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Diffie-Hellman Key Exchange 

 
Diffie-Hellman is not an encryption or signature technique, but rather a method for two 
users (Alice and Bob) to jointly construct a shared key without an intermediary (Oscar) 
obtaining that key or information that would let him construct the key easily. 
 
Algorithm 
 
The procedure is fairly straightforward. 
 

1. Either Alice or Bob chooses a large prime number p and a generator g for that 
prime, which are shared publicly with the other user and consequently, with 
anyone observing (Oscar). 

2.  Alice and Bob independently and privately choose random numbers (a and b 
respectively) which are between 1 and p-1. 

3.  Both users separately compute g raised to the power of their random number (g^a 
or g^b) and mod by p. 

4.  Both users now exchange those values over the public network.  Alice now has 
g^b mod p and Bob now has g^a mod p.  Oscar, of course, has seen both. 

5.  Alice and Bob now raise the value they just received to the power of their random 
number.  So Alice computes (g^b)^a mod p and Bob computes (g^a)^b mod p.  
Because of the commutability of exponentiation, both will end up with the same 
number. 

6.  We call this result k, the shared key. 
 
Oscar sees both g^a and g^b, yet has no polynomial-time way of determining the 
exponents a and b from either of these numbers, or a way of constructing (g^a)^b mod p.  
Thus Alice and Bob now share a secure key which can be used for secure communication 
or any other use they see fit. 
 
The man- in-the-middle attack, however, can break this system.  If Oscar intercepts the 
g^a and g^b transmissions and replaces them with his own value, Alice and Bob will 
agree on different keys.  Oscar can then intercept any messages sent between them using 
those keys and decrypt them.  He could also possibly modify the message, re-encrypt and 
send the message along.  This exploitation is present because simple DH key-exchange 
does not include authentication.  Diffie-Hellman digital signatures, addressed in the next 
section, address this issue. 
 
Implementation 
 
This project presents C++ classes which implement the above algorithm. 
 
Each user is represented by a thread of execution.  The exchange of values is done via 
synchronization primitives on shared variables.  Inspection of the code shows that the 
threads do not ‘cheat’ and look at the other thread’s values. 



 
 
Typical output looks like: 
 

Finding prime p............................... 
Finding generator g... 
Common prime p chosen as 4158841839 
A generator, g, for the prime is 2907825353 
Client with ID 1026 is online 
Client1026 chose 'a' as 3395547715 
Client with ID 2051 is online 
Client1026 calculated g^a = 269270990 
Client2051 chose 'a' as 2801823619 
Client2051 calculated g^a = 844586073 
Client2051 got back g^b as 269270990 
Client2051 produced key (g^b)^a = 3789380176 
Client2051 finished 
Client1026 got back g^b as 844586073 
Client1026 produced key (g^b)^a = 3789380176 
Client1026 finished 
Done 

 
The algorithm works correctly if both threads (1026 and 2051) agree on the produced key 
(in this case, 3789380176).  As one can see, this example uses 32-bit precision.  
Arbitrarily high precision is also supported, though it is much slower. 
 
Prime numbers are found using the Miller-Rabin testing algorithm.  Generators are found 
by only using primes p of the form p = 2q + 1 where q is another prime, and picking 
random g values until both g^2 and g^q are not equal to 1 mod p.  Each period in the 
“Finding prime p” line above represents the number of primes that were created until one 
of the form 2q + 1 was created.  Each period in the “Finding generator g” line represents 
the number of random g values that were picked until a generator was found. 
 
Test Cases 
 

Table I. 
 

Test P G a b Khand Kprog 
1 59 47 41 29 58 58 
2 23 17 13 7 14 14 
3 47 29 43 29 20 20 

 
As shown, the routine produces the correct k value for each test case. 
 



 
Diffie-Hellman Digital Signature 

 
Prime Number Generation 
 
The prime number generator is responsible for generating the prime numbers with the 
given PRIME_NUMBER_SIZE, which happens to be half the amount of PRECISION, 
which at the moment is defined in the li_math.h file to be 128.  The generator subroutine 
first obtains a random large integer, then tests it 100 times using the Miller-Rabin 
Primality test.  Any large integer which passes this extensive testing is output as a prime 
number. 
 
Diffie-Hellman Signature Protocol 
 
By itself, Diffie-Hellman Key-Exchange protocol is vulnerable to man- in-the-middle 
attacks.  To prevent against that, we have to employ a signature strategy, where each user 
authenticates itself securely, and verifies each other’s identity.  One way to do it is to use 
the Simplified version of the Station-to-Station Protocol [1]. 
 
The Station-to-Station protocol starts with each user U and V having acquired a prime 
value p, and a generator alpha for that prime’s Zp*.  When the algorithm begins, each 
user picks up a unique number a that should be between 0 and p-2 inclusive.  Then user U 
computes: 
 

(alpha^aU) mod p 
 
and sends it to the user V.  V on the other hand, computes: 
 

(alpha^aV) mod p. 
 
After that he computes his private key K: 

K = (alpha^aU)^aV mod p. 
 
V also computes his signature.  In order to do that, he uses both (alpha^aU) and 
(alpha^aV). 
 

yV = sigV(alpha^aV, alpha^aU). 
 
Where sigV is the signing algorithm.  In addition to this, V calculates his certificate C(V), 
which consists of: 
 

C(V) = (ID(V), verV, sigTA(ID(V), verV)) 
 
ID is the unique id number that each user has.  VerV is the verification algorithm that 
user U uses to verify the signature sigV.  SigTA(ID(V), verV) is the number obtained 
from a central Trusted Authority (in our case, the Verisign global object), which is the 



signed format of ID and verV.  To this certificate C(V), V adds its own (alpha^aV) and 
yV, then sends the whole thing to U. 
 
U, upon receipt of the certificate structure from V, verifies the authenticity of C(V) by 
using the SigTA part of the certificate.  After that, U verifies yV using verV that was 
transmitted with the certificate.  At this point, being certain of the authenticity of data 
transmitted from V, U computes its own K value: 
 

K = (alpha^aV)^aU mod p. 
 
After this, U computes its own yU: 
 

yU = sigU(alpha^aU, alpha^aV). 
 
U also computes C(U) in the same way described above, and then transmits it along with 
yU to V.  Upon receipt, V verifies C(U), and then verifies yU using verU.  This way, V 
has also verified that it has been communicating with U, and U has been receiving the 
correct messages from V.  Upon completion of the both algorithms, the value of K 
retained by both U and V should be exactly same.  No other party has any idea what K 
could be, and no other party could have interfered with the transmission, because of the 
authentication schemes used. 
 
The signing algorithms sigV and sigU are functions which take in two values and output 
one encrypted value.  In our case, we decided to use the RSA algorithm for signature 
scheme, since we already had it developed.  However RSA signature algorithm takes in 
only one value as input.  Therefore, we had to combine the values (alpha^aU) and 
(alpha^aV) in a suitable fashion. 
 
The verification algorithms verV and verU transmitted with the certificates consist of the 
public key b and the modulo base n used by the RSA encryption engines of the users V 
and U.  Therefore in our case, a certificate is actually like: 
C(U) = (ID(U), bU, nU, sigTA(ID(U), bU, nU)). 
 
Test Cases 
 
The following table verifies the operation of the Diffie-Hellman Signature scheme, with 
hand calculated values: 
 

Tables II and III, for U : 
 

Test prime p alpha n a b id 
1 227 223 143 103 7 1001 
2 37 17 143 103 7 1001 
3 59 47 143 103 7 1001 

 



 
Test aU (alpha)^aU yU K 
1 39 153 135 40 
2 3 29 101 10 
3 131 37 78 49 

 
Tables IV and V, for V: 

 
Test prime p alpha n A b id 
1 227 223 55 37 13 1007 
2 37 17 55 37 13 1007 
3 59 47 55 37 13 1007 

 
Test AV (alpha)^aV yV K 
1 90 76 4 40 
2 8 33 17 10 
3 104 41 23 49 
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RSA Encryption and Decryption 

 
In this project, for encryption and decryption of text messages and for Diffie-Helman 
digital signing and verification, the RSA cryptographic system is used.  An RSA system 
can be defined as (K, eK(x), dK(y)) with key K defined as: 
 

K = (n, p, q, a, b) such that 
 
n = p*q, p and q different primes, and 
 
ab = 1 mod Φ(n). 

 
The encryption and decryption functions eK(x) and dK(y), respectively,  are defined as: 
 

eK(x) = xb mod n 
 
dK(y) = ya mod n. 

 
This being a public-key encryption system, the public key is given as (n, b) while p, q, 
and a are kept secret. 
 
This project presents a C++ class, RSA_system, that implements the creation of an RSA 
system (i.e., generating values for p, q, n, a, and b) and that provides a decryption method 
for returning the public key values n and b, and for performing decryption while hiding 
the values of p, q, n, and a.  The set-up (implemented in the RSA_system constructor) is 
as follows: 
 

1. Generation of two random primes p and q.  The Miller-Rabin primality