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Abstract

The aim of the research presented in this thesis is to investigate the use of various

optimisation heuristics in the fields of automated cryptanalysis and automated cryp-

tographic function generation. These techniques were found to provide a successful

method of automated cryptanalysis of a variety of the classical ciphers. Also, they

were found to enhance existing fast correlation attacks on certain stream ciphers. A

previously proposed attack of the knapsack cipher is shown to be flawed due to the ab-

sence of a suitable solution evaluation mechanism. Finally, a new approach for finding

highly nonlinear Boolean functions is introduced.

Three search heuristics are used predominantly throughout the thesis: simulated

annealing, the genetic algorithm and the tabu search. The theoretical aspects of each

of these techniques is investigated in detail. The theory of NP-completeness is also

reviewed to highlight the need for approximate search heuristics.

Many automated attacks have been proposed in the literature for cryptanalysing

classical substitution and transposition type ciphers. New attacks on these ciphers are

proposed which utilise simulated annealing and the tabu search. Existing attacks which

make use of the genetic algorithm and simulated annealing are compared with the new

simulated annealing and tabu search techniques. Extensive experimental comparisons

show that the tabu search is more effective than the other techniques when used in the

cryptanalysis of these ciphers.

The use of parallel search heuristics in the field of cryptanalysis is a largely un-

tapped area. Parallel heuristics can provide a linear speed-up based upon the number

of computing processors available or required. A parallel genetic algorithm is pro-

posed for attacking the polyalphabetic substitution cipher by solving each of the key

positions simultaneously. This new approach is shown (using experimental evidence)

to be highly efficient as well as effective in solving polyalphabetic ciphers even with a
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large period.

A number of modifications to the fast correlation attack are proposed and imple-

mented in attacks against an LFSR-based stream cipher known as the nonlinear com-

biner. It is shown that considerable improvement can be achieved over the original

attack of Meier and Staffelbach by updating only a subset of the error probability vec-

tor elements in each iteration. Subset selection is performed based on deterministic

and random heuristics. Simulated annealing is also incorporated as a technique for se-

lecting candidate update positions. A new technique called “fast resetting” is proposed

which defines conditions under which the error probability vector should be reset. By

carefully choosing the resetting criteria a highly effective attack can be obtained. The

fast resetting technique is shown to be more effective than MacKay’s recently proposed

free energy minimisationtechnique.

An attack on the Merkle-Hellman cryptosystem proposed by Spillman (using the

genetic algorithm) is shown to be flawed due to the weakness of the key evaluation

technique. Experimental results are presented which show that the knapsack-type ci-

phers are essentially secure from attacks which attempt to naively decrypt an encoded

message using the public key. The problem with Spillman’s approach is that the pro-

posed “fitness function” does not accurately assess each solution so that a candidate

solution may have a very high fitness and yet differ from the correct solution in more

than half of its bit positions. The results presented here do not impact on the widely

known (and successful) attacks of the knapsack cipher which are based upon the struc-

ture of the secret key.

A new technique for finding highly nonlinear Boolean functions is presented. Non-

linearity is a desirable property for cryptographically sound Boolean functions. The

technique, which is shown to be far more effective than traditional random search tech-

niques, makes use of the Walsh-Hadamard transform to determine bits of the binary

truth table of the Boolean function which can be complemented in order to generate a

guaranteed increase in the nonlinearity of the function. An extension of this technique

allows two bits of the truth table to be complemented so that the balance is maintained.

In addition, it is shown that incorporating this technique in a genetic algorithm provides

an even better method of generating highly nonlinear Boolean functions. Experimental

results support the effectiveness of this technique.
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Chapter 1
Solomon Grundy. Born on Monday.

Introduction

The use of automated techniques in the design and cryptanalysis of cryptosystems is

desirable as it removes the need for time-consuming (human) interaction with a search

process. Making use of computing technology also allows the inclusion of complex

analysis techniques which can quickly be applied to a large number of potential so-

lutions in order to weed out unworthy candidates. In this thesis a number of com-

binatorial optimisation heuristics are studied and utilised in the fields of automated

cryptanalysis and automated cryptosystem design.

Cryptanalysis can be described as the process of searching for flaws or oversights

in the design of cryptosystems (or ciphers). A typical cipher takes a clear text message

(known as the plaintext) and some secret keying data (known as the key) as its input

and produces a scrambled (or encrypted) version of the original message (known as

the ciphertext). An attack on a cipher can make use of the ciphertext alone or it can

make use of some plaintext and its corresponding ciphertext (referred to as a known

plaintext attack).

The most fundamental criterion for the design of a cipher is that the key space (i.e.,

the total number of possible keys) be large enough to prevent it being searched exhaus-

tively. By 1997 standards, a key should typically contain more than 80 independent

bits - certainly the 56 bits utilised by the Data Encryption Standard (DES) is no longer

considered secure [76]. Most designers of cryptosystems are aware of this requirement

and thus cryptanalysis tends to require more detailed scrutiny of the cipher.

Due to their complexity, the task of determining weaknesses in ciphers is generally

1



2 Chapter 1. Introduction

a laborious manual task and the process of exploiting the discovered weaknesses is

rarely quick or simple even when computers are used to implement the exploit (unless

the cipher contains a major flaw). This further highlights the importance of the use of

automated techniques in cryptanalysis.

Automated techniques can also be useful in the area of cipher design. Most ciphers

consist of a combination of a number of relatively simple operations: for example,

substitutions and permutations. A large amount of research has been performed to

determine good cryptographic properties of these operations and many cryptanalytic

attacks are realised by exploiting instances where the designer has neglected to ensure

that each of the cryptographic properties is satisfied. Automated search techniques

can be employed to quickly search through a large number of possible cryptographic

operations in order to find ones which satisfy the desired properties.

In Chapter 2 an overview of NP-completeness is given. Many optimisation prob-

lems are known to be NP-complete. The theory of NP-completeness allows the classi-

fication of such problems and can be used to show that all NP-complete problems are

equally difficult to solve. The difficulty in solving NP-complete problems is so great

that some ciphers use them as a basis for their security (for example, the “knapsack”

cipher [51, 11]). While the theory of NP-completeness only applies to a certain type

of problem (i.e., adecisionproblem which has a “Yes”/“No” answer), it can be shown

that many related problems are at least as hard as the NP-complete problems to solve -

these problems are often referred to as being “NP-hard”.

Although some techniques do exist for solving certain NP-complete problems (for

example, branch and bound), these techniques are rarely useful for large instances of

the problem. To counter this deficiency optimisation heuristics are utilised. Optimi-

sation heuristics are usually designed to suit the particular problem being solved and

make use of the structure of the problem in order to suggest “good” solutions. It is the

nature of NP-complete problems that their optimal solution is rarely known. Thus, the

notion of a “good” solution is used to indicate that the solution is “better than all the

other solutions found.” Whether or not the “good” solution is useful depends on the

purpose for which the solution is sought and the expectations and requirements for the

solution in the particular application. For example, consider the case of cryptanalysis:

if an optimisation heuristic is used to search for the key of a particular cipher, then



3

an expectation might be that the key will provide sufficient information to render the

decrypted message legible - if the key does not provide this much information then its

“goodness” could be questioned.

An important requirement of an optimisation heuristic is a method of assessing

every feasible solution to the problem being solved (i.e., a method for determining

how “good” a solution is). In many cases finding such a method is the most difficult

part of solving a particular problem, and is sometimes impossible due to the nature of

the problem (Chapter 5 studies a particular instance of this problem). It is extremely

important that the chosen method of assessing a solution provides a meaningful and

accurate comparison of two arbitrary solutions, otherwise the search heuristic will not

work.

Three general-purpose optimisation heuristics are described in detail in Chapter 2

- they are simulated annealing, the genetic algorithm and the tabu search. Numerous

examples of applications of these techniques to mathematical and engineering-related

problems have been discussed in the literature (some examples are [16, 64, 67]). Each

of the three algorithms possesses different properties. For example, simulated anneal-

ing maintains and updates a single solution where as the genetic algorithm manipulates

a “pool” of solutions and the tabu search is somewhere in-between with a single so-

lution being maintained as well as a list of “tabu” solutions to encourage diversity in

the search. Due to their different properties some techniques may be better suited to

solving a particular problem than the others.

The classical ciphers, while simple, are often the object of new cryptanalytic tech-

niques. An introduction to the types of classical ciphers is given in Appendix A -

most fall into one of two categories: substitution-type ciphers and transposition-type

ciphers. Many techniques have been devised for the cryptanalysis of classical ciphers

and most concentrate on the substitution-type ciphers. Each of these techniques share

the property that they are automated: that is, they are capable of recovering the original

plaintext message without any human intervention. The algorithms are sufficiently in-

telligent, or possess sufficient information, to allow them to decrypt a hidden message

without manual assistance. Typically this is achieved using the known statistics and

redundancy of the language.

Examples of the previous research into the field of automated cryptanalysis are



4 Chapter 1. Introduction

now given. In 1979 Peleg and Rosenfeld [60] suggested arelaxation algorithmfor

breaking a simple substitution cipher. Hunter and McKenzie [32] in 1983, and King

and Bahler [37] in 1992 conducted further experiments with the relaxation algorithm

in attacks on the simple substitution cipher. A different approach was used by Ramesh,

Athithan and Thiruvengadam [63] in 1993 which involved searching a dictionary for

words with the same “pattern” as the ciphertext words (assuming word boundaries are

left intact during encryption - i.e., the SPACE symbol is not encrypted). This approach

still required manual decryption of some of the ciphertext. Also in 1993, Spillman

et al [73], presented a genetic algorithm and Forsyth and Safavi-Naini [18] utilised

simulated annealing to make attacks on the simple substitution cipher (these attacks

are described in detail in Section 3.1). In 1995, Jakobsen [33] presented a somewhat

simplified version of the attacks presented in [73] and [18].

In 1994, King [36] presented an attack on the polyalphabetic substitution cipher

which utilised the relaxation algorithm. King’s approach was similar to the one used

by Carroll and Robbins [9] in 1987 although more successful (due to the availability

of greater computing power). An extension of the work presented in [73] to an attack

on the polyalphabetic substitution cipher using a parallel genetic algorithm forms part

of this thesis. In 1988 Matthews [46] presented a technique for finding the key length

of periodic ciphers which is more accurate that the well-known Index of Coincidence

(IC) described in Section A.2.

Matthews [47] also utilised the genetic algorithm in cryptanalysis of the transposi-

tion cipher (1993). This technique is discussed in more detail in Section 3.3.

It is only recently that the application of combinatorial optimisation algorithms

(such as simulated annealing and the genetic algorithm) to the field of cryptanalysis

has been considered (see [18, 47, 71]). The research in this area has shown that such

techniques are highly effective in the field of cryptanalysis. In Chapter 3 of this thesis

these techniques are investigated in detail. A new attack on the transposition cipher

using simulated annealing is proposed and, also, the tabu search is used, possibly for

the first time in the field of cryptanalysis, to break the substitution cipher and the

transposition cipher. A large amount of experimental data is presented in order that

the performance of the three techniques against simple substitution and transposition

ciphers could be compared. Comparisons based on both time complexity and algorithm
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complexity are used to show that the tabu search is more effective than both of the

other techniques for cryptanalysis of the substitution cipher while equally as good as

the genetic algorithm and significantly better than simulated annealing in cryptanalysis

of the transposition cipher.

The genetic algorithm in particular is well suited to parallel implementations. This

is evident from the large number of research articles available which outline par-

allel heuristics for the genetic algorithm in a variety of applications (for examples

see [8, 20, 28]). Chapter 3 also outlines a new attack on the polyalphabetic substitution

cipher which makes use of a parallel genetic algorithm. This algorithm is implemented

using a public domain software package (called PVM or Parallel Virtual Machine [62])

and experiments conducted to evaluate the technique. This parallel heuristic is able to

solve the different keys of the polyalphabetic substitution cipher simultaneously and,

therefore, proves to be extremely powerful with little overhead and excellent key re-

covery capabilities - even for polyalphabetic ciphers with a large block size.

Chapter 4 describes a new technique for incorporating the simulated annealing

heuristic in a known attack on a certain class of stream cipher. These ciphers are

based on the nonlinear combination of the output of a number of linear feedback shift

registers and are described in Appendix B. The previously publishedfast correla-

tion attack [48] is known to be effective in cryptanalysing such ciphers. However,

in Chapter 4 new techniques are introduced which increase the effectiveness of the

fast correlation attack so that keystreams with an even smaller correlation to the shift

register output stream can be attacked.

The original fast correlation attack [48] updates a vector of error probabilities in

each iteration (a full description is given in Chapter 4). This approach is modified so

that only a subset of the error probability vector is updated in each iteration. A number

of approaches for selecting the subset are considered, one of which utilises simulated

annealing. Experiments were carried out for each of the suggested modifications and

some were found to significantly improve the power of the fast correlation attack.

A slightly different type of modification to the fast correlation attack is also pre-

sented in Chapter 4. This second technique involves “resetting” the values of the error

probability vector to their original value when certain criteria are satisfied. The new

technique, called “fast resetting”, is shown through experiments, to be much more ef-
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fective than the original fast correlation attack when used to recover an LFSR’s output

sequence.

The modified fast correlation attack is compared with another known attack on this

type of cipher which utilises a technique known asfree energy minimisation[40]. It is

shown that in almost all cases the newly proposed modifications to the fast correlation

attack are superior to the free energy minimisation technique.

As alluded to above, when utilising combinatorial optimisation techniques there

must exist a suitable method for assessing every feasible solution to the given prob-

lem. In Chapter 5 a previously published attack on the knapsack cipher [71] is shown

to be flawed because of the non-existence of such a solution assessment method.

Appendix C provides a description of the Merkle-Hellman public key cryptosystem

which is attacked by Spillman [71]. Spillman’s attack challenges the notion of NP-

completeness by proposing a genetic algorithm for solving even large instances of the

subset sumproblem. The fact that a problem is NP-complete does not preclude it from

solution-finding techniques using such an optimisation heuristic, however, in this case

the attackmust find the optimum solution to the problemin order to break the cipher.

That is, the notion of a “good” solution is meaningless in this instance since it is not

possible to tell if one solution is better than any other (except if it is the optimum). The

non-existence of a suitable assessment method, in this case, means that the solution

surface can be considered flat except for a single peak (where the optimum lies). Thus,

performing an attack using one of the optimisation heuristics described in Chapter 2

will be futile. The discussion in Chapter 5 provides experimental evidence to support

the claim that a suitable assessment method does not exist for solving the knapsack

cipher using the public key.

As previously mentioned, an automated search for finding cryptographically sound

operations is desirable. A new technique for this specific purpose is described in Chap-

ter 6. Boolean functions have many uses in cryptography. They are used in stream

ciphers (such as the ones discussed in Chapter 4) and can be used to described sub-

stitution operations (commonly termed S-boxes) in any cipher. Boolean functions and

some of their cryptographic properties are discussed in Appendix D. The technique

in Chapter 6 is used to improve the nonlinearity of an arbitrary Boolean function. By

studying the values of the coefficients of the Walsh-Hadamard transform it is possible
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to determine sets of truth table positions such that complementing any one of those

positions in the truth table will lead to an increase in the nonlinearity of the function.

The same approach is used to describe a similar technique which can be used to com-

plement the truth table in two positions to increase the nonlinearity of the function and

at the same time maintain its balance.

This technique is then incorporated in a genetic algorithm and, after defining the

suitable parameters required of the genetic algorithm, it is shown that such an algorithm

is able to find highly nonlinear Boolean functions far more efficiently and reliably than

the existing random search techniques. A large number of experiments were conducted

in order to highlight the effectiveness of this new approach.

Finally, the conclusion to this thesis (Chapter 7) provides a summary of the out-

comes of this work with particular reference to the most positive of the results. Also,

further research possibilities and other applications of the optimisation heuristics out-

lined in this thesis are discussed.





Chapter 2
Christened on Tuesday.

Combinatorial Optimisation

The aim of combinatorial optimisation is to provide efficient techniques for solving

mathematical and engineering related problems. These problems are predominantly

from the set of NP-complete problems (see below). Solving such problems requires

effort (eg., time and/or memory requirement) which increases dramatically with the

size of the problem. Thus, for sufficiently large problems, finding the best (oroptimal)

solution with certainty is often infeasible. In practice, however, it usually suffices to

find a “good” solution (the optimality of which is less certain) to the problem being

solved. A subtle point to note is this: an algorithm designed to find “good” solutions

to a problem may find the optimal solution - however it is infeasible to prove that the

solution is in fact the optimal one.

Provided a problem has a finite number of solutions, it is possible, in theory, to

find the optimal solution by trying every possible solution. An algorithm which tries

every solution to a problem in order to find the best is known as abrute forcealgo-

rithm. Cryptographic algorithms are almost always designed to make a brute force

attack of their solution space (or key space) infeasible. For example, the key space is

large enough so that it is not plausible for an attacker to try every possible key. Combi-

natorial optimisation techniques attempt to solve problems using techniques other than

brute force since many problems contain variables which may be unbounded, leading

to an infinite number of possible solutions. In the case where the number of solu-

tions is finite it is generally infeasible to use a brute force approach to solve it so other

techniques must be found.

9
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Algorithms for solving problems from the field of combinatorial optimisation fall

into two broad groups -exactalgorithms andapproximatealgorithms. An exact al-

gorithm guarantees that the optimal solution to the problem will be found. The most

basic exact algorithm is a brute force one. Other examples are branch and bound, and

the simplex method. Most of the algorithms used in this thesis are from the group of

approximate algorithms. Approximate algorithms attempt to find a “good” solution to

the problem. A “good” solution can be defined as one which satisfies a predefined list

of expectations. For example, consider a cryptanalytic attack. If enough plaintext is

recovered to make the message readable, then the attack could be construed as being

successful and the solution assumed to be “good”, as opposed to one which gives no

information about the nature of the message being cryptanalysed.

Often it is impractical to use exact algorithms because of their prohibitive com-

plexity (time or memory requirements). In such cases approximate algorithms are

employed in an attempt to find an adequate solution to the problem. Examples of

approximate algorithms (or, more generally, heuristics) are simulated annealing, the

genetic algorithm and the tabu search. Each of these techniques are described in some

detail in the latter sections of this chapter.

A discussion of the theory of NP-completeness follows. This is an important con-

cept to illustrate in order to highlight the purpose of approximate algorithms in the field

of combinatorial optimisation. Following the discussion on NP-completeness, an intro-

duction to the approximate optimisation heuristics used in this research is given. The

three techniques are: simulated annealing, the genetic algorithm and the tabu search.

These techniques have been used broadly although only recently have they been ap-

plied to the field of cryptanalysis.

2.1 NP-Completeness

The theory of NP-completeness was devised in order to classify problems that are

known to be difficult to solve. The following paragraph gives some definitions which

are fundamental to the analysis of NP-completeness.

The notion of thenondeterministic computerplays an important role in defining

NP-completeness. A nondeterministic computer is one which “has the ability to pur-
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sue an unbounded number of independent computational sequences in parallel” ([21],

p.12). Such a computer (if it existed) would revolutionise the field of combinatorial

optimisation as it is known today. Adecision problemis one which has two possible

solutions - either “yes” or “no”. The class of problems NP (nondeterministic polyno-

mial) consists of all decision problems which can be solved in polynomial time by a

nondeterministic computer. A problem can be solved in polynomial time if its time

complexity can be represented as a polynomial in the size of the problem. The class

of decision problems which can be solved in polynomial time (without requiring a

nondeterministic computer) is called P (polynomial). Although not certain, it is often

assumed that P6= NP.

It was shown by Cook [12] that every other problem in NP can be reduced to the

“satisfiability” problem. Thus, if an algorithm can be found which solves the satisfia-

bility problem in polynomial time then all other problems in NP can also be solved in

polynomial time. Also, if any problem in NP isintractable(cannot possibly be solved

in polynomial time) then the satisfiability problem must also be intractable. This leads

to the notion that the satisfiability problem is the “hardest” in NP to solve. Since

Cook’s initial work many different decision problems have been proved equivalent to

the satisfiability problem. This equivalence class of the hardest problems to solve in

NP is called theNP-completeclass.

As has been discussed, the class NP only includes a specific type of problem, i.e.,

the decision problems. In general (and especially in the field of combinatorial optimi-

sation), a minimum or a maximum of some objective function is sought - rather than a

“yes” or “no” answer. However, it should be noted that many of the problems usually

associated with combinatorial optimisation can be formulated as decision problems.

As an example consider the classic combinatorial optimisation problem - the Travel-

ling Salesman Problem (TSP). Expressed simply, the problem is this: “Given a list of

N cities and a cost associated with travelling between every pair of cities, find the path

through theN cities which visits every city exactly once and returns to the starting city

and which has the minimum cost.”

Problems such as the TSP which aim to minimise an objective function can easily

be converted to a decision problem by changing the requirement of finding an optimum

to asking the question - “Does there exist a solution which has an associated cost which
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is less than some bound?” A decision problem variant of the TSP could be expressed

thus: “Given a list ofN cities and a cost associated with travelling between every pair

of cities, does there exist a path through theN cities which visits every city exactly

once and returns to the starting city and which has a cost less thanB?” It can be

shown that, provided the objective function is not expensive to evaluate, the decision

problem can be no harder to solve than the corresponding optimisation problem. Thus,

if it can be shown that an optimisation problem’s corresponding decision problem is

NP-complete then the optimisation problem is at least as hard.

Some of the problems presented in this thesis areNP-hard- i.e., their correspond-

ing decision problems are NP-complete. Others, although instinctively appearing to

be so, are yet to be proven NP-hard. Proving problems to be NP-complete is diffi-

cult and does not form part of this thesis. It is, however, important to understand the

basic concepts of NP-completeness in order to know why the techniques which are

described in the remainder of this chapter are so important to the field of combinatorial

optimisation.

By assuming that P6= NP, we are led to believe that there exists no polynomial time

algorithm for solving problems which are NP-complete. Thus, for large optimisation

problems we have to be satisfied that we can never find the optimal solution (or, at

least, satisfied that we can neverknowthat we have found the optimal solution). This

exemplifies the importance of algorithms which find good solutions to problems - i.e.,

approximate algorithms.

2.2 Approximate Methods

Numerous approximate heuristics exist for determining (not necessarily optimal) solu-

tions to NP-complete problems. Many of these algorithms are designed with a specific

problem in mind and hence they can not be applied in all instances. The three methods

presented in this chapter have been used widely in the literature and applied to a broad

spectrum of optimisation problems. Their use in the field of cryptanalysis has only

recently been documented.

The algorithms presented here are variations on the common approximate algo-

rithm heuristic known as “iterative improvement”. Traditional iterative improvement
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techniques will only undergo transitions which lead to a solution with a lower cost.

Such an approach will often cause the search to become trapped at a local minimum

(an undesirable condition). To illustrate this point consider the problem of finding the

minimum value of the two-dimensional curve in Figure 2.1. A traditional iterative im-

provement technique starting at point A could easily find its way to point B, whereafter

it may become trapped. It is usual to run the algorithm a number of times so that, in

another instance, an algorithm starting at point C could easily reach the global minima

at D. If the algorithm is allowed to make uphill steps then it is possible for the search

to leave regions of local minima in order to find the global minimum (as in the search

starting an point F in Figure 2.1). Two of the algorithms (simulated annealing and the

genetic algorithm) which are presented in the following sections of this chapter possess

the ability to lead their search in an uphill direction in order to escape regions of local

minima.

A more intelligent

move out of regions
heuristic is able to

of local minima.

A

C

E

F

The traditional iterative
improvement approach

may become trapped
at a local minimum.

B

D

Figure 2.1: How iterative improvement techniques become stuck.

2.2.1 A Note on Objective Functions

The aim of combinatorial optimisation is always to minimise or maximise some objec-

tive function. Traditionally in simulated annealing the objective function is referred to

as thecostfunction. It is usually desirable to minimise the cost associated with some
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problem. On the other hand, when using the genetic algorithm the objective function is

often termed thefitnessfunction. In this case the aim is to maximise the fitness of the

solutions to the problem. It should be noted that a minimisation problem can always be

converted to a maximisation one simply by negating the objective function. Addition-

ally, it should be noted that it is generally trivial to convert a minimisation algorithm

into a maximisation one simply by changing the evaluation technique of the algorithm.

2.2.2 Simulated Annealing

As indicated above, simulated annealing is based on the concept of annealing. In

physics, the term annealing describes the process of slowly cooling a heated metal

in order to attain a “minimum energy state”. A heated metal is said to be in a state

of “high energy”. The molecules in a metal at a sufficiently high temperature move

freely with respect to each other, however, when the metal is cooled, the molecules

lose their thermal mobility. If the metal is cooled slowly, a “minimum energy state”

will be achieved. If, however, the metal is not cooled slowly, the metal will remain in

an intermediate energy state and will contain imperfections. For example, “quench-

ing” is the process of cooling a hot metal very rapidly. Metal that has been quenched

commonly has the property that it is brittle because of the unordered structure of its

molecules. In order to apply the analogy of annealing in physics to the field of combi-

natorial optimisation it is useful to think of the slowly cooled metal as having reached

a crystalline structure in which the molecules are ordered and the energy is low. This

is analogous to the optimal solution to a problem which is “ordered” and represents

the lowest “cost” to solve the problem being optimised (assuming, of course, that the

minimum cost is sought).

In 1953, Metropolis et al [52], showed that the distribution of energy in molecules

at the “minimum energy state” is governed by the Boltzmann probability distribution.

