10, it is not clear
how the algorithm scales to large number of filters. Again, the
average case comparison with ours should be interesting.

Both [6] and [5] represent new interesting approaches to
packet classification. Recognizing the inherent difficulty of the
problem, both try to exploit structure within a filter table to im-
prove search performance. Specifically, [6] makes use of the
observation that there is typically only a small number of prefix
lengths in a filter table, while [5] exploits the observation that
“overlaps” of filter rules occur much rarer than suggested by the
worst case. Similar to ours, [5] is heuristic-based, while [6] pro-
poses the use of a heuristic to improve its searches.

Overall, most existing studies focus more on the worst-case
bounds. Our emphasis is on practical approach with good av-
erage case performance and tunable controls to deal with “bad”
cases.

VII. CONCLUSION

We proposed and studied a new approach to packet classifica-
tion. Our approach combines two search procedures: a heuristic
tree search for separating a large set of filters into fixed size fil-
ter buckets, and another search procedure for searching through
fixed size filter buckets (we use linear search in our study). This
modular construction is motivated by the practical observation
that a single search approach may not be optimal for filter table
of all sizes.

Through experiments with a large number of filter tables,
we demonstrated that our approach yielded good search speed
(around 200K classifications per second for 128K filter table
using a pure software implementation) and reasonable storage.
Though we caution that the experimental results do not consti-
tute a complete validation of our approach, we do believe they
demonstrated its general feasibility. As in all heuristic approach
though, cases can be constructed where our approach do not
work well. In those case, the filter bucket depth can be used10It was introduced in the paper using an example.

as an effective tunable control to reduce memory usage at the
expense of increased search time. We do not claim optimality
nor universal applicability of our approach, but the key ideas in
our approach represent novel tools for tackling the problem of
packet classification. We would have liked to try our algorithms
on real filter tables, this have proven to be very difficult. For pri-
vacy reasons, real filter tables are not easy to obtain. For the few
ones that we do have, they are too small (hundreds of rules) to
create any stress on our algorithm.

Our approach is also the only one we know of that can adapt
to the input traffic distribution (i.e., relative filter usage). As
the results demonstrate, taking into account the relative usage of
each filter can dramatically improve search performance, by as
much as 400% in some of our results.

Unlike most existing studies, our emphasis is on the average
case performance and practical results. To this end, we have
identified the different characteristics of filter tables for differ-
ent classes of router devices, and proposed and implemented a
framework to model filter tables. We feel that this is an im-
portant research area in its own right. Our effort should be con-
sidered a first step in this (right) direction, it is necessarily con-
troversial as different people tend to have different projections
on how large-scale packet classification will be applied. Better
models can be defined as more real-life applications of packet
classification are proposed.

For ongoing work, we are exploring variations of our basic
approach. Specifically, we are looking at different bit selection
criteria and multibit tree construction.
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