
An attack on the MySQL authentication protocol

Ivan F.F. Arce Agust́ın Azubel Emiliano Kargieman
Gerardo Richarte Carlos Sarraute Ariel Waissbein

CORE SECURITY TECHNOLOGIES
January 24, 2002

Abstract

The MySQL challenge and response authentication protocol is proven
insecure. Sensitive information is shown to be leaked during each ex-
ecution of this protocol. We present an algorithm exploiting this vul-
nerability that enables a passive attacker to impersonate a valid user
after witnessing a small number of protocol executions. The paper con-
cludes with statistical information and some effciency and effectiveness
estimates.

1 Introduction

Computer-based user authentication has become a tool widely used in our
networked society. Usually computer-based authentication is done by way
of cryptographic protocols. Remote connections, such as SSH and SSL, are
initiated with a user authentication. This also holds true for remote access
databases such as the MySQL Database Engine.

Computer-based user authentication amounts to one of several different
processes by which an entity, the user, is able to ensure his identity by way
of a protocol specified a proiori to another entity, often a server. Different
standards exist for user authentication such as (weak) password authenti-
cation and (strong) zero–knowledge/challenge–and–response protocols (e.g.,
[3], [6], [7], [5] and [13]).

MySQL Database Engine package ([2]) is a popular open source engine
enabling remote access to databases through secured channels. This package
is widely used in many applications such as world-wide web portals and
intranet services and has become a standard in its category.

The MySQL package scenario is constituted of a server, which central-
izes all the information in a database to which validated users, called clients,
have access by logging into the server through a cryptographic authentica-
tion procedure. When a client is authenticated themself to the server it is

1

allowed to querry the datatabase for information. This information then
travels through information channels, encrypted (by a standard encryption
algorithm) with a key negotiated between the client and server, and can
thus be read by the authenticated client alone. Different parameters as
to how this is done are selected by server administrators and shall not be
treated in this paper. However all these possible configurations have the
same authentication procedure in common.

This authentication procedure was completely designed by the MySQL
Development Team to serve a twofold purpose: to prevent both the flow
of plaintext passwords over the network and the storage of them in plain-
text format on the server’s and user’s respective terminals. A challenge and
response type authentication method was chosen. Regrettably, the authen-
tication mechanism designed is not cryptographically secure. Regarding the
latter requirement, we shall see that the only value needed to authenticate
a client, which is not the password but it’s hash value, is stored both in
the client’s and the server’s memory. But moreover, regarding the former
requirement, in the sequel we shall prove that each time a user underpasses
a challenge and response execution, information allowing an attacker to
impersonate this user is leaked. Hence the security requirements, though
achieved, remain unavailing and security can all the same be violated.

In view of these vulnerabilities, described in detail in Section 2, we de-
signed an algorithmic attack, which we describe in Subsection 3, permiting
an eavesdropper to authenticate to the database–engine’s server imperson-
ating a valid user after witnessing only a few successful authentications of
this user. In fact, our algorithmic construct works in such a way that, for
every time a client authenticates themself to the server it narrows the key—
search space in an almost exponential manner. As a result, a brute–force
key–search space of 264 is reduced to a key–search space of 300 after witness-
ing only 10 authentications! The password is usually recovered after some
300 witnessed runs of the protocol.

Previous vulnerabilities in the MySQL Database Engine were dis-
closed in the Bugtraq advisories [8], [12] and [4]. A communication by the
authors briefly describing this attack appeared as a Bugtraq Advisory in [1].

2 The authentication mechanism

MySQL package provides users with two primitives used for the authentica-
tion protocol: a hash function, and a (supposedly) cryptographic one–way
function. Both of which are their own design.