This discovery was applied to determine the probability of molecules moving between

different energy levels, which depends upon the temperature of the metal and the dif-

ference in the energy levels. The molecule undergoes a transition from energy level

E1 to energy levelE2 (∆E = E2 − E1); the temperature of the metal isT ; and Boltz-

mann’s constant isk. If ∆E < 0 the transition always occurs, otherwise it occurs with
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Figure 2.2: Properties of the state transition probability function.

the probability indicated by Equation 2.1.

Pr(E1 ⇒ E2) = e(
−∆E

kT ) (2.1)

Figure 2.2 highlights some of the properties of Equation 2.1. It can be seen that

transitions occur with high probability when the energy difference (∆E) is small and

when the temperature (T ) is high. When these two properties are combined the result

is that a transition between energy levels with a large difference is more probable at

high temperatures and, conversely, only small energy changes are likely when the tem-

perature is low. These properties are extremely important when simulated annealing is

used for solving combinatorial optimisation problems.

The idea of mimicking the annealing process to solve combinatorial optimisation

problems is attributed to Kirkpatrick et al [38], who, in 1983, used such an idea to find

solutions to circuit wiring and component placement problems (from an electronic

engineering perspective) and also to the travelling salesman problem (a classic com-

binatorial optimisation problem). A generic description of the simulated annealing

algorithm is given in Figure 2.3. The algorithm is (usually) initialised with a random

solution to the problem being solved and a starting temperature. The choice of the

initial temperature,T0, is discussed below. At each temperature a number of attempts

are made to perturb the current solution. Each proposed perturbation must be accepted

by determining the change in the evaluation of the objective function (i.e., the change

in the cost) and then consulting Metropolis’ equation (Equation 2.1) which makes a

decision based on this cost difference and the current temperature. If the proposed

change is accepted then the current solution is updated. The technique used to perturb
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1. Generate a solution to the problem (randomly or otherwise) and
determine its cost.

2. Initialise the temperature,T = T0.

3. At temperatureT , repeatJ times. . .

(a) Perturb the current solution to give a “candidate” solution.

(b) Find the cost of the candidate and determine the difference
between its cost and the cost of the current solution.

(c) Using the cost difference (∆E) and the current tempera-
ture (T ) consult Equation 2.1 (ignorek, i.e.,k = 1) to de-
termine the probability that the candidate solution should
be accepted. Generate a random number on the interval
[0, 1]. If the random number is less than the probability
returned by Equation 2.1 then the candidate is accepted.

(d) If the candidate is accepted then the current solution and
its cost are updated.

4. If the stopping criteria are satisfied then discontinue, otherwise
reduce the temperature,T , and repeat from Step 3.

Figure 2.3: Simulated Annealing

a solution is dependent on the problem being solved and the representation of the solu-

tion. For example, if the solution is represented as a binary string of fixed length, then

a suitable mechanism for suggesting possible new solutions may be to complement

one (or more) randomly chosen values in the bit string. Generally, the temperature is

reduced when either there a predefined limit in the number of updates to the current

solution has been reached or after a fixed number of attempts have been made to update

the current solution. Methods for reducing the temperature are discussed below. The

algorithm finishes either when no new solutions were accepted for a given temperature,

or when the temperature has dropped below some predefined limit.

The variable parameters of the algorithm make up what is known as thecooling

schedulewhich defines: the initial temperature,T0; the number of iterations at each

temperature,J ; the temperature reduction scheme; and the stopping criteria. Each of

these is now investigated in some detail.

• The Initial Temperature. UsuallyT0 is chosen so that any candidate solution
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proposed in Step 3a of Figure 2.3 is accepted at Step 3c. Such a choice ofT0

is dependent upon the magnitude of typical cost values for the problem being

solved, or, more specifically, the magnitude of the largest expected cost differ-

ence between two solutions to the problem being solved. To ensure that the prob-

ability that the transition occurs is close to one,T0 must be significantly greater

than the largest expected cost difference (as shown by the following equations).

Pr(E1 ⇒ E2) → 1 ⇔ e(
−∆E

T ) → 1

⇔ ∆E
T

→ 0

⇔ ∆E � T

The plot of Probability versus Temperature in Figure 2.2 shows the curve

being relatively flat for high temperatures. It is important not to choose an initial

temperature which is too high since this will cause the algorithm to run for longer

than necessary since most of the useful transitions are made in the temperature

ranges of the steep part of the curve.

Also, although not stated previously, it is vital that the temperature remain

greater than zero since this assumption is made when calculating the probability

from Equation 2.1. Hence,T0 must be greater than zero.

• Iterations For Each T . The number of iterations at each temperature is equiv-

alent to the number of candidate solutions considered for each temperature (re-

ferred to asJ in Figure 2.3). The value should be large but not so large that the

performance of the algorithm is hindered. One value suggested in the literature

is 100N , whereN is the number of variables in the problem being solved.

If, in Step 3a, a random alteration is made to the solution in order to generate

a new candidate, the number of candidates trialled should be greater than if a

more intelligent and problem specific perturbation function is used.

• Temperature Reduction. In theory, the rate at which temperature dissipates

from a metal is governed by complicated differential equations. For the purposes

of simulated annealing, two simple models are most commonly used. The first,

and most simplistic, is a linear cooling model. In the linear model both an initial
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temperature (T0) and a final temperature (T∞) must be defined. The difference

between these two (T0 − T∞) is then divided byJ to determine how much the

temperature is reduced by at Step 4 (Figure 2.3). The temperature at iterationk

is defined by Equations 2.2 and 2.3.

Tk = T0 − k ·
(T0 − T∞

J

)

(2.2)

= Tk−1 −
(T0 − T∞

J

)

(2.3)

The second method of temperature reduction is exponential decay. This is

a more accurate model of the true thermal dynamics in a heated metal than the

linear model. At each iteration the temperature is reduced by multiplying with a

factor,λ < 1. Equations 2.4 and 2.5 describe the temperature at iterationk.

Tk = λk · T0 (2.4)

= λ · Tk−1 (2.5)

Because of its closer approximation to the expected temperature reduction in

a practical sense, the exponential method is used in all work reported here.

• Stopping Criteria. The stopping criteria define when the algorithm should ter-

minate. Possibilities are: a minimum temperature (eg,T∞) has been reached; a

certain number of temperature reductions have occurred; or the current solution

has not changed for a number of iterations. The latter is often the best option

as any candidate solutions will not be accepted (unless they are better than the

current one) when the temperature is very low. This is because the probability

of acceptance (as defined by Equation 2.1) is negligible.

2.2.3 Genetic Algorithms

As may be evident from the simulated annealing algorithm, mathematicians often look

to other areas in search of inspiration for new techniques which can be modelled for the

purpose of optimisation. While simulated annealing is derived from the field of chem-

ical physics, the genetic algorithm is based upon another “scientific” notion, namely

Darwinian evolution theory. The genetic algorithm is modelled on a relatively simple
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interpretation of the evolutionary process, however, it has proven to be a reliable and

powerful optimisation technique in a wide variety of applications.

It was Holland [31] in his 1975 paper, who first proposed the use of genetic al-

gorithms for problem solving. Goldberg [25] and DeJong [14] were also pioneers in

the area of applying genetic processes to optimisation. Over the past twenty years

numerous applications and adaptations have appeared in the literature. Three papers

containing applications to the field of cryptanalysis are worthy of mention here. The

first, by Matthews [47] and the second, by Spillman et al [71], are used in attacks on the

transposition cipher and the substitution cipher, respectively (see Chapter 3 for more

details). The third paper, by Spillman [71], attempts an attack on the knapsack cipher

(this work is covered in detail in Chapter 5).

Consider a pool of genes which have the ability to reproduce, are able to adapt to

environmental changes and, depending on their individual strengths, have varying life-

spans. In such an environment only the fittest will survive and reproduce giving, over

time, genes that are stronger and more resilient to conditional changes. After a certain

amount of time the surviving genes could be considered “optimal” in some sense. This

is the model used by the genetic algorithm, where the gene is the representation of a

solution to the problem being optimised. Traditionally, genetic algorithms have solu-

tions represented by binary strings. However, not all problems have solutions which

are easily represented in binary (especially if the structure of the binary string is to be

“meaningful”). To avoid this limiting property a more general area known asevolu-

tionary programminghas been developed. An evolutionary program may make use of

arbitrary data structures in order to represent the solution. For simplicity all algorithms

described in this thesis which use the evolutionary heuristics presented in this section

are referred to as “genetic algorithms”, although, from a purist’s perspective, this may

not be strictly accurate.

As with any optimisation technique there must be a method of assessing each so-

lution. In keeping with the evolutionary theme, the assessment technique used by a

genetic algorithm is usually referred to as the “fitness function”. As was pointed out

above, the aim is always to maximise the fitness of the solutions in the solution pool.

Figure 2.4 gives an indication of the evolutionary processes used by the genetic

algorithm. During each iteration of the algorithm the processes of selection, reproduc-
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Figure 2.4: The Evolutionary Process.

tion and mutation each take place in order to produce the next generation of solutions.

The actual method used to perform each of these operations is very much dependent

upon the problem being solved and the representation of the solution. For the purposes

of illustration, examples of each of these operations are now given using the traditional

binary solution structure.

Example 2.1 Consider a problem whose solutions are represented as binary strings

of lengthN = 7. In this instance, a pool ofM solutions is being maintained. The first

phase of each iteration is the selection of a number of parents who will reproduce to

give children.

• Selection of parents.A subset of the current solution pool is chosen to be the

“breeding pool”. This could be a random subset of the current solution pool, or

in fact the entire current generation, or some other grouping. Another technique

is to make the choice pseudo-randomly by giving the most fit solutions a higher

likelihood of being selected, thus making the “better” solutions more likely to

be involved in the creation of the new generation while at the same time not

prohibiting the less fit solution from being involved in the breeding process.

Once the breeding pool has been created, parents are paired for the reproduction

phase.

• Reproduction.A commonly used mating technique for solutions represented as a

binary string is the “crossover” where a random integer in the range[1, . . . , N−
1] is generated and all bits in the binary string after this position are swapped
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between the two parents. Consider the two parentsP1 andP2 with the random

chosen position 3.

P1 1 0 1 1 1 1 0
P2 0 1 0 0 1 0 1

The two children created by this operation areC1 andC2.

C1 1 0 1 0 1 0 1
C2 0 1 0 1 1 1 0

As can be seen, each of the children has inherited characteristics from each of

its parents.

Finally, the newly generated children undergo mutation. Here, the solutions are ran-

domly adjusted in a further attempt to increase the diversity of the new solution pool.

• Mutation. The most simple mutation operation for binary strings is complemen-

tation of some of the bits in the child. The probability that a bit is complemented

is given by the “mutation probability”,pm. For example, ifpm = 0.15 ≈ 1
7 , for

the case whenN = 7, one would expect that, on the average, one bit of each

child would be complemented. If bit 3 ofC1 were complemented thenC1 would

become as follows.

C1 1 0 0 0 1 0 1

An algorithmic representation of the genetic algorithm is given in Figure 2.5. This

description is independent of any solution representation, fitness function, selection

scheme, reproduction scheme and mutation scheme. Each of these will be described

in detail where the genetic algorithm has been applied.

2.2.4 Tabu Search

The final method for optimisation which is discussed in this chapter is the tabu search.

The use of the tabu search was pioneered by Glover who from 1985 onwards has

published many articles discussing its numerous applications (for examples see [23,
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1. Initialise algorithm variables:G the maximum number of gener-
ations to consider,M the solution pool size and any other prob-
lem dependent variables.

2. Generate an initial solution pool containingM candidate solu-
tions. This initial pool can be generated randomly or by using
a simple known heuristic for generating solutions to the prob-
lem at hand. This solution pool is now referred to as thecurrent
solution pool.

3. ForG iterations, using the current pool:

(a) Select a breeding pool from the current solution pool and
make pairings of parents.

(b) For each parental pairing, generate a paira of children us-
ing a suitable mating function.

(c) Apply a mutation operation to each of the newly created
children.

(d) Evaluate the fitness function for each of the children.

(e) Based on the fitness of each of the children and the fitness
of each of the solutions in the current pool, decide which
solutions will be placed in the new solution pool. Copy the
chosen solutions into the new solution pool.

(f) Replace the current solution pool with the new one. So,
the new solution pool becomes the current one.

4. Choose the most fit solution of the final generation as the best
solution, or, depending on the selection heuristic in Step 3e, keep
an internal recording of the best solution found and report it now.

aIn some cases the breeding process may generate a single child, or even
more than two children but traditionally two children result.

Figure 2.5: The Genetic Algorithm

24]). Others were quick to adopt the technique which has been used for such purposes

as sequencing [64], scheduling [2, 13, 61, 6], oil exploration [30] and routing [67, 6].

The properties of the tabu search can be used to enhance other procedures by pre-

venting them from becoming stuck in the regions of local minima. The tabu search,

like the genetic algorithm, introduces memory structures into its workings. In this case

the purpose of the memory is multi-faceted. The genetic algorithm utilises its solu-

tion pool as a mechanism for introducing diversity into the breeding process. The tabu
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search utilises memory for an additional purpose, namely to prevent the search from

returning to a previously explored region of the solution space too quickly. This is

achieved by retaining a list of possible solutions that have been previously encoun-

tered. These solutions are consideredtabu- hence the name of the technique. The size

of the tabu list is one of the parameters of the tabu search.

The tabu search also contains mechanisms for controlling the search. The tabu list

ensures that some solutions will be unacceptable, however, the restriction provided by

the tabu list may become too limiting in some cases causing the algorithm to become

trapped at a locally optimum solution. The tabu search introduces the notion ofaspi-

ration criteria in order to overcome this problem. The aspiration criteria over-ride the

tabu restrictions making it possible to broaden the search for the global optimum.

Much of the implementation of the tabu search is problem specific - i.e., the mech-

anisms used depend heavily upon the type of problem being solved. Figure 2.6 gives

a general description of the tabu search. An initial solution is generated (usually ran-

domly). The tabu list is initialised with the initial solution. A number of iterations are

performed which attempt to update the current solution with a better one, subject to

the restrictions of the tabu list. In each iteration a list of candidate solutions is pro-

posed. These solutions are obtained in a similar fashion to the perturbation technique

used in simulated annealing and the mutation operation used in the genetic algorithm.

The most admissible solution is selected from the candidate list using the five steps

in item 2b in Figure 2.6. The current solution is updated with the most admissible

one and the new current solution is added to the tabu list. The algorithm stops after

a fixed number of iterations or when a better solution has been found for a number of

iterations.

2.3 Summary

This chapter has introduced the reader to several of the essential concepts involved in

the field of combinatorial optimisation. Evidence justifying the need for combinatorial

optimisation algorithms has been presented and a number of algorithms detailed.

The theory of NP-completeness has been introduced. This theory describes a bound

on the difficulty of solving a class of problems, namely the NP-complete decision
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problems. This theory is necessary in order to understand the need for optimisation

heuristics which, although seeming ad-hoc in some ways, are the only known methods

for finding suitable solutions to problems which are NP-hard.

The difference between exact and approximate optimisation algorithms is discussed,

along with the reasoning behind the suitability of each of these techniques for particu-

lar applications. Exact algorithms are usually computationally intensive and, therefore,

infeasible for many applications. Approximate algorithms, on the other hand, apply

search heuristics designed to scan the solution space in a meaningful manner, avoiding

regions of local minima, to find a suitable solution. Three such algorithms have been

described in detail: simulated annealing, the genetic algorithm and the tabu search.

The amount of detail given should be sufficient to enable the implementation of any

of these techniques in any suitable application. Each of the three techniques possesses

unique properties which make it useful in a broad spectrum of applications. References

to published material relating to the theory and applications of these techniques have

also been documented.

Simulated annealing mimics the process of annealing in metals using the analogy

of a solution to the structure of the molecules in the heated metal. When the tem-

perature is high the molecules move at random and appear to have little order. This

may represent an initial random guess at a solution to an optimisation problem. After

some time, as the temperature slowly cools, the molecules move toward a more ordered

structure, the aim of annealing being to produce a crystalline structure in the molecules.

The analogy to optimisation is still present so that as the algorithm progresses a more

ordered solution (hopefully one similar to the optimum) is obtained.

The genetic algorithm is an attempt to use Darwin’s evolutionary model in the field

of optimisation which has proven to be remarkably successful. A pool of solutions

breed, and mutate in a survival of the fittest regime. Solutions not considered suitable

(classified by the optimisation problem’s objective function) die off so that, over time,

the solution pool contains good solutions to the problem. Initially intended to oper-

ate on problems whose solutions could be represented as a binary string, the genetic

algorithm has grown to cover the field known as “evolutionary programming” where

an arbitrary solution representation can be utilised, provided suitable genetic operators

can be created.
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The tabu search incorporates techniques for ensuring that the solutions considered

in the search are diverse. This is achieved by maintaining a tabu list which contains

a list of solutions which have been visited by the search previously and may not be

accepted again, at least not until a certain amount of time has passed. However, by

specifying aspiration criteria, the tabu list can be overridden in order to ensure that

solutions which are believed to be good may be accepted.

The techniques presented in this chapter will be utilised throughout the remainder

of this thesis, in both cryptanalytic and cryptographic applications. In Chapter 3 the

classical substitution and transposition-type ciphers are cryptanalysed. In Chapter 4

it is shown that these techniques can be incorporated with other, more specialised al-

gorithms, in order to obtain some improvement. Chapter 5 presents an example of an

application where these techniques are of little use. This further belies the necessity

for understanding which applications are suited to combinatorial optimisation. This

is especially true in the field of cryptology since ciphers are designed to be infeasible

to solve. A method of systematically generating highly nonlinear Boolean functions

using a genetic algorithm is presented in Chapter 6.
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1. Generate an initial solution to the problem and calculate its cost.
Add this solution to the tabu list and, also, record it as the current
solution.

2. For some number of iterations perform the following steps.

(a) By transforming the current solution generate a list of can-
didate solutions to the problem.

(b) Evaluate the candidate list to find the best admissible move
by performing the following steps on each of the candi-
dates in turn.

i. Determine if the current candidate has a lower cost
than the current best admissible solution. If not go to
Step 2(b)iv.

ii. If the candidate is tabu (i.e., it is contained in the tabu
list) check to see if any of the aspiration criteria are
satisfied. If none of the aspiration criteria are satisfied
jump to Step 2(b)iv.

iii. Mark this candidate as the best admissible candidate.

iv. If the list of candidate solutions is exhausted decide if
the list needs to be extended and if so generate more
candidate solutions. If not go to Step 2c.

v. If there exist more candidate solutions return to
Step 2(b)i.

(c) Make the best admissible candidate the current solution.
Update the tabu list by adding the new solution to the list
(providing it is not already in the list).

(d) Update the overall best solution if the current solution is
better than the current overall best solution.

(e) Determine if the stopping condition is satisfied - i.e., has
the maximum number of iterations been reached or have
there been a large number of iterations since the best solu-
tion was found?

3. The best solution found is output as a solution to the problem.

Figure 2.6: The Tabu Search



Chapter 3
Married on Wednesday.

Classical Ciphers

Classical ciphers were first used hundreds of years ago. So far as security is concerned,

they are no match for today’s ciphers, however, this does not mean that they are any less

important to the field of cryptology. Their importance stems from the fact that most of

the ciphers in common use today utilise the operations of the classical ciphers as their

building blocks. For example, the Data Encryption Standard (DES), an encryption

algorithm used widely in the finance community throughout the world, uses only three

very simple operators, namely substitution, permutation (transposition) and bit-wise

exclusive-or (admittedly, in a rather complicated fashion). Given their simplicity, and

the fact that they are used to construct other ciphers, the classical ciphers are usually

the first ones considered when researching new attack techniques such as the ones

discussed in this chapter.

Many flavours of classical ciphers exist, although most fall into one of two broad

categories: substitution ciphers and transposition (permutation) ciphers. In this chap-

ter three specific examples of ciphers are considered. Two of the ciphers considered

fall into the category of substitution ciphers: the simple (or monoalphabetic) substi-

tution cipher and the polyalphabetic substitution cipher; and the other is an example

of a transposition cipher. Detailed descriptions of each of these ciphers are given in

Appendix A. The appendix also provides worked examples of each of the different

ciphers.

Previously, Forsyth and Safavi-Naini (in [18]) have published an attack on the sim-

ple substitution cipher using simulated annealing and Spillman et al (in [73]) presented

27



28 Chapter 3. Classical Ciphers

an attack (again, on the simple substitution cipher) using a genetic algorithm. Also, an

attack on the transposition cipher was proposed by Matthews (in [47]) using a genetic

algorithm. These attacks have been re-implemented in this chapter in order to obtain

a comparison of the techniques and also to evaluate a third technique, namely the tabu

search. Attacks on both the simple substitution cipher and the transposition cipher were

implemented using all three optimisation heuristics described in Chapter 2: i.e., simu-

lated annealing, the genetic algorithm and the tabu search. This involved the design of

an attack on the substitution cipher using the tabu search and the design of attacks on

the transposition cipher using simulated annealing and the tabu search. The previously

published attacks were enhanced and modified in order that an accurate comparison of

the three techniques could be obtained. Attacks on the simple substitution cipher are

described in detail in Section 3.1 and attacks on the transposition cipher are described

in Section 3.3.

Each of the three techniques was compared based on three criteria: the amount

of known ciphertext available to the attack; the number of keys considered before the

correct solution was found; and the time required by the attack to determine the correct

solution. The results are presented graphically in order to achieve a clear comparison.

The results for the simple substitution cipher are given in Section 3.1.5 and the results

for the transposition cipher are given in Section 3.3.5.

In addition to the comparison of the three optimisation heuristics for attacks on the

simple substitution cipher and the transposition cipher, a new attack is presented on

the polyalphabetic substitution cipher. Because of the structure of the cipher, it is well

suited to an attack based on a parallel heuristic. In Section 3.2 a parallel technique

for attacking the polyalphabetic substitution cipher is presented which makes use of

a parallel genetic algorithm. Although parallel genetic algorithms have been applied

widely in other areas, especially numerical optimisation (see [8, 20] for examples), this

is the first application to the field of cryptanalysis (to the best of the author’s knowl-

edge). This technique is shown to be highly effective and the results are presented in

Section 3.2.2.

Techniques for determining the period of a polyalphabetic substitution cipher are

described in Appendix A. In Section 3.2 an additional technique is described which

makes use of the parallel heuristic described in the same section. Results highlighting
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the effectiveness of this approach are also given.

Note that all experiments presented in this chapter were performed on text using

a 27 character alphabet, i.e., A – Z, and the space character. All punctuation and

structure (sentences/paragraphs) has been removed from the text before encryption.

Any two words are separated by a single space character.

3.1 Attacks on the Simple Substitution Cipher

The general strategy with the two substitution ciphers is to substitute symbols from the

plaintext alphabet with different symbols from the ciphertext alphabet(s). The weak-

ness with this strategy is that character frequency distributions are not significantly

altered by the encryption process. Thus, most attacks on substitution ciphers attempt

to match the character frequency statistics of the encrypted message with those of some

known language (for example, English). Character frequency statistics (orn-grams)

indicate the frequency distribution of all possible instances ofn adjacent characters

(for example,THE is a very common 3-gram (ortrigram) in the English language).

Examples A.1 and A.2 (from Appendix A) illustrate how then-gram statistics are

maintained during encryption.

The attack on the simple substitution cipher is particularly simple since the fre-

quency of anyn-gram in the plaintext (or unencrypted) message will correspondex-

actly to the frequency of the corresponding encrypted version in the ciphertext. The

search for the correspondingn-gram frequencies can be automated using combinato-

rial optimisation algorithms such as those described in Chapter 2. Here, a number of

methods are utilised in attacks in the simple substitution cipher. As previously indi-

cated, a method of assessing intermediate solutions (in the search for the optimum) is

required.

A major factor influencing the success of an attack on the simple substitution cipher

(or any cipher where the attack is based onn-gram statistics of the language) is the

length of the intercepted ciphertext message which is being cryptanalysed. The amount

of ciphertext required in order to recover the entire key (with a high degree of certainty)

varies depending on the type of cipher. From Figure 3.1 it can be seen that for a

message of 1000 characters it is possible to recover 26 out of the 27 key elements
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on the average. Note that in practice it is impossible to find a simple substitution

cipher key which differs in exactly one place from the correct key. However it is not

necessary to recover every element of the key in order to obtain a message that is

readable. Table 3.1 shows the relative frequency of each of the characters in a sample

of English taken from the book “20000 Leagues Under the Sea” by Jules Verne. A fact

evident in almost all attacks on substitution ciphers is that the most frequent characters

are decrypted first. Table 3.1 also shows the amount of message that will have been

recovered after each of the characters is discovered (making the unrealistic assumption

that the characters are discovered in order from most frequent to least frequent). It can

be seen that approximately fifty percent of the message can be recovered by correctly

determining the key element for the five most frequent characters in the intercepted

message. Also, the eleven most infrequent characters account for only ten percent of

the message (on the average).

3.1.1 Suitability Assessment

Naturally, the technique used to compare candidate keys to the simple substitution

cipher is to comparen-gram statistics of the decrypted message with those of the lan-

guage (which are assumed known). Equation 3.1 is a general formula used to determine

the suitability of a proposed key (k) to a simple substitution cipher. Here,A denotes

the language alphabet (i.e., for English,{A, . . ., Z, _}, where_ represents the space

symbol),K andD denote known language statistics and decrypted message statistics,

respectively, and the indicesu, b andt denote the unigram, bigram and trigram statis-

tics, respectively. The values ofα, β andγ allow assigning of different weights to each

of the threen-gram types.

