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Abstract 
Current crypto implementations rely on software 
running under general-purpose operating systems 
alongside a horde of untrusted applications, ActiveX 
controls, web browser plugins, mailers handling 
messages with embedded active content, and numerous 
other threats to security, with only the OS’s (often 
almost nonexistant) security to keep the two apart.  This 
paper presents a general-purpose open-source crypto 
coprocessor capable of securely performing crypto 
operations such as key management, certificate creation 
and handling, and email encryption, decryption, and 
signing, at a cost one to two orders of magnitude below 
that of commercial equivalents while providing 
generally equivalent performance and a higher level of 
functionality.  The paper examines various issues 
involved in designing the coprocessor, and explores 
options for hardware acceleration of crypto operations 
for extended performance above and beyond that 
offered by the basic coprocessor’s COTS hardware. 

1. Problems with Crypto on End-user 
Systems 
The majority of current crypto implementations run 
under general-purpose operating systems with a 
relatively low level of security, alongside which exist a 
limited number of smart-card assisted implementations 
which store a private key in, and perform private-key 
operations with, a smart card.  Complementing these are 
an even smaller number of implementations which 
perform further operations in dedicated (and generally 
very expensive) hardware. 

The advantage of software-only implementations is that 
they are inexpensive and easy to deploy.  The 
disadvantage of these implementations is that they 
provide a very low level of protection for 
cryptovariables, and that this low level of security is 
unlikely to change in the future.  For example Windows 
NT provides a function ReadProcessMemory which 
allows a process to read the memory of (almost) any 
other process in the system (this was originally intended 
to allow debuggers to establish breakpoints and 
maintain instance data for other processes [1]), allowing 
both passive attacks such as scanning memory for high-
entropy areas which constitute keys [2] and active 
attacks in which a target processes’ code or data is 

modified (in combination with VirtualProtectEx, 
which changes the protection on another processes’ 
memory pages) to provide supplemental functionality of 
benefit to a hostile process.  By subclassing an 
application such as the Windows shell, the hostile 
process can receive notification of any application 
(a.k.a. “target”) starting up or shutting down, after 
which it can apply the mechanisms mentioned 
previously.  A very convenient way to do this is to 
subclass a child window of the system tray window, 
yielding a system-wide hook for intercepting shell 
messages [3].  Another way to obtain access to other 
processes’ data is to patch the user-to-kernel-mode 
jump table in a processes’ Thread Environment Block 
(TEB), which is shared by all processes in the system 
rather than being local to each one, so that changing it 
in one process affects every other running process [4]. 

Although the use of functions like 
ReadProcessMemory requires Administrator 
privileges, most users tend to either run their system as 
Administrator or give themselves equivalent privileges 
since it’s extremely difficult to make use of the machine 
without these privileges.  In the unusual case where the 
user isn’t running with these privileges, it’s possible to 
use a variety of tricks to bypass any OS security 
measures which might be present in order to perform 
the desired operations.  For example by installing a 
Windows message hook it’s possible to capture 
messages intended for another process and have them 
dispatched to your own message handler.  Windows 
then loads the hook handler into the address space of 
the process which owns the thread which the message 
was intended for, in effect yanking your code across 
into the address space of the victim [5].  Even simpler 
are mechanisms such as using the 
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows 
NT\CurrentVersion\Windows\AppInit_DLLs key, which 
specifies a list of DLLs which are automatically loaded 
and called whenever an application uses the USER32 
system library (which is automatically used by all GUI 
applications and many command-line ones).  Every 
DLL specified in this registry key is loaded into the 
processes’ address space by USER32, which then calls 
the DLL’s DllMain function to initialise the DLL (and, 
by extension, trigger whatever other actions the DLL is 
designed for). 



A more sophisticated attack involves persuading the 
system to run your code in ring 0 (the most privileged 
security level usually reserved for the OS kernel) or, 
alternatively, convincing the OS to allow you to load a 
selector which provides access to all physical memory 
(under Windows NT, selectors 8 and 10 provide this 
capability).  Running user code in ring 0 is possible due 
to the peculiar way in which the NT kernel loads.  The 
kernel is accessed via the int 2Eh call gate, which 
initially provides about 200 functions via 
NTOSKRNL.EXE but is then extended to provide 
more and more functions as successive parts of the OS 
are loaded.  Instead of merely adding new functions to 
the existing table, each new portion of the OS which is 
loaded takes a copy of the existing table, adds its own 
functions to it, and then replaces the old one with the 
new one.  To add supplemental functionality at the 
kernel level, all that’s necessary is to do the same thing 
[6].  Once your code is running at ring 0, an NT system 
starts looking a lot like a machine running DOS. 

Although the problems mentioned so far have 
concentrated on Windows NT, many Unix systems 
aren’t much better.  For example the use of ptrace 
with the PTRACE_ATTACH option followed by the 
use of other ptrace capabilities provides similar 
headaches to those arising from 
ReadProcessMemory.  The reason why these issues 
are more problematic under NT is that users are 
practically forced to run with system Administrator 
privileges in order to perform any useful work on the 
system, since a standard NT system has no equivalent 
to Unix’s su functionality and, to complicate things 
further, frequently assumes that the user always has 
Administrator privileges (that is, it assumes it’s a 
single-user system with the user being Administrator).  
While it’s possible to provide some measure of 
protection on a Unix system by running crypto code as 
a daemon in its own memory space, the fact that the 
Administrator can dynamically load NT services (which 
can use ReadProcessMemory to interfere with any 
other running service) means that even implementing 
the crypto code as an NT service provides no escape. 

1.1. The Root of the Problem 
The reason why problems like those described above 
persist, and why we’re unlikely to ever see a really 
secure consumer OS is because it’s not something 
which most consumers care about.  One recent survey 
of Fortune 1000 security managers showed that 
although 92% of them were concerned about the 
security of Java and ActiveX, nearly three quarters 
allowed them onto their internal networks, and more 
than half didn’t even bother scanning for them [7].  
Users are used to programs malfunctioning and 
computers crashing (every Windows NT user can tell 

you what the abbreviation BSOD means even though 
it’s never actually mentioned in the documentation), 
and see it as normal for software to contain bugs.  Since 
program correctness is difficult and expensive to 
achieve, and as long as flashiness and features are the 
major selling point for products, buggy and insecure 
systems will be the normal state of affairs [8].  Unlike 
other Major Problems like Y2K (which contain their 
own built-in deadline), security generally isn’t regarded 
as a pressing issue unless the user has just been 
successfully attacked or the corporate auditors are about 
to pay a visit, which means that it’s much easier to defer 
addressing it to some other time [9].  Even in cases 
where the system designers originally intended to 
implement a rigorous security system employing a 
trusted computing base (TCB), the requirement to add 
features to the system inevitably results in all manner of 
additions being crammed into the TCB, with the result 
that it is neither small, nor verified, nor secure. 