A protocol execution is initiatied by a client with a login request and
responded by the server with a random string —the challenge— generated
by the server. The client runs the response algorithm which calculates the

2

xor of the hash value of the random string he has received with the hash
value of it’s password (both of the same bit size) and subsequently maps
the result by the one-way function to a new string, the response, which is
sent to the server. This response string is compared with a string generated
by the response algorithm, this time ran on the server. Only if the server
calculates the same response string he received from the client, the challenge
is passed the client is succesfully authenticated.

As a first remark, we notice that the one–way function provided by
MySQL outputs eight-byte strings having —by construction— a range set
of only 245 possible outputs (and a fixed input size of 8 bytes). This is evident
from the function’s evaluation algorithm we show in the next section. This
last fact implies several conclusions, firstly notice that 245 is within today’s
computational range and a brute-force approach to obtain the password
(preimage) could be done with a higher computational cost. Moreover, by a
birthday paradox reasoning we see that only 222.5 values need to be examined
to find collisions. Even more, the pigeon–hole principle implies that there is
at least one output value with 264−45 = 219 collisions (preimages). Empirical
evidence show that the situation is even worse.

The one–way function shall be introduced and proved insecure in the
next subsection. However, the hash function h : {0, 1}∗ → {0, 1}64 need not
and shall not be analyzed since the authentication mechanism of MySQL
does not require the password for a successful authentication, but only the
password’s hash value.

2.1 This is (not) another one-way function

For the remaining of the paper let the following notation and assumptions
hold. Let n := 230 − 1. Fix a client C. On initiating a challenge and
response protocol execution the client logs in and is challenged by a random
string. Denote this string’s hash value by c ∈ {0, 1}64, with first 4 leftmost
bytes cx ∈ {0, 1}32 and last 4 rightmost bytes cy ∈ {0, 1}32. Likewise let px

and py denote the 4 leftmost and 4 rightmost bytes of the password’s hash
value p ∈ {0, 1}64. The response w is calculated by the one-way function
f : {0, 1}32 × {0, 1}32 → {0, 1}64 as w := f(px ⊕ cx, py ⊕ cy), where ⊕
denotes the xor (bitwise exclusive or) operation, following the algorithm we
now outline. (This validates our claim that only the password’s hash value
is required for a succesful authentication.)

In what follows numbers will be intercheangably be treated as integers
in decimal representation or as the bit strings arising form their binary rep-
resentation. It should always be clear from the context which representation
of the element we are refering to, e.g. the xor of two values will always refer
to the bitwise xor, whereas 3 · x will refer to the result of multiplying the
number 3 by the number x both in Z (actually in Z/nZ).

3

Response algorithm:

1. Let s
(0)
1 := px ⊕ cx and s

(0)
2 := py ⊕ cy. The values s

(0)
1 and s

(0)
2 are

then used as input for the one–way function f ,

2. For 1 ≤ i ≤ 8 let

s
(i)
1 := s

(i−1)
1 + 3 · s(i−1)

2
modulo (n)

s
(i)
2 := s

(i)
1 + s

(i−1)
2 + 33 modulo (n)

wi :=

⌊
31 · s(i)

1

n

⌋
+ 64

(here bxc := max{k ∈ Z : k ≤ x} is the floor function)

3. Finally let

s
(9)
1 := s

(8)
1 + 3 · s(8)

2
modulo (n)

w9 :=

⌊
31 · s(9)

1

n

⌋

4. output the response value

w := f(s(0
1 , s

(0)
2) :=

(
(w1 ⊕ w9)

∥∥
∥∥ (w7 ⊕ w9)

∥∥ (w8 ⊕ w9)
)

It is this response w ∈ {0, 1}64 that is sent by the client C to the server.
The server, which has in store the hash value of C’s password, parallely
calculates this response by this same algorithm verifying if equality with the
value it has received holds. In which case the challenge is passed. This ends
the authentication procedure.