Ck = α ·
∑

i∈A

∣

∣

∣Ku
(i) −Du

(i)

∣

∣

∣

+ β ·
∑
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+ γ ·
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∣Kt
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∣
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∣

Forsyth and Safavi-Naini, in their simulated annealing attack on the substitution

cipher [18] and Jakobsen in his attack [33] use a very similar evaluation, namely the

one in Equation 3.2. This formula is based purely upon bigram statistics which is often



3.1. Attacks on the Simple Substitution Cipher 31

Frequency (%)
Order Letter Relative Cumulative

1 _ 18.4820 18.4820
2 E 10.3320 28.8140
3 T 7.8395 36.6535
4 A 6.6284 43.2819
5 O 6.0091 49.2909
6 I 5.7941 55.0850
7 N 5.7526 60.8376
8 S 5.3997 66.2373
9 H 4.8210 71.0583

10 R 4.5744 75.6327
11 D 3.4530 79.0857
12 L 3.2366 82.3223
13 U 2.4719 84.7941
14 C 2.2742 87.0683
15 M 1.9853 89.0537
16 F 1.9242 90.9778
17 W 1.9183 92.8961
18 P 1.5438 94.4399
19 G 1.4424 95.8823
20 Y 1.2656 97.1479
21 B 1.2026 98.3505
22 V 0.7474 99.0979
23 K 0.5482 99.6461
24 X 0.1466 99.7928
25 Q 0.0851 99.8779
26 J 0.0667 99.9445
27 Z 0.0555 100.0000

Table 3.1: English language characteristics.

sufficient for attacks on the simple substitution cipher.

Ck =
∑

i,j∈A

∣

∣

∣Kb
(i,j) −Db

(i,j)

∣

∣

∣ (3.2)

Spillman et al [73], use a different formula again (see Equation 3.3). This equation

is based on unigram and bigram statistics.

Ck ∝
∑

i∈A
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∣Ku
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(i)

∣

∣

∣ +
∑
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∣
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∣
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The only difference between these assessment functions is the inclusion of differ-

ent statistics (Equation 3.2 is equal to Equation 3.1 whenα = γ = 0). In general, the
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larger then-grams, the more accurate the assessment is likely to be. It is usually an

expensive task to calculate the trigram statistics - this is, perhaps, why they are omitted

in Equations 3.2 and 3.3. The complexity of determining the fitness isO(N3) (where

N is the alphabet size) when trigram statistics are being determined, compared with

O(N2) when bigrams are the largest statistics being used. Following the attack de-

scription given below there are details describing a method which can be used under

some circumstances for reducing the complexity of the cost calculation by a factor of

N . Thus a cost based on trigram statistics can be calculated with complexity propor-

tional toO(N2).

Figure 3.1 indicates the effectiveness of using differentn-grams in the evaluation

of a simple substitution cipher key. The three curves in the plot represent the per-

centage of key recovered by an attack on a simple substitution cipher using simulated

annealing (see below) versus the amount of known ciphertext used in the attack. Each

curve resulted from using the cost function in Equation 3.1 with different values of the

weightsα, β andγ. For example, the “Unigrams only” curve was obtained withα = 1

andβ = γ = 0. Each data point on each curve was determined by running the attack

on 200 different messages and three times for each message. Of the three runs for each

message only the best result was used. The value on the curve represents the average

number of key elements correctly placed (over the 200 messages). For the alphabet

being used the maximum value attainable is 27.

For small amounts of known ciphertext it is interesting to note that an attack using

a cost function based on bigrams alone is more effective than one which utilises only

trigrams (see Figure 3.1). The crossover point of the “Bigrams only” and “Trigrams

Only” curves in Figure 3.1 represents an approximate threshold value where a cost

function based purely upon trigram frequencies out-performs one based only on bigram

frequencies. The reason for the phenomenon can, in part, be gleaned by observing

the cost function in Equation 3.1. When the length of the intercepted messages is

short there are far fewer distinct bigrams or trigrams represented in the ciphertext than

the total number of possible bigrams or trigrams. WhenN = 27 there areN3 =

19683 possible trigrams (theoretically - of course not all trigrams are represented in

the English language). The maximum number of distinct trigrams in a message of

length say, 100, is 98. Thus the proportion of trigrams represented in the message
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Figure 3.1: Results for cost functions using only unigrams, bigrams and trigrams,
respectively.

is very small (the upper bound is98/19683 ≈ 0.005). This means that are large

number of unrepresented trigrams are effecting the evaluation of the cost function. For

bigrams the proportion is much larger (99/729 ≈ 0.136) and hence the cost function

is more reliable and accurate. This effect ceases when the amount of known ciphertext

is greater than approximately 150 characters.

While Figure 3.1 gives an interesting comparison of the effectiveness of each of the

statistic types (i.e., unigrams, bigrams and trigrams), it is also interesting to experiment

with different values ofα, β andγ in order to determine how the statistics interact and

in which proportions they work best. Figure 3.2 presents a comparison of different

values ofα, β andγ.

In the experiments used to produce Figure 3.2, the following restrictions were ap-

plied in order to keep the number of combinations ofα, β andγ workable.

α, β, γ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and

α + β + γ = 1.0

There are 66 combinations ofα, β andγ which satisfy these conditions. In order to
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obtain good statistical averages the same attack procedure was used as for Figure 3.1

except that only 100 different messages were used (instead of 200). The three curves

represent the average number of key elements correctly placed for each of the eleven

values of each of the three weights. (NB. “Unigram Weight” refers toα, “Bigram

Weight” refers toβ and “Trigram Weight” refers toγ.)
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Figure 3.2: Results for cost functions with varying weights.

From Figures 3.1 and 3.2 it can be concluded that trigrams are generally the most

effective basis for a cost function used in attacks on the substitution cipher. However,

the benefit obtained from trigrams over bigrams is minimal. In fact, because of the

complexity associated with determining trigram statistics –O(N3) – it is often prac-

tical to base a fitness of a mixture of unigrams and bigrams – which has a complexity

proportional toO(N2). For the remainder of the work relating to simple substitution

ciphers a fitness based purely on bigrams is used (i.e., Equation 3.2).

3.1.2 A Simulated Annealing Attack

The simulated annealing attack of the simple substitution cipher is relatively straight-

forward. Recall that the key is represented as a string of theN characters in the al-
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phabet. A very simple way of perturbing such a key is to swap the key elements in

two randomly chosen positions. This is the method utilised in the following algorithm

which describes a simulated annealing attack on the simple substitution cipher.

1. The algorithm is given the intercepted ciphertext and the known language
statistics as input.

2. Generate the initial solution (randomly or otherwise), KCURR, and calculate
its cost using Equation 3.2 (CCURR). Set T = T0 = CCURR and the tem-
perature reduction factor TFACT. Set MAX ITER, the maximum number of
iterations to perform.

3. Repeat MAX ITER times (MAX ITER temperature reductions):

(a) Set NSUCC = 0.

(b) Repeat 100 ·N times:

i. Choose n1, n2 ∈ [1, N ], n1 6= n2.

ii. Swap element n1 with element n2 in KCURR to produce KNEW.

iii. Calculate the cost of KNEW using Equation 3.2. Call this cost
CNEW. Calculate the cost difference (∆E = CNEW−CCURR) and con-
sult the Metropolis criterion (Equation 2.1) to determine whether
the proposed transition should be accepted.

iv. If the transition is accepted set KCURR = KNEW and CCURR = CNEW

and increment NSUCC (NSUCC = NSUCC + 1). If NSUCC > 10 · N go to
Step 3d.

(c) If NSUCC = 0 go to Step 4.

(d) Reduce T (T = T × TFACT).

4. Output the current solution. .

The choice ofT0 = CCURR was made based upon experimentation. It was found that

for this choice ofT0 the conditions presented in Section 2.2.2 are satisfied almost all

of the time. In fact, this technique of choosingT0 was found to be better than using

a constant value since many times, when the choice ofT0 is too high, the algorithm

spends a lot of time in a seemingly random search while the temperature decreases to

a value which disallows some of the proposed solutions.
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The values100 · N (Step 3b) and10 · N (Step 3(b)iv) are parameters of the algo-

rithm which are arbitrary. They should, of course, be chosen so that a large number

of possible solutions are assessed at each temperature, but not so large that time is

wasted. By setting a limit to the number of successful updates to the solution at each

temperature, the algorithm avoids assessing too many solutions when the temperature

is high (since almost all suggested transitions are accepted at high temperatures).

As indicated above, there are circumstances under which it is possible to reduce

the complexity of the cost calculation. One such case is when comparing the cost

associated with two keys when the keys only differ in two elements (i.e., one key can

be obtained from the other key simply by swapping two elements). This is exactly

what happens in the simulated annealing algorithm above - two elements in the current

key are swapped and the new cost calculated. The difference between the cost of the

current solution and the new one (with the swapped elements) is used to determine if

the new key will be accepted.

It should be clear that when two key elements are swapped only the statistics (of the

decrypted message) for trigrams which contain one (or both) of the swapped elements

will change. Similarly, only the statistics for bigrams which contain one (or both)

of the swapped elements will change. Also, only two of the unigram statistics will

change.

Making use of this property can lead to a significant increase in the efficiency of

the simulated annealing attack. The improvement obtained using such a strategy is of

the order ofN . Table 3.2 displays the actual improvement in terms of the number of

comparisons of statistics required in the evaluation of the cost difference. The numbers

in brackets indicate the number of calculations required whenN = 27. It can be

seen that whenN = 27 the complexity of determining a cost based on trigrams is

not significantly reduced using this technique. However, for larger values ofN - for

example consider the ASCII alphabet of 256 characters - the saving is great.

This technique can be used for determining the cost difference between two keys

in any system where one key is obtained from another by swapping two elements of

the original key.

The results of the attack described in this section are compared with the attacks

using the genetic algorithm and tabu search (described below), in Section 3.1.5.
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Statistic Exhaustive Optimised
Unigrams N (27) 4
Bigrams N2 (729) 8(N − 1) (208)
Trigrams N3 (19683) 8(3N2 − 6N + 4) (16232)

Table 3.2: Improvement gained from optimised calculation of the cost difference.

3.1.3 A Genetic Algorithm Attack

The genetic algorithm is rather more complicated than the simulated annealing attack.

This is because a pool of solutions is being maintained, rather than a single solution.

An extra level of complexity is also present because of the need for a mating function.

The mating function utilised in this thesis for attacks involving substitution ciphers

is similar to the one proposed by Spillman et al [73], who use a special ordering of the

key. The characters in the key string are ordered such that the most frequent charac-

ter in the ciphertext is mapped to the first element of the key (upon decryption), the

second most frequent character in the ciphertext is mapped to the second element of

the key, and so on. The correct key will then be a sorted list of the decrypted message

single character frequencies. The reason for this ordering will become apparent upon

inspection of the mating function. Given two parents constructed in the manner just

described, the first element of the first child is chosen to be the one of the first two el-

ements in each of the parents which is most frequent in the known language statistics.

This process continues in a right to left direction along each of the parents to create the

first child only. If, at any stage, a selection is made which already appears in the child

being constructed, the second choice is used. If both of the characters in the parents for

a given key position already appear in the child then a character is chosen at random

from the set of characters which do not already appear in the newly constructed child.

The second child is formed in a similar manner, except that the direction of creation is

from left to right and, in this case, the least frequent of the two parent elements is cho-

sen. An algorithmic description of this mating procedure for creating the two children

is now given:

1. Notation: p1 and p2 are the parents, c1 and c2 are the children, pi(j)
indicates character j in parent i (similarly ci(j) indicates the jth element
in child i), {Cj,k

i } denotes the set of elements in child i in positions j to k
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(inclusive) with the limitation that if i = N + 1 or j = 0 then {Cj,k
i } = {∅}

(the empty set), f(x) denotes the relative frequency of character x in the
known language.

2. Child 1: For j = 1, . . . , N (step 1) do

• If f(p1(j)) > f(p2(j)) then

– If p1(j) /∈ {C1,j−1
1 } then c1(j) = p1(j),

else if p2(j) /∈ {C1,j−1
1 } then c1(j) = p2(j),

else c1(j) = random element /∈ {C1,j−1
1 }.

else

– If p2(j) /∈ {C1,j−1
1 } then c1(j) = p2(j),

else if p1(j) /∈ {C1,j−1
1 } then c1(j) = p1(j),

else c1(j) = random element /∈ {C1,j−1
1 }.

3. Child 2: For j = N, . . . , 1 (step −1) do

• If f(p1(j)) < f(p2(j)) then

– If p1(j) /∈ {Cj+1,N
2 } then c2(j) = p1(j),

else if p2(j) /∈ {Cj+1,N
2 } then c2(j) = p2(j),

else c2(j) = random element /∈ {Cj+1,N
2 }.

else

– If p2(j) /∈ {Cj+1,N
2 } then c2(j) = p2(j),

else if p1(j) /∈ {Cj+1,N
2 } then c2(j) = p1(j),

else c2(j) = random element /∈ {Cj+1,N
2 }.

This description of the mating operation for a simple substitution cipher differs

from the method described in [73] where each element of the two children is chosen

by taking the character from the two parents which appearsmostfrequently (for both

children) in theciphertext. This technique is clearly less efficient since the first element

of each key represents the most frequentplaintextcharacter.

The mutation operation is identical to the solution perturbation technique used in

the simulated annealing attack. That is, randomly select two positions in the child and

swap the two characters at those positions.

The following is an algorithmic description of the attack on a simple substitution

cipher using a genetic algorithm.
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1. The algorithm is given the ciphertext (and its length) and the statistics of
the language (unigrams, bigrams and trigrams).

2. Initialise the algorithm parameters. They are: M the solution pool size
and MAX ITER the maximum number of iterations.

3. Randomly generate the initial pool containing M solutions (keys of the
simple substitution cipher). Call this pool PCURR. Calculate the cost of
each of the keys using Equation 3.2.

4. For iteration/generation i = 1, . . . , MAX ITER, do

(a) Select M/2 pairs of solutions from the current pool, PCURR, to be the
parents of the new generation. The selection should be random with
a bias towards the most fit of the current generation.

(b) Each pair of parents then mate using the algorithm above to produce
two children. These M children form the new pool, PNEW.

(c) Mutate each of the children in PNEW using the random swapping pro-
cedure described above.

(d) Calculate the suitability of each of the children in PNEW using Equa-
tion 3.2.

(e) Sort PNEW from most suitable (least cost) to lease suitable (most
cost).

(f) Merge PCURR with PNEW to give a list of sorted solutions (discard dupli-
cates) - the size of this list will be between M and 2M . Choose the
M best solutions from the merged list to become the new PCURR.

5. Output the best solution from PCURR.

This genetic algorithm was implemented and results of the attack on the simple

substitution cipher are given in Section 3.1.5. The genetic algorithm attack is com-

pared with the simulated annealing attack (described above) and the tabu search attack

(described now).

3.1.4 A Tabu Search Attack

The simple substitution cipher can also be attacked using a tabu search. This attack

is similar to the simulated annealing one with the added constraints of the tabu list
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(as described in Chapter 2). The same perturbation mechanism (i.e., swapping two

randomly chosen key elements) is used. The overall algorithm is described as follows:

1. The inputs to the algorithm are the known (intercepted) ciphertext and
the language statistics for unigrams, bigrams and trigrams.

2. Set MAX ITER, the maximum number of iterations, N TABU, the size of
the tabu list and N POSS, the size of the possibilities list. Initialise the
tabu list with a list of random and distinct keys.

3. For iteration i = 1, . . . , MAX ITER, do

(a) Find the key in the tabu list which has the lowest cost associated
with it. Call this key KBEST.

(b) For j = 1, . . . , N POSS, do

i. Choose n1, n2 ∈ [1, N ], n1 6= n2.

ii. Create a possible new key KNEW by swapping the elements n1

and n2 in KBEST.

iii. Check that KNEW is not already in the list of possibilities for this
iteration or the tabu list. If it is return to Step 3(b)i.

iv. Add KNEW to the list of possibilities for this iteration and determine
its cost.

(c) From the list of possibilities for this iteration find the key with the
lowest cost – call this key PBEST.

(d) From the tabu list find the key with the highest cost – call this key
TWORST.

(e) While the cost of PBEST is less than the cost of TWORST:

i. Replace TWORST with PBEST.

ii. Find the new PBEST.

iii. Find the new TWORST.

4. Output the best solution (i.e., the one with the least cost) from the tabu
list.

Note that the choice of NPOSS must be less thanN(N − 1) – whereN is the key

size – since this is the maximum number of distinct keys which can be created from

KBEST by swapping two elements.
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Figure 3.3: A comparison based on the amount of known ciphertext.

Number of SA GA TS
Ciphertexts x̄ s x̄ s x̄ s

100 10.73 4.70 7.74 4.82 6.02 4.04
200 17.70 3.40 14.17 6.13 12.76 6.32
300 21.07 2.72 18.77 6.01 17.33 6.48
400 22.86 2.27 21.72 4.61 19.45 6.34
500 23.73 2.16 22.44 4.37 21.77 5.47
600 24.50 1.86 23.69 3.68 23.50 4.14
700 24.72 1.73 23.82 3.39 23.68 4.42
800 25.08 1.59 24.64 2.23 24.18 4.12

Table 3.3: Mean and standard deviation data corresponding to Figure 3.3.

The results of the tabu search are given in the following section along with a com-

parison with the two alternate techniques described above.

3.1.5 Results

In this section a number of experimental results are presented which outline the effec-

tiveness of each of the attack algorithms described above. Each of the attacks was run

a number of times with a variety of parameter values. The results here are presented as
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Figure 3.4: A comparison based on the number of keys considered.
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Figure 3.5: A comparison based on time.

plotted curves (Figures 3.3, 3.4 and 3.5). Each data point on these curves represents

three hundred runs of the particular algorithm. One hundred different messages were
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generated in each case and the attack was run three times on each message. Of these

three runs on each message only the best result is considered. The numerical value

that is used in each of the plots is then the average over the one hundred messages of

the best result for each message. Why was this technique used? It is common when

using approximation algorithms to run the algorithm a number of times and then take

the best result. This is because of the random nature of the algorithms. By averaging

the results of a large number of independent attacks (in this case one hundred) a good

representation of the algorithm’s ability is obtained.

The first point to note is that each of the algorithms performed (approximately) as

well as the other with regard to the ultimate outcome of the attack. This is illustrated in

Figure 3.3 which compares the average number of key elements (out of 27) correctly

recovered versus the amount of ciphertext which is assumed known in the attack. The

plot shows results for amounts ranging from 100 to 800 known ciphertext characters.

In each case the results obtained are very similar for each of the algorithms. The mean,

x̄, and standard deviation values,s, for the results in Figure 3.3 are given in Table 3.3.

It can be seen that the standard deviation values for simulated annealing are less than

for the other two methods. This indicates that the simulated annealing approach, as

well as being slightly superior with respect to the mean values, has less variance in its

results.

Each of the algorithms perform roughly equally well when the comparison is made

based on the amount of ciphertext provided to the attack. It is interesting to make a

comparison based on the complexity of each of the attack algorithms. The remaining

results in this section aim to make a comparison of the algorithms based on complexity.

In each case, the following results were obtained using cryptograms of length 1000.

Figure 3.4 compares the number of correctly determined key elements with the total

number of keys considered up to that point by the algorithm. It is clear that the number

of keys considered by the simulated annealing technique in order to obtain the correct

key is significantly greater than for the other two techniques with the genetic algorithm

and the tabu search performing roughly equally in this respect. However, this com-

parison does not accurately indicate the relative efficiencies of the three algorithms.

In Figure 3.5, which compares the number of correct key elements discovered with

the amount of time used by the algorithm up to that point, it is clear that simulated
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annealing is actually more efficient (with respect to time) that the genetic algorithm.

By comparing Figures 3.4 and 3.5 it can be concluded that the simulated annealing al-

gorithm is able to consider a far greater number of solutions that the genetic algorithm

and in much less time. It is also clear from both of these figures that the tabu search is

most efficient in both respects.

3.2 Attacks on Polyalphabetic Substitution Ciphers

The level of correspondence betweenn-gram statistics in the plaintext and ciphertext

messages for a polyalphabetic substitution cipher is not as high as for the simple sub-

stitution cipher, however, there is still a high enough correlation to achieve good results

in attacks. As can be observed from the encryption process, the frequency of single

characters (unigrams),for each block position, remains unchanged. Provided sufficient

ciphertext is obtained, it is possible to find a good approximation of the correct encryp-

tion keys, for each block position, simply by determining the unigram frequencies for

each block position. This, of course, assumes that the block length is known.

Methods for determining the block length were discussed in Section A.2. Another

method is now presented. This (ad hoc) technique for determining the period of a

polyalphabetic substitution cipher makes use of either a genetic algorithm or simulated

annealing. Matthews (in [47]) used a similar technique for finding key lengths of

transposition ciphers (see Section 3.3) with a genetic algorithm. The test procedure

involves running a genetic algorithm for a small number of generations with a fixed

block lengthB. This process is repeated for all potential values ofB (the correct

period). It is surmised that the cost of the best solution found for the correct period

will be significantly less than the best cost found for any of the incorrect periods. The

technique is described algorithmically as follows:

1. The inputs are the ciphertext and the required language statistics (un-
igrams, bigrams and trigrams). It is presumed that the ciphertext was
created using a polyalphabetic substitution cipher of unknown period.

2. For each of a series of possible period values:

(a) Run the attack (for example see the parallel genetic algorithm later
in this section) for a small number of iterations (say 20).
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b Lowest cost
2 1.11705
3 1.02290
4 1.09631
5 1.11718
6 0.78067
7 1.06882
8 0.97778
9 0.89119
10 1.00322
11 1.00872
12 0.72703

Table 3.4: Costs for different periods. Correct period is 6.

(b) Record the period and the cost of the best key found by the search.

3. The period of the polyalphabetic cipher used to encrypt the message (or
a multiple of that period) is indicated by the lowest recorded cost.

Table 3.4 shows the results for such a technique when utilised on the polyalphabetic

substitution cipher. In this case the correct period is six. Each time the parallel genetic

algorithm (described later) was run for thirty iterations on the same ciphertext, each

time assuming a different period. The cost function used was Equation 3.1 withα =

0.2 andβ = γ = 0.4 and in each case 1000 ciphertext characters were used. Results

for periods up to length twelve are shown. It is of interest to note that the lowest cost

obtained for an attack assuming a period of twelve was actually lower than the cost

obtained for the correct value (six). This is because twelve is a multiple of the correct

block size. Keys every six positions apart would be very similar indicating the shorter

block size.

The polyalphabetic substitution cipher, as described in Section A.2, is simply a

number of simple substitution ciphers operating on the different positions within each

block. One possible attack strategy, then, is to solve each of the simple substitution ci-

phers in parallel. There are a number of problems with such an approach and these will

be addressed presently. First some possible parallelisation techniques are investigated.

The uses of parallel genetic algorithms have been widely published in the literature

(see [56, 28, 8, 20]). For this reason the genetic algorithm is considered here.
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3.2.1 A Parallel Genetic Algorithm Attack

There are two broad ways in which a genetic algorithm can be parallelised. The first

is to parallelise the selection, mating and mutation phases in the genetic algorithm.

Such a technique can be used to enhance almost any implementation of the genetic

algorithm. Figure 3.6 illustrates this idea.

New Generation

Children

Parents

Current Generation

Selection

Mate

Mutation

Figure 3.6: A parallel heuristic for any genetic algorithm.

When designing parallel heuristics one must be aware of the time overhead asso-

ciated with transporting data to and from separate processing nodes. The heuristic

presented in Figure 3.6 is only useful when dedicated hardware is available which can

perform the necessary functions (eg., selection, mating, mutation and fitness/cost de-

termination). Typically the complexity of each of these individual functions is very

small, however a large number of processing nodes are required in order to gain ad-

vantage from the parallel architecture of the algorithm.

An alternative heuristic is to have a number of genetic algorithms running in paral-

lel, each solving a different part of the problem. Figure 3.7 is a pictorial representation

of this strategy withM GA’s running in parallel and communicating everyk itera-
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tions. The usefulness of such an approach is very much dependent on the structure of

the problem being solved. Consider the polyalphabetic substitution cipher. As indi-

cated briefly above, the polyalphabetic substitution cipher can be solved as a number

of simple substitution ciphers. The key to each of these simple substitution ciphers

will enable decryption of one of the positions in the block.

GAM
X

GAM
2kGA2

2kGA1
2k

GA1
k kGA2 GAM
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XGA2GA1
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GA1
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Figure 3.7: A problem specific parallel genetic algorithm heuristic.

This strategy was used to successfully attack the polyalphabetic substitution ci-

pher. Before implementing the parallel attack a number of design problems have to be

solved. Firstly, the calculation of the fitness/cost is no longer a simple task. Without

knowledge of the keys for the two adjacent block positions it is impossible to deter-

mine bigram or trigram statistics. To overcome this problem the following strategy

was used.

1. Initially only unigram statistics are used in determining the cost of the solutions
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in any pool.

2. Everyx iterations of each GA, the most fit solution in the current pool is sent to

each of the neighbouring GA’s. Each GA has knowledge of the entire ciphertext

message so it is able to determine a fitness based on unigram, bigram and trigram

statistics using ciphertext characters in its position, the position to the left and

the position to the right.

In an attempt to illustrate more clearly the description of the previous paragraph

the following symbolic outline is given. Consider a polyalphabetic substitution cipher

consisting ofB monoalphabetic or simple substitution ciphers. There will then be

B genetic algorithms (call them GA1, GA2, . . . , GAB) solving each of theB simple

substitution ciphers. Now consider GAj (1 < j < B) which is attempting to find the

key to the cipher of positionj. In determining the cost of each of the solutions in its

pool, GAj uses the current best key from each of its neighbours to find the bigram and

trigram statistics.