An NSA study [10] lists a number of features which are 
regarded as “crucial to information security” but which 
are absent from all mainstream operating systems.  
Features such as mandatory access controls which are 
mentioned in the study correspond to Orange Book B-
level security features which can’t be bolted onto an 
existing design but generally need to be designed in 
from the start, necessitating a complete overhaul of an 
existing system in order to provide the required 
functionality.  This is often prohibitively resource-
intensive, for example the task of reengineering the 
Multics kernel (which contained a “mere” 54,000 lines 
of code) to provide a minimised TCB was estimated to 
cost $40M (in 1977 dollars) and was never completed 
[11].  The work involved in performing the same kernel 
upgrade or redesign from scratch with an operating 
system containing millions or tens of millions of lines 
of code would make it beyond prohibitive. 

At the moment security and ease of use are at opposite 
ends of the scale, and most users will opt for ease of use 
over security.  JavaScript, ActiveX, and embedded 
active content may be a security nightmare, but they do 
make life a lot easier for most users, leading to 
comments from security analysts like “You want to 
write up a report with the latest version of Microsoft 
Word on your insecure computer or on some piece of 
junk with a secure computer?”[12], “Which sells more 
products: really secure software or really easy-to-use 
software?”[13], and “It’s possible to make money from 
a lousy product […] Corporate cultures are focused on 
money, not product”[14].  In many cases users don’t 
even have a choice, if they can’t process data from 
Word, Excel, PowerPoint, and Outlook and view web 
pages loaded with JavaScript and ActiveX, their 
business doesn’t run, and some companies go so far as 
to publish explicit instructions telling users how to 



disable security measures in order to maximise their 
web-browsing experience [15].  Going beyond basic OS 
security, most current security products still don’t 
effectively address the problems posed by hostile code 
such as trojan horses (which the Orange Book’s Bell-
LaPadula security model was designed to combat), and 
the systems the code runs on increase both the power of 
the code to do harm and the ease of distributing the 
code to other systems. 

This presents rather a gloomy outlook for someone 
wanting to provide secure crypto services to a user of 
these systems.  In order to solve this problem, we adopt 
a reversed form of the Mohammed-and-the-mountain 
approach: Instead of trying to move the insecurity away 
from the crypto through various operating system 
security measures, we instead move the crypto away 
from the insecurity.  In other words although the user 
may be running a system crawling with rogue ActiveX 
controls, macro viruses, trojan horses, and other 
security nightmares, none of these can come near the 
crypto. 

1.2. Solving the Problem 
The FIPS 140 standard provides us with a number of 
guidelines for the development of cryptographic 
security modules.  NIST originally allowed only 
hardware implementations of cryptographic algorithms 
(for example the original NIST DES document allowed 
for hardware implementation only [16][17]), however 
this requirement was relaxed somewhat in the mid-
1990’s to allow software implementations as well 
[18][19].  FIPS 140 defines four security levels ranging 
from level 1 (the cryptographic algorithms are 
implemented correctly) through to level 4 (the module 
or device has a high degree of tamper-resistance 
including an active tamper response mechanism which 
causes it to zeroise itself when tampering is detected).  
To date only one general-purpose product family has 
been certified at level 4 [20]. 

Since FIPS 140 also allows for software 
implementations, an attempt has been made to provide 
an equivalent measure of security for the software 
platform on which the cryptographic module is to run.  
This is done by requiring the underlying operating 
system to be evaluated at progressively higher Orange 
Book levels for each FIPS 140 level, so that security 
level 2 would require the software module to be 
implemented on a C2-rated operating system.  
Unfortunately this provides something if an impedance 
mismatch between the actual security of hardware and 
software implementations, since it implies that products 
such as a Fortezza card [21] or Dallas iButton (a 
relatively high-security device) [22] provide the same 
level of security as a program running under Windows 

NT.  It’s possible that the OS security levels were set so 
low out of concern that setting them any higher would 
make it impossible to implement the higher FIPS 140 
levels in software due to a lack of systems evaluated at 
that level. 

Even with sights set this low, it doesn’t appear to be 
possible to implement secure software-only crypto on a 
general-purpose PC.  Trying to protect cryptovariables 
(or more generically security-relevant data items, 
SRDI’s in FIPS 140-speak) on a system which provides 
functions like ReadProcessMemory seems 
pointless, even if the system does claim a C2/E2 
evaluation.  On the other hand trying to source a B2 or 
more realistically B3 system to provide an adequate 
level of security for the crypto software is almost 
impossible (the practicality of employing an OS in this 
class, whose members include Trusted Xenix, XTS 300, 
and Multos, speaks for itself).  A simpler solution 
would be to implement a crypto coprocessor using a 
dedicated machine running at system high, and indeed 
FIPS 140 explicitly recognises this by stating that the 
OS security requirements only apply in cases where the 
system is running programs other than the crypto 
module (to compensate for this, FIPS 140 imposes its 
own software evaluation requirements which in some 
cases are even more arduous than the Orange Book 
ones). 

An alternative to a pure-hardware approach might be to 
try to provide some form of software-only protection 
which attempts to compensate for the lack of protection 
present in the OS.  Some work has been done in this 
area involving the obfuscation of the code to be 
protected, either mechanically [23] or manually [24].  
The use of mechanical obfuscation (for example 
reodering of code and insertion of dummy instructions) 
is also present in a number of polymorphic viruses, and 
can be quite effectively countered [25][26].  Manual 
obfuscation techniques are somewhat more difficult to 
counter automatically, however computer game vendors 
have trained several generations of crackers in the art of 
bypassing the most sophisticated software protection 
and security features they could come up with 
[27][28][29], indicating that this type of protection 
won’t provide any relief either, and this doesn’t even go 
into the portability and maintenance nightmare which 
this type of code presents (it is for these reasons that the 
obfuscation provisions were removed from a later 
version of the CDSA specification where they were first 
proposed [30]). 

1.3. Coprocessor Design Issues 
The main consideration when designing a coprocessor 
to manage crypto operations is how much functionality 
we should move from the host into the coprocessor unit.  



The baseline, which we’ll call a tier1 0 coprocessor, has 
all the functionality in the host, which is what we’re 
trying to avoid.  The levels above tier 0 provide varying 
levels of protection for cryptovariables and coprocessor 
operations, as shown in Figure 1. 

 

Figure 1: Levels of protection offered by crypto 
hardware 

The minimal level of coprocessor functionality, a tier 1 
coprocessor, moves the private key and private-key 
operations out of the host.  This type of functionality is 
found in smart cards, and is only a small step above 
having no protection at all, since although the key itself 
is held in the card, all operations performed by the card 
are controlled by the host, leaving the card at the mercy 
of any malicious software on the host system.  In 
addition to these shortcomings, smart cards are very 
slow, offer no protection for cryptovariables other than 
the private key, and often can’t even protect the private 
key fully (for example a card with an RSA private key 
intended for signing can be misused to decrypt a key or 
message since RSA signing and decryption are 
equivalent). 