Notice that 64 ≤ wi < 96, for 1 ≤ i ≤ 8, and 0 ≤ w9 < 32 hold true,
which guarantees that the range set consists of at most 329 = 245 points.
Preimages f−1(f(x, y)) of the map f can be efficiently calculated due to
this map’s rich arithmetic properties deeming it not a one way function.
Moreover, this set of preimages is of negligible size in comparison to the 264

points set of all the possible passwords’ hashes in which it is contained, and
can furthermore be efficiently calculated in a low-storage highly malleable
representation. See Lemma 1.

4

3 The Algorithm For the Attack

The algorithmic attack we designed is composed of two procedures which
are repetedly used during the attack plus a minor additional procedure.
We follow to outline the two main procedures which are detailed in the
forthcoming subsections.

The first procedure is the one inverting f . More precisely, we design an
algorithmic process by which one is able to, on input a response w ∈ {0, 1}64,
calculate a suitable representation of the preimage f−1(w) of w = f(px ⊕
cx, py ⊕ cy) by f . This preimage is given by a collection of (non-repeating)
convex polygons P = {P}, and satisfying the following properties:

– every P ∈ P is given by its vertices in Q (at most 15 vertices),

– f−1({w}) =
⋃

P∈P P , in particular the point (px ⊕ cx, py ⊕ cy) of Z2

belongs to a polygon P in P,

– the collection P contains at most 48 polygons, and

– each P ∈ P contains at most 235 points.

Details will be given in the next subsection. Figure 1 shows a collection P
arising from an example, and a zoom in one of the members P of P.

Procedure 2 relies not in the weaknesses of the one-way function f , but
on the precalculation process c 7→ c ⊕ p and the high malleability of the
collections P. Let us take some consideration into how can we efficiently
intersect sets c ⊕ f−1(w) and c′ ⊕ f−1(w′) arising from two different au-
thentications in order to get the set of passwords’ hash values passing these
challenges. A simpleminded approach is to partition each of these sets into
a collection of their integer points keeping only repetitions, i.e. keeping
Z2 ∩ (c ⊕ f−1(w)) ∩ (c′ ⊕ f−1(w′). But this would untangle the efficient
representation we have over the preimages f−1(w), f−1(w′) (each having
approximately 235 points) inevitably yielding an intractable procedure. A
less drastic measure towards that direction is pursued: we use a divide–and–
conquer approach with much coarser partitions.

For an input of triplets (c, w,P), (c′, w′P ′) where c, w and c′, w′ are chal-
lenge and response pairs and P,P ′ are polygons collections with ∪P∈PP ⊆
f−1(w) and f−1(w′) = ∪P ′∈P ′P ′, and for a precision parameter k ∈ Z, 0 ≤
k ≤ 32, we calculate a refinement of P consisting of the polygons

Pi,j,k := P ∩ (
[i · 232−k; (i + 1) · 232−k)× [j · 232−k; (j + 1) · 232−k)

)
1

satisfying an intersection property. More precisely, for each nonempty Pi,j,k

in the output collection it holds that:
1both intervals are closed on the left and open on the right.

5

– There exists a polygon P ′ ∈ P ′ and integer points (x, y) = (x1, . . . ,
x32; y1, . . . , y32) ∈ Pi,j,k ∩ Z2 and (x′, y′) = (x′1, . . . , x

′
32; y

′
1, . . . , y

′
32) ∈

P ′ ∩ Z2 such that the first k bits of x′ ⊕ c′x and x⊕ cx agree, and the
first k bits of y′ ⊕ c′y and y ⊕ cy agree, i.e.,

xt ⊕ cx,t = x′t ⊕ c′x,t for 1 ≤ t ≤ k

yt ⊕ cy,t = y′t ⊕ c′y,t for 1 ≤ t ≤ k,

where (c′x, c′y) = (c′x,1, . . . , c
′
x,32; c

′
y,1, . . . , c

′
y,32) and (cx, cy) = (cx,1, . . . ,

cx,32; cy,1, . . . , cy,32) denote the bit representation of c′ and c.

– Pi,j,k is represented by it’s vertices in Q.