The second problem to be solved when implementing a parallel GA is to determine

how the different GA’s will communicate between each another. The work presented

here makes use of a software package called PVM (Parallel Virtual Machine) [62]

which enables a number of networked computers to be linked as a virtual parallel

computer in which a single application can be spread across a number of different

physical computers. The use of such a package allows each of the individual GA’s to

communicate by sending the neighbours its current best keys.

With these design problems solved the implementation of each genetic algorithm

proceeds as follows.

1. Each GA is given language statistics for unigrams, bigrams and trigrams,
the ciphertext, the block size (B) and this GA’s position within the block, j
(1 ≤ j ≤ B), the frequency of inter-GA communications (f ), the maximum
number of iterations for the GA (G) and the solution pool size (M ).

2. Generate a random pool of M simple substitution cipher keys for position
j and calculate the cost for each using unigram statistics only. Call this
pool of solutions PCURR.

3. For iteration/generation i (i = 1, . . . , G) do:
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(a) If i mod k ≡ 0 send the best key from PCURR to each of the neighbour-
ing GA’s (i.e., the GA’s solving for positions j − 1 and j + 1). Also
receive the best keys from each of these GA’s.

(b) Select M/2 pairs of solutions from PCURR to be the parents of the new
generation. The selection should be biased towards the most fit of
the current generation (i.e., the keys in PCURR).

(c) Mate using each pair of parents with the algorithm given above. This
produces M children which become the new generation (i.e., the
solutions of PNEW).

(d) Mutate each of the children in PNEW using the same swapping proce-
dure as described in the attack on the simple substitution cipher.

(e) Calculate the cost of each of the children in PNEW using the neigh-
bouring keys obtained in Step 3a and Equation 3.1.

(f) Select the M best keys from the two pools PCURR and PNEW. Replace
the current solutions in PCURR with these solutions.

4. Output the best key from PCURR.

Experimental results obtained from this algorithm are now given. It is shown that

the parallel technique is effective for polyalphabetic substitution ciphers with a variety

of block sizes.

3.2.2 Results

It is clear that the parallel implementation of the attack will perform much more effi-

ciently than a serial version since the parallel attack is solving each key of the polyal-

phabetic cipher simultaneously. The overhead of communication between the parallel

processors is minimal leading to an attack of the polyalphabetic substitution cipher

which would be expected to complete in roughly the same time as a similar attack on

a monoalphabetic substitution cipher. In this section results based on the amount of

ciphertext provided to the attack are given. These results can be compared with those

obtained in Figure 3.3 for the simple substitution cipher.

The algorithm described above was implemented using a public domain software

package called PVM (Parallel Virtual Machine) [62] which allows the development of

parallel applications by sharing the processors of a number of networked computers (or
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Figure 3.8: Known ciphertext versus percent recovered (key and message).

Amount of PGA
Ciphertext x̄ s

200 9.97 2.50
400 16.97 3.07
600 19.05 3.12
800 21.35 1.76
1000 22.00 2.05
1200 23.19 1.43
1400 24.11 1.58

Table 3.5: Mean and standard deviation data corresponding to Figure 3.8.

by running tasks simultaneously on a single, multitasking computer - a less efficient

option). The attack was implemented with a polyalphabetic substitution cipher with a

block size of three. The attack was run 100 times for each of 200, 400, 600, 800, 1000,

1200 and 1400 known ciphertext characters per key. The average results for the polyal-

phabetic substitution cipher are given in Figure 3.8. The mean and standard deviation

statistics for the results in Figure 3.8 are given in Table 3.5. The relatively small values

for the standard deviation and high values for the mean show that this technique is re-

liable in obtaining the indicated results. This figure presents a plot of both the amount
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of message recovered and the amount of key recovered as a percentage. Recall that

for the simple substitution cipher (see Figure 3.3) that roughly 25 out of 27 key ele-

ments were correctly recovered after approximately 800 known ciphertext characters

were provided. The parallel genetic algorithm attack of the polyalphabetic substitution

cipher required about 1400 characters per key to obtain a similar result. This is to

be expected because of the reduced number of trigrams available to the attack on the

polyalphabetic substitution cipher.

The parallel algorithm was run on block sizes (B) ranging from 3 to 9. In each case

there were 1500 characters of ciphertextper key. It was found that, regardless of block

size, the algorithm was able to fully recover at least 99% of the original message. This

result was obtained by running the algorithm using 100 different ciphertext messages

for each block size and averaging the number of correctly placed key elements in each

case. In each case the average number of key elements correctly placed was more than

26 out of 27 for each position in the block.

These results indicate that the parallel genetic algorithm is an extremely powerful

technique for attacks on polyalphabetic substitution ciphers. It could be surmised from

the experimental results given above that the attack could be used on polyalphabetic ci-

phers with very large periods provided that sufficient ciphertext and a parallel machine

with sufficient nodes to implement the attack are available to the cryptanalyst.

3.3 Attacks on Transposition Ciphers

In this section three techniques are presented which can be utilised in attacks on the

transposition cipher. These techniques make use of simulated annealing, the genetic

algorithm and the tabu search, respectively. Recall that the attacks on the substitution

ciphers used a perturbation mechanism which simply swapped two randomly chosen

elements of the key. An additional mechanism is used in the attacks on the transposi-

tion cipher. This mechanism rotates a random (but consecutive) subsection of the key

by a random amount. Possible cost functions for the attacks on the transposition cipher

are now discussed.
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3.3.1 Suitability Assessment

It is possible to use exactly the same cost to evaluate a key of a transposition cipher

as the one used in Equation 3.1 for the simple substitution cipher. In the process of

determining the cost associated with a transposition cipher key the proposed key is

used to decrypt the ciphertext and then the statistics of the decrypted message are then

compared with statistics of the language.

Matthews, in [47], proposed an intuitive (but never-the-less clever) alternative. In-

stead of using all possible bigrams and trigrams a subset of the most common ones are

chosen. (Remember unigram frequencies are unchanged during the encryption process

and so are ignored when evaluating a key.)

The method Matthews used was to list a number of the most common bigrams

and trigrams and to assign a weight (or score) to each of them. Also, the trigram

“EEE” was included in the list and assigned a negative score. The idea behind this is

interesting. SinceE is very common in English, it could be expected that a plaintext

message might contain a relatively high number ofE’s. The same frequency ofE’s will

be present in the ciphertext, but, in this case, it could be expected that, on occasion,

threeE’s might occur simultaneously. Since these never occur normally in th English

language, it makes sense to assign such a trigram a negative score.

Each weight is applied to the frequency of the corresponding bigram or trigram

in the decrypted message. Note that Matthews’ method (in [47]) was expressed in

terms of a fitness function so the negative weight assigned to the trigram “___ ” (three

consecutive spaces) had the effect of reducing the fitness. Table 3.6 shows the weight

table used by Matthews in his paper. The bigrams, trigrams and weights were modified

for the research in this thesis to the values shown in Table 3.7. Notice that the bigram

“__” (two consecutive spaces) and the trigram “___ ” (three consecutive spaces) have

been included. Some of the other bigrams and trigrams are slightly different - due to

the fact that the space symbol has been included in the encryption in this work (and

was not in the work by Matthews) and also (perhaps) due to different sets of language

statistics being used.
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Bi/trigram score Bi/trigram score
TH +2 ED +1
HE +1 THE +5
IN +1 ING +5
ER +1 AND +5
AN +1 EEE -5

Table 3.6: The fitness weight table proposed by Matthews.

Bi/trigram score Bi/trigram score
E_ +2 __ -6
_T +1 _TH +5
HE +1 THE +5
TH +1 HE_ +5
_A +1 ___ -10
S_ +1

Table 3.7: The fitness weight table used in this research.

3.3.2 A Simulated Annealing Attack

In this section an attack on the transposition cipher using simulated annealing is pre-

sented. The score table from the previous section (see Table 3.7) is utilised when

evaluating solutions.

Candidate solutions are generated from the current solution by either swapping two

randomly chosen positions, or rotating the key a random amount. The choice of which

of these two methods is made by random choice - referred to as “tossing a coin” in the

algorithm description below. The algorithm can be described as follows:

1. Inputs to the algorithm are the intercepted ciphertext, the key size (per-
mutation size or period), P , and a score table such as the one in Ta-
ble 3.7.

2. The algorithm parameters are fixed – i.e, the maximum number of iter-
ations (MAX ITER), the initial temperature (T0) and the temperature re-
duction factor (TFACT). Set T = T0 and generate a random initial solution
(KCURR) and calculate the associated cost (CCURR).

3. Repeat MAX ITER times:

(a) Set NSUCC = 0.
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(b) Repeat 100 · P times:

i. Toss a coin:

• Heads:

A. Choose n1, n2 ∈ [1, P ], n1 6= n2.

B. Swap n1 and n2 in KCURR to create KNEW.

• Tails:

A. Choose n1, n2 ∈ [1, P ], n1 < n2.

B. Choose r ∈ [1, (n2 − n1)].

C. Rotate the section from element n1 to element n2 in KCURR

r places clockwise to create KNEW.

ii. Calculate the cost CNEW of KNEW. Find the cost difference (∆E =
CNEW −CCURR) and consult the Metropolis criterion (Equation 2.1)
to determine whether the proposed transition should be accepted.

iii. If the transition is accepted set KCURR = KNEW and CCURR = CNEW

and increment NSUCC. If NSUCC > 10 · P go to Step 3d.

(c) If NSUCC = 0 go to Step 4.

(d) Reduce T (T = T × TFACT).

4. Output the current solution KCURR.

This simulated annealing attack was implemented and the experimental results

are given below in Section 3.3.5 which compare this technique with the genetic al-

gorithm attack described in Section 3.3.3 and the tabu search which is described in

Section 3.3.4.

3.3.3 A Genetic Algorithm Attack

The mating algorithm used for the genetic algorithm attack on the transposition cipher

is similar to the one used for the simple substitution cipher attack. The difference is

that the language statistics are not used in this case. The technique used for mating two

transposition cipher keys (to produce two more) is now given:

1. Notation: p1 and p2 are the parents, c1 and c2 are the children, pi(j)
denotes the element j in parent i, similarly, ci(j) denotes element j in
child i, {Cj,k

i } denotes the set of elements in child i from positions j to k
(inclusive) with the limitation that if i = P +1 or j = 0 then {Cj,k

i } = ∅ (the
empty set).
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2. Child 1: For j = 1, . . . , P (step 1) do

• If p1(j) /∈ {C1,j−1
1 } then

– c1(j) = p1(j),

else if p2(j) /∈ {C1,j−1
1 } then

– c1(j) = p2(j),

else

– c1(j) = random element /∈ {C1,j−1
1 }.

3. Child 2: For j = P, . . . , 1 (step −1) do

• If p1(j) /∈ {Cj+1,P
2 } then

– c2(j) = p1(j),

else if p2(j) /∈ {Cj+1,P
2 } then

– c2(j) = p2(j),

else

– c2(j) = random element /∈ {Cj+1,P
2 }.

This mating technique is incorporated with the general genetic algorithm as de-

scribed in Chapter 2. The same mutation operators as for the simulated annealing

attack is utilised. That is, a choice (made at random) between randomly swapping two

elements of the key, or rotating the key by a random amount. The algorithm can be

described as follows:

1. Inputs to the algorithm are the intercepted ciphertext, the key size (per-
mutation size or period), P , and a score table such as the one in Ta-
ble 3.7.

2. The solution pool size (M ) and the maximum number of generations (or
iterations) (MAX ITER) are set.

3. Generate an initial pool of solutions (randomly) – PCURR – and calculate
the cost of each of the solutions in the pool using the score table.

4. For MAX ITER iterations do:

(a) Select M/2 pairs of keys from PCURR (the current pool) to be the par-
ents of the new generation.
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(b) Perform the mating operation described above on each of the pairs
of parents to produce a new pool of solutions (PNEW).

(c) For each of the M children perform a mutation by applying the same
process as is used in Step 3(b)i of the simulated annealing attack
algorithm described above (replace the initial representation of the
child (KCURR) with the new one (KNEW)).

(d) Calculate the cost associated with each of the keys in the new solu-
tion pool – PNEW.

(e) Merge the new pool (PNEW) with the current pool (PCURR) and discard
any duplicates in the combined list. Sort the remaining keys – based
on the cost function – and choose the best M to become the new
current generation (PCURR).

5. Output the best solution from the current key pool (PCURR).

The results of the genetic algorithm approach are given below.

3.3.4 A Tabu Search Attack

In this section an attack on the transposition cipher which utilises the tabu search is

outlined. Once again the swapping/rotating mutator is used to generate candidate so-

lutions. In each iteration the best new key found replaces the worst existing one in the

tabu list. The algorithm follows:

1. Inputs to the algorithm are the intercepted ciphertext, the key size (per-
mutation size or period), P , and a score table such as the one in Ta-
ble 3.7.

2. Initialise the algorithm parameters – N TABU, the size of the tabu list,
N POSS, the size of the list of possibilities considered in each iteration
and MAX ITER, the maximum number of iterations to perform. Initialise
the tabu list with random and distinct keys and calculate the cost associ-
ated with each of the keys in the tabu list.

3. For MAX ITER iterations do:

(a) Find the best key (i.e., the one with the lowest cost) in the current
tabu list – call this key KBEST.
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(b) For j = 1, . . . , N POSS, do:

i. Apply the perturbation mechanism described in Step 3(b)i of
the simulated annealing attack algorithm above (where KCURR =
KBEST) to produce a new key (KNEW).

ii. Check if KNEW is already in the list of possibilities generated for
this iteration or the tabu list. If so, return to Step 3(b)i.

iii. Add KNEW to the list of possibilities for this iteration.

(c) From the list of possibilities for this iteration find the key with the
lowest cost – call this key PBEST.

(d) From the tabu list find the key with the highest cost – call this key
TWORST.

(e) While the cost of PBEST is less than the cost of TWORST:

i. Replace TWORST with PBEST.

ii. Find the new PBEST.

iii. Find the new TWORST.

4. Output the best solution (i.e., the one with the least cost) from the tabu
list.

The experimental results obtained using all three attacks are now presented.

3.3.5 Results

The three techniques were implemented as described above and a number of results

were obtained. As with all the results for the classical ciphers, the first comparison is

made based upon the amount of ciphertext provided to the attack. These results are pre-

sented in Figure 3.9. Here each algorithm was run on differing amounts of ciphertext

- one hundred times for each amount. The results in Figure 3.9 represent the average

number of key elements correctly placed for a key size of fifteen in this case. Note

that because a transposition cipher key which is rotated by one place will still properly

decrypt a large amount of the message, a key element is said to be correctly placed if

its right hand neighbour is correct. In this manner it is not necessary that the key ob-

tained match exactly the original key but if each of the neighbours in an obtained key

are the same as the neighbours for the correct key (except for end positions), then the
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Figure 3.9: The amount of key recovered versus available ciphertext, for transposition
size 15.

message will almost certainly still be readable - especially if the period of the transpo-

sition cipher is large. It can be seen from the results that each of the three algorithms

performed roughly equally when the comparison is made based upon the amount of

known ciphertext available to the attack. The mean and standard deviation statistics

corresponding to the results in Figure 3.9 (shown in Table 3.8) once again, indicate

that simulated annealing consistently finds solutions with the number of correct key

elements close to the mean.

As with the simple substitution cipher in Section 3.1.5, the three techniques were

also compared using the total number of keys considered and the time taken as a means

of comparison. The results are given in Figures 3.10 and 3.11, respectively. The ex-

periments were carried out with a period equal to 15 with 1000 known ciphertext char-

acters. The values in the graphs were obtained by averaging the results from 100 runs

of each algorithm. These comparisons give a better indication of which method might

be considered most efficient in searching for the solution of a transposition cipher.

Note that the curves in Figures 3.10 and 3.11 are not smooth, particularly for the

case of simulated annealing. This can be explained by the fact that for some values on
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Amount of SA GA TS
Ciphertext x̄ s x̄ s x̄ s

100 3.88 2.12 3.78 2.06 3.78 2.08
200 7.27 3.55 6.37 3.24 6.41 3.20
300 11.11 3.69 9.00 3.65 9.18 3.64
400 12.58 3.08 10.81 3.57 10.97 3.60
500 13.84 2.41 11.92 3.10 12.55 3.05
600 14.55 1.44 13.09 2.67 13.17 2.77
700 14.75 0.95 13.33 2.67 13.74 2.32
800 14.85 0.76 13.94 1.95 14.12 1.97
900 14.95 0.41 14.08 1.94 14.37 1.63
1000 14.96 0.38 14.14 1.75 14.51 1.49

Table 3.8: Mean and standard deviation statistics corresponding to the results in Fig-
ure 3.9.
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Figure 3.10: The amount of key recovered versus keys considered (transposition size
15).

the vertical axis, there were very few data points available in order to determine a good

average for that position. The most noticeable instances are for simulated annealing

when the number of correct key elements are 10 and 11. Despite this phenomenon it

is still possible to make a direct comparison of the three techniques.
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Figure 3.11: The amount of key recovered versus time taken (transposition size 15).

It can be seen that the genetic algorithm and the tabu search perform equally well

in this case, however, the simulated annealing algorithm lags in both respects. The

comparison based on the number of keys considered by each algorithm shows that the

genetic algorithm out-performs even the tabu search. The time comparison, however,

shows that the two algorithms required the same amount of time to find the correct

solution. This indicates that the genetic algorithm is slower to process the keys than

the tabu search. This is is expected since the tabu search does not include the mating

process.

Figure 3.12 shows results for the transposition cipher based on the period. It should

be noted that for periods less than fifteen, with one thousand available ciphertext char-

acters, each of the algorithms could successfully recover the key all the time. The

figure shows that the simulated annealing attack was the most powerful. For a trans-

position cipher of period 30 the simulated annealing attack was able to correctly place

26 of the key elements, on the average.
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Figure 3.12: The amount of key recovered versus transposition size, 1000 known ci-
phertext characters.

3.4 Summary

This chapter has developed the theory and presented a number of automated attack

methodologies against simple ciphers. In the first instance, properties of these ciphers

which make them vulnerable were discussed. The common failing of each of the

ciphers described (the simple and polyalphabetic substitution ciphers and the transpo-

sition cipher) is that none is sophisticated enough to hide the inherent properties or

statistics of the language of the plaintext.

Examples of each of the simple ciphers are given in order to clarify their failings.

Also the theory associated with determining the block length of both polyalphabetic

substitution ciphers and transposition ciphers is given. These methods are sufficiently

effective to allow the assumption that the block length is known in the attacks described

for these ciphers.

For simple substitution ciphers and transposition ciphers attacks have been de-

scribed and implemented using all three of the optimisation heuristics described in

Chapter 2. In each case these techniques were found to provide effective automated
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techniques for the cryptanalysis of the ciphertext. Provided sufficient ciphertext is in-

tercepted by an attacker, each of these algorithms will provide enough information to

make the plaintext message understandable.

Comparisons of the three techniques were also made based on the number of keys

considered and the time taken by the algorithm. It was found that for the simple substi-

tution cipher the tabu search out-performed both simulated annealing and the genetic

algorithm with simulated annealing taking roughly twice as long as the tabu search

and the genetic algorithm taking roughly twice as long as simulated annealing. These

results differed for the transposition cipher where the tabu search and the genetic al-

gorithm performed equally well and roughly four times faster than the simulated an-

nealing attack. However, the simulated annealing attack on the transposition cipher

performed better than the other two techniques on large transposition sizes.

A parallel heuristic for the genetic algorithm is presented along with an associ-

ated algorithm for the cryptanalysis of the polyalphabetic substitution cipher. It is

shown that this algorithm also gives an accurate indication of the block length used

in the encryption process. A parallel technique is desirable considering the efficiency

gains obtained from such an approach. The attack described in this chapter effec-

tively reduces the complexity of a polyalphabetic substitution cipher attack to that of a

monoalphabetic one (provided a computer withB processing nodes is available).

Overall, optimisation heuristics are ideally suited to implementations in attacks on

the classic ciphers. This has been shown by the experimental results in the chapter.

The remainder of this dissertation deals with different applications of optimisation

heuristics in the fields of cryptanalysis and cryptography.



Chapter 4
Took ill on Thursday.

Attacks on a Certain Class of Stream
Ciphers

In this chapter a number of techniques for the cryptanalysis of a certain class of stream

cipher are presented. In the most commonly used stream ciphers a pseudo-random

sequence of bits is combined (using modulo 2 addition, or XOR) with the plaintext

to produce the ciphertext. The class of stream ciphers being considered here produce

a pseudo-random output sequence by the nonlinear combination of the output of a

number of linear feedback shift register (LFSR) sequences. A general overview of the

LFSR and LFSR-based stream ciphers is given in Appendix B.

Attacks on this class of stream cipher are well known. Meier and Staffelbach [48]

and Zeng and Huang [78] are considered the pioneers of attacks on these ciphers.

Subsequent to their research, a number of publications appeared which theoretically

and experimentally analysed these and other similar attacks (for example, see [10, 54,

55]). All of these techniques have two features in common: an iterative error correction

algorithm and a method of obtaining low density parity checks. The fast correlation

attack (FCA) introduced by Meier and Staffelbach [48] uses a probability vector and

Bayesian bit-by-bit error correction in order to recover the initial LFSR contents. All of

the attacks considered in this chapter have as their goal the task of recovering the initial

contents (orseeds) of the LFSR’s using less effort than is required by an exhaustive

search.

The fast correlation attack, as proposed by Meier and Staffelbach [48] is described

in Section 4.1. This description includes discussion of the probabilistic model used by

63
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Figure 4.1: Stream cipher model used by FCA.

the attack as well as the concept of parity checks which are central to the algorithm.

In Section 4.2 a number of novel modifications are proposed with the aim of en-

hancing the fast correlation attack. These new techniques for modifying the basic FCA

algorithm incorporate (separately)resetting, deterministic probability vector subset up-

dates and probability vector subset updates based on simulated annealing.

The final technique considered in this chapter was proposed by MacKay [40] which

uses an approach known asfree energy minimisation. MacKay’s technique, which is

described in Section 4.3, was implemented in order that a comparison with the new

techniques proposed in Section 4.2 could be made.

Experimental results for the newly proposed algorithms (based on the described

modifications) are presented in Section 4.4. Also, a comparison with the free energy

minimisation technique described in Section 4.3 is given.

4.1 The Fast Correlation Attack

This section will introduce the concepts associated with Meier and Staffelbach’s fast

correlation attack [48]. The attack uses a probabilistic model of the stream cipher

which is described below. The fast correlation attack also requires a number of parity

checks based on the feedback polynomialf(x). Parity checks are also described below,

before the overall algorithm description.
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4.1.1 A Probabilistic Model

The fast correlation attack is based on the model shown in Figure 4.1 (from [69]),

known as a Binary Symmetric (Memoryless) Channel (BSC). The figure shows the

output key stream to be represented as a noise-corrupted version of the output of one

of the LFSR’s. The LFSR sequence is denoteda = {ai}N
i=1 and the output keystream

sequence is denotedz = {zi}N
i=1. Thuszi = ai ⊕ ei, wheree = {ei}N

i=1 is a binary

noise sequence with the noise probabilityp defined by Pr(ei = 1) = p (i = 1, . . . , N ).

The LFSR is defined by the feedback polynomialf(x) which is assumed known by

the attacker. Let the length of the LFSR be denotedr. The aim of the attack is to

reconstruct the LFSR output sequence,a = {ai}N
i=1, given the output keystream,z =

{zi},Ni=1, with the restriction thatN , the length of the keystream sequence, be as small

as possible, but in the boundsr < N < 2r − 1.

4.1.2 Parity Checks

Central to understanding the fast correlation attack is the concept of a parity check. In

terms of a linear feedback shift register sequence, a parity check is any linear relation-

ship which is satisfied by that LFSR sequence. Parity checks correspond to polynomial

multiples of the LFSR feedback functionf(x) (see [10]). A simple method of gener-

ating parity checks is to repeatedly square the primitive feedback polynomialf(x) (as

suggested in [48]). However, each timef(x) is squared the length of the required

keystream,N , doubles. The keystream sequence can be used more efficiently by ap-

plying a polynomial residue method to generate parity checks (see [26]). To find all of

the polynomial multiples of a certain weightW and of degree at mostM , the residues

of the power polynomialsxm mod f(x), for all r < m ≤ M must first be determined.

If the sum of any combination ofW − 1 residues is equal to one, then the sum of the

corresponding power polynomials plus one is a multiple off(x).

A set of parity checks, derived from polynomial multiples of the feedback function,

is known asorthogonalif all of the exponents (greater than zero) from the parity checks

occur only once. Such a set maximises the number of distinct bits involved in the parity

check sums. The set of differences between all possible pairings of exponents of the

parity checks is called a full positive difference set if each element of the set is unique.
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If the exponents form a full positive difference set it is possible to use theW phases of

each of the parity check equations. A phase of a parity check is obtained by shifting

the coefficients to coincide with the relevant bit (see example below). The number of

phases which can be used is bounded by the weight of the parity check polynomial but

may also be limited by the number of available bits (especially in the end-regions of

the available keystream sequence). Consider the following example.

Example 4.1 Leta be the output sequence from a LFSR defined by the feedback poly-

nomial f(x) = 1 + x3 + x31. This LFSR has lengthr = 31. Assume that the first

63 bits of the LFSR sequence (a0, . . . , a62) are known - bitsa0, . . . , a30 are the LFSR

seed. Now consider the LFSR feedback polynomial,f(x), to be a parity check poly-

nomial. For bit 32 (a31), it is possible to calculate a parity check sum for each of the

three phases of the parity check polynomial. The first phase is realised by calculating

a0 + a3 + a31, the second froma28 + a31 + a59 and the third froma31 + a34 + a62. Each

of these equations is obtained by shifting the parity check polynomial coefficients to

align with the desired bit (a31 in this case) for each of the three possible alignments.

