
TR2001-412, Dartmouth College, Computer Science

Detecting Steganographic Messages in Digital Images

Hany Farid
Department of Computer Science

Dartmouth College
Hanover NH 03755

Techniques and applications for information hiding have become increasingly more so-
phisticated and widespread. With high-resolution digital images as carriers, detecting the
presence of hidden messages has also become considerably more difficult. It is sometimes
possible, nevertheless, to detect (but not necessarily decipher) the presence of embed-
ded messages. The basic approach taken here works by finding predictable higher-order
statistics of “natural” images within a multi-scale decomposition, and then showing that
embedded messages alter these statistics.
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1 Introduction

Information hiding techniques (e.g., steganog-
raphy and watermarking) have recently received
quite a bit of attention (see [9, 1, 7, 12] for gen-
eral reviews). At least one reason for this is
the desire to protect copyrights of digital au-
dio, image and video. Other applications in-
clude unobtrusive military and intelligence com-
munication, covert criminal communication,
and the protection of civilian speech against
repressive governments. Along with new and
improved techniques for hiding information
will come techniques for detecting (and pos-
sibly removing) such information.

Although messages embedded into an im-
age are often imperceptible to the human eye,
they often disturb the statistical nature of the
image. Previous approaches to detecting such
deviations [8, 23, 13, 15] examine first-order
statistical distributions of intensity or trans-
form coefficients (e.g., discrete cosine trans-
form,DCT). In contrast, the approach to de-
tection taken here relies on building higher-
order statistical models for natural images [10,
5, 3, 17, 24, 11, 19] and looking for deviations
from these models. Specifically, I show that,
across a broad range of natural images, strong
higher-order statistical regularities within a wavelet-
like decomposition exist, and that when a mes-
sage is embedded within an image, these statis-
tics are significantly altered. The benefit of
building a model based on higher-order statis-
tics is that simple counter-measures that match
first-order statistics are unlikely to entirely foil
detection.

What follows is first a description of the im-
age decomposition and statistical model, and
then the classification scheme used to detect
hidden messages. The efficacy of this approach
is tested against messages hidden with Jsteg 1,
EZStego 2, and OutGuess [13, 14].

1Jsteg V4, by Derek Upham, is available at:
ftp://ftp.funet.fi/pub/crypt/steganography.

2EZStego, by Romana Machado, is available at
http://www.stego.com/.

2 Image Statistics

The decomposition of images using basis
functions that are localized in spatial position,
orientation, and scale (e.g., wavelets) has proven
extremely useful in a range of applications (e.g., im-
age compression, image coding, noise removal,
and texture synthesis). One reason for this
is that such decompositions exhibit statistical
regularities that can be exploited (e.g., [18, 16,
2]). Described below is one such decomposi-
tion, and a set of statistics collected from this
decomposition.

The decomposition is based on separable
quadrature mirror filters (QMFs) [21, 22, 20]
is employed. As illustrated in Figure 1, this
decomposition splits the frequency space into
multiple scales and orientations. This is ac-
complished by applying separable lowpass and
highpass filters along the image axes generat-
ing a vertical, horizontal, diagonal and low-
pass subband. For example, the horizontal
subband is generated by convolving with the
highpass filter in the horizontal direction and
lowpass in the vertical direction, the diago-
nal band is generated by convolving with the
highpass filter in both directions, etc. Subse-
quent scales are creating by recursively filter-
ing the lowpass subband. The vertical, hor-
izontal, and diagonal subbands at scale i =

1, ..., n are denoted as Vi(x, y), Hi(x, y), and
Di(x, y), respectively. Shown in Figure 2 is a
three-level decomposition of a “disc” image.

Given this image decomposition, the statis-
tical model is composed of, the mean, vari-
ance, skewness and kurtosis of the subband
coefficients at each orientation and at scales
i = 1, ..., n − 1. These statistics characterize
the basic coefficient distributions.

The second set of statistics collected are based
on the errors in an optimal linear predictor
of coefficient magnitude. As described in [2],
the subband coefficients are correlated to their
spatial, orientation and scale neighbors. For
purposes of illustration, consider first a verti-
cal band, Vi(x, y), at scale i. A linear predic-
tor for the magnitude of these coefficients in a
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Figure 1: An idealized multi-scale and
orientation decomposition of frequency
space. Shown, from top to bottom, are lev-
els 0,1, and 2, and from left to right, are the
lowpass, vertical, horizontal, and diagonal
subbands.

subset of all possible neighbors 3 is given by:

Vi(x, y) = w1Vi(x− 1, y) + w2Vi(x + 1, y)

+ w3Vi(x, y− 1) + w4Vi(x, y + 1)

+ w5Vi+1(x/2, y/2)+ w6Di(x, y)

+ w7Di+1(x/2, y/2), (1)

where wk denotes scalar weighting values. This
linear relationship may be expressed more com-
pactly in matrix form as:

~V = Q~w, (2)

where the column vector ~w = (w1 . . . w7 )T ,
the vector ~V contains the coefficient magni-
tudes of Vi(x, y) strung out into a column vec-
tor, and the columns of the matrix Q contain
the neighboring coefficient magnitudes as spec-
ified in Equation (1) also strung out into col-
umn vectors. The coefficients that minimize
the squared error of the estimator is:

~w = (QTQ)−1QT ~V . (3)
3The particular choice of spatial, orientation and

scale neighbors was motivated by the observations
of [2] and modified to include non-casual neighbors.