Notice that, since the first k bits of X ⊕ cx = (px ⊕ cx) ⊕ cx = px and
X ′ ⊕ c′x = (px ⊕ c′x)⊕ c′x = px agree, as well as Y ⊕ cy = (py ⊕ cy)⊕ cy = py

and Y ′ ⊕ c′y = (py ⊕ c′y)⊕ c′y = py, this condition holds in particular for the
polygon Pi,j,k containing the point (X, Y). For a more accurate description
see Subsection 3.2.

3.1 From brute–force to brute forge

Procedure 1 produces, from a pair of challenge and response (c, w), a collec-
tion of polygons P containing all the xor values of the challenge c with the
hashed passwords passing the same challenge, i.e. the collection P is such
that f−1(w) = ∪P∈P(P ∩ Z2). Implicitly, we also deduce that the output
of Procedure 1 is a natural way of representing the preimage f−1(w) by the
function f of the response w = (w1 ⊕ w9, . . . , w8 ⊕ w9).

Suppose without loss of generality that w1, . . . , w8 are known, e.g. w9 is
known. In the Remark 2 ahead, we justify this supposition and explain how
this problem is tackled.

The point (X, Y) = (px ⊕ cx, py ⊕ cy) can be expressed in terms the
entries w1, . . . , w8 and some universal constants αi, βi, γi ∈ Z by formulas

wi = b31
n

(
(αi X + βi Y + γi 33) mod (n)

)c+ 64

which are deduced by rewriting the recursive formulas defining the wi (Re-

sponse algorithm). For example we have w1 =
⌊31

n
(3X + Y mod (n))

⌋
+

64, w2 =
⌊31

n
(12X + 5Y + 33 mod (n))

⌋
+ 64, Here the αi, βi, γi can be

calculated once and for all.

Since for any z ∈ Q it holds that bzc ≤ z < bzc+ 1 we deduce that the
point (X,Y) ∈ Z2 belongs to the following semi–algebraic sets
{

(x, y) ∈ R :
n

31
(wi − 64) ≤ αi x + βi y + 33 γi mod (n) <

n

31
(wi − 63)

}

6

Figure 1: P on the left and a zoom in P on the right

of Q2, where R is the square R := {0 ≤ x, y < 232}. That is, for 1 ≤ i ≤ 8,
there exist an integer δi such that the point (X, Y) is in the semi-algebraic set{
(x, y) ∈ R : n

31(wi − 64) ≤ αi x + βi y + 33 γi − δi n < n
31(wi − 63)

}
. Further-

more, since these entries X, Y ∈ Z verify 0 ≤ X,Y < 232, we deduce that the
δi are non-negative integers bounded from above by δi <

⌈
232(αi+βi)+33γi

n

⌉
.

For each choice of δ := (δ1, . . . , δ8) ∈ Z8 consider the semi–algebraic set

Pδ :=
⋂

1≤ i≤ 8

{
(x, y) ∈ R :

n

31
(wi − 64) + δi n ≤

≤ αi x + βi y + γi 33 <
n

31
(wi − 63) + δi n

}
,

which is trivially a convex polygon. It follows that, for every δ ∈ Z8 and
for every integer point (a, b) in Pδ ∩ Z2 it holds that f(a, b) = w. In fact, it
is easy to see that the reverse inclusion also holds, i.e., for every pair (a, b)
which is mapped by f to the response w there exist a tuple δ ∈ Z8 such that
(a, b) belongs to Pδ. And f−1(w) = ∪P∈PP as announced.

Let P denote the collection of all P := Pδ with δ ∈ Z8. Next lemma
states some useful bounds and properties over the collection P.

Lemma 1 Let the above notations and assumptions hold. Recall the nota-
tions R := [0, 232 − 1] × [0, 232 − 1] ⊂ Q2 and P = ∪P∈P P . The following
conditions hold

7

• each P ∈ P is a traslate of the other, i.e. for every P, P ′ ∈ P there
exists v ∈ Q2 such that P = P ′ + v.