Notice that it is not possible to calculate all phases of the parity checkf(x) for bits

prior to a31.

The fast correlation attack, which makes use of the above probabilistic model as

well as parity checks, is now described.

4.1.3 Attack Description

The technique used by the fast correlation attack is to iteratively update an error prob-

ability vector p = {pi}N
i=1 based on a set of parity check calculations. LetΠi =

{πk(i)}|Πi|
k=1 be a set of parity checks orthogonal on biti = 1, . . . , N (where|Πi| de-

notes the cardinality of the setΠi). Assume each parity check has the same weightW

and letw = W −1. The parity check value is defined as the modulo two sum of output

stream bits:ck(i) =
∑

l∈πk(i) zl. Since the noise sequencee = {ei}N
i=1 is random, so

are the parity check values. It was shown by Mihaljević and Golíc in [54] that, when

the parity checks are orthogonal (as they are inΠi), the posterior probability for noise

bits, given the parity check values, is calculated by Equation 4.1. In Equation 4.1,pi

andqi denote the posterior and prior probabilities, respectively, for the current iteration
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of the algorithm;cl(i) = 1−cl(i), ql(i) = (1−∏w
t=1(1−2qmt))/2 and{mt}w

t=1 denote

the set of indices of the bits involved in the parity checkπl(i), for anyl = 1, . . . , |Πi|
andi = 1, . . . , N .

pi = Pr(ei = 1|{ck(i)}|Πi|
k=1)

(4.1)

=
qi

∏|Πi|
k=1 qk(i)

ck(i)(1− qk(i))
ck(i)

qi
∏|Πi|

k=1 qk(i)
ck(i)(1− qk(i))

ck(i) + (1− qi)
∏|Πi|

k=1 (1− qk(i))
ck(i)qk(i)

ck(i)

Initially, each of thepi is set to the noise probabilityp, for i = 1, . . . , N . Now,

define the error ratepe =
∑N

i=1 pi/N . In the first iteration an optimal Bayesian de-

cision is made which minimises the symbol error rate,pe. In the following iterations

the error rate almost always decreases for two reasons: the algorithm introduces error

correction of the observed keystream sequence, and recycling of the probability vec-

tor (self-composition) causes the probabilities to decrease. Often, after a number of

iterations, the algorithm becomes trapped in the region of a local minimum and the

error correction of the keystream ceases. When this occurs it is possible to continue

the algorithm by replacing the probability vector values withp, the noise probability

(which it was initially). This process is calledresettingwhich enhances the error cor-

rection capability of the algorithm and increases the overall number of satisfied parity

checks. The set of iterations which occur between resets are referred to as around. An

algorithmic description of the fast correlation attack follows:

1. The inputs to the algorithm are the observed keystream sequence z =
{zi}N

i=1, the noise probability p and a set of orthogonal parity checks Πi =
{πk(i)}, i = 1, . . . , |Πi|.

2. Define j to be the number of iterations with no change in the number
of satisfied parity checks and k to be the current round index. Initialise
algorithm parameters: j = 0, k = 0, the maximum number of rounds
kMAX, the maximum number of iterations with no change in the number of
satisfied parity checks jMAX, and the minimum error rate ε.

3. Set the prior probabilities qi = p, i = 1, . . . , N (reset ). Increment k, the
round index. If k > kMAX go to Step 5.

4. Repeat:
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(a) Calculate the parity checks cl(i) for each bit of the keystream se-
quence, i.e., zi, l ∈ πk(i), i = 1, . . . , N . If all parity checks are sat-
isfied, go to Step 5. If the number of satisfied parity checks has not
changed, increment j. If j > jMAX, go to Step 3.

(b) Using Equation 4.1, calculate the posterior probabilities pi, i = 1, . . . , N .

(c) For i = 1, . . . , N , if pi > 0.5 then set zi = zi ⊕ 1 and pi = 1− pi.

(d) Make the posterior probabilities of the current iteration the prior prob-
abilities for the next iteration. That is, qi = pi, i = 1, . . . , N .

(e) Calculate pe =
∑N

i=1 pi/N . If pe < ε go to Step 3.

5. Set ai = zi, i = 1, . . . , N . Output {ai}N
i=1 which represents the recon-

structed LFSR sequence and stop.

Notice that the algorithm incorporates two stopping conditions to prevent it from

iterating infinitely. One of the stopping conditions is that all the parity checks are

satisfied. This is the desired result from the algorithm although having all parity checks

satisfied does not necessarily imply that the correct LFSR sequence will be obtained.

The second stopping condition limits the number of rounds that the algorithm will

perform. If the algorithm converges to a non-optimal solution (i.e., not all parity checks

are satisfied), it will reset forever. To prevent this a maximum number of resets is

imposed.

4.2 Modifications to the FCA Providing Enhancement

In this section a number of modifications are made to the basic fast correlation at-

tack algorithm (as described in the previous section) in order to gain some improve-

ment. These techniques are new and have not previously been recorded in the litera-

ture. Three different types of modifications were made which are described in detail

in the following sections. The first technique, calledfast resettingoperates by forcing

a reset when a certain number of bits in the output sequence (z) have been comple-

mented. The second and third techniques are similar and involve updating subsets of

the probability vector (p) in each iteration - rather than allN values. The first of the

subset update techniques makes a deterministic choice based on certain conditions.
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The second utilised simulated annealing to make random and deterministic probability

updates.

4.2.1 Fast Resetting

It was found that by increasing the rate at which a reset occurs the number of sat-

isfied parity checks can be improved further. This technique, which is termedfast

resetting, requires that a reset occur after a certain number of complementations to the

output keystream have occurred. Note that complementations occur in the algorithm

of Section 4.1 above, when any of the posterior probabilities exceed one half (0.5).

By keeping track of the number of complementations that have occurred, and forcing

a reset when this number exceeds some threshold,C, the effectiveness of the algo-

rithm is improved. The value ofC depends on a number of factors, namely the noise

probability,p, the keystream sequence,z, and the set of parity checks being used,Π.

Complementations occur in Step 4c of the fast correlation attack algorithm descrip-

tion above. However, as was shown in [75], these complementations are ineffective due

to the transformationpi → 1− pi. The complementations become effective only after

resetting, where such a transformation does not take place. This is less likely to occur

if the error rate approaches zero. Accordingly, it is expected that the performance will

improve if the resetting is performed before the error rate falls below a threshold, or,

similarly, when the cumulative number of complementations in a round exceeds some

threshold.

It should be noted that not all of the complementations may be correct and the

algorithm may introduce new errors to the keystream sequencez.

The algorithm described above can be modified to include fast resetting by making

an additional check in Step 4e. Step 4e checks to see if the error rate has dropped

below a certain bound and, if so, the algorithm resets. For the case of fast resetting,

the algorithm should also reset if the cumulative number of complementations in the

current round exceeds a predefined threshold,C. In other words, Step 4e should now

read:

4(e) Calculate pe =
∑N

i=1 pi/N . If pe < ε or the cumulative number of
complementations > C, go to Step 3.
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4.2.2 Deterministic Subset Selection

When considering methods of modifying the fast correlation attack in order to make it

more effective, the cases which fail for the unmodified attack are of most interest. The

fast correlation attack in its original state usually fails due to a high noise probability

combined with the limited availability of suitable parity checks. The updates to the

error probability vector,p (Step 4b), and the consequent keystream bit complementa-

tions (Step 4c) in the fast correlation attack described above tend to reduce the overall

error probability,pe. However, if the initial noise probability,p, is high, the reduction

in the error rate is mostly due to the self-composition property of the probability update

equation, and not the increase in the number of satisfied parity checks.

It is hypothesised that this problem can be avoided by selecting a subset of the

N probabilities inp, of sizeL, and only updating those probabilities for the given

iteration. This will tend to make the complementations more reliable in increasing the

number of satisfied parity checks. The criteria used to select theL positions which will

be updated may be based upon a variety of factors. TheN −L positions which are not

updated in the given iteration may either remain unchanged (called apartial update)

or they may be reset to the initial noise probability,p (referred to as apartial reset).

In the experiments performed three different criteria were tested for the selection

of theL update positions. They are:

1. Calculate|pi−qi|, i = 1, . . . , N , in each iteration and select theL positions with

the highest absolute difference.

2. Choose theL positions with the lowest posterior probabilities,pi, i = 1, . . . , N .

3. Choose theL positions with the highest number of satisfied parity checks.

Each of these techniques is designed to accentuate the aim of increasing the number

of satisfied parity checks rather than minimising the error rate which does not always

guarantee that the number of satisfied parity checks will increase.

The necessary modifications to the algorithm are now detailed. The modifications

involve an additional step of determining which of theL probabilities will be updated.

Also, depending on whether a partial update or partial reset is being performed, the

updating of the posterior probabilities will be affected as follows:
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4(d) According to the chosen criterion, select L positions for update. For
those L positions, make the posterior probabilities of the current it-
eration the prior probabilities for the next iteration. Depending upon
whether partial updates or partial resetting is being used, the re-
maining N − L probabilities will remain unchanged or be set to p.

4.2.3 Probability Updates Chosen Using Simulated Annealing

Another alternative when considering modifications to the fast correlation attack is the

use of a pseudorandom search heuristic (such as the ones introduced in Chapter 2 of

this thesis) instead of the deterministic approach outlined in the section above. It has

been shown, in Chapter 3, that such techniques may provide an effective method of

automating the cryptanalysis task. In this section a number of techniques based on

random changes to the probability vector,p, and the output keystream,z, are consid-

ered.

Simulated annealing is the most appropriate algorithm for testing modifications to

the fast correlation attack because the technique maintains only a single solution at any

one time - and not a pool of solutions as in the genetic algorithm, or a tabu list as in the

tabu search. The objects which are to be manipulated in the case of the fast correlation

attack are the probability vector and the reconstructed keystream sequence. In general

these vectors are large (10000 for experiments here), so maintaining and manipulating

lists of these vectors is impractical and leads to prohibitive computational complexity

of the attack.

As is always the case for simulated annealing, a cost function is required. The aim

of this attack is to minimise the Hamming distance between the reconstructed LFSR

output sequence and the actual LFSR sequence. Since the actual LFSR sequence is un-

known a cost function which closely mimics this relationship is desired. There are two

obvious possibilities for a cost function - the error rate,pe, and the number of unsatis-

fied parity checks. The error rate tends to be minimised by the fast correlation attack

algorithm due to its self-composition property. When the algorithm can correct almost

all of the errors, the error rate gives an indication of the relative number of errors in

the reconstructed keystream sequence. The error rate gives an error prediction based

on the probability that each bit in the reconstructed sequence is correct. The second
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choice of cost function, i.e., the number of unsatisfied parity checks was found, exper-

imentally, to be less effective due to its poor correlation with the Hamming distance

measure described above.

Three possibilities for random modifications to the fast correlation attack algorithm

were considered:

1. Random Subset Selection:The justification for this technique is the same as

that proposed for deterministic subset selection in the previous section. That is,

when the noise probability,p, is high the algorithm is more likely to become

trapped in the region of a local minimum. Similar to the deterministic subset

selection technique, this method involves updating a subset of the probability

vector in each iteration. However, in this case, the subset is randomly chosen.

The Metropolis criterion of the simulated annealing algorithm is used to decide

if a proposed probability value should be updated. Recall that the Metropolis

criterion accepts updates which lead to a poorer value of the cost function, based

on the temperature parameter,T , which reduces over time. The expected effect

of this on the fast correlation attack is that probability updates which cause the

cost function to increase (worsen) are allowed with probability which decreases

as the algorithm progresses. For this particular technique, it is worthwhile to

note that when the number of unsatisfied parity checks is used as a cost function,

the cost value will only change if the corresponding probability update forces

the probability to exceed one half (0.5). In this case the corresponding bit in the

keystream sequence will be complemented causing a change in the number of

unsatisfied parity checks.

2. Random Subset Complementation:The problem present in random probabil-

ity updates - that the parity checks only change when an updated element of the

probability vector causes a complementation in the keystream sequence - can be

avoided by bypassing the probability vector and simply complementing random

elements of the keystream sequence, regardless of whether or not the correspond-

ing probability was forced over one half in the probability update phase. If only

a small number of positions in the keystream vector are complemented, then this

technique has the potential to be powerful. The number of errors introduced
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is kept to a minimum by using the Metropolis criterion to ensure that the cost

function is usually decreasing.

3. Combined Deterministic Subset Selection and Random Subset Complemen-

tation: As a final alternative, a method involving deterministic subset selection

(as described in the previous section) and random keystream complementation

is proposed. This technique involves the update of elements of the probability

vector using one of the three criteria described previously, followed by the com-

plementation of a small number of elements in the keystream sequence. The

probability with which bits are complemented reduces over time - due to the

annealing temperature in the Metropolis criterion. The desired effect of this is

to reduce the number of incorrect complementations as the algorithm progresses

towards an optimal solution.

Results for the algorithm modified using simulated annealing are given in Sec-

tion 4.4 of this chapter.

4.3 Free Energy Minimisation

In this section an alternate algorithm - which is closely related to the fast correlation

attack - calledfree energy minimisation(FEM) is introduced. MacKay, in [40], has

proposed this technique for the cryptanalysis of the types of cipher being considered

in the chapter - namely the LFSR based stream cipher with a nonlinear combiner. In

the results section of this chapter a comparison of MacKay’s free energy minimisation

technique with the modified Meier-Staffelbach algorithms described above, is given.

MacKay presents an algorithm for solving a class of problems which can be rep-

resented in the form(As + n) mod 2 = r, wheres is a binary vector of lengthN , n

andr are binary vectors of lengthM andA is a binary matrix. The problem, then, is

to solve fors givenA andr. The algorithm is based on the “variational free energy

minimisation method”. Only an overview of this method will be included. For a more

thorough discussion of this method the reader is referred to MacKay’s paper. When

applied to a fast correlation attack,s denotes the unknown LFSR output sequence,r

containsM parity check values andn is essentially ignored (let it gradually approach

0). The matrixA has as its rows all the parity checks for each bit position.
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The problem is parameterised by a real valued vectorθ of lengthN . Thenq1
n and

q0
n are defined as follows:

q1
n =

1
1 + e−θn

(4.2)

q0
n =

1
1 + e+θn

(4.3)

for n = 1, . . . , N . It follows thatq1
n andq0

n are related so thatθn = log(q1
n/q

0
n). A

constant

b = log
(

p
1− p

)

(4.4)

is called thebiasconstant, wherep is the noise probability. Letg be a(1,−1) binary

encoding of the parity check vector (or syndrome vector)r = Az, obtained from the

observed keystream sequence. Probabilitiesp1
m,ν andp0

m,ν are defined as the probabil-

ity that the partial sum
∑ν

n=1 Am,nsn mod 2 is equal to 1 and 0, respectively. These

probabilities

p1
m,ν = q0

νp
1
m,ν−1 + q1

νp
0
m,ν−1

p0
m,ν = q0

νp
0
m,ν−1 + q1

νp
1
m,ν−1

}

if Am,ν = 1

(4.5)
p1

m,ν = p1
m,ν−1

p0
m,ν = p0

m,ν−1

}

if Am,ν = 0

have the initial conditionp1
m,0 = 0 andp0

m,0 = 1. Similarly, let r1
m,ν andr0

m,ν be the

probabilities that the partial sum
∑N

n=ν Am,nsn mod 2 is equal to 1 and 0, respectively.

They are obtained by an analogous reverse recursion of (4.5).

The free energy is broken into three terms:likelihood energy, prior energyand

entropy:

F (θ) = EL(θ) + EP (θ)− S(θ) (4.6)

where

EL(θ) = −
∑

m
gmp1

m,N (4.7)

EP (θ) = −
∑

n
bq1

n (4.8)

S(θ) = −
∑

n

(

q0
n log q0

n + q1
n log q1

n

)

. (4.9)
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It can be shown that the derivative of the free energy is given by:

∂F
∂θn

= q1
nq

0
n

(

θn − b−
∑

m
gmdm,n

)

(4.10)

where

dm,n = (p1
m,n−1r

1
m,n+1 + p0

m,n−1r
0
m,n+1)−

(p1
m,n−1r

0
m,n+1 + p0

m,n−1r
1
m,n+1). (4.11)

By setting the derivative to zero a “re-estimation optimiser” is obtained which de-

fines a recursive update procedure for theθ parameter. MacKay introduces an “anneal-

ing” parameterβ which gradually increases as the algorithm progresses. Its purpose

is to prevent the search from heading too quickly into a local minimum. It should

be noted that the annealing procedure is deterministic unlike some other annealing

procedures (such as the simulated annealing approach). Theθ vector is then updated

according to

θn = b + β
∑

m
gmdm,n, n = 1, . . . , N. (4.12)

The free energy minimisation algorithm, as implemented, is now described in de-

tail:

1. Algorithm inputs are: syndrome vector r, parity check matrix A, the noise
probability p, the initial value for β (β0), the scaling factor for β (βf ), the
maximum value for β (βMAX) and the maximum number of iterations.

2. Set number of iterations = 0, β = β0,

gm =
{

+1 if rm = 1
−1 if rm = 0 , m = 1, . . . , M

b = θn = log
(

p
1− p

)

, n = 1, . . . , N

p1
m,0 = r1

m,0 = 0
p0

m,0 = r0
m,0 = 1

}

, m = 1, . . . , M.

3. Update q1
n, q0

n, n = 1, . . . , N , by using (4.2) and (4.3).

4. (Forward Pass) Update p1
m,n and p0

m,n, m = 1, . . . , M , and n = 1, . . . , N ,
according to the recursion (4.5).
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5. (Reverse Pass) Update r1
m,n and r0

m,n this time using (4.5) in the reverse
order, i.e., m = M, . . . , 1 and n = N, . . . , 1.

6. Update each θn, n = 1, . . . , N , by calculating the gradient and using equa-
tion (4.12).

7. Increment the number of iterations.

8. Calculate the free energy using (4.6). If the energy has decreased since
the previous iteration return to Step 3.

9. Scale β by βf , i.e., let β = β×βf . If β < βmax and the number of iterations
is less than the maximum, return to Step 3.

10. Output the noise sequence as determined from θ as follows: if θn > 0
output 1, otherwise output 0, for n = 1, . . . , N . The LFSR sequence can
be obtained as the modulo 2 sum of the output noise sequence and the
observed keystream sequence.

The free energy minimisation technique was compared with the fast resetting algo-

rithm described in Section 4.2.1 of this chapter. The results are given below.

4.4 Experimental Results

In this section a number of experimental results are presented. The results can be

broken into two sections. The first section deals with the modifications to the fast

correlation attack proposed by Meier and Staffelbach in [48]. These results show the

differing levels of improvement obtained by these modifications. The second results

section presents a comparison of the fast correlation attack, modified with fast reset-

ting, with the free energy minimisation technique.

4.4.1 Modifications to FCA

Many of the parameters for tests on the modified fast correlation attack were fixed.

The shift register length was chosen to be 31 with the defining LFSR polynomial

f(x) = 1 + x3 + x31 (weight 3). The length of known keystream was set to 10000 bits

and five orthogonal parity check equations corresponding to a full positive difference

set were obtained by repeated squaring of the feedback polynomialf(x). Thus, the
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maximum degree of the parity checks was 496. For as many bits of the keystream as

possible (approximately 90%), all three phases of the parity checks were used. For the

remaining bits as many phases as possible were utilised.

Results of the modified algorithm with fast resetting show a considerable improve-

ment over the basic algorithm with slow resetting for relatively high initial error prob-

abilities. It was also found that partial resetting with deterministic subset selection

out-performed the fast resetting technique. These results can be observed in Figure 4.2.
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Figure 4.2: Comparative results for the fast correlation attack.

Results for the algorithm adapted for simulated annealing were varied. It was found

that a cost function based on the error rate, rather than the number of satisfied parity

checks was far more effective. This is because the number of unsatisfied parity checks

does not correlate very well with the Hamming distance from the LFSR sequence.

Also, the algorithm which updates probabilities at random outperforms the algorithm

which complements bits at random.

Figure 4.2 shows how the attack combined with simulated annealing and slow re-

setting compared with the other modified algorithms. It can be seen that the simulated

annealing technique significantly out-performed the basic fast correlation attack. Since

the attacks modified with fast resetting and partial resetting each performed better than
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the simulated annealing algorithm with slow resetting, it is interesting to observe the

performance of the attack modified with simulated annealing when combined with the

fast resetting technique.

The results in Figure 4.3 give a comparison of the basic fast correlation attack

with fast resetting and the two algorithms modified with simulated annealing. It can

be seen that for noise probabilities greater than 0.4 the fast correlation attack with

simulated annealing and fast resetting performed slightly better that the fast correlation

attack alone. However for the lower noise probabilities the addition of the simulated

annealing to the attack was less beneficial.
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Figure 4.3: Comparative results for fast correlation attack modified with simulated
annealing.

Because of the complexity added by the annealing algorithm, combined with the

limited improvement that it gained over the fast resetting technique, the annealing ap-

proach is not considered in the following section which compares the fast resetting

technique with a technique which was proposed by MacKay, namely free energy min-

imisation, which was described above in Section 4.3.
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4.4.2 FCA versus FEM

In this section experimental results are presented for the fast correlation attacks based

on the basic fast correlation attack, the attack modified with fast resetting and a free

energy minimisation algorithm. All results are averaged over 50 different noise sam-

ples. Shift registers using three different characteristic polynomials are used. In each

case the number of taps is different (two, four and six). The chosen polynomials are

all primitive and are given in Table 4.1.

Number of taps LFSR length Primitive characteristic polynomial
2 31 1 + x3 + x31

4 50 1 + x2 + x3 + x4 + x50

6 72 1 + x + x2 + x3 + x4 + x6 + x72

Table 4.1: Characteristics of shift registers used in experiments.

For each trial, 10000 bits of observed keystream sequence are used. The characteristic

polynomials were deliberately chosen to produce a set of non-orthogonal parity checks

(different phases are not orthogonal) to test the robustness of the attacks, since the fast

correlation attack requires that the parity checks be orthogonal while the free energy

minimisation algorithm does not.

The best value for the variable thresholdC in the fast resetting algorithm was de-

termined experimentally. In the case of two taps,C was chosen to be 10. For the shift

registers with four and six taps a value of 100 was used forC. For the free energy

minimisation algorithm the values suggested in [40] were used:β0 = 0.25, βf = 1.4

andβmax = 4. Both algorithms used the same set of parity checks for each of the

respective characteristic polynomials. The parity checks were obtained simply by re-

peated squaring off(x) until a polynomial with the maximum degree not exceeding

N − 1 (in this case 9999) is found. The number of parity checks in each case is equal

to blog2(N − 1)/rc+1 wherer is the degree off(x). For shift registers of lengths 31,

50 and 72 the numbers of parity checks are 9, 8 and 8, respectively. As suggested in

[48], all the phases of the parity checks are utilised. However, in the end regions only

some of the phases can be used. In this case as many phases of the parity checks as

possible were used.

For each test, two sets of results were obtained. The first involved finding the
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minimum Hamming distance between the actual LFSR output and the solution that

each algorithm found. This gives an indication of how close the algorithm is getting to

the actual solution. The second test makes use of error free information sets. A sliding

window technique [53] is used in which a search forr consecutive bits satisfying the

characteristic polynomial is made (r is the shift register length). Ifr such bits can be

found, then the attack is deemed successful.

It is clear from each of Figures 4.4 to 4.6 that the fast resetting algorithm outper-

forms MacKay’s free energy minimisation algorithm for each considered number of

taps. It can also be seen that the free energy minimisation algorithm performs better

than the basic correlation attack algorithm if the number of taps increases. The two

testing techniques, minimum Hamming distance and error free information sets, ap-

pear to correlate well with the results being consistent in all the cases except when the

number of taps is six and the probability is 0.26. Here the Hamming distance result

shows fast resetting to be superior but the result obtained using the information set

technique shows the free energy minimisation algorithm to be (just slightly) better.

According to [55], the critical noise probability beyond which successful iterative

error correction is not possible can be approximated (the exact expression can be found

in [55]) as

pcr =
1−M

1
w−1
w

2
(4.13)

whereMw is the average number of parity checks (of weightw + 1) per bit used in the

algorithm. This is of particular interest for the original fast correlation attack with slow

resetting and orthogonal parity checks. In the three cases examined,M2 = 22.248,

M4 = 33.625 andM6 = 43.148, so thatpcr is then given as0.477, 0.345 and0.265,

respectively. These noise probabilities are in accordance with the experimental results

shown in Figures 4.4 to 4.6. So, ifp > pcr, then the fast correlation attacks are bound

to fail on the average. However, it may be possible to extend the set of low weight

parity checks by using techniques other than repeated squaring (see [26]) which in

turn increases the critical noise probability.
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Figure 4.4: Results for a shift register with 2 taps.
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Figure 4.5: Results for a shift register with 4 taps.
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Figure 4.6: Results for a shift register with 6 taps.
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4.5 Summary

In this chapter a number of approaches for attacking a certain stream cipher model,

namely the one in Figure 4.1, have been considered. In the introduction an overview

of these ciphers was given, along with a description of the fast correlation attack as

proposed by Meier and Staffelbach [48].

Several modifications were suggested which allows the fast correlation attack to

recover initial LFSR contents for ciphers with a higher noise probability than the origi-

nal search allowed. This has been shown in the experimental results. The fast resetting

technique provides significant improvement by preventing the algorithm from arriving

at a locally minimum solution. Similarly, by updating a subset of the probability vec-

tor in any iteration, using either deterministic techniques or a random selection, it was

found that higher noise probabilities could be compromised.