The next level of functionality, tier 2, moves both 
public/private-key operations and conventional 
encryption operations along with hybrid mechanisms 
such as public-key wrapping of content-encryption keys 
into the coprocessor.  This type of functionality is found 
in devices such as Fortezza cards and a number of 
devices sold as crypto accelerators, and provides rather 
more protection than that found in smart cards since no 
cryptovariables are ever exposed on the host.  Like 
smart cards however, all control over the devices 
operation resides in the host, so that even if a malicious 
application can’t get at the keys directly, it can still 
apply them in a manner other than the intended one. 

The next level of functionality, tier 3, moves all crypto-
related processing (for example certificate generation 
and message signing and encryption) into the 
coprocessor.  The only control the host has over 
                                                           
1 The reason for the use of this somewhat unusual term is 
because almost every other noun used to denote hierarchies is 
already in use; “teir” is unusual enough that noone else has 
got around to using it in their security terminology. 

processing is at the level of “sign this message” or 
“encrypt this message”, all other operations (message 
formatting, the addition of additional information such 
as the signing time and signers identity, and so on) is 
performed by the coprocessor.  In contrast if the 
coprocessor has tier 1 functionality the host software 
can format the message any way it wants, set the date to 
an arbitrary time (in fact it can never really know the 
true time since it’s coming from the system clock which 
another process could have altered), and generally do 
whatever it wants with other message parameters.  Even 
with a tier 2 coprocessor such as a Fortezza card which 
has a built-in real-time clock (RTC), the host is free to 
ignore the RTC and give a signed message any 
timestamp it wants.  Similarly, even though protocols 
like CSP which is used with Fortezza incorporate 
complex mechanisms to handle authorisation and access 
control issues [31], the enforcement of these 
mechanisms is left to the untrusted host system rather 
than the card(!).  Other potential problem areas involve 
handling of intermediate results and composite call 
sequences which shouldn’t be interrupted, for example 
loading a key and then using it in a cryptographic 
operation [32].  In contrast, with a tier 3 coprocessor 
which performs all crypto-related processing 
independent of the host the coprocessor controls the 
message formatting and the addition of additional 
inforation such as a timestamp taken from its own 
internal clock, moving them out of reach of any 
software running on the host.  The various levels of 
protection when the coprocessor is used for message 
decryption are shown in Figure 2. 

Going beyond tier 3, a tier 4 coprocessor provides 
facilities such as command verification which prevent 
the coprocessor from acting on commands sent from the 
host system without the approval of the user.  The 
features of this level of functionality are explained in 
more detail in the section on extended security 
functionality. 

Can we move the functionality to an even higher level, 
tier 5, giving the coprocessor even more control over 
message handling?  Although it’s possible to do this, it 
isn’t a good idea since at this level the coprocessor will 
potentially need to run message viewers (to display 
messages), editors (to create/modify messages), mail 
software (to send and receive them), and a whole host 
of other applications, and of course these programs will 
need to be able to handle MIME attachments, HTML, 
JavaScript, ActiveX, and so on in order to function as 
required.  In addition the coprocessor will now require 
its own input mechanism (a keyboard), output 
mechanism (a monitor), mass storage, and other extras.  
At this point the coprocessor has evolved into a second 
computer attached to the original one, and since it’s 
running a range of untrusted and potentially dangerous 



code we need to think about moving the crypto 
functionality into a coprocessor for safety.  Lather, 
rinse, repeat. 

Figure 2: Protection levels for the decrypt operation 

The best level of functionality therefore is to move all 
crypto and security-related processing into the 
coprocessor, but to leave everything else on the host. 

2. The Coprocessor 
The traditional way to build a crypto coprocessor has 
been to create a complete custom implementation, 
originally with ASIC’s and more recently with a 
mixture of ASIC’s and general-purpose CPU’s, all 
controlled by custom software.  This approach leads to 
long design cycles, difficulties in making changes at a 
later point, high costs (with an accompanying strong 
incentive to keep all design details proprietary due to 
the investment involved), and reliance on a single 
vendor for the product.  In contrast an open-source 
coprocessor by definition doesn’t need to be 
proprietary, so it can use existing COTS hardware and 
software as part of its design, which greatly reduces the 
cost (the coprocessor described here is one to two 
orders of magnitude cheaper than proprietary designs 
while offering generally equivalent performance and 
superior functionality), and can be sourced from 
multiple vendors and easily migrated to newer hardware 
as the current hardware base becomes obsolete. 

The coprocessor requires three layers, the processor 
hardware, the firmware which manages the hardware 
(for example initialisation, communications with the 

host, persistent storage, and so on) and the 
software which handles the crypto 

functionality.  The following 
sections describe the coprocessor 

hardware and resource management 
firmware on which the crypto control software 

runs. 

2.1. Coprocessor Hardware 
Embedded systems have traditionally been based 
on the VME bus, a 32-bit data/32-bit address bus 
incorporated onto cards in the 3U (1016cm) 
and 6U (2316cm) Eurocard form factor [33].  
The VME bus is CPU-independent and supports 
all popular microprocessors including Sparc, 
Alpha, 68K, and x86.  An x86-specific bus 

called PC/104, based on the 104-pin ISA bus, 
has become popular in recent years due to 
the ready availability of low-cost 
components from the PC industry.  
PC/104 cards are much more compact at 
99.5cm than VME cards, and unlike a 
VME passive backplane-based system 
can provide a complete system on a single 

card [34].  PC/104-Plus, an extension to 
PC/104, adds a 120-pin PCI connector alongside the 
existing ISA one, but is otherwise mostly identical to 
PC/104 [35] 

In addition to PC/104 there are a number of functionally 
identical systems with slightly different form factors, of 
which the most common is the biscuit PC, a card the 
same size as a 3½” or occasionally 5¼” drive, with a 
somewhat less common one being the credit card or 
SIMM PC roughly the size of a credit card.  A biscuit 
PC provides most of the functionality and I/O 
connectors of a standard PC motherboard, as the form 
factor shrinks the I/O connectors do as well so that a 
SIMM PC typically uses a single enormous edge 
connector for all its I/O. In addition to these form 
factors there also exist card PC’s (sometimes called slot 
PC’s), which are biscuit PC’s built as ISA or (more 
rarely) PCI-like cards.  A typical configuration for a 
low-end system is a 5x86/133 CPU (roughly equivalent 
in performance to a 133 MHz Pentium), 8-16MB of 
DRAM, 2-8MB of flash memory emulating a disk 
drive, and every imaginable kind of I/O (serial ports, 
parallel ports, floppy disk, IDE hard drive, IR and USB 
ports, keyboard and mouse, and others).  High-end 
embedded systems built from components designed for 
laptop use provide about the same level of performance 
as a current laptop PC, although their price makes them 
rather impractical for use as crypto hardware. To 



compare this with other well-known types of crypto 
hardware, a typical smart card has a 5MHz 8-bit CPU, a 
few hundred bytes of RAM, and a few kB of EEPROM, 
and a Fortezza card has a 10 or 20MHz ARM CPU, 
64kB of RAM and 128kB of flash memory/EEPROM. 