• the number of polygons #P in P is bounded from above by 48, with
each polygon P ∈ P containing at most #(Z2∩P) ≤ 236 integer points.

Proof: For i ∈ Z, with 1 ≤ i ≤ 8, let δi ∈ Z denote an integer parameter.
Let us fix some additional notation. Let S

(i)
δi

be the subset S
(i)
δi

:=

{(x, y) ∈ R :
n

31
(wi − 64)+ ≤ αi x + βi y + γi 33− δi n <

n

31
(wi − 63)}

of Q2. And let Sδ1,...,δk
:= S

(1)
δ1
∩ · · · ∩ S

(k)
δk

for k ∈ Z, 1 < k ≤ 8. Notice that
Sδ1,...,δ8 = P(δ1,...,δ8).

We follow the calculation process for each of the P in P. Firstly, we show
that the cardinality #{Sδ1,δ2 : δ1, δ2 ∈ Z} is bounded by 48. To see this, we
calculate the intersecion of the straight lines defining the boundries of the
S

(1)
δ1

and S
(2)
δ2

for any (δ1, δ2) ∈ Z2. Say, the lines defined by the equations
3x + y = n

31(w1− 64)− δ1n and 12x + 5y + 33 = n
31(w2− 64)− δ2n intersect

for
x =

1
3

{ n

31
[5(w1 − 64)− (w2 − 64)] + n(δ2 − 5δ1)− 33

}

which ranges between 48 different values of x ∈ Q, constrained to 0 ≤ x ≤
232 − 1 and δ1, δ2 ∈ Z.

The intersections of other lines defining the boundries of S
(1)
δ1

and S
(2)
δ2

can
be simillarly calculated and the same conclusions are verified. Namely, at
stage k = 2 the collection {Sδ1,δ2 : δ1, δ2 ∈ Z} contains at most 48 polygons
whose vertices’ entries can be expressed by equations like the preceding.
Moreover, by examining this defining equations we deduce that: a) every
polygon Sδ1,δ2 has x coordinates bounded between 1

3{ n
31 [5(w1 − 63)− (w2−

64)]+n(δ2− 5δ1)− 33} and 1
3{ n

31 [5(w1− 64)− (w2− 63)]+n(δ2− 5δ1)− 33}
for different δ1, δ2. Which are 2

31n units appart. And furthermore, b) each
of these polygons is a traslate of the other.

The result of covering stages k ∈ {3, . . . , 8} will be to successively refine
the polygons calculated at the stages k− 1. More specifically, for a given δk

we are able to deduce that S
(k)
δk

is such that: a) the lines defined by each S
(k)
δk

are at distances in the x coordinate greater than 2
31n, and hence intersect no

more than one of the Sδ1,δ2 ; and b) the intersections are at even distances
resulting again in a set of at most 48 polygons each a translate of the other.

Finally, to estimate the area of the polygons, we notice that for each
P ∈ P there exists integers δ1, δ8 ∈ Z such that the parallelogram S

(1)
δ1
∩S

(8)
δ8

contains P . So that the area of P is bounded by the area this parallelogram:

8

which we estimate by 5.2806 · 1010 ≈ 235.6. Hence #(Z2 ∩ P) ≤ 236 as
announced. 2

The algorithm for this procedure should be now clear. Supposing w9

known the algorithm selects values of δ within the preestablished range
(0 ≤ δi ≤ d232(αi + βi)/ne) until a nonempty polygon P = Pδ is calculated.
Once this polygon is calculated it is easy to calculate the coordinates where
every other polygon of P is placed. This is done by examining the equations
defining P . In fact, this examination shows that P will consist of either
48 or 36 polygons. These polygons are stored in the output collection as
a collection of their vertices in Q2. We point out that on the implementa-
tions, the use of IEEE standard floating point arithmetic tends to speed the
algorithm and approximations have no negative effect.