In a further experiment, simulated annealing was used in combination with the fast

correlation attack in an attempt to attack even greater noise probabilities. While this

technique provided a significant improvement of the basic algorithm as published by

Meier and Staffelbach, it was found to not significantly improve the other modifica-

tions outlined - that is, fast resetting alone and deterministic and random probability

updates.



Chapter 5
Worse on Friday.

The Knapsack Cipher: What Not To
Do

The success of the approximate algorithms which were presented in Chapter 2 is de-

pendent upon the availability of a suitable solution evaluation mechanism. Such a

mechanism (a fitness function or a cost function) must accurately assess every feasible

solution giving an indication of its optimality - i.e., how close it is to the optimal solu-

tion. In this chapter an example of a problem for which no suitable solution assessment

exists is presented. The problem in question is theknapsackproblem. Spillman [71]

presented a genetic algorithm which he claimed could solve large instances of the

knapsack problem. This chapter shows that such an approach has little merit, due to

the lack of a suitable fitness function.

A description of the Merkle-Hellman cryptosystem is given in Appendix C. The

processes of encryption and decryption are outlined, along with the method used to

generate the public/private key pair. The Merkle-Hellman cryptosystem was shown to

be insecure in the early 1980’s by Shamir [68]. Details of Shamir’s attack which is

based upon the structure of the secret key is given in Appendix C.

The attack proposed by Spillman uses an entirely different approach. Rather than

attacking the structure of the secret key, Spillman’s approach was to determine the

original message by finding the elements of the public key which were added together

to obtain the ciphertext. In Section 5.1 the fitness function which was suggested by

Spillman [73] is analysed and an alternative proposed. It will be shown that there is no

truly suitable fitness function for attacks on the knapsack cipher using the technique

85
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discussed in this chapter. Section 5.2 presents an algorithm similar to the one proposed

by Spillman [73] for attacking the knapsack cipher using the genetic algorithm. This

attack was implemented in order to obtain some experimental results which provide

evidence for the argument presented in this chapter. Section 5.3 provides some results

of the attacks. The results highlight the futility of approximate algorithms in attacks

on the knapsack cipher.

5.1 A Fitness Function for the Knapsack Cipher

To solve NP-complete problems such as the subset sum problem using genetic algo-

rithms, it is important to be able to accurately assess any feasible solution. To deter-

mine the suitability of a given solution we use what is known as afitness function. In

this section the fitness function suggested from [71] is described. It is shown how to

adapt this to a more suitable fitness function.

If we think of a solution to the knapsack cipher as being represented by a binary

string of lengthn, then the ideal way of assigning a “fitness” to a solution would

be to determine the Hamming distance between a proposed solution and the known

solution. However, this is not possible since the solution (A′) is not known - just the

sum of the elements ofA′. Thus one way of assigning a fitness to an arbitrary solution

is to measure how close the sum of the elements of the proposed solution is to that of

the known solution. It should be apparent to a reader that for a large public key setA

such a measure will not be very reliable, given the random distribution of the elements

of the set. To clarify these points we provide the following example. Letn = 5 and

A = { 5457, 1663, 216, 6013, 7439}. Consider a plaintext message blockM = { 1,

0, 1, 1, 0} which gives a target sum ofB = 5457 + 216 + 6013 = 11686. A guess

of M1 = { 1, 1, 1, 1, 0} is very close to the original message (the Hamming distance

between them is one). The corresponding sum is5457 + 1663 + 216 + 6013 = 13349.

A second guessM2 = { 1, 0, 0, 0, 1} which has a Hamming distance of 3 from the

correct solution, gives a sum of5457 + 7439 = 12896 which is closer to the required

sum than the first guess which was only incorrect in one bit position. It is shown

in Section 5.4 that this property is the norm rather than an exception and in general

comparing sums is a poor technique for finding the solution to the knapsack problem.
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With this problem in mind the fitness function proposed by Spillman in [71] is

presented (Equation 5.1).

Fitness(M) =
{

1− (|Target− Sum|/Target)1/2 if Sum< Target
1− (|Target− Sum|/MaxDiff)1/6 if Sum≥ Target

(5.1)

where (letM = {m1,m2, . . . , mn},mi ∈ {0, 1} be an arbitrary solution and the public

keyA = {a1, a2, . . . an})

Sum =
n

∑

j=1
ajmj, (5.2)

Target =
∑

j
a′j, (5.3)

FullSum =
n

∑

j=1
aj, (5.4)

MaxDiff = max{Target, FullSum− Target}. (5.5)

This fitness function penalises solutions which have a sum greater than the target

sum. The reason for this is not clear. There is no reason why a solution which has a

sum greater than the target sum is any better than one which is less than the target sum.

Since we are only interested in solutions which are exactly equal to the target sum, the

fitness in (5.6) is suggested as being more appropriate.

Fitness= 1− (|Sum− Target|/MaxDiff)1/2. (5.6)

An analysis of the two fitness functions in Equations 5.1 and 5.6 indicates that the

modified fitness function - Equation 5.6 - will find the solution more quickly since

solutions with their sum greater than the target are not being unfairly penalised. In

order to investigate this hypothesis 100 different knapsack sums were formed from

the same knapsack of size fifteen as used by Spillman in [71] -A = { 21031, 63093,

16371, 11711, 23422, 58555, 16615, 54322, 1098, 46588, 6722, 34475, 47919, 51446,

16438}. These knapsack sums were then attacked using the genetic algorithm as

described in Section 5.2 using separately the fitness functions in Equations 5.1 and 5.6.

The results of these attacks are given in Table 5.1 which clearly demonstrates that the

fitness function in Equation 5.6 is more efficient.

Hence, for the remaining discussion in this paper the fitness function of Equa-

tion 5.6 is used.
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Fitness Number of Generations Key Space Searched
Function Mean (̄x) Std Dev. (s) Mean (̄x) Std Dev. (s)

Equation 5.1 1647 2038 24.4% 24
Equation 5.6 937 873 20.7% 21

Table 5.1: A comparison of two fitness functions.

5.2 The Genetic Algorithm Applied to the Knapsack
Cipher

Here the algorithm presented by Spillman in [71] is interpreted. As indicated pre-

viously, a solution (or key) is represented as a binary string of lengthn. The mat-

ing operation is a simple crossover which is very commonly used in genetic algo-

rithms. Two parents are chosen at random from the current gene pool. The firstr,

(1 ≤ r ≤ n) bits of the two keys are then swapped (r is randomly generated). For

example,(n = 8, r = 3),

Parents Children
01000101 11100101
11100110 01000110

Spillman describes three mutation operators. They are:

1. Each bit in the key is complemented with low probability.

2. Each bit has a low probability of being swapped with its neighbour.

3. A random section of the bit string is reversed. Once again this mutation occurs

with low probability.

Putting these steps together, the following algorithm is obtained:

1. Generate a random initial gene pool and calculate the fitness of each of
its elements (using (5.6)).

2. For G generations do

(a) Select G/2 pairings from the current gene pool. These will become
the parents of the new generation. The selection of parents, al-
though random, is biased towards the fittest genes in the pool.
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Knapsack Number of Generations Key Space Searched
Size Mean (̄x) Std Dev. (s) Mean (̄x) Std Dev. (s)
15 1462 1470 23.40% 23.5
20 55220 55317 24.13% 24.1
25 1581735 1596872 23.60% 23.9

Table 5.2: Results for the Genetic Algorithm

(b) The parents mate (as described above) to produce the new gene
pool.

(c) Each member of the new gene pool is mutated in the following man-
ner.
Toss a coin

i. if heads apply mutation (1) described above,

ii. if tails, apply mutation (2).

Apply mutation (3), from above.

(d) It is desirable to retain some of the keys from the previous generation
for the new generation. One way of doing this is to discard the x
most unfit keys from the new generation and replace them with the
x fittest from the old generation.

3. The fittest gene from the current gene pool is taken as the solution.

For the knapsack cipher we are only interested in the exact solution. For this reason

we check each gene pool for a solution which has a fitness of 1.0. If one is found then

the algorithm stops immediately, since the solution has been found. (There is only one

solution - the uniqueness of the solution is ensured by the parameters on the knapsack.)

5.3 Results of Attacks on the Knapsack Cipher

For each of three different knapsack sizes (15, 20 and 25), 100 different knapsack sums

were formed, and each time the algorithm was run until the solution was found. The

results are given in Table 5.2.

Table 5.2 indicates that the amount of key space searched is about half that of an

exhaustive attack. It can also be seen that the variation in the percentage of the key
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space searched, as well as the number of generations required by the algorithm, is

large.

It is worth noting that although the methods discussed in this chapter do provide

some improvement over an exhaustive search in terms of the amount of key space

searched (on the average an exhaustive search would traverse 50% of the key space be-

fore finding the correct solution), in practice an exhaustive search will complete more

quickly than a genetic algorithm search due to the large decrease in the complexity. It

is very quick to test an arbitrary solution without determining its fitness, mutating it

and combining it with other solutions - as happens in the genetic algorithm. This point

further highlights the unsuitability of combinatorial optimisation in solving the subset

sum problem in this manner.

5.4 Correlation Between Hamming Distance and Fit-
ness

The reason for this attack being poor lies with the fact that the fitness function does

not accurately describe the suitability of a given solution. This is because the fitness

function does not always give a true indication of the Hamming distance between the

proposed solution and the solution sought. To show this we investigate the distribution

of Hamming distances for particular regions of fitness values. We are particularly

interested in possible solutions which have a high fitness value. The results (shown in

Table 5.3) were obtained using a randomly generated knapsack of size 30. The fitness

of all possible (i.e.230) solutions was calculated, along with the Hamming distance

of each solution from the desired solution. Table 5.3 clearly shows that a high fitness

value does not necessarily mean a low Hamming distance. In fact the distribution of

Hamming distances for a given range of fitness values appears to be ‘binomial’-like. It

can also be seen from Table 5.3 that the fitness values very close to 1.0 the distribution

remains very spread. That is, there are solutions with a very high fitness value which

have Hamming distances that are by no means close to that of the required solution.

In a recent paper by Spillman [72] addressing the use of genetic algorithms in

solving the knapsack problem it was suggested that a “local search” routine would

speed up the search. This routine involved taking solutions with a high fitness (greater



5.4. Correlation Between Hamming Distance and Fitness 91

Hamming Fitness Value
Distance > 0.9 > 0.95 > 0.99 > 0.999 > 0.9999

30 0 0 0 0 0
29 1 0 0 0 0
28 15 7 0 0 0
27 131 31 2 0 0
26 932 223 8 0 0
25 4937 1208 51 0 0
24 20318 5080 188 3 0
23 69048 17289 654 6 0
22 196683 49186 1985 16 0
21 477337 119098 4720 50 1
20 996841 248696 9789 82 1
19 1806512 451327 18176 182 2
18 2858033 714445 28630 275 2
17 3963985 989898 39301 395 3
16 4835383 1207311 47986 500 5
15 5196364 1298561 52285 515 3
14 4923282 1230811 49383 513 4
13 4111416 1027101 40613 395 7
12 3022419 755006 30014 295 1
11 1950970 487647 19785 203 0
10 1101829 275545 10988 113 2
9 541506 135305 5214 58 2
8 230325 57498 2298 26 1
7 83872 20973 911 14 0
6 25882 6446 247 0 0
5 6664 1692 57 2 0
4 1384 366 14 0 0
3 243 48 3 0 0
2 25 6 0 0 0
1 3 0 0 0 0
0 1 1 1 1 1

Table 5.3: Typical hamming distance distribution for high fitness values.
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than 0.95) and complementing each bit of the solution, one by one. If the fitness

improved then the adjusted solution was accepted. Table 5.3 indicates that such a

routine will have very little affect on the efficiency of the algorithm since the fitness

equation is not representative of the Hamming distance. In fact for the example in Table

5.3 this method would never have found the optimum since there were no solutions

with a fitness greater than 0.95 and a Hamming distance of 1 from the solution sought.

5.5 Summary

The purpose of this chapter was to highlight the fact that combinatorial optimisation

techniques rely heavily upon the suitability of the solution evaluation technique (fitness

or cost). It has been shown, that for the subset sum problem, there is no (known)

suitable evaluation technique when solving based on the subset sum. This is why

the Merkle-Hellman cryptosystem is so elegant - a known NP-complete problem has

been converted to an NP-hard problem and utilised as a cryptosystem. Of course the

weakness with the cryptosystem is in the structure of the secret key rather than the

actual encryption process (which Spillman has attempted to attack).

Spillman’s fitness is based on the difference between the sum of a proposed solution

and the known target sum. As Table 5.3 shows, such an approach gives no indication

of the Hamming distance between the proposed solution and the binary representation

of the target solution which is sought. Thus basing an genetic algorithm upon such a

fitness function is inappropriate. This is further illustrated by the results in Table 5.2

which indicate that approximately one quarter of the solution space is searched, on

the average, before the correct solution is found. This is not significantly better than

an exhaustive search and, in fact, when complexity is considered, is worse due to the

simplicity of an exhaustive search compared to the genetic algorithm search.



Chapter 6
Died on Saturday.

Finding Cryptographically Sound
Boolean Functions

The previous three chapters of this thesis have looked at the use of optimisation heuris-

tics in the field ofcryptanalysis. In this chapter a useful application of the genetic

algorithm to the field ofcryptographyis presented. The genetic algorithm is used to

search for cryptographically sound Boolean functions. Most block and stream ciphers

incorporate Boolean functions which are chosen, in general, to satisfy a number of

cryptographic criteria. Because many cryptographic properties of Boolean functions

conflict with each other, the final choice of functions is usually a compromise between

the desired properties of the functions.

An introduction to the theory and cryptographic properties of Boolean functions

is given in Appendix D. In this chapter the property of nonlinearity is considered,

although the work could be extended to include other cryptographic properties. When

designing cryptosystems (ciphers) careful consideration must be given to the choice of

functions used. High nonlinearity is an extremely important property required in order

to reduce the effectiveness of attacks such as linear cryptanalysis – recently proposed

by Matsui [45].

In this chapter a number of algorithms are introduced which assist with finding

Boolean functions with good cryptographic properties. A new approach is used to

determining bit positions in a function’s truth table which, when complemented, will

improve the nonlinearity of the function. The theory behind this principle, which is

based on the coefficients of the Walsh-Hadamard transform (WHT – see Appendix D),

93
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is described in Section 6.1. It is also shown in this section that the balance of the

function can either be improved or maintained as required.

A basic hill climbing technique which makes use of this new approach is described

in Section 6.2. This technique is modified to incorporate a genetic algorithm in Sec-

tion 6.3. It is shown that these new search techniques are extremely powerful when

compared to traditional random search techniques. Experimental results reinforcing

the techniques’ usefulness are given in Section 6.4. These techniques represent novel

methods of systematically generating highly nonlinear Boolean functions.

6.1 Improving Nonlinearity

Consider altering a Boolean function by complementing its binary truth table in a sin-

gle position such that the nonlinearity is improved. Each truth table position corre-

sponds to a unique function input. A technique is now introduced which enables the

creation of a complete list of Boolean function inputs such that complementing any one

of the corresponding truth table positions will increase the nonlinearity of the function.

This list of truth table positions is referred to as the 1-Improvement Set off(x), or 1-

ISf for short. A formal definition of the 1-ISf is now given.

Definition 1 Let g(x) = f(x) ⊕ 1 for x = xa and g(x) = f(x) for all other x. If

Ng > Nf thenxa ∈ 1-ISf .

Of course the set may be empty in which casef(x) is referred to as 1-locally max-

imum for nonlinearity and cannot be improved using the technique described below.

Since all Bent functions (see Appendix D) are globally maximum, their 1-Improvement

Sets must be empty. There also exist sub-optimum local maxima that will be found by

hill climbing algorithms. It is computationally intensive to exhaustively alter truth ta-

ble positions, find new WHTs and determine the set 1-ISf . Thus, a fast, systematic

method of determining the 1-Improvement Set of a given Boolean function from its

truth table and Walsh-Hadamard transform is sought. In this section a set of conditions

are presented which provide a method of determining whether or not an inputx is in

the 1-Improvement Set.

In order to find the 1-ISf of a Boolean function it is first necessary to find values

of the Walsh-Hadamard transform coefficients which correspond to values close in
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absolute value to the maximum coefficient value, WHMAX .

Definition 2 Let f(x) be a Boolean function with Walsh-Hadamard transformF̂ (ω)

where WHMAX denotes the maximum absolute value ofF̂ (ω). There will exist one or

more linear functionsLω(x) that have minimum distance tof(x), and|F̂ (ω)| = WHMAX

for theseω. The following sets are defined:

W+
1 = {ω : F̂ (ω) = WHMAX} and

W−
1 = {ω : F̂ (ω) = −WHMAX}.

Also needed are the sets ofω for which the WHT magnitude is close to the maximum:

W+
2 = {ω : F̂ (ω) = WHMAX− 2},

W−
2 = {ω : F̂ (ω) = −(WHMAX− 2)},

W+
3 = {ω : F̂ (ω) = WHMAX− 4}, and

W−
3 = {ω : F̂ (ω) = −(WHMAX− 4)}.

When a truth table is changed in exactly one place, all WHT values are changed by

+2 or -2. It follows that in order to increase the nonlinearity the WHT values in setW+
1

must change by -2, the WHT values in setW−
1 must change by +2, and also the WHT

values in setW+
2 must change by -2 and the WHT values in setW−

2 must change by

+2. The first two conditions are obvious, and the second two conditions are required

so that all other|F̂ (ω)| remain less than WHMAX . These conditions can be translated

into simple tests.

Theorem 1 Given a Boolean functionf(x) with WHTF̂ (ω), define setsW+ = W+
1 ∪

W+
2 andW− = W−

1 ∪W−
2 . For an inputx to be an element of the Improvement Set,

the following two conditions must be satisfied.

(i) f(x) = Lω(x) for all ω ∈ W+, and

(ii) f(x) 6= Lω(x) for all ω ∈ W−.

If the functionf(x) is not balanced, a reduction in the imbalance can be achieved by

imposing the additional restriction that

(iii) when F̂ (0) > 0, f(x) = 0, elsef(x) = 1.
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Proof: Start by considering the conditions to make WHT values change by a desired

amount. WhenF̂ (ω) is positive, there are more 1 than -1 in the polarity truth table,

and more 0 than 1 in the binary truth table off(x) ⊕ Lω(x). Thus changing a single

0, in the truth table off(x) ⊕ Lω(x), to a 1 will make∆F̂ (ω) = −2. This means

that an input,x, is selected such thatf(x) = Lω(x). A change of -2 is desired for all

WHT values withω ∈ W+, so this proves condition (i). A similar argument proves

condition (ii). A function is balanced when̂F (0) = 0, so to reduce the imbalancex

must be selected according to condition (iii). 2

To further clarify the task of determining the 1-Improvement Set of a given Boolean

function,f(x), consider the following example.

Example 6.1 Consider the function described by the truth table given in Table 6.1.

The corresponding Walsh-Hadamard transform is also given. Observe that WHMAX = 8

is attained forω = 0101 and ω = 1110. There are no transform values equal to

WHMAX − 2 = 6, soW+
1 = {0101, 1110} andW−

1 = W+
2 = W−

2 = φ. Thus, from

Theorem 1, candidate values for the 1-ISf occur whenL0101(x) = L1110(x) = f(x).

Thus 1-ISf = {0000, 0011, 0100, 0111, 1001, 1010, 1101, 1110} and complementing

any one of the corresponding truth table bits (thef(x) column) will increase the non-

linearity fromNf = 1
2(2

n −WHMAX) = 4 to Nf = 5.

It is often desirable to improve the nonlinearity of balanced Boolean functions,

while retaining balance. Clearly this requires an even number of truth table changes.

A set of conditions are now presented which define a pair of inputsxa, xb so that

complementing both their function values causes an increase in nonlinearity, without

changing the Hamming weight. The 2-Improvement Set, 2-ISf , is defined as the set of

all such input pairs. A function for which no pair satisfies these conditions is said to

be 2-locally maximum.

Theorem 2 Given a Boolean functionf(x) with WHTF̂ (ω), define setsW1 = W+
1 ∪

W−
1 , W+

2,3 = W+
2 ∪ W+

3 andW−
2,3 = W−

2 ∪ W−
3 . A pair of inputs(xa, xb) is in the

2-Improvement Set off(x) if and only if all of the following conditions are satisfied:

(i) f(xa) 6= f(xb),

(ii) Lω(xa) 6= Lω(xb) for all ω ∈ W1,
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x/ω f(x) F̂ (ω) L0101(x) L1110(x) x ∈ 1-ISf?
0000 0 0 0 0

√

0001 1 4 1 0
0010 0 0 0 1
0011 1 4 1 1

√

0100 1 4 1 1
√

0101 1 8 0 1
0110 1 -4 1 0
0111 0 0 0 0

√

1000 0 -4 0 1
1001 1 0 1 1

√

1010 0 -4 0 0
√

1011 0 0 1 0
1100 0 0 1 0
1101 0 4 0 0

√

1110 1 8 1 1
√

1111 1 -4 0 1

Table 6.1: Table for Example 6.1.

(iii) f(xi) = Lω(xi), i ∈ {1, 2}, for all ω ∈ W+
1 ,

(iv) f(xi) 6= Lω(xi), i ∈ {1, 2}, for all ω ∈ W−
1 ,

(v) for all ω ∈ W+
2,3, if Lω(xa) 6= Lω(xb) thenf(xi) = Lω(xi), i ∈ {1, 2}, and

(vi) for all ω ∈ W−
2,3, if Lω(xa) 6= Lω(xb) thenf(xi) 6= Lω(xi), i ∈ {1, 2}.

Proof: Condition (i) is required to maintain the Hamming weight. Conditions (iii) and

(iv) are proven similarly to Theorem 1 (condition (ii) follows from (iii) and (iv)). In

order to stop the correlation to other linear functions increasing too much, it is required

that∆F̂ (ω) 6= +4, for all ω ∈ W+
2,3, and it follows that not both off(xi)⊕Lω(xi) = 1,

or equivalently that at least one off(xi)⊕ Lω(xi) = 0. Consequently,

[f(xa)⊕ Lω(xa)][f(xb)⊕ Lω(xb)] = 0,

and expanding this, noting from (i) thatf(xa)f(xb) = 0, it follows that

f(xa)Lω(xb)⊕ f(xb)Lω(xa)⊕ Lω(xa)Lω(xb) = 0.

Four cases need to be considered in order to find the exact conditions under which this

expression will be satisfied:
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(a) WhenLω(xa) = Lω(xb) = 0 the expression is satisfied and no further conditions

on (xa, xb) are required.

(b) WhenLω(xa) = Lω(xb) = 1 the expression becomesf(xa)⊕ f(xb) = 1 which

is equivalent to condition (i).

(c) WhenLω(xa) = 0 andLω(xb) = 1 the expression becomesf(xa) = 0.

(d) WhenLω(xa) = 1 andLω(xb) = 0 the expression becomesf(xb) = 0.

Combining (a)-(d) it can be seen that whenLω(xa) 6= Lω(xb) for ω ∈ W+
2,3 it is

required thatf(xi) = Lω(xi), i = 1, 2, thus proving condition (v). The Proof of (vi) is

similar. 2

The following theorem shows how to modify the WHT of a Boolean function that

has been altered in a single truth table position, with complexityO(2n). It is noted that

the algorithm for incremental improvement of Boolean functions suggested in [17]

recomputes the WHT after every single bit change regardless of whether that change

improves the nonlinearity. Therefore the algorithms presented here are superior on two

counts - every change is an improvement and the new WHT is foundn times faster.

Theorem 3 Let g(x) be obtained fromf(x) by complementing the output for a single

input, xa. Then each component of the WHT ofg(x), Ĝ(ω) = F̂ (ω) + ∆(ω), can be

obtained as follows: Iff(xa) = Lω(xa), then∆(ω) = −2, else∆(ω) = +2.

Proof: Whenf(xa) = Lω(x), it follows that(−1)f(xa)⊕Lω(xa) = 1, which contributes

to the sum inF̂ (xa). Changing the value off(xa) changes this contribution to -1, so

∆F̂ (ω) = −2. Similarly whenf(xa) 6= Lω(x), ∆F̂ (ω) = +2. 2

This idea is further clarified by continuing Example 6.1 so that a particular posi-

tion is complemented and the new Walsh-Hadamard transform calculated. Consider

Example 6.2.

Example 6.2 Consider the functionf(x) which was presented in Example 6.1. It was

shown that the 1-ISf = {0000, 0011, 0100, 0111, 1001, 1010, 1101, 1110}. Suppose

the truth table bit corresponding to inputxa = 0100 is complemented to give a new

functiong(x). Theorem 3 states that the change in the Walsh-Hadamard transform
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x/ω f(x) F̂ (ω) L0100(x) ∆(ω) Ĝ(ω)
0000 0 0 0 2 2
0001 1 4 0 2 6
0010 0 0 0 2 2
0011 1 4 0 2 6
0100 1 4 1 -2 2
0101 1 8 1 -2 6
0110 1 -4 1 -2 -6
0111 0 0 1 -2 -2
1000 0 -4 0 2 -2
1001 1 0 0 2 2
1010 0 -4 0 2 -2
1011 0 0 0 2 2
1100 0 0 1 -2 -2
1101 0 4 1 -2 2
1110 1 8 1 -2 6
1111 1 -4 1 -2 -6

Table 6.2: Table accompanying Example 6.2.

coefficients,∆(ω) = −2 whenf(xa) = Lω(x), and ∆(ω) = +2, otherwise. Ta-

ble 6.2 illustrates this process of computing the Walsh-Hadamard transform forg(x),

i.e.,Ĝ(ω).

6.2 Hill Climbing Algorithms

In this section the implementation details for the one step improvement and two step

improvement algorithms -HillClimb1 andHillClimb2 - are given. It should be noted

that condition (ii) of Theorem 2 is redundant, and is not referred to in the implementa-

tion of that algorithm.