All of the embedded systems described above represent 
COTS components available from a large range of 
vendors in many different countries, with a 
corresponding range of performance and price figures.  
Alongside the x86-based systems there also exist 
systems based on other CPU’s, typically ARM, 
Dragonball (embedded Motorola 68K), and to a lesser 
extent PowerPC, however these are available from a 
limited number of vendors and can be quite expensive.  
Besides the obvious factor of system performance 
affecting the overall price, the smaller form factors and 
use of exotic hardware such as non-generic-PC 
components can also drive up the price.  In general the 
best price/performance balance is obtained with a very 
generic PC/104 or biscuit PC system. 

2.2. Coprocessor Firmware 
Once the hardware has been selected the next step is to 
determine what software to run on it to control it.  The 
coprocessor is in this case acting as a special-purpose 
computer system running only the crypto control 
software, so that what would normally be thought of as 
the operating system is acting as the system firmware, 
and the real operating system for the device is the 
crypto control software.  The control software therefore 
represents an application-specific operating system, 
with crypto objects such as encryption contexts, 
certificates, and envelopes replacing the user 
applications which are managed by conventional OS’s.  
The differences between a conventional system and the 
crypto coprocessor running one typical type of 
firmware-equivalent OS are shown in Figure 3. 

 

Figure 3: Conventional system vs. coprocessor 
system layers 

Since the hardware is in effect a general-purpose PC, 
there’s no need to use a specialised, expensive 
embedded or real-time kernel or OS since a general-
purpose OS will function just as well.  The OS choice is 
then something simple like one of the free or nearly-

free embeddable forms of MSDOS [36][37][38] or an 
open source operating system like one of the x86 BSD’s 
or Linux which can be adapted for use in embedded 
hardware.  Although embedded DOS is the simplest to 
get going and has the smallest resource requirements, 
it’s really only a bootstrap loader for real-mode 
applications and provides very little access to most of 
the resources provided by the hardware.  For this reason 
it’s not worth considering except on extremely low-end, 
resource-starved hardware (it’s still possible to find 
PC/104 cards with 386/40’s on them, although having 
to drive them with DOS is probably its own 
punishment). 

A better choice than DOS is a proper operating system 
which can fully utilise the capabilities of the hardware.  
The only functionality which is absolutely required of 
the OS is a memory manager and some form of 
communication with the outside world.  Also useful 
(although not absolutely essential) is the ability to store 
data such as private keys in some form of persistent 
storage.  Finally, the ability to handle multiple threads 
may be useful where the device is expected to perform 
multiple crypto tasks at once.  Apart from the 
multithreading, the OS is just acting as a basic resource 
manager, which is why DOS could be pressed into use 
if necessary. 

Both FreeBSD and Linux have been stripped down in 
various ways for use with embedded hardware [39][40].  
There’s not really a lot to say about the two, both meet 
the requirements given above, both are open source 
systems, and both can use a standard full-scale system 
as the development environment — whichever one is 
the most convenient can be used.  At the moment Linux 
is a better choice because its popularity means there’s 
better support for devices such as flash memory mass 
storage (relatively speaking, as the Linux drivers for the 
most widely-used flash disk are for an old kernel while 
the FreeBSD ones are mostly undocumented and rather 
minimal), so the coprocessor described here uses Linux 
as its resource management firmware.  A convenient 
feature which gives the free Unixen an extra advantage 
over alternatives like embedded DOS is that they’ll 
automatically switch to using the serial port for their 
consoles if no video drivers and/or hardware are 
present, which enables them to be used with cheaper 
embedded hardware which doesn’t require additional 
video circuitry just for the one-off setup process.  A 
particular advantage of Linux is that it’ll halt the CPU 
when nothing is going on (which is most of the time), 
greatly reducing coprocessor power consumption and 
heat problems. 



2.3. Firmware Setup 
Setting up the coprocessor firmware involves creating a 
stripped-down Linux setup capable of running on the 
coprocessor hardware.  The services required of the 
firmware are: 

 Memory management 

 Persistent storage services 

 Communication with the host 

 Process and thread management (optional) 

All newer embedded systems support the M-Systems 
DiskOnChip (DOC) flash disk, which emulates a 
standard IDE hard drive by identifying itself as a BIOS 
extension during the system initialisation phase 
(allowing it to install a DOC filesystem driver to 
provide BIOS support for the drive) and later switching 
to a native driver for OS’s which don’t use the BIOS for 
hardware access [41].  The first step in installing the 
firmware involves formatting the DOC as a standard 
hard drive and partitioning it prior to installing Linux.  
The DOC is configured to contain two partitions, one 
mounted read-only which contains the firmware and 
crypto control software, and one mounted read/write 
with additional safety precautions like noexec and 
nosuid, for storage of configuration information and 
encrypted keys. 

The firmware consists of a basic Linux kernel with 
every unnecessary service and option stripped out.  This 
means removing support for video devices, mass 
storage (apart from the DOC and floppy drive), 
multimedia devices, and other unnecessary bagatelles.  
Apart from the TCP/IP stack needed by the crypto 
control software to communicate with the host, there 
are no networking components running (or even 
present) on the system, and even the TCP/IP stack may 
be absent if alternative means of communicating with 
the host (explained in more detail further on) are 
employed.  All configuration tasks are performed 
through console access via the serial port, and software 
is installed by connecting a floppy drive and copying 
across pre-built binaries.  This both minimises the size 
of the code base which needs to be installed on the 
coprocessor, and eliminates any unnecessary processes 
and services which might constitute a security risk.  
Although it would be easier if we provided a means of 
FTP’ing binaries across, the fact that a user must 
explicitly connect a floppy drive and mount it in order 
to change the firmware or control software makes it 
much harder to accidentally (or maliciously) move 
problematic code across to the coprocessor, provides a 
workaround for the fact that FTP over alternative 
coprocessor communications channels such as a parallel 
port is tricky without resorting to the use of even more 

potential problem software, and makes it easier to 
comply with the FIPS 140 requirements that (where a 
non-Orange Book OS is used) it not be possible for 
extraneous software to be loaded and run on the system.  
Direct console access is also used for other operations 
such as setting the onboard real-time clock, which is 
used to add timestamps to signatures.  Finally, all 
paging is disabled, both because it isn’t needed or safe 
to perform with the limited-write-cycle flash disk, and 
because it avoids any risk of sensitive data being 
written to backing store, eliminating a major headache 
which occurs with all virtual-memory operating 
systems [42]. 