Figure 2: Shown are the absolute values of
the subband coefficients at three scales and
three orientations for a “disc” image. The
residual lowpass subband is shown in the
upper-left corner.

The log error in the linear predictor is then
given by:

~Ev = log2(~V )− log2(|Q~w|). (4)

It is from this error that additional statistics
are collected, namely the mean, variance, skew-
ness, and kurtosis. This process is repeated
for each vertical subband at scales i = 1, ..., n−
1, where at each scale a new linear predictor is
estimated. A similar process is repeated for
the horizontal and diagonal subbands. The
linear predictor for the horizontal subbands is
of the form:

Hi(x, y) = w1Hi(x− 1, y) + w2Hi(x + 1, y)

+ w3Hi(x, y − 1) + w4Hi(x, y + 1)

+ w5Hi+1(x/2, y/2)+ w6Di(x, y)

+ w7Di+1(x/2, y/2), (5)

and for the diagonal subbands:

Di(x, y) = w1Di(x− 1, y) + w2Di(x + 1, y)

+ w3Di(x, y − 1) + w4Di(x, y + 1)

+ w5Di+1(x/2, y/2)+ w6Hi(x, y)

+ w7Vi(x, y). (6)
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The same error metric, Equation (4), and error
statistics computed for the vertical subbands,
are computed for the horizontal and diagonal
bands, for a total of 12(n − 1) error statistics.
Combining these statistics with the 12(n − 1)
coefficient statistics yields a total of 24(n − 1)

statistics that form a “feature” vector which
is used to discriminate between images that
contain hidden messages and those that do
not.

3 Classification

From the measured statistics of a training set
of images with and without hidden messages,
the goal is to determine whether a novel (test)
image contains a message. To this end, Fisher
linear discriminant analysis (FLD) [6, 4], a class
specific method for pattern recognition, is em-
ployed. For simplicity a two-class FLD is de-
scribed.

Denote column vectors ~xi, i = 1, ..., Nx and
~yj , j = 1, ..., Ny as exemplars from each of two
classes from the training set. The within-class
means are defined as:

~µx =
1

Nx

Nx
∑

i=1

~xi, and ~µy =
1

Ny

Ny
∑

j=1

~yj . (7)

The between-class mean is defined as:

~µ =
1

Nx + Ny





Nx
∑

i=1

~xi +

Ny
∑

j=1

~yj



 (8)

The within-class scatter matrix is defined as:

Sw = MxMT
x + MyM

T
y , (9)

where, the ith column of matrix Mx contains
the zero-meaned ith exemplar given by ~xi−~µx.
Similarly, the jth column of matrix My con-
tains ~yj−~µy . The between-class scatter matrix
is defined as:

Sb = Nx(~µx − ~µ)(~µx − ~µ)T

+ Ny(~µy − ~µ)(~µy − ~µ)T . (10)

Finally, let ~e be the maximal generalized eigenvalue-
eigenvector of Sb and Sw (i.e., Sb~e = λSw~e).

0

0

Figure 3: Shown are training exemplars
from one of two classes (’x’s and ’o’s) in
an initially two-dimensional space. These
exemplars are projected onto the FLD pro-
jection axis (solid line) so as to mini-
mize within-class scatter and maximize
between-class scatter. Novel exemplars
projected onto the same axis can be, in this
example, categorized depending on which
side of the origin they project.

When the training exemplars ~xi and ~yj are pro-
jected onto the one-dimensional linear subspace
defined by ~e (i.e., ~xT

i ~e and ~yT
j ~e), the within-

class scatter is minimized and the between-
class scatter maximized, Figure 3. For the pur-
poses of pattern recognition, such a projection
is clearly desirable as it simultaneously reduces
the dimensionality of the data and preserves
discriminability.

Once the FLD projection axis is determined
from the training set, a novel exemplar, ~z, from
the testing set is classified by first projecting
onto the same subspace, ~zT~e. In the simplest
case, the class to which this exemplar belongs
is determined via a simple threshold, Figure 3.
In the case of a two-class FLD, we are guaran-
teed to be able to project onto a one-dimensional
subspace (i.e., there will be at most one non-
zero eigenvalue). In the case of a N -class FLD,
the projection may be onto as high as a N − 1-
dimensional subspace.