The one step improvement algorithm,HillClimb1 , takes as its input a Boolean

functions binary truth table and the corresponding Walsh-Hadamard transform, and

recursively improves the Boolean function’s nonlinearity until the function is 1-locally

maximum. TheHillClimb1 algorithm tries each bit in the truth table successively

in an attempt to find a candidate bit which, upon complementation, will improve the

function’s nonlinearity by one. The algorithm terminates when no improvement in

nonlinearity can be obtained by complementing any one of the bits in the function’s
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truth table.

• HillClimb1(BF, WHT)

1. Determine the maximum value of the Walsh-Hadamard transform - WHMAX .

2. By parsing the WHT find the values ofω which correspond to transform

values equal to|WHMAX | and |WHMAX − 2|. In this manner create the two

sets:W+ = W+
1 ∪W+

2 andW− = W−
1 ∪W−

2 .

3. Fori = 1, . . . , 2n, do

(a) Complement theith bit in the truth table ofBF to produce the new

Boolean functionBF′.

(b) By parsing the setsW+ andW− check that conditions (iii) and (iv) of

Theorem 2 above are satisfied forBF. If they are, calculate the updated

Walsh-Hadamard transform -WHT ′ - using Theorem 3 above, and

restart the algorithm - i.e., callHillClimb1(BF ′, WHT ′).

4. BF represents a 1-locally maximum Boolean function - terminate process-

ing.

The second algorithm described here -HillClimb2 - is an implementation of

the steps required to find a 2-locally maximum Boolean function, given a ran-

dom Boolean function as a starting point. The algorithm maintains the balance

of the original function whilst improving the nonlinearity each time two candi-

date bits can be found for complementation. This algorithm must generate two

candidate lists of possible bit positions in the truth table for complementation.

These two lists - calledC0 andC1 - contain candidate positions in the truth ta-

ble with corresponding values of zero and one, respectively. When one position

from each of the setsC0 andC1 is found which satisfy the required conditions

of Theorem 2, the corresponding bits are complemented. The new function’s

Walsh-Hadamard transform is computed efficiently by two successive calls to

the operation described in Theorem 3. The function calls itself in a recursive

manner in an attempt to further improve the new function.

• HillClimb2(BF, WHT)
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1. Determine the maximum value of the WHT - WHMAX .

2. By parsing the WHT obtain the values ofω which correspond to transform

values of|WHMAX |, |WHMAX − 2| and|WHMAX − 4| and hence create the sets

W+
1 , W−

1 , W+
2,3 = W+

2 ∪W+
3 andW−

2,3 = W−
2 ∪W−

3 .

3. Fori = 1, . . . , 2n, do

(a) By parsing the setsW+
1 andW−

1 ensure that conditions (iii) and (iv) in

Theorem 2 are satisfied forBF. If they are, depending on the value of

theith bit in the truth table, addi to C0 or C1.

4. For each element ofC0, do

(a) For each element ofC1, do

i. Check conditions (v) and (vi) of Theorem 2. If they are satisfied

for BF, complement the corresponding bits in the truth table ofBF

- call the resulting Boolean functionBF′, find the adjusted Walsh-

Hadamard transform -WHT ′ by applying Theorem 3 twice and

call HillClimb2(BF ′, WHT ′).

5. BF represents a 2-locally maximum Boolean function - terminate process-

ing.

6.3 Using a Genetic Algorithm to Improve the Search

The genetic algorithm was described in detail in Chapter 2 and has been used exten-

sively in various cryptanalytic algorithms in the previous chapters. In this chapter the

genetic algorithm is used to improve the hill climbing algorithms described above. In

the classical genetic algorithm the solution is represented as a binary string. The same

representation is utilised here for the Boolean function - in this case the binary string

represents the binary truth table of the function. Given a solution representation, there

are three other requirements of the genetic algorithm, namely a solution evaluation

technique, a mating function and a mutation function. The mating function allows the

combining of solutions, hopefully, in a meaningful manner. Mutation is performed on

a single solution in order to introduce a degree of randomness to the solution pool.

These three genetic algorithm requirements are now discussed individually.
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The genetic algorithm requires a method of assessing and comparing solutions.

Typically this measure is referred to as the “fitness”. The fitness which is used here

is simply the nonlinearity (Nf ) of the Boolean functionf(x). This is suitable for a

genetic algorithm, since|Nf − Ng| ≤ dist(f(x), g(x)). In other words nonlinearity

is a locally smooth fitness function. With Boolean functions there are also numerous

other fitness functions possible (for example, the maximum value taken by the auto-

correlation function could be minimised).

The genetic algorithm also requires a method for combining two (possibly more)

solutions in order to obtain offspring. The usual mating process utilised in classical

genetic algorithm is often referred to as “crossover”. The crossover operation involves

selecting two “parents” from the current solution pool, picking a random point in the

binary string representing each of the parents and swapping the values beyond that

point between the two parents. This process results in two “children” with some char-

acteristics of each of the parents. Here a slightly different breeding process is used,

namely “merging”, which is described below. Notice that this mating operation is dif-

ferent from ones in previous chapters by the fact that only a single child function is

produced.

Definition 3 Given the binary truth tables of two Boolean functionsf1(x), f2(x) of n

variables at Hamming distanced, the merge operation is defined as:

• If d ≤ 2n−1

MERGEf1,f2(x) =
{

f1(x) if f1(x) = f2(x)
a random bit, otherwise.

• else

MERGEf1,f2(x) =
{

f1(x) if f1(x) 6= f2(x)
a random bit, otherwise.

Note that this merging operation is partly deterministic and partly probabilistic, and

that it takes the fact that complementation does not change nonlinearity into account.

The number of distinct children that can result from a merge is given by2dist(f1,f2),

and all are equally probable. Thus the use of MERGE as a breeding scheme includes

implicit mutation. Since random mutation of a highly nonlinear function is likely to re-

duce the nonlinearity, additional random mutations are avoided and instead the merge
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is relied upon to direct the pool into new areas of the search space. The motivation for

this operation is that two functions that are highly nonlinear and close to each other

will be close to some local maximum, and the merging operation produces a function

also in the same region, hopefully close to that maximum. Also when applied to un-

correlated functions, the merge operation produces children spread over a large area,

thus allowing the genetic algorithm to search the space more fully. At the start of the

genetic algorithm, the children are scattered widely, then as the pool begins to consist

of good functions, the merging assists convergence to local maxima. The experiments

have shown that other simple combining methods, such as XOR and crossover, do not

assist convergence to good solutions. It is the use of merging that allows the genetic

algorithm to be effective.

The mutation operation simply introduces randomness to the solution pool. Mu-

tation is generally applied to the children which result from the breeding process. In

some cases the breeding step is ignored and mutation is applied to the selected par-

ents in order to produce children. Such an option is not considered here. It is usual

to mutate a child by complementing a random subset of the binary string represent-

ing the child. The number of values complemented is a parameter of the algorithm -

sometimes referred to as the “mutation factor”.

Combining each of the genetic algorithm operations described above the overall

algorithm is obtained. Generally the initial solution pool is generated randomly or us-

ing some “smart” technique specific to the type of optimisation problem being tackled.

In this case a random initial pool is suitable since very few randomly generated func-

tions have low nonlinearity. The problem with random generation is that very highly

nonlinear functions are difficult to find. The algorithm then updates the solution pool

over a number of iterations (orgenerations). The maximum number of iterations is

fixed, although additional stopping criteria may be specified. In each iteration a num-

ber of steps are involved: selection of parents from the current solution pool, mating

of parents to produce offspring, mutation of the offspring, and selection from the mu-

tated offspring and the current solution pool to determine the solution pool for the next

iteration.

Much of the implementation detail of the genetic algorithm is specific to the prob-

lem being solved. In this case mating and mutation are combined in the merge oper-
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ation, which allows two good parents that are close together in Hamming distance to

produce a child close to both parents. It follows that the child is expected to have a

good fitness.

In the algorithm described below all possible combinations of parents undergo the

breeding process. The number of such pairings is dependent upon the pool sizeP -

there areP (P−1)
2 such pairings. After initial experiments a pool size of 10 was chosen as

a compromise between efficiency and convergence. Another parameter of the genetic

algorithm is the “breed factor”: the number of children produced by each parent pair.

Experimental results show that for a small, fast genetic algorithm, the most efficient

breed factor is 1, when efficiency is taken to mean the fitness of the best functions

found as compared with the number of functions evaluated. However using larger

values may be useful in gaining quick access to the entire search space. The following

algorithm describes the genetic algorithm as used in experiments. There are four inputs

to the algorithm -MaxIter , which defines the maximum number of iterations that the

algorithm should perform,P, the size of the solution pool,BreedFactor, the number

of offspring produced by the MERGE operation, andHC a Boolean value indication

whether or not the algorithm should incorporate one of the Hill climbing algorithms

described above (i.e.,HillClimb1 or HillClimb2 ).

• GeneticAlgorithm(MaxIter, P, BreedFactor, HC)

1. Generate a pool ofP random Boolean functions and calculate their corre-

sponding Walsh-Hadamard transforms.

2. Fori = 1, . . ., MaxIter, do

(a) For each possible pairing of the functions in the solution pool, do

i. Perform the MERGE operation on the two parents to produce a

number of offspring equal to the “breed factor” (BreedFactor).

ii. For each child, do

A. If hill climbing is desired (i.e., if HC=1) call theHillClimb1

function.

B. Provided the resulting offspring is not already in the list of chil-

dren, add the new child to the list of children.
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(b) Select the best solutions from the list of children and the current pool

of solutions. In the case where a child has equal fitness (nonlinearity)

to a solution in the current solution pool, preference is given to the

child.

3. Report the best solution(s) from the current solution pool.

6.4 Experimental Results

The experimental results for the algorithms described above are presented in two

stages. In the first instance the effectiveness of the two hill climbing algorithms is

explored, when compared with a pure random search for Boolean functions with high

nonlinearity. As the two hill climbing algorithms suggest, there are two cases here - the

first is where functions have no requirement on their balance, and in the second case

only balanced functions are considered since balance is maintained by theHillClimb2

algorithm. The second stage of experiments is designed to illustrate the improvement

gained by adding the genetic algorithm to the Boolean function search mechanism.

6.4.1 Random Generation versus Hill Climbing

The first set of results are now presented. In the first instance the nonlinearity of

randomly generated Boolean functions is compared with the nonlinearity of 1-locally

maximum Boolean functions obtained using theHillClimb1 algorithm detailed above.

This comparison was performed for eight (n = 8) and twelve (n = 12) input functions.

The results are given in Figures 6.1 and 6.2. The first observation to be made from

these figures is that the distribution of nonlinearity for randomly generated Boolean

functions is a roughly bell-shaped one. The second point of interest is that the distribu-

tion of nonlinearities for functions discovered using theHillClimb1 algorithm is spiky.

In fact the likelihood of finding a function with even nonlinearity is much greater than

that of finding an odd one when the hill climbing algorithm is used. This seems to

indicate that most functions with odd linearity are not 1-locally maximum. Of course

the most important result which is evident upon observation of Figures 6.1 and 6.2 is

the improvement achieved through the use of the hill climbing algorithm. The most

nonlinear functions obtained using the hill climbing algorithm are significantly closer
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Figure 6.1: A comparison of hill climbing with random generation, n=8.
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Figure 6.2: A Comparison of hill climbing with random generation, n=12.

to the maximum attainable than those found by random search. Note that forn = 8 and

n = 12 the highest attainable nonlinearities areNf = 120 andNf = 2016, respectively

- i.e., the nonlinearity of Bent functions forn = 8 andn = 12.

A similar comparison was performed using theHillClimb2 algorithm on balanced

functions only. In this case the randomly generated functions were restricted to the

balanced functions. It is known that balanced functions always have even nonlinear-

ity. The results for these experiments appear in Figures 6.3 and 6.4. Once again,
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Figure 6.3: A comparison of hill climbing with random balanced generation, n=8.

the experiments were performed forn = 8 andn = 12. Observe that the randomly

generated functions still have the bell-shaped distribution. The hill climbing algo-

rithm - HillClimb2 - was initialised with balanced functions, in this case, so that the

2-locally maximum function obtained by the search were also balanced (sinceHill-

Climb2 maintains the balance of the function being optimised). It can be seen that the

functions obtained using the hill climbing algorithm, on average, were superior to the

ones obtained by random search.

It is also interesting to observe the amount of improvement which can be expected

from the hill climbing algorithms. As a measure of the worth of the hill climbing al-

gorithm experiments were performed to determine the average number of steps to find

a 1-locally maximum function from a random starting function. This experiment was

performed for values ofn ranging from six to twelve. The results are presented in

Figure 6.5. For example, the results indicate that for a randomly generated Boolean

function of twelve inputs (n = 12), the expected improvement in nonlinearity obtained

from the hill climbing algorithm is 25 on the average. It can be seen from Figure 6.5

that asn increases the relative gain obtained from hill climbing increases also. Or,

in other words, asn increases the distance from a randomly generated function to a

local maximum is also increasing. Another point to be aware of is the efficiency of

the hill climbing algorithm in recomputing the next function’s Walsh-Hadamard trans-
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Figure 6.4: A comparison of hill climbing with random balanced generation, n=12.
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Figure 6.5: Average number of improvement steps by the hill climbing algorithm for
variousn.

form. From Theorem 3 it is evident that the complexity required by the hill climbing

algorithm in order to improve the nonlinearity byn is equivalent to the generation of a

random Boolean function and the calculation of its Walsh-Hadamard transform.
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6.4.2 Genetic Algorithms with and without Hill Climbing

The second stage of experiments involve the genetic algorithm technique for finding

Boolean functions as described above. The experiments have shown that a genetic al-

gorithm with a pool size of less than 10 tends to converge too quickly, since a single

good solution comes to dominate the pool: it is the parent of many children that sur-

vive into subsequent generations. When both parent and offspring survive and breed,

their progeny tend to survive also, and that “family” soon dominates the gene pool,

producing convergence. A policy precluding “incest” counters this effect. This policy

may take the form of forbidding a parent pair from breeding if their Hamming distance

is too small, as set by some threshold parameter. However, when this parameter is set

too large, it prevents breeding by the best pairs, thus undermining the motivation for

the merge operation. Further experiments will be required to determine optimum sets

of genetic algorithm parameters. It is clear that to find very highly nonlinear functions,

larger pools are useful, since they converge less rapidly.

As an example of how the genetic algorithm performs, a single genetic algorithm

search was performed forn = 14 and the nonlinearity of the best function recorded at

the end of each iteration. Figure 6.6 is a plot of the results obtained for this particular

case, which compares the number of iterations against the best nonlinearity found thus

far. It can be seen that the most dramatic improvement in the nonlinearity occurs in the

early stages of the algorithm. After a certain number of iterations (approximately 40 in

this case) the rate of improvement in the nonlinearity decreases rapidly. In Figure 6.6

the solid line represents the nonlinearity of the best solution in the current pool and

the dotted line presents the average nonlinearity of all the functions currently in the

solution pool. After a while nearly all functions in the solution pool have the same

nonlinearity, indicating that the GA usually finds more than one function with the

highest nonlinearity.

The remaining results presented in this section are designed to illustrate the merits

of the genetic algorithm search over both random Boolean function generation and the

hill climbing algorithm,HillClimb1 . Note that in this section there is no requirement

of balance on the functions being generated.

As a benchmark the best results obtained from random search for functions with

inputs ranging from eight (n = 8) to sixteen (n = 16) were obtained for various search
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Figure 6.6: Performance of a typical genetic algorithm,n = 14, P = 10.

Sample Size 8 9 10 11 12 13 14 15 16
1000 110 228 468 958 1947 3946 7966 16048 32273
10000 111 229 469 959 1949 3950 7971 16054 32280
100000 112 230 470 961 1952 3952 7975 16058 32288
1000000 112 230 472 962 1955 3954 7978 16065 n/a

Table 6.3: Best nonlinearity achieved by random search - typical results.

sizes ranging from 1000 to 1000000. The results (for nonlinearity) of this extensive

search are given in Table 6.3. The table clearly shows that increasing the sample size

ten times only marginally increases the nonlinearity obtained. This results from the

shape of the probability distribution of nonlinearity of Boolean functions: most func-

tions do not have low nonlinearity, but very highly nonlinear functions are extremely

rare. This is evident from Figures 6.1 to 6.4 in the previous section. These graphs show

that functions approaching the maximum nonlinearity are very rare.

Table 6.4 shows typical values for the number of functions that need to be tested

before an example with nonlinearity equal to or exceeding the benchmark is obtained.

In Table 6.4 (and the following two tables - Tables 6.5 and 6.6), the acronyms have the

following meanings: “R HC” means a random search utilising a hill climbing routine;

“GA” means a basic genetic algorithm with no hill climbing; and “GA HC” means a

genetic algorithm which incorporates a hill climbing routine.
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n 8 9 10 11 12 13 14 15 16
Benchmark 112 230 472 962 1955 3954 7978 16065 32288∗

R HC 4 3 2 8 3 2 2 2 1
GA 591 422 767 588 639 721 722 1108 588
GA HC 2 4 4 5 9 3 2 2 1

Table 6.4: Number of functions considered before achieving benchmark results - typi-
cal results.

Method 8 9 10 11 12 13 14 15 16
Random 110 228 468 958 1947 3946 7966 16048 32276
R HC 112 232 474 966 1960 3962 7991 16080 32319
GA 111 232 473 964 1955 3962 7982 16076 32289
GA HC 114 236 478 974 1972 3978 8014 16114 32366

Table 6.5: Best nonlinearity achieved after testing 1000 functions - typical results.

Method 8 9 10 11 12 13 14 15 16
Random 111 229 469 959 1949 3950 7971 16054 32280
R HC 114 232 476 968 1961 3964 7995 16090 32332
GA 113 232 475 968 1964 3968 7996 16085 32329
GA HC 114 236 482 980 1980 3994 8036 16144 32405

Table 6.6: Best nonlinearity achieved after testing 10000 functions - typical results.

The benchmark being used is the highest nonlinearity found in a random sample

of 1000000 functions. In most cases a simple genetic algorithm needs less than 1000

functions to get a benchmark result, indicating that the genetic algorithm is far more

efficient than random search in finding highly nonlinear Boolean functions even when

the overhead involved with the genetic algorithm is taken into account. The results for

hill climbing algorithms are even better than the genetic algorithm alone (see later),

indicating that hill climbing is a very effective technique for finding strong functions

quickly. Note that the benchmark used forn = 16 is the highest obtained in 100000

random generations, since a complete search of a million functions for this number of

inputs has not yet been obtained.

Tables 6.5 and 6.6 indicate the best results achieved by the algorithms when they

are forced to terminate after a specific number of functions have been tested. A direct

comparison between random generation with hill climbing, and a simple genetic al-
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gorithm without hill climbing shows that these algorithms are about equally effective

for 1000 or 10000 function tests. Other experiments have suggested that as the com-

putation bound is increased, the performance of the genetic algorithm will eventually

exceed that of hill climbing. It is interesting to note that the best algorithm is clearly

a genetic algorithm with hill climbing. This hybrid algorithm is able to quickly obtain

functions far better than the benchmarks.

6.5 Summary

A cryptographic application of combinatorial optimisation has been proposed. It has

been shown in this chapter that the genetic algorithm is a powerful tool, when used in

combination with a simple hill climbing heuristic, for finding highly nonlinear Boolean

functions suitable for cryptographic applications. It is suggested that a similar tech-

nique could be used to find functions with other properties, or even a combination of

properties. Also, the technique could be extended to finding highly nonlinear substitu-

tion boxes.

The hill climbing technique exploits the properties of the Walsh-Hadamard trans-

form of the Boolean function in order to determine which bits of its truth table may be

complemented to improve the nonlinearity of the function. It is shown that the tech-

nique can be used to choose two different-valued bits to complement to improve the

nonlinearity while at the same time maintaining the function’s balance properties.

This technique is shown to be significantly superior to a random search. The ge-

netic algorithm can be seen to further improve the hill climbing technique allowing

functions which are even more nonlinear to be found.

This work could be extended to include an analysis of the algorithm to determine if

the bits selected for complementation can be chosen more carefully in order to extend

the number of steps the nonlinearity can take before a local maximum is achieved.
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Buried on Sunday. That is the end of Solomon Grundy.

Conclusions

This thesis has investigated the use of three well-studied optimisation heuristics - sim-

ulated annealing, the genetic algorithm and the tabu search - in the fields of automated

cryptanalysis of ciphers and automated Boolean function design. These fields are im-

portant to cryptologists since, for example, cryptographers designing ciphers need ac-

cess to Boolean functions satisfying an ever-growing list of criteria, while, on the other

hand, cryptanalysts need to process vast amounts of information in order to discover

and exploit the weaknesses in ciphers. As was demonstrated in the thesis, these three

techniques provide cryptographers and cryptanalysts with a tool which meets both of

these requirements.

There are two key issues to consider when considering the use of optimisation

heuristics. The first is to consider if a suitable solution evaluation mechanism exists.

As has been illustrated in this thesis, it is clear that a reliable and accurate assessment

technique must exist if the types of search heuristics used are to be of practical use. The

second issue to consider is to determine which technique is going to be most suitable.

This decision will be based upon the characteristics of the problem being solved and

the characteristics of each of the heuristics. For example, if a genetic algorithm is

being considered a suitable mating operation must be defined.

Understanding the limitations of optimisation techniques requires knowledge of

the characteristics associated with the problems which are typically being solved. The

theory of NP-completeness, which was discussed in Chapter 2 defines a class of prob-

lems which are known to be difficult to solve. Once convinced that large instances of

113



114 Chapter 7. Conclusions

such problems are impossible to solveexactly, one quickly comes to realise the impor-

tance of approximate techniques such as the ones presented here. The large amount

of research which has been, and still is being, carried out emphasises the power of

these techniques. The different characteristics of each of the optimisation techniques

considered in this work makes them suitable for different applications.

The classical ciphers generally have a very large number of possible keys and yet

they are relatively simple to cryptanalyse. This is because the encryption process does

not hide the statistics of the plaintext language. Knowledge of then-gram statistics for

the language (in this case English) allows the definition of a key assessment method

based upon then-gram statistics of the message decrypted with a proposed key. Once

a key assessment method is defined it is possible to implement a search algorithm

based on an optimisation heuristic. As was shown, these ciphers are especially vul-

nerable to automated attacks based on such techniques. This is the case since an at-

tacker can use these automated techniques to find a “close” approximation to the actual

key which may render the cryptogram readable, or, if not, partly readable. Heuristics

which utilised, separately, simulated annealing, the genetic algorithm and the tabu

search were designed and implemented in attacks on both the simple substitution ci-

pher and the transposition cipher. Overall, the tabu search was found to be the most

effective search heuristic when applied to the substitution and transposition ciphers.

The success of the tabu search can be attributed to its “memory” features which force

the search away from regions of the search space that have already been considered.

Simulated annealing and the genetic algorithm, which do not possess this feature, are

less efficient in their search of the key space. While all three techniques were found to

successfully cryptanalyse simple substitution ciphers and transposition ciphers, the ge-

netic algorithm is best suited to parallel implementations and because of the structure

of the polyalphabetic substitution cipher was the only technique applied to this cipher.

The parallel genetic algorithm approach to cryptanalysis of the polyalphabetic sub-

stitution cipher provides a linear improvement in complexity over traditional sequential-

type attacks since it can solve each of the separate keys simultaneously. Processing

nodes are able to share information about their keys so that any node can determine a

set of statistics based on how the message decrypts using those keys. This technique

was shown to work equally well for all polyalphabetic block sizes up to nine charac-
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ters. It is suggested that, provided sufficient computing processors and ciphertext are

available, this attack would be successful on much larger block sizes as well.

A number of modifications to the fast correlation attack were proposed. Although

incorporating an optimisation heuristic (in this case simulated annealing) in the prob-

ability update stage does lead to some improvement over the original algorithm, it is

found that the fast resetting technique leads to even greater improvement. By resetting

the error probability vector after a fixed number of complementations of the recovered

keystream, a marked improvement in the attack is obtained. The fast resetting tech-

nique is shown to be superior to MacKay’s free energy minimisation method. This

result is based on extensive experiments with shift registers of various lengths.

This work could possibly be extended to include other types of stream ciphers.

Fast correlation attacks have been proposed on a large number of stream ciphers in-

cluding clock-controlled shift register based stream ciphers [29], the multiplexed gen-

erator [34] and the summation generator [66] (which incorporates memory - see Ap-

pendix B). Techniques similar to the ones discussed in this thesis could be modified to

possibly enhance the existing attacks.

The Merkle-Hellman public key cryptosystem utilises an NP-hard relative of the

NP-complete subset sum problem. Spillman’s method for attacking the Merkle-Hellman

system is shown to be flawed. The fitness function proposed by Spillman does not ac-

curately reflect how close a solution is to the correct one. An example is used to show

that it is possible to find a candidate solution whose fitness is within 0.01% of the fit-

ness of the correct solution and yet the candidate solution is different from the correct

solution in more than half of its bit positions. An additional problem with Spillman’s

approach is that the knapsack cryptosystem has only one solution. Traditionally, opti-

misation heuristics are applied when we are satisfied that the optimum solution cannot

be found but, instead, a “good” solution is sought. Applying a genetic algorithm to

a problem which is known to be NP-hard and which has only one correct solution

(among2n) can only be futile.