At this point we have a basic system consisting of the 
underlying hardware and enough firmware to control it 
and provide the services we require.  Running on top of 
this will be a daemon which implements the crypto 
control software which does the actual work. 

3. Crypto Functionality Implementation 
Once the hardware and functionality level of the 
coprocessor have been established, we need to design 
an appropriate programming interface for it.  An 
interface which employs complex data structures, 
pointers to memory locations, callback functions, and 
other such elements won’t work with the coprocessor 
unless a complex RPC mechanism is employed.  Once 
we get to this level of complexity we run into problems 
both with lowered performance due to data marshalling 
and copying requirements and potential security 
problems arising from inevitable implementation bugs. 

 

Figure 4: cryptlib architecture 

A better type of interface is the one used in the cryptlib 
security architecture [43] which is depicted in Figure 4.  
cryptlib implements an object-based design which 
assigns unique handles to crypto-related objects but 
hides all further object details inside the architecture.  
Objects are controlled through messages sent to them 
under the control of a central security kernel, an 
interface which is ideally suited for use in a coprocessor 
since only the object handle (a small integer value) and 



one or two arguments (either an integer value or a byte 
string and string length) are needed to perform most 
operations.  This use of only basic parameter types 
leads to a very simple and lightweight interface, with 
only the integer values needing any canonicalisation (to 
network byte order) before being passed to the 
coprocessor.  A coprocessor call of this type, illustrated 
in Figure 5, requires only a few lines of code more than 
what is required for a direct call to the same code on the 
host system.  In practice the interface is further 
simplified by using a pre-encoded template containing 
all fixed parameters (for example the type of function 
call being performed and a parameter count), copying in 
any variable parameters (for example the object handle) 
with appropriate canonicalistion, and dispatching the 
result to the coprocessor.  The coprocessor returns 
results in the same manner. 

 

Figure 5: Communicating with the coprocessor 

3.1. Communicating with the Coprocessor 
The next step after designing the programming interface 
is to determine which type of communications channel 
is best suited to controlling the coprocessor.  Since the 
embedded controller hardware is intended for 
interfacing to almost anything, there are a wide range of 
I/O capabilities available for communicating with the 
host.  Many embedded controllers provide an ethernet 
interface either standard or as an option, so the most 
universal interface uses TCP/IP for communications.  
For card PC’s which plug into the hosts backplane we 
should be able to use the system bus for 
communications, and if that isn’t possible we can take 
advantage of the fact that the parallel ports on all recent 
PC’s provide sophisticated (for what was intended as a 
printer port) bidirectional I/O capabilities and run a link 
from the parallel port on the host motherboard to the 
parallel port on the coprocessor.  Finally, we can use 
more exotic I/O capabilities such as USB to 
communicate with the coprocessor. 

The most universal coprocessor consists of a biscuit PC 
which communicates with the host over ethernet (or, 
less universally, a parallel port).  One advantage which 
an external, removable coprocessor of this type has over 
one which plugs directly into the host PC is that it’s 

very easy to unplug the entire crypto subsystem and 
store it separately from the host, moving it out of reach 
of any covert access by outsiders while the owner of the 
system is away.  In addition to the card itself, this type 
of standalone setup requires a case and a power supply, 
either internal to the case or an external wall-wart type 
(these are available for about $10 with a universal input 
voltage range which allows them to work in any 
country).  The same arrangement is used in a number of 
commercially-available products, and has the advantage 
that it interfaces to virtually any type of system, with 
the commensurate disadvantage that it requires a 
dedicated ethernet connection to the host (which 
typically means adding an extra network card), as well 
as adding to the clutter surrounding the machine. 

The alternative option for an external coprocessor is to 
use the parallel port, which doesn’t require a network 

card but does tie up a port which may be required for 
one of a range of other devices such as external disk 
drives, CD writers, and scanners which have been 
kludged onto this interface alongside the more obvious 
printers.  Apart from its more obvious use, the printer 
port can be used either as an Enhanced Parallel Port 
(EPP) or as an Extended Capability Port (ECP) [44].  
Both modes provide about 1-2 MB/s data throughput 
(depending on which vendors claims are to be believed) 
which compares favourably with a parallel port’s 
standard software-intensive maximum rate of around 
150 kB/s and even with the throughput of a 10Mbps 
ethernet interface.  EPP was designed for general-
purpose bidirectional communication with peripherals 
and handles intermixed read and write operations and 
block transfers without too much trouble, whereas ECP 
(which requires a DMA channel which can complicate 
the host system’s configuration process) requires 
complex data direction negotiation and handling of 
DMA transfers in progress, adding a fair amount of 
overhead when used with peripherals which employ 
mixed reading and writing of small data quantities.  
Another disadvantage of DMA is that its use paralyses 
the CPU by seizing control of the bus, halting all 
threads which may be executing while data is being 
transferred.  Because of this the optimal interface 
mechanism is EPP.  From a programming point of 
view, this communications mechanism looks like a 
permanent virtual circuit which is functionally 
equivalent to the dumb wire which we’re using the 



ethernet link as, so the two can be interchanged with a 
minimum of coding effort. 

To the user, the most transparent coprocessor would 
consist of some form of card PC which plugs directly 
into their system’s backplane.  Currently virtually all 
card PC’s have ISA bus interfaces (the few which 
support PCI use a PCI/ISA hybrid which won’t fit a 
standard PCI slot [45]) which unfortunately doesn’t 
provide much flexibility in terms of communications 
capabilities since the only viable means of moving data 
to and from the coprocessor is via DMA, which requires 
a custom kernel-mode driver on both sides.  The 
alternative, using the parallel port, is much simpler 
since most operating systems already support EPP 
and/or ECP data transfers, but comes at the expense of a 
reduced data transfer rate and the loss of use of the 
parallel port on the host.  Currently the use of either of 
these options is rendered moot since the ISA card PC’s 
assume they have full control over a passive-backplane-
bus system, which means they can’t be plugged into a 
standard PC which contains its own CPU which is also 
assuming that it solely controls the bus.  It’s possible 
that in the future card PC’s which function as PCI bus 
devices will appear, but until they do it’s not possible to 
implement the coprocessor as a plug-in card without 
using a custom extender card containing an ISA or PCI 
connector for the host side, a PC104 connector for a 
PC104-based CPU card, and buffer circuitry in between 
to isolate the two buses.  This destroys the COTS nature 
of the hardware, limiting availability and raising costs. 

The final communications option uses more exotic I/O 
capabilities such as USB which are present on newer 
embedded systems, these are much like ethernet but 
have the disadvantage that they are currently rather 
poorly supported by most operating systems. 