Let us go back to our assertion that w9 is known. Suppose it is not, and
suppose that we have made our choice for w9 candidate, say ŵ9. Suppose
furthermore that the δi are fixed. Then the polygon P defined by this choices
is

P =
⋂

1≤i≤8

{
(x, y) ∈ R :

n

31
(wi ⊕ w9 ⊕ ŵ9 − 64) ≤

αiX + βiY + γi33− δin <
n

31
((wi ⊕ w9 ⊕ ŵ9 − 63)

}
.

We have shown in the proof of Lemma 1 that the x coordinates of the
points inside Sδ1,δ2 differ in at most 2

31n. For a wrong choice ŵ9 of w9, we
see that one of the further intersections is bound to be empty. This is stated
in the next remark.

Remark 2 By applying the algorithmic procedure just described to w[k] =
(w1⊕k ‖ . . . ‖w8⊕k) for 0 ≤ k < 32 only one value of k produces a nonempty
output, hence that value of k is precisely w9, i.e. we have w9 = k.

We will not prove this remark. Notice however that the validity of this
remark is not needed for the attack to hold, but only helps to speed the
attack by a factor of 32.

3.2 Wash out of invalid passwords

Let be given triplets (c, w,P), (c′, w′,P ′) and a precision parameter k ∈ Z,
with 1 ≤ k ≤ 32, such that (c, w) and (c′, w′) are challenge and response
pairs, and that P and P ′ are polygons collections satisfying ∪P∈PP ⊆
f−1(w) and ∪P ′∈P ′P ′ = f−1(w′).

We use the following notation. For any subset Q ⊆ R = [0; 232 − 1] ×
[0; 232 − 1] and integers r, i, j ∈ Z with 1 ≤ r ≤ 32 and 0 ≤ i, j ≤ 2r − 1
denote by Qi,j,r the set

Qi,j,r := Q ∩ (
[i · 232−r; (i + 1) · 232−r)× [j · 232−r ≤ y < (j + 1) · 232−r)

)
.

9

resulting of the intersection of Q with the 232−r–side square in the pre-
scribed coordinates. For a point v in {0, 1}32 × {0, 1}32 we write v =
(vx,1, . . . , vx,32; vy,1, . . . , vy,32).

Given two sets Q and Q′ of Q2, and an integer r as above, we say that Q
and Q′ satisfy the r–property if and only if there exist points (x, y) ∈ Q∩Z2

and (x′, y′) ∈ Q′ ∩ Z2 such that

xt ⊕ cx,t = x′t ⊕ c′x,t for 1 ≤ t ≤ r

yt ⊕ cy,t = y′t ⊕ c′y,t for 1 ≤ t ≤ r.

The algorithm for Procedure 2 calculates the subset of polygons of {Pi,j,k :
P ∈ P; 0 ≤ i, j ≤ 2k − 1} such that there exists a polygon P ′ and the poly-
gons Pi,j,k and P ′ satisfy the k–property. Working in a divide–and–conquer
manner it calls a recursive procedure for values of r ranging from r = 1 and
increasing at steps of 1 to r = k always keeping those {Pi,j,r} such that there
exists a polygon P ′ and the polygons Pi,j,r and P ′ satisfy the r–property.

Let r ∈ Z, 1 ≤ r ≤ k be fixed. We outline the recursive procedure.
The procedure starts with two input collections P and P ′, a temporary
storage collection for intermediate steps, and an output collection. We first
calculate {Pi,j,r : 0 ≤ i, j ≤ 2r − 1, P ∈ P} and store it as P. Then, we
iterate over the polygons in the collection P ′ ∈ P ′ partitioning each P ′ as
P ′ = ∪0≤`,κ≤2r−1P`,κ,r and storing the result in the temporary collection.