Based on the research presented in this thesis it could be concluded that optimisa-

tion heuristics show potential for use in the field of automated cryptanalysis. Although

rarely useful for completely cryptanalysing a cipher (except in the case of the classical

ciphers), these techniques have shown some promise when used to optimise existing
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methods for attacking certain ciphers. Optimisation heuristics are proven performers

for problems which require searching a large solution space for solutions with “good”

characteristics (rather than the “best” solution). One possible example for further re-

search in this area is searching forcharacteristicsfor use in differential, or linear crypt-

analysis. Matsui has proposed a branch-and-bound search for this purpose, and it is

possible that another optimisation heuristic may be more efficient for such a purpose.

The branch-and-bound approach is sufficient to find characteristics for DES; however,

characteristics for ciphers which utilise larger S-boxes (such as CAST – [1]) may be

better determined using an optimisation technique such as the ones discussed in this

thesis.

In addition to their application to the field of cryptanalysis, optimisation heuristics

have also proven to be useful for cryptographic applications.

A technique for determining “neighbours” of a given function which have higher

nonlinearity is introduced. This approach can be used iteratively in order to find a

Boolean function which is locally maximum in nonlinearity, in the sense that comple-

menting any one of the bits in its truth table will not lead to a function with higher

nonlinearity. In addition to nonlinearity, balance is one of the fundamental proper-

ties required of cryptographically sound Boolean functions. A technique is presented

which allows the search to determine two differently-valued truth table positions such

that complementing each of these (binary) values increases the overall nonlinearity of

the function and at the same time maintains its balance. Thus, the techniques can be

used to either improve both nonlinearity and balance of a non-balanced function, or

to improve nonlinearity while maintaining the balance of a function. Incorporating

this technique in a genetic algorithm is shown to produce a search which reliably finds

functions with higher nonlinearity than other techniques.

This cryptographic application for optimisation heuristics is open to a number of

extensions in future work. Similar techniques could be used to determine highly non-

linear S-boxes. Also, many other cryptographically desirable properties of Boolean

functions are known. These techniques, or similar ones, could be used to find func-

tions satisfying other cryptographic criteria, or (ideally) a combination of a number of

criteria. This would be an especially useful extension since several cryptographic prop-

erties are known to conflict so that the “best” function is based on a trade-off between



117

a number of properties.

A number of applications of optimisation heuristics to the field of cryptology have

been presented. The optimisation heuristics do not work for all applications and it is

important to be aware of this. Once the limitations of these techniques are understood

it becomes clear which applications will gain the most benefit from an approach based

on them. The examples provided in this thesis, along with suggestions of further ap-

plications, are intended to increase others’ awareness of optimisation heuristics as a

useful tool in cryptology, and to assist in understanding when and when not they are

best utilised.
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Appendix A

Classical Ciphers

In this appendix three different classical ciphers - the simple substitution cipher, the

polyalphabetic substitution cipher and the transposition cipher - are described. In each

case an example is given to illustrate the usage of the cipher. Properties of each of the

ciphers which are utilised in their cryptanalysis are also discussed.

Several variations of substitution and transposition ciphers exist. The ones pre-

sented here are the most general. Most historical cases of the substitution cipher are

just specific instances of the general cases described in the following two sections (ex-

amples are the Caesar, Vigenére and Beaufort ciphers - see [35] or [4]).

A.1 Simple Substitution Ciphers

The simple substitution cipher (sometimes referred to as the monoalphabetic substitu-

tion cipher to distinguish it from the polyalphabetic substitution cipher which is pre-

sented in Section A.2) is the most simple of substitution ciphers. Each symbol in the

plaintext maps to a (usually different) symbol in the ciphertext. The processes of en-

cryption and decryption are best described with an example, such as the one following.

Example A.1 A simple substitution cipher key can be represented as a permutation of

the plaintext alphabet. Table A.1 gives a sample key. Using this representation theith

letter in the plaintext alphabet is encrypted to theith element of the key. The string

“ . . .the money is in a locker at the airport. . .” is encrypted using the key in the table

(see Table A.1).
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KEY:
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ_
Ciphertext: PQOWIEURYTLAKSJDHFGMZNX_BCV

ENCRYPTION:
Plaintext: THE_MONEY_IS_IN_A_LOCKER_AT_THE_AIRPORT
Ciphertext: MRIVKJSIBVYGVYSVPVAJOLIFVPMVMRIVPYFDJFM

Table A.1: Example simple substitution cipher key and encryption.

Using the key representation in Table A.1, the original message can be discovered

by reversing the encryption procedure. That is, the ciphertext character at positioni

in the key decrypts to theith character in the plaintext alphabet.

For an alphabet of 27 characters there are 27! (≈ 1.09× 1028 ≈ 293) possible keys

for a simple substitution cipher. This number is far too large to allow a brute force

attack - even on the fastest of todays computers. However, because of the properties of

the simple substitution cipher they are relatively easy to cryptanalyse.

One property of the simple substitution cipher is thatn-gram statistics are un-

changed by the encryption process. Notice in Example A.1 how the most frequent

2-gram (orbigram) in the message (_A) becomesVP each time it is encrypted (three

times in the message in Table A.1). So, for every grouping of letters in the plaintext

there is a distinct and corresponding grouping of characters in the ciphertext. In a mes-

sage of sufficient length, the most frequentn-grams in the English language will, with

high probability, correspond to the most frequentn-grams in the encrypted message

(provided, of course, that the plaintext is from the English language). This fact is used

frequently as the basis of attacks on the simple substitution cipher.

The Caesar cipher is an example of a simple substitution cipher in which the key is

simply the rotation of the plaintext alphabet byj places (see [4] or [74]).

A.2 Polyalphabetic Substitution Ciphers

The polyalphabetic substitution cipher is a simple extension of the monoalphabetic

one. The difference is that the message is broken into blocks of equal length, say

B, and then each position in the block (1, . . . , B) is encrypted (or decrypted) using
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a different simple substitution cipher key. The block sizeB is often referred to as

the period of the cipher. The following example is utilised to illustrate the encryption

process using a polyalphabetic substitution cipher.

Example A.2 In this example the same message as in Example A.1 is used. The block

size (i.e.,B) is chosen to be three. Table A.2 gives an example key and shows the

corresponding encryption.

KEY:
Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ_
Ciphertext: LP_MKONJIBHUVGYCFTXDRZSEAWQ(Position1)

GFTYHBVCDRUJNXSEIKM_ZAWOLQP(Position2)
ZQSCEFBTHUMKO_PLIJYNGRVDWXA(Position3)

ENCRYPTION:
Position: 123123123123123123123123123123123123123
Plaintext: THE_MONEY_IS_IN_A_LOCKER_AT_THE_AIRPORT
Ciphertext: DCEQNPGHWQDYQD_QGAUSSHHJQGNQ_TKPZIKLYKN

Table A.2: Example polyalphabetic substitution cipher key and encryption.

The decryption process is an intuitive reversal of the encryption.

The number of possible keys for a polyalphabetic substitution cipher using an al-

phabet size of 27 and a block size ofB is 27!B. This is significantly greater than

the simple substitution cipher with 27! possible keys (especially for largeB). The

polyalphabetic substitution cipher is somewhat more difficult to cryptanalyse than the

simple substitution cipher because of the independent keys used to encrypt successive

characters in the plaintext. Despite this, it is still relatively simple to cryptanalyse

the polyalphabetic substitution cipher based on then-gram statistics of the plaintext

language.

In Example A.1 which describes the monoalphabetic substitution cipher the most

common bigram (_A) is mapped to the same encrypted bigram each time. This is not

the case for the polyalphabetic substitution cipher. From Example A.2, it can be seen

that _A is twice encrypted toQGand once toPZ. The encrypted value is dependent

upon two factors: the individual key values and the position of the characters within
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the block (the two times_A is encrypted toQGthe letters “_” and “A” are located in

positions1 and2, respectively).

The Vigeńere and Beaufort ciphers are examples of polyalphabetic substitution

ciphers (see [4] for descriptions).

Any attack on the polyalphabetic substitution cipher must involve determining the

period as well as decrypting the ciphertext. Usually the task of determining the pe-

riod is performed separately and prior to the message recovery phase. Methods for

determining the period are now discussed.

A.2.1 Determining the Period of a Polyalphabetic Cipher

A number of methods for determining the block length (or period) have been reported

in the literature. Two such methods are now described briefly.

Friedman [19] discovered that theIndex of Coincidence(IC) (see also [4]) can be

used to give a general indication of the period of a polyalphabetic substitution cipher.

Given an intercepted ciphertext message of lengthK, the index of coincidence is given

by Equation A.1 wherefλ denotes the frequency of characterλ in the ciphertext.

IC =
∑

λ∈C fλ(fλ − 1)
K(K − 1)

(A.1)

A discussion of the theory of the IC is given in [19] and does not fall into the scope

of this work. However, it can be shown that the IC and the period of a cipher are

related and, providingK is sufficiently large, the IC can be used to give a reasonable

indication of the block length,B. The IC can also be used to support the findings of

another method, especially when more than one period is indicated by that method.

The second technique discussed here is theKasiskitest devised by Kasiski in 1863

(see [4]). In an encrypted message produced by a polyalphabetic substitution cipher, a

particular sequence of characters may be repeated a number of times. It is highly likely

(although not certain) that the repeated sequence will represent the same plaintext. In

the case that the repeated sequence does represent the same plaintext, the distance be-

tween the two instances of the sequence will give an indication of the period of the

cipher. All of the prime factors of the distance between the two instance are possi-

bilities for the period of the cipher. If there are a number of different sequences in

the cryptogram which are repeated, or if a particular sequence is repeated many times,
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then by finding the factors of all the distances between them, a good indication of the

period can be obtained.

In some cases the period may actually be a multiple of one indicated by the Kasiski

test. For this reason it is wise to use the Index of Coincidence to increase the certainty

of the chosen period being correct. For example, to test whether or not a period ofb

is likely divide the cryptogram into blocks of lengthb and calculate the IC for each

position in the block.

A.3 Transposition Ciphers

Another common technique often used in cryptographic algorithms is the permutation

or transposition. In this section a simple transposition cipher is introduced. A transpo-

sition cipher works by breaking a message into fixed size blocks, and then permuting

the characters within each block according to a fixed permutation, sayΠ. The key to

the transposition cipher is simply the permutationΠ. In contrast to the substitution

ciphers described in the previous sections, the transposition cipher has the property

that the encrypted message (i.e., the ciphertext) contains all the characters that were in

the plaintext message, albeit in a different (and hopefully meaningless) order. In other

words, the unigram statistics for the message are unchanged by the encryption process.

To further illustrate the concept of the transposition cipher Example A.3 is pre-

sented.

Example A.3 The size of the permutation is known as the period. For this example a

transposition cipher with a period of six is used. LetΠ = {4, 2, 1, 5, 6, 3}. Then the

message is broken into blocks of six characters. Upon encryption the fourth character

in the block will be moved to position 1, the second remains in position 2, the first

is moved to position 3, the fifth to position 4, the sixth to position 5 and the third to

position 6. The message used in the previous two examples is now used to illustrate

this process on a number of blocks.

Notice that the random string “XLS” was appended to the end of the message

to enforce a message length which is a multiple of the block size. Notice also that

decryption can be achieved by following the same process as encryption using the

“inverse” of the encryption permutation. In this case the decryption key,Π−1 is equal
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KEY:
Plaintext: 123456
Ciphertext: 421563

ENCRYPTION:
Position: 123456123456123456123456123456123456123456
Plaintext: THE_MONEY_IS_IN_A_LOCKER_AT_THE_AIRPORTXLS
Ciphertext: _HTMOE_ENISY_I_A_NKOLERC_A_THTI_ERPAXROLST

Table A.3: Example transposition cipher key and encryption.

to {3, 2, 6, 1, 4, 5}.

From Example A.3 it can be seen that the bigram and trigram statistics are lost

upon encryption. That is, there is no direct correspondence between the frequency of

certain bigrams (or trigrams) in the plaintext with certain other bigrams (or trigrams) in

the ciphertext. This property was not true for the substitution ciphers described above.

This does not, however, imply that a suitability assessment method cannot be based on

these statistics, as will be shown.
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LFSR Based Stream Ciphers

A stream cipher produces a pseudo-random sequence of bits which are exclusive-or’ed

with the plaintext to produce the ciphertext. Many stream ciphers make use of the

linear feedback shift register (LFSR).

Figure B.1 illustrates a linear feedback shift register. A periodic LFSR is defined by

a (primitive) feedback polynomial of degreeL, the length of the LFSR. When the feed-

back polynomial is primitive and of degreeL the shift register is known as amaximum-

lengthLFSR [50]. The output sequence of a maximum length LFSR is periodic with

period2L−1 and is called am-sequence. Many properties ofm-sequences are known.

One particular example of a LFSR-based stream cipher is thenonlinear combiner

(see Figure B.2) which combines the output ofk LFSR’s using a nonlinear Boolean

function to obtain the keystream. The combiner may include the previous output bit

as one of its inputs, in which case the combiner is said to containmemory. Thus, the

combiner with memory requires a nonlinear Boolean function ofk + 1 variables and a

memoryless combiner requires a nonlinear Boolean function ofk inputs. The dashed

line in Figure B.2 is used to represent the inclusion of memory in the combiner. The

Output

Figure B.1: A linear feedback shift register, defined by the primitive polynomial
f(x) = x8 + x6 + x5 + x + 1, with lengthL = 8.
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Figure B.2: A nonlinear combiner type stream cipher.

keying material for this cipher is generally the initial contents of the LFSR’s. In some

cases the feedback polynomials are assumed to be public knowledge, along with the

combining function.

A cryptographic weakness with some LFSR-based stream ciphers is that the output

sequence from the LFSR is correlated to the output keystream sequence of the genera-

tor. An attacker may be able reconstruct the keystream sequence if they possess some

known plaintext (i.e., plaintext and its corresponding ciphertext). Given a sufficient

length of the keystream sequence and knowledge of the feedback polynomial for one

of the LFSR’s, it is possible to reconstruct the initial contents of the shift register. At-

tacks using this strategy were proposed by Meier and Staffelbach [48], and Zeng and

Huang [78].
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The Merkle-Hellman Public Key
Cryptosystem

Merkle and Hellman (in [51]) proposed their “knapsack” cipher in 1978. The term

“knapsack” is a misnomer because the security of the cryptosystem is based on the

difficulty of solving the subset sum problem, rather than the closely related knapsack

problem. Since their pioneering work, many cryptosystems based on the difficulty of

solving the same problem have been proposed.

Thesubset sumproblem (which is defined in [22] and known to be NP-complete)

can be expressed as follows: “GivenA = {a1, a2, . . . , an} a finite set of positive

integers, andB a positive integer, is there a subsetA′ ⊆ A such that the sum of the

sizes of the elements inA′ is exactlyB?” To break the Merkle-Hellman cryptosystem

by attacking the encryption process rather than the structure of the secret key, one has

to solve the following related NP-hard problem: “GivenA = {a1, a2, . . . , an} a finite

set of positive integers, andB a positive integer, find the subsetA′ ⊆ A such that the

sum of the sizes of the elements inA′ is exactlyB (given thatA′ exists).”

In the Merkle-Hellman cipher the public key is the setA and the finite field modu-

lus,p. The public keyA is formed by multiplying each element of a super-increasing

sequence by a secret multiplier,w, and reducing modulop, where gcd(w, p) = 1. The

secret key is the super-increasing sequence and the secret multiplier,w. In general the

public keyA will be randomly distributed elements. Encryption is performed onn bit

binary blocks by summing the elements inA which correspond to a1 in the plaintext
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block. Typicallyw andp would be very large numbers andn should be sufficiently

large to prevent an exhaustive search of the solution space. The following example

describes the operations of generating a public/private key pair for a knapsack cipher

and gives an example of the encryption and decryption processes.

Example C.1 Suppose Alice wishes to establish a knapsack public/private key pair.

The key pair is generated using, in this case, the parametersn = 8, the knapsack size,

w = 500, the secret multiplier andp = 711 the public modulus. A super-increasing

sequenceS = { 2, 5, 11, 20, 41, 85, 211, 463} is chosen to form part of the secret key

(S andw together constitute the secret key). The public part of the key is made up ofp,

the modulus, and the setA obtained by multiplying the elements ofS with w modulop.

In this instanceA = { 289, 367, 523, 46, 592, 551, 272, 425}. A andp are published

as the public key for Alice.

Now suppose Bob wishes to send Alice an encrypted message. Binary messages

are encoded inn bit blocks. A block of Bob’s message is as follows:M = { 0, 1,

0, 1, 1, 1, 0, 1}. The ciphertext,C, is computed fromA and p as follows: C =

(
∑n

i=1 aimi) mod p whereA = {a1, a2, . . . , an} andM = {m1,m2, . . . , mn}. Thus

Bob’s ciphertext will be:C = 367+46+592+551+425 mod 711 = 1981 mod 711 =

559. Bob sendsC = 559 to Alice.

Alice wishes to decode Bob’s message. Alice’s first step is to multiply the cipher-

text by the inverse of the secret multiplier (w−1) modulop. Here w−1 = 155 and

Cw−1 mod p = 559 × 155 mod 711 = 614. It is then trivial for Alice to decode the

message by determining the elements ofS which add to give 614. For example, Alice

can repeatedly subtract the largest possible value ofS from the ciphertext until a value

of zero results. The values fromS used in the subtraction will correspond to 1’s in the

decrypted message block.

The Merkle-Hellman cryptosystem was broken by Shamir [68] (and others) in the

early 1980’s. Details of the attack are given below. The problem with most knapsack-

type cryptosystems is that the public key does not properly hide the structure of the

secret key.
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C.1 A review of Attacks on the Merkle-Hellman Cryp-
tosystem

In this section some of the theoretical aspects of attacks on knapsack-type ciphers

are presented. The analysis given here follows the description given in [70], however

several attacks were presented around 1982 by Brickell [7], Shamir [68] and Desmedt

et al [15].

In accordance with the notation above,S = {s1, s2, . . . , sn} represents the super-

increasing sequence which, together with the secret multiplier,w, comprises the secret

portion of the public key cryptosystem.

Recall that the public key portion comprises the setA = {a1, a2, . . . , an} and the

modulus,p. Each element ofA is obtained using the relation

ai = w × si mod p.

Then, ifw−1 is the modular inverse ofw,

si = w−1 × ai − p× ki,

and wheni = 1

s1 = w−1 × a1 − p× k1.

Multiplying the first of these byb1 and the second bybi and subtracting one from the

other gives

ai × k1 − a1 × ki = (a1 × si − ai × s1)/p

Now, sincep > s1 + s2 + . . . sn, ai < p ands1 < si, we have

a1 × si − ai × s1 > a1 × si − p× s1

> a1 × si − p× si

> (a1 − p)× si

> −p× si

and hence

|ai × k1 − a1 × ki| < p× si/(a1 + a2 + . . . + an).
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A property of the super-increasing sequence is that

si+j ≥ 2j−1 × (si + 1),

or, expressed differently,

(si + 1)/si+j ≤ 21−j.

Whenj = n− i it follows that

(si + 1)/sn ≤ 2i+1−n

and thus

si/(s1 + s2 + . . . + sn) < (si + 1)/sn ≤ 2i+1−n.

Therefore

|ai × k1 − a1 × ki| < p× 2i+1−n

and, dividing byki × ai,

|k1/ki − a1/a1| < p× 2i+1−n/(ki × ai)

< p× 2i+1−n/ai.

This results shows that theki are not random and can be determined using the

above inequalities ifp is known. Shamir showed that the final inequality can be solved

using an algorithm proposed by Lenstra [39]. This attack can be used to determine the

ki in polynomial time and hence the Merkle-Hellman cryptosystem is broken easily.

This attack can be used on all similar cryptosystems based on disguising a secret trap-

door sequence (in the case of the Merkle-Hellman cryptosystem, the super-increasing

sequenceS is the trapdoor).
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Boolean Functions and their
Cryptographic Properties

This appendix provides an introduction to Boolean functions: their representation, op-

erators and properties.

The most basic representation of a Boolean function is by its binary truth table.

The binary truth tableof a Boolean function ofn variables is denotedf(x) where

f(x) ∈ {0, 1} andx = {x1, x2, . . . , xn}, xi ∈ {0, 1}, i = 1, . . . , n. The truth table

contains2n elements corresponding to all possible combinations of then binary inputs.

Sometimes it is desirable to consider a Boolean function over the set{1,−1} rather

than {0, 1}. The polarity truth tableof a Boolean function is denoted̂f(x) where

f̂(x) ∈ {1,−1} andf̂(x) = (−1)f(x) = 1 − 2f(x). Thus whenf(x) = 1 it follows

that f̂(x) = −1. It is also important to note that XOR (exclusive or) over{0, 1} is

equivalent to real multiplication over{1,−1}. Thus,

h(x) = f(x)⊕ g(x)

⇒ ĥ(x) = f̂(x)ĝ(x).

Two fundamental properties of Boolean functions are Hamming weight and Ham-

ming distance. TheHamming weightof a Boolean function is the number of ones in

the binary truth table, or equivalently the number of−1s in the polarity truth table.

That is, the Hamming weight of a Boolean function, hwt(f), is given by:

hwt(f) =
∑

x
f(x)
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=
1
2

(

2n −
∑

x
f̂(x)

)

.

TheHamming distancebetween two Boolean functions is the number of positions

in which their truth tables differ. The Hamming distance between two Boolean func-

tions, dist(f, g), can be calculated from either the binary truth table or the polarity truth

table as follows:

dist(f, g) =
∑

x
(f(x)⊕ g(x))

=
1
2

(

2n −
∑

x
(f̂(x)ĝ(x)

)

.

How well two Boolean functions correlate is also of interest. The correlation be-

tween two Boolean functions,c(f, g), gives an indication of the extent to which two

functions approximate each other. The correlation is a real number in the range [-1,1]

and is given by:

c(f, g) = 1− dist(f, g)
2n−1

= 2−n
∑

x
f̂(x)ĝ(x).

Complementing one of the Boolean functions truth tables does not alter the magnitude

of the correlation between the two functions.

For cryptographic Boolean functions it is usually desired that there are an equal

number of 0’s and 1’s in the binary truth table. When this is the case the function

is said to bebalanced. Balance is a primary cryptographic criterion: an imbalanced

function has sub-optimum unconditional entropy (i.e., it is correlated to a constant

function). The imbalance of a Boolean function is defined as:

If =
1
2
|
∑

x
f̂(x)|

= 2n−1|c(f, 0)|,

where0 denotes the constant zero Boolean function. The magnitude of the correlation

between a function and the constant zero function is simplyIf
2n−1 . A function with zero

imbalance is balanced and has no correlation to the constant functions.

A linear function,Lω(x), selected byω ∈ Zn
2 is defined:

Lω(x) = ω · x

= ω1x1 ⊕ ω2x2 ⊕ · · · ⊕ ωnxn.
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An affinefunction is one of the form

Aω(x) = ω · x⊕ c,

wherec ∈ Z2.

The Hamming distance to linear functions is an important cryptographic property,

since ciphers that employ nearly linear functions can be broken easily by a variety of

methods (for example see [43, 27]). In particular, both differential and linear cryptanal-

ysis techniques [5, 44] are resisted by highly nonlinear functions. Thus the minimum

distance to any affine function is an important indicator of the cryptographic strength

of a Boolean function.

Thenonlinearityof a Boolean function is this minimum distance, or the distance to

the set of affine functions. Note that complementing a Boolean function’s binary truth

table will not change the nonlinearity, so the magnitude of the correlation to all linear

functions, of which there are2n, must be considered.

The Hamming distance between a pair of functions can be determined by evalu-

ating both functions for all inputs and counting the disagreements. This process has

complexityO(2n). It follows that determining the nonlinearity in this naive fashion

will require O(22n) function evaluations, which is infeasible even for smalln. How-

ever, a tool exists that enables the calculation of all linear correlation coefficients in

O(n2n) operations. This is the fast Walsh-Hadamard Transform (denotedF̂ (ω)), and

its uses in cryptography and elsewhere are well known [3, 77]. The Walsh-Hadamard

Transform (WHT) of a Boolean function is defined as:

F̂ (ω) =
∑

x
f̂(x)L̂ω(x).

It is clear from this definition that the value of̂F (ω) is closely related to the Hamming

distance betweenf(x) and the linear functionLω(x). In fact the correlation to the

linear function is given byc(f, Lω) = F̂ (ω)
2n .

The nonlinearity,Nf , of f(x) is related to the maximum magnitude of WHT values

WHMAX and is given by:

Nf =
1
2
∗ (2n −WHMAX ).

Clearly in order to increase the nonlinearity, WHMAX must be decreased. A function

is uncorrelated with linear functionLω(x) when F̂ (ω) = 0. Cryptographically, it
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would be desirable to find Boolean functions which have all WHT values equal to

zero, since such functions have no correlation to any affine functions. However, it is

known [49] that such functions do not exist. A well known theorem, widely attributed

to Parseval [41], states that the sum of the squares of the WHT values is the same

constant for every Boolean function:
∑

ω F̂ 2(ω) = 22n. Thus a tradeoff exists in

minimising affine correlation. When a function is altered so that its correlation to some

affine function is reduced, the correlation to some other affine function is increased.

It is known that the Bent functions [65] satisfy the property that|F̂ (ω)| = 2
n
2 for

all ω. Bent functions exist only for evenn, and they attain the maximum possible

nonlinearity ofNBENT = 2n−1 − 2
n
2−1. Note, however, that Bent functions are not bal-

anced. It is an open problem to determine an expression for the maximum nonlinearity

of functions with an odd number of inputs. It is known that, forn odd, it is possible

to construct a function with nonlinearity2n−1−2
n−1

2 by concatenating Bent functions.

It is known that forn = 3, 5, 7 that this is in fact the upper bound of nonlinearity.

The only value ofn for which it is known that this value is not the upper bound is

n = 15 [58, 59].
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