Since we’re using Linux as the resource manager for 
the coprocessor hardware, we can use a multithreaded 
implementation of the coprocessor software to handle 
multiple simultaneous requests from the host.  After 
initialising the various cryptlib subsystems, the control 
software creates a pool of threads which wait on a 
mutex for commands from the host.  When a command 
arrives, one of the threads is woken up, processes the 
command, and returns the result to the host.  In this 
manner the coprocessor can have multiple requests 
outstanding at once, and a process running on the host 
won’t block whenever another process has an 
outstanding request present on the coprocessor. 

3.2. Open vs Closed-source Coprocessors 
There are a number of vendors who sell various forms 
of tier 2 coprocessor, all of which run proprietary 
control software and generally go to some lengths to 
ensure that no outsiders can ever examine it.  The usual 

way in which vendors of proprietary implementations 
try to build the same user confidence in their product as 
would be provided by having the source code and 
design information available for public scrutiny is to 
have it evaluated by independent labs and testing 
facilities, typically to the FIPS 140 standard when the 
product constitutes crypto hardware (the security 
implications of open source vs proprietary 
implementations have been covered exhaustively in 
various fora and won’t be repeated here).  
Unfortunately this process leads to prohibitively 
expensive products (thousands to tens of thousands of 
dollars per unit) and still requires users to trust the 
vendor not to insert a backdoor, or accidentally void the 
security via a later code update or enhancement added 
after the evaluation is complete (strictly speaking such 
post-evaluation changes would void the evaluation, but 
vendors sometimes forget to mention this in their 
marketing literature).  There have been numerous 
allegations of the former occurring [46][47][48], and 
occasional reports of the latter. 

In contrast, an open source implementation of the 
crypto control software can be seen to be secure by the 
end user with no degree of blind trust required.  The 
user can (if they feel so inclined) obtain the raw 
coprocessor hardware from the vendor of their choice in 
the country of their choice, compile the firmware and 
control software from the openly-available source code, 
and install it knowing that no supplemental 
functionality known only to a few insiders exists.  For 
this reason the entire suite of coprocessor control 
software is available in source code form for anyone to 
examine, build, and install as they see fit. 

A second, far less theoretical advantage of an open-
source coprocessor is that until the crypto control code 
is loaded into it, it isn’t a controlled cryptographic item 
as crypto source code and software aren’t controlled in 
most of the world.  This means that it’s possible to ship 
the hardware and software separately to almost any 
destination (or source it locally) without any restrictions 
and then combine the two to create a controlled item 
once they arrive at their destination (like a two-
component glue, things don’t get sticky until you mix 
the parts). 

4. Extended Security Functionality 
The basic coprocessor design presented so far serves to 
move all security-related processing and 
cryptovariables out of reach of hostile software, but by 
taking advantage of the capabilities of the hardware and 
firmware used to implement it, it’s possible to do much 
more.  One of the features of the cryptlib architecture is 
that all operations are controlled and monitored by a 
central security kernel which enforces a single, 



consistent security policy across the entire architecture.  
By tying the control of some of these operations to 
features of the coprocessor, it’s possible to obtain an 
extended level of control over its operation as well as 
avoiding some of the problems which have traditionally 
plagued this type of security device. 

4.1. Controlling Coprocessor Actions 
The most important type of extra functionality which 
can be added to the coprocessor is extended failsafe 
control over any actions it performs.  This means that 
instead of blindly performing any action requested by 
the host (purportedly on behalf of the user), it first seeks 
confirmation from the user that they have indeed 
requested that the action be taken.  The most obvious 
application of this mechanism is for signing documents 
where the owner has to indicate their consent through a 
trusted I/O path rather than allowing a rogue application 
to request arbitrary numbers of signatures on arbitrary 
documents.  This contrasts with other tier 1 and 2 
processors which are typically enabled through user 
entry of a PIN or password, after which they are at the 
mercy of any commands coming from the host.  Apart 
from the security concerns, the ability to individually 
control signing actions and require conscious consent 
from the user means that the coprocessor provides a 
mechanism required by a number of new digital 
signature laws which recognise the dangers inherent in 
systems which provide an automated (that is, with little 
control from the user) signing capability. 

 

Figure 6: Normal message processing 

The means of providing this service is to hook into the 
cryptlib kernel’s sign action and decrypt action 
processing mechanisms.  In normal processing the 
kernel receives the incoming message, applies various 
security-policy-related checks to it (for example it 
checks to ensure that the object’s ACL allows this type 
of access), and then forwards the message to the 
intended target, as shown in Figure 6.  In order to obtain 
additional confirmation that the action is to be taken, 
the coprocessor can indicate the requested action to the 
user and request additional confirmation before passing 
the message on.  If the user chooses to deny the request 
or doesn’t respond within a certain time, the request is 
blocked by the kernel in the same manner as if the 
objects ACL didn’t allow it, as shown in Figure 7.  This 
mechanism is similar to the command confirmation 

mechanism in the VAX A1 security kernel, which takes 
a command from the untrusted VMS or Ultrix-32 OS’s 
running on top of it, requests that the user press the 
(non-overridable) secure attention key to communicate 
directly with the kernel and confirm the operation 
(“Something claiming to be you has requested X.  Is this 
OK?”), and then returns the user back to the OS after 
performing the operation [49]. 

 

Figure 7: Processing with user confirmation 

The simplest form of user interface involves two LED’s 
and two pushbutton switches connected to a suitable 
port on the coprocessor (for example the parallel port or 
serial port status lines).  An LED is activated to indicate 
that confirmation of a signing or decryption action is 
required by the coprocessor.  If the user pushes the 
confirmation button, the request is allowed through, if 
they push the cancel button or don’t respond within a 
certain time, the request is denied. 

4.2. Trusted I/O Path 
The basic user confirmation mechanism presented 
above can be generalised by taking advantage of the 
potential for a trusted I/O path which is provided by the 
coprocessor.  The main use for a trusted I/O path is to 
allow for secure entry of a password or PIN used to 
enable access to keys stored in the coprocessor.  Unlike 
typical tier 1 devices which assume the entire device is 
secure and use a short PIN in combination with a retry 
counter to protect cryptovariables, the coprocessor 
makes no assumptions about its security and instead 
relies on a user-supplied password to encrypt all 
cryptovariables held in persistent storage (the only time 
keys exist in plaintext form is when they’re decrypted 
to volatile memory prior to use).  Because of this, a 
simple numeric keypad used to enter a PIN isn’t 
sufficient (unless the user enjoys memorising long 
strings of digits for use as passwords).  Instead, the 
coprocessor can optionally make use of devices such as 
PalmPilots for password entry, perhaps in combination 
with novel password entry techniques such as graphical 
passwords [50].  Note though that, unlike a tier 0 crypto 
implementation, obtaining the user password via a 
keyboard sniffer on the host doesn’t give access to 



private keys since they’re held on the coprocessor and 
can never leave it, so that even if the password is 
compromised by software on the host, it won’t provide 
access to the keys. 