A two-class FLD is employed here to clas-
sify images as either containing or not con-
taining a hidden message. Each image is char-
acterized by its feature vector as described in
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Figure 4: Sample images.

the previous section.

4 Results

Shown in Figure 4 are several examples taken
from a database of natural images 4. Each 8-
bit per channel RGB image is 1000× 1400 pix-
els in size. Statistics from 500 such images
are collected as follows. Each image is com-
pressed using Jsteg (with no steg message) to
an average size of 250 Kb (quality 75). Each
image is then converted from RGB to 8-bit gray-
scale (gray = 0.299R + 0.587G + 0.114B). A four-
level, three-orientation QMF pyramid is con-
structed for each image, from which a 72-length
feature vector of coefficient and error statis-
tics is collected. To reduce sensitivity to noise,
only coefficient magnitudes greater than 1.0
are considered.

For the same set of 500 images, a message is

4Images were downloaded
from: http://philip.greenspun.com and repro-
duced here with permission from Philip Greeenspun.

embedded using Jsteg, a transform-based sys-
tem that embeds messages by modulating the
DCT coefficients [8]. Each message consists of
a central 256× 256 portion of a random image
chosen from the same image database. After
the message image is embedded into the full
resolution cover image, the same transforma-
tion, decomposition, and collection of statis-
tics as described above are performed on the
“steg” image.

Shown in Figure 5 is an example cover and
message image, and the result of embedding
the message into the cover image. In this ex-
ample, the mean of the absolute value of the
difference between the cover and steg image
is 3.1 intensity values with a standard devi-
ation of 3.2. For display purposes the differ-
ence image is renormalized into the range [0, 255].

The two-class FLD described in Section 3
is trained on a random subset of 400 images
and then tested on the remaining 100 images.
Shown in Figure 6 are results for the train-
ing and testing set. In this figure the ’x’ cor-
responds to “steg” images and the ’o’ corre-
sponds to the “no-steg” images. The verti-
cal axis corresponds to the value of an image
feature vector after projecting onto the FLD
projection axis. Results from the training set
are shown to the left of the vertical line, and
results from the testing set are shown to the
right. In this example, 99% of the training set
is correctly classified. In the testing set 98%

of the steg images are correctly classified with
2% false positives (i.e., a no-steg image incor-
rectly classified as a steg image). The thresh-
old for classification (horizontal line) is selected
using the ROC curves shown in the lower panel
of Figure 6. In this panel, the solid line cor-
responds to the percent of correctly classified
steg images, and the dashed line corresponds
to the percent of correctly classified no-steg
images. The classification threshold is selected
to be the point at which these curves cross (−0.73

in this example). A 0% false positive rate can
be achieved by selecting a more conservative
threshold, which in this example, would yield
a detection rate of 97%.

Shown in Table 1 are the results averaged
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cover steg = cover+message

message |cover - steg|

Figure 5: Shown is a cover image and a
steg image containing an embedded mes-
sage. Also shown is the the 256× 256 mes-
sage (at scale), and the absolute value of
the difference between the cover and steg
image (renormalized into the range [0,255]
for display purposes).

across two hundred independent trials, where
on each trial a random subset of 400 images
are used for training, and the remaining 100
images for testing. The reported values, from
the testing set, correspond to the accuracy of
correctly classifying a steg image, and of in-
correctly classifying no-steg images. Also shown
in this table is the detection accuracy for a fixed
false positive rate of 1% and 2%, and for mes-
sage sizes ranging from 128× 128 to 16 × 16.
As the message size decreases, detection rates
fall correspondingly.

A second program, EzStego, was also tested.
EzStego embeds information into GIF format
images by modulating the least significant bits
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Figure 6: A perfect classifier would have
placed all ’x’s (steg images) above, and
all ’o’s (no-steg images) below, the hori-
zontal line. The position of the horizon-
tal line is determined from the ROC curves
shown in the lower panel, where the solid
and dashed lines correspond to the percent
of correctly classified steg and no-steg im-
ages, respectively.

of the sorted color palette index. Statistics from
the same set of 500 images are collected as fol-
lows. Each image is converted from its origi-
nal RGB format to an 8-bit GIF format. As de-
scribed above, each image is then converted to
gray-scale, upon which the same multi-scale
decomposition and feature vector computation
is performed. For this set of 500 images, a
message is embedded, where each message
consists of a central 256×256 portion of a ran-
dom image. Because EzStego embeds mes-
sages in scan-line order, the image is cropped
to contain only the first 256 rows (i.e., 256 ×
1400 in size). A simple counter-measure that
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Embedding Detection False
(%) positive (%)