Notice that for every 0 ≤ `, κ ≤ 2r− 1 it holds that P ′
`,κ,r is a polygon in

R ⊂ Q2 whose integer points (x, y) have coordinates verifying ` ·232−r ≤ x <
(`+1)·232−r and κ·232−r ≤ y < (κ+1)·232−r and hence their respective first
r bits are constant (and respectively equal to the first r bits of ` · 232−r and
κ · 232−r). An analogous property holds for all the Pi,j,r. In particular, to
decide whether a pair of polygons Pi,j,r and P ′

`,κ,r verify the r–property one
need only check it for any pair of points (x, y) ∈ Pi,j,r and (x′, y′) ∈ P ′

`,κ,r.
We use any pair of vertices, since they are at store. Explicitly, for each
P ′

`,κ,r we iterate over the collection P = {Pi,j,r} extracting —and storing in
the output collection— those polygons Pi,j,r verifying the r–property (with
P ′

`,κ,r).

After the iteration over all the P`,κ,r is finished the output collection
holds all the polygons Pi,j,r such that there exists a P ′

`,κ,r with the pair
verifying the r–property. When r is increased and the recursive function is
called again, the output collection is previously stored in place of P rewriting
it’s previous contents.

In Figure 2, we see the result of calling our recursive function (for a single
fixed P ′ and all of the P) for the values of r = 1 and r = 2 over the chosen ex-
ample. For this example the first bits of c⊕c′ are (0, 1, . . . ; 0, 1, . . .). Polygon

10

Figure 2: The recursive function’s result for r = 31 and r = 30.

P ′ has all of its points with coordinates starting as (0, 0, . . . ; 1, 1, . . .). The
figure on the left shows that only 12 polygons in {Pi,j,1} verify the 1–property
(it’s coordinates are written as (0 ⊕ 0, . . . ; 1 ⊕ 1, . . .) = (0, . . . ; 0, . . .)). For
r = 2 it follows that only 3 polygons {Pi,j,2} verify the 2–property, those
with coordinates starting as (0, 1, . . . ; 1, 0, . . .).

3.3 The complete algorithmic attack

A complete attack against a valid client which has produced pairs of chal-
lenge and responses (c(1), w(1)), . . . , (c(n), w(n)) is done by repeated applica-
tion of the procedures we have just described. To start with, we select the
number p ≤ n of these challenge and response pairs to which we are going
to apply to Procedure 1. That is for the pairs (c(1), w(1)), . . . , (c(p), w(p)) we
apply the Procedure 1 and output collections P(1), . . . ,P(p). Typically —on
our examples— the number p is taken to be 5 or less.

On a second step, after selecting integers 1 ≤ k1 ≤ k2 ≤ . . . ≤ kp−1 ≤ 32,
we apply Procedure 2 recursively to the triplets (c(1), w(1),P(1)), . . . , (c(q), w(q),P(q));
that is first we apply Procedure 2 to (c(1), w(1),P(1)) and (c(2), w(2),P(2)) us-
ing precision k := k1 and save the result, then we apply Procedure 2 to the
previous saved result and (c(3), w(3),P(3)) using precision k := k2 saving the
result overwritting the previous one, and continue this recursive application
until the p–th tuple is reached. After the p–fold application of this proce-
dure we get a set of polygons P̃ having a relatively small number of integer
points.

We notice that the attack can be optimized by tuning the choices of k:
bigger values of k will result in an increase in the number of polygons in

11

the output (and might result in storage problems) and smaller values of k
simply will not produce any refining of our polygon collection (but spend
computing time).

Finally, every integer point in P̃ is extracted and challenged with the
whole collection of tests (c(1), w(1)), . . . , (c(n), w(n)) and saved in the output
collection only if it passes every one of these tests. The algorithmic attack
ends either when all the (c(t), w(t)) have been passed through and there are
no more challenge and response pairs left, or before, if the set of remaining
points has only one point left —the password’s hash.