In a slightly more extreme form, the ability to access 
the coprocessor via multiple I/O channels allows us to 
enforce strict red/black separation, with plaintext being 
accessed through one I/O channel, ciphertext through 
another, and keys through a third.  Although cryptlib 
doesn’t normally load plaintext keys (they’re generated 
and managed internally and can never pass outside the 
security perimeter), when the ability to load external 
keys is required FIPS 140 mandates that they be loaded 
via a separate channel rather than over the one used for 
general data, which can be provided for by loading 
them over a separate channel such as a serial port (a 
number of commercial crypto coprocessors come with a 
serial port for this reason). 

4.3. Physically Isolated Crypto 
It has been said that the only truly tamperproof 
computer hardware is Voyager 2, since it has a 
considerable air gap (strictly speaking a non-air gap) 
which makes access to the hardware somewhat 
challenging (space aliens notwithstanding).  We can 
take advantage of air-gap security in combination with 
cryptlib’s remote-execution capability by siting the 
hardware performing the crypto in a safe location well 
away from any possible tampering.  For example by 
running the crypto on a server in a physically secure 
location and tunneling data and control information to it 
via its built-in ssh or SSL capabilities, we obtain the 
benefits of physical security for the crypto without the 
awkwardness of having to use it from a secure location 
or the expense of having to use a physically secure 
crypto module (the implications of remote execution of 
crypto from a country like China with keys and crypto 
held in Europe or the US are left as an exercise for the 
reader). 

Physical isolation at the macroscopic level is also 
possible due to the fact that cryptlib employs a 
separation kernel for its security [51][52], which allows 
different object types (and, at the most extreme level, 
individual objects) to be implemented in physically 
separate hardware.  For those requiring an extreme level 
of isolation and security, it should be possible to 
implement the different object types in their own 
hardware, for example keyset objects (which don’t 
require any real security since certificates contain their 
own tamper protection) could be implemented on the 
host PC, the kernel (which requires a minimum of 
resources) could be implemented on a cheap ARM-
based plug-in card, envelope objects (which can require 
a fair bit of memory but very little processing power) 

could be implemented on a 486 card with a good 
quantity of memory, and encryption contexts (which 
can require a fair amount of CPU power but little else) 
could be implemented using a faster Pentium-class 
CPU.  In practice though it’s unlikely that anyone 
would consider this level of isolation worth the expense 
and effort. 

5. Crypto Hardware Acceleration 
So far the discussion of the coprocessor has focused on 
the security and functionality enhancements it provides, 
avoiding any mention of performance concerns.  The 
reason for this is that for the majority of users the 
performance is good enough, meaning that for typical 
applications such as email encryption, web browsing 
with SSL, and remote access via ssh, the presence of the 
coprocessor is barely noticeable since the limiting 
factors on performance are set by network bandwidth, 
disk access times, modem speed, bloatware running on 
the host system, and so on.  Although never intended 
for use as a special-purpose crypto accelerator of the 
type capable of performing hundreds of RSA operations 
per second on behalf of a heavily-loaded web server, it 
is possible to add extra functionality to the coprocessor 
through its built-in PC104 bus to extend its 
performance.  By adding a PC104 daughterboard to the 
device, it’s possible to enhance its functionality or add 
new functionality in a variety of ways, as explained 
below (although the prices quoted for devices will 
change over time, the price ratios should remain 
relatively constant). 

5.1. Conventional Encryption/Hashing 
Implementing an algorithm like DES which was 
originally targeted at hardware implementation, in a 
field-programmable gate array (FPGA) is relatively 
straightforward, and hash algorithms like MD5 and 
SHA-1 can also be implemented fairly easily in 
hardware by implementing a single round of the 
algorithm and cycling the data through it the 
appropriate number of times.  Using a low-cost FPGA, 
it should be possible to build a daughterboard which 
performs DES and MD5/SHA-1 acceleration for around 
$50.  Unfortunately, a number of hardware and software 
issues conspire to make this non-viable economically.  
The main problem is that although DES is faster to 
implement in hardware than in software, most newer 
algorithms are much more efficient in software (ones 
with large, key-dependent S-boxes are particularly 
difficult to implement in FPGA’s because they require 
huge numbers of logic cells, requiring very expensive 
high-density FPGA’s).  A related problem is the fact 
that in many cases the CPU on the coprocessor is 
already capable of saturating the I/O channel 
(ethernet/ECP/EPP/PC104) using a pure software 



implementation, so there’s nothing to be gained by 
adding expensive external hardware (all of the 
software-optimised algorithms run at several MB/s 
whereas the I/O channel is only capable of handling 
around 1MB/s).  The imbalance becomes even worse 
when any CPU faster than the entry-level 5x86/133 
configuration is used, since at this point any common 
algorithm (even the rather slow triple DES) can be 
executed more quickly in software than the I/O channel 
can handle.  Because of this it doesn’t seem profitable 
to try to augment software-based conventional 
encryption or hashing capabilities with extra hardware. 

5.2. Public-key Encryption 
Public-key algorithms are less amenable to 
implementation in general-purpose CPU’s than 
conventional encryption and hashing algorithms, so 
there’s more scope for hardware acceleration in this 
area.  We have two options for accelerating public-key 
operations, either using an ASIC from a vendor or 
implementing our own version with an FPGA.  Bignum 
ASIC’s are somewhat thin on the ground since the 
vendors who produce them usually use them in their 
own crypto products and don’t make them available for 
sale to the public, however there is one company who 
specialise in ASIC’s rather than crypto products who 
can supply a bignum ASIC (it’s also possible to license 
bignum cores and implement the device yourself, this 
option is covered peripherally in the next section).  
Using this device, the PCC201 [53], it’s possible to 
build a bignum acceleration daughterboard for around 
$100. 

Unfortunately, the device has a number of limitations.  
Although impressive when it was first introduced, the 
maximum key size of 1024 bits and maximum 
throughput of 21 operations/s for 1024-bit keys and 74 
operations/s for 512-bit keys compares rather poorly 
with software implementations on newer Pentium-class 
CPU’s, which can achieve the same performance with a 
CPU speed of around 200MHz.  This means that 
although one of these devices would serve to accelerate 
performance on a coprocessor based on the entry-level 
5x86/133 hardware, a better way to utilise the extra 
expense of the daughterboard would be to buy the next 
level up in coprocessor hardware, giving somewhat 
better bignum performance and accelerating all other 
operations as well as a free side-effect (the entry level 
for Pentium-class cards is one containing a 266MHz 
Cyrix MediaGX, although it may be possible to put 
together an even cheaper one using a bare card and 
populating it with an AMD K6/266, currently selling 
for around $30).  A second disadvantage of the PCC201 
is that it’s made available under peculiar export control 
terms which can make it cumbersome (or even 

impossible) to obtain for anyone who isn’t a large 
company. 