Jsteg 97.8 1.8
Jsteg 95.0 1.0
Jsteg (128× 128) 95.4 1.0
Jsteg (64× 64) 88.5 1.0
Jsteg (32× 32) 38.3 2.0
Jsteg (32× 32) 26.6 1.0
Jsteg (16× 16) 4.8 2.0
Jsteg (16× 16) 3.0 1.0
EzStego 86.6 13.2
EzStego 62.7 2.0
EzStego 51.5 1.0
OutGuess− 80.4 19.4
OutGuess− 29.9 2.0
OutGuess− 22.5 1.0
OutGuess+ 77.7 23.8
OutGuess+ 22.9 2.0
OutGuess+ 17.5 1.0

Table 1: Classification accuracy from three
different steg programs. Unless noted,
messages are 256× 256 in size.

places the message at the middle or bottom of
the image could easily be countered by ana-
lyzing all non-overlapping regions of the im-
age. On average, 86.6% of the testing set is
correctly classified, with 13.2% false positives,
and 51.5% detection can be achieved with 1%

false positives, Table 1.
A third program, OutGuess [13], was also

tested. Similar to Jsteg, OutGuess embeds mes-
sages into JPEG format images by modulating
the DCT coefficients (although it is not funda-
mentally limited to one image format). Unique
to OutGuess, however, is a technique for first
embedding only into one-half of the redun-
dant bits and then using the remaining redun-
dant bits to preserve the distribution of the
DCT coefficients. This embedding is therefore
not vulnerable to detection schemes based on
an analysis of coefficient distributions only. As
before, statistics for the same set of 500 images
are first collected by converting each image
from RGB to gray-scale, applying the multi-
scale decomposition and extracting the feature

vector. A random 256 × 256 message is then
embedded, followed by the same transforma-
tion, decomposition, and collection of statis-
tics. OutGuess was tested 5 with (+) and with-
out (−) statistical correction, Table 1. Without
statistical correction, detection rates are 80.4%

with 19.4% false positives, or 22.5% detection
with 2% false positives. With statistical cor-
rection, detection rates are slightly worse at
77.7% with 23.8% false positives, or 17.5% de-
tection with 1.0% false positives.

While not all steg programs have been tested,
it is likely that they will fall within the range
of easily detectable (Jsteg) to less than twenty
percent detectable (OutGuess). How effective
these detection rates are depends, of course,
on the specific applications.

5 Discussion

Messages can be embedded into digital im-
ages in ways that are imperceptible to the hu-
man eye, and yet, these manipulations can fun-
damentally alter the underlying statistics of
an image. To detect the presence of hidden
messages a model based on statistics taken from
a multi-scale decomposition has been employed.
This model includes basic coefficient statistics
as well as error statistics from an optimal lin-
ear predictor of coefficient magnitude. These
higher-order statistics appear to capture cer-
tain properties of “natural” images, and more
importantly, these statistics are significantly al-
tered when a message is embedded within an
image. As such, it is possible to detect, with
a reasonable degree of accuracy, the presence
of steganographic messages in digital images.
To avoid detection, however, one need only
embed a small enough message. In the exam-
ples shown here, the message was typically
5% the size of the cover image. As the mes-
sage size decreases, detection will become in-

5OutGuess was run with unlimited iterations to find
the best embedding. When run with statistical testing,
OutGuess imposes limits on the message size, as such
only 219 of the 500 images could be used as cover im-
ages. Only these 219 images were used in the results of
Table 1.
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creasingly more difficult and less reliable.
Although not tested here, it is likely that

the presence of digital watermarks could also
be detected. Since one of the goals of water-
marking is robustness to attack and not neces-
sarily concealment, watermarks typically al-
ter the image in a more substantial way. As
such, it is likely that the underlying statistics
will be more significantly disrupted. Although
only tested on images, there is no inherent rea-
son why the approaches described here would
not work for one-dimensional audio signals
or video sequences.

There are several directions that should be
explored in order to improve detection accu-
racy. The particular choice of statistics is some-
what ad hoc, as such it would be beneficial
to optimize across a set of statistics that maxi-
mizes detection rates. The two-class FLD should
be replaced with a multi-class FLD that simul-
taneously distinguishes between no-steg im-
ages and steg images generated from multiple
programs. However convenient, FLD analy-
sis is linear, and detection rates would almost
certainly benefit from a more flexible non-linear
classification scheme. Lastly, the indiscrimi-
nant comparison of image statistics across all
images could be replaced with a class-based
analysis, where, for example, indoor and out-
door scenes, or images with similar frequency
content, are compared separately.

One benefit of the higher-order models em-
ployed here is that they are not as vulnerable
to counter-attacks that match first-order sta-
tistical distributions of pixel intensity or trans-
form coefficients. There is little doubt, how-
ever, that counter-measures will be developed
that can foil the detection scheme outlined here.
The development of such techniques will in
turn lead to better detection schemes, and so
on.
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