4 Statistics and Conclusions

In the tested examples an average of 300 possible passwords were left with
the use of only 10 pairs of challenge and response. Notice that in a plain
brute–force attack about 264 − 300 = 18, 446, 744, 073, 709, 551, 316 would
remain as possible passwords. Using an average of 100 pairs of challenge
and responses, this set was reduced to 2 possible passwords (i.e., a fake
passwords and the password indeed). Finally it took about 300 pairs of
challenge and response to get the password.

Implementations on Squeak Smalltalk and a Python module performing
this attack can be downloaded from http://www.corest.com/corelabs/

A result worth mentioning is the following experiment. Using only ten
pairs of challenge and responses, getting thus an average of 300 possible
passwords in each case, we randomly selected 1000 challenges and asked
whether the selected password would pass these challenges. With this test
we estimated the probability each of these 300 passwords has of passing a
test. Our samples had an average of 0.92 probability of success. Hence, not
having enough challenge and response pairs to calculate the exact password
might not be a problem. We can simply apply the attack algorithm to all
the pairs of challenge and response captured, then use any possible password
in the possible passwords collection remaining after the last application of
Procedure 3. Fake passwords will still pass many tests!.

The whole procedure application lasted no more than an hour running
on a 700Hz Pentium 3 personal computer with 64Mb RAM on every example
we tested.

No evident workaround for this authentication procedure seems plausi-
ble, since variation of the constants in the response algorithm only result in
a loss of efficiency with no security improvement.

* * *

12

Thanks: A prior notification of these results appeared signed by researchers
and co–author Ivan Arce as “An advisory on MySQL’s login protocol” in
Securityfocus’ Bugtraq newsgroup [1]. We would like to thank the Vul-
nerability Help Team at Securityfocus for their help in the drafting of the
advisory.

References

[1] Agustin Azubel, Emiliano Kargieman, Gerardo Richarte, Carlos Sar-
raute, and Ariel Waissbein. Mysql authentication vulnerability. Secu-
rityfocus bugtraq advisory http://www.securityfocus.com/bid/1826 or
http://www.corest.com.

[2] MySQL Database Engine. Visit http://www.mysql.com and for the Sec-
tion Security http://www.mysql.com/documentation/mysql/commented/
manual.php?section=Security for more information.

[3] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Advances in Cryptology — Crypto ’86,
pages 186–194, New York, 1987. Springer-Verlag.

[4] Viktor Fougstedt. Mysql grant global password changing vulnerability. Secu-
rityfocus bugtraq advisory http://www.securityfocus.com/bid/926.

[5] Internet Engineering Task Force (ITEF). draft-ietf-secsh-userauth. Visit
http://www.ietf.org for the latest version.

[6] Jean-Jacques Quisquater and Louis Guillou. A practical zero-knowledge pro-
tocol fitted to security microprocessor minimizing both transmission and mem-
ory. In Advances in Cryptology — Eurocrypt ’88, pages 123–128, New York,
1998. Springer-Verlag.

[7] RFC1510. Ther kerberos network authentication service (v5). Internet Request
For Comments (RFC) 1510, J. Kohl and C. Neumann, September 1993.

[8] Jesse Schachter. ‘ic radius buffer overflow vulnerability. Securityfocus bugtraq
advisory http://www.securityfocus.com/bid/1147.

[9] C. Schnorr. Efficient identification and signatures for smart cards. In Advances
in Cryptology — Crypto ’89, pages 239–252, New York, 1989. Springer-Verlag.

[10] C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryp-
tology: the journal of the International Association for Cryptologic Research,
4(3):161–174, 1991.

[11] Squeak Smalltalk. See http://www.squeak.org.

[12] Robert van der Meulen. Mysql unauthenticated remote access vulnerability.
Securityfocus bugtraq advisory http://www.securityfocus.com/bid/975.

[13] Thomas Wu. The secure remote password protocol. In Proceedings of the 1998
Internet Society Network and Distributed System Security Symposium, pages
97–111, San Diego, CA, March 1998.

13