An alternative to using an ASIC is to implement our 
own bignum accelerator with an FPGA, with the 
advantage that we can make it as fast as required 
(within the limits of the available hardware).  Again, 
there is the problem that much of the published work in 
the area of bignum accelerator design is by crypto 
hardware vendors who don’t make the details available, 
however there is one reasonably fast implementation 
which achieves 83 operations/s for 1024-bit keys and 
340 operations/s for 512-bit keys using a total of 6,700 
FPGA basic cells (configurable logic blocks or CLB’s) 
[54].  The use of such a large number of CLB’s requires 
the use of very high-density FPGA’s, of which the most 
widely-used representative is the Xilinx XC4000 family 
[55].  The cheapest available FPGA capable of 
implementing this design, the XC40200, comes with a 
pre-printed mortgage application form and a $2000-
$2500 price tag (depending on speed grade and 
quantity), providing a clue as to why the design has to 
date only been implemented on a simulator.  Again, it’s 
possible to buy an awful lot of CPU power for the same 
amount of money (an equivalent level of performance 
to the FPGA design is obtainable using about $200 
worth of AMD Athlon CPU [56]). 

This illustrates a problem faced by all hardware crypto 
accelerator vendors, which may be stated as a 
derivation of Moore’s law: Intel can make it faster 
cheaper than you can.  In other words, putting a lot of 
effort into designing an ASIC for a crypto accelerator is 
a risky investment because, aside from the usual 
flexibility problems caused by the use of an ASIC, it’ll 
be rendered obsolete by general-purpose CPU’s within 
a few years.  This problem is demonstrated by several 
products currently sold as crypto hardware accelerators 
which in fact act as crypto handbrakes since, when 
plugged in or enabled, performance slows down. 

For pure acceleration purposes, the optimal 
price/performance tradeoff appears to be to populate a 
daughterboard with a collection of cheap CPU’s 
attached to a small amount of memory and just enough 
glue logic to support the CPU (this approach is used by 
nCipher, who use a cluster of ARM CPU’s in their SSL 
accelerators [57]).  The mode of operation of this CPU 
farm would be for the crypto coprocessor to halt the 
CPU’s, load the control firmware (a basic protected-
mode kernel and appropriate code to implement the 
required bignum operation(s)) into the memory, and 
restart the CPU running as a special-purpose bignum 
engine.  For x86 CPU’s, there are a number of very 
minimal open-source protected-mode kernels which 
were originally designed as DOS extenders for games 
programming available, these ignore virtual memory, 



page protection, and other issues and run the CPU as if 
it were very fast a 32-bit real-mode 8086.  By using a 
processor like a K6-2 3D/333 (currently selling for 
around $35) which contains 32+32K of onboard cache, 
the control code can be loaded initially from slow, 
cheap external memory but will execute from cache at 
the full CPU speed from then on.  Each of these 
dedicated bignum units should be capable of ~200 512-
bit RSA operations per second at a cost of around $100 
each. 

Unfortunately the use of commodity x86 CPU’s of this 
kind has several disadvantages.  The first is that they 
are designed for use in systems with a certain fixed 
configuration (for example SDRAM, PCI and AGP 
busses, a 64-bit bus interface, and other high-
performance options) which means that using them with 
a single cheap 8-bit memory chip requires a fair amount 
of glue logic to fake out the control signals from the 
external circuitry which is expected to be present.  The 
second problem is that these CPU’s consume significant 
amounts of power and dissipate a large amount of heat, 
with current drains of 10-15A and dissipations of 20-
40W being common for the range of low-end 
processors which might be used as cheap accelerator 
engines.  Adding more CPU’s to improve performance 
only serves to exacerbate this problem, since the power 
supplies and enclosures designed for embedded 
controllers are completely overwhelmed by the 
requirements of a cluster of these CPU’s.  Although the 
low-cost processing power offered by general-purpose 
CPU’s appears to make them ideal for this situation, the 
practical problems they present rules them out as a 
solution. 

A final alternative is offered by digital signal processors 
(DSP’s), which require virtually no external circuitry 
since most newer ones contain enough onboard memory 
to hold all data and control code, and don’t expect to 
find sophisticated external control logic present.  The 
fact that DSP’s are optimised for embedded signal-
processing tasks makes them ideal for use as bignum 
accelerators, since a typical configuration contains two 
32-bit single-cycle multiply-accumulate (MAC) units 
which provide in one instruction the most common 
basic operation used in bignum calculations.  The best 
DSP choice appears to be the ADSP-21160, which 
consumes only 2 watts and contains built-in 
multiprocessor support allowing up to 6 DSP’s to be 
combined into one cluster [58].  The aggregate 3,600 
MFLOPS processing power provided by one of these 
clusters should prove sufficient (in its integer 
equivalent) to accelerate bignum calculations.  The 
feasibility of using DSP’s as low-cost accelerators is 
currently under consideration and may be the subject of 
a future paper. 

5.3. Other Functionality 
In addition to pure acceleration purposes, it’s possible 
to use a PC104 add-on card to handle a number of other 
functions.  The most important of these is a hardware 
random number generator (RNG), since the 
effectiveness of the standard entropy-polling RNG 
using by cryptlib [59] is somewhat impaired by its use 
in an embedded environment.  A typical RNG would 
take advantage of several physical randomness sources 
(typically thermal noise in semiconductor junctions) fed 
into a Schmitt trigger with the output mixed into the 
standard cryptlib RNG.  The use of multiple 
independent sources ensures that even if one fails the 
others will still provide entropy, and feeding the RNG 
output into the cryptlib PRNG ensures that any possible 
bias is removed from the RNG output bits. 

A second function which can be performed by the add-
on card is to act as a more general I/O channel than the 
basic LED-and-pushbutton interface described earlier, 
providing the user with more information (perhaps via 
an LCD display) on what it is they’re authorising. 

6. Conclusion 
This paper has presented a design for an inexpensive, 
general-purpose crypto coprocessor capable of keeping 
crypto keys and crypto processing operations safe even 
in the presence of malicious software on the host which 
it is controlled from.  Extended security functionality is 
provided by taking advantage of the presence of trusted 
I/O channels to the coprocessor.  Although sufficient 
for most purposes, the coprocessors processing power 
may be augmented through the addition of additional 
modules based on DSP’s which should bring the 
performance into line with considerably more expensive 
commercial equivalents.  Finally, the open-source 
nature of the design and use of COTS components 
means that anyone can easily reassure themselves of the 
security of the implementation and can obtain a 
coprocessor in any required location by refraining from 
combining the hardware and software components until 
they’re at their final destination. 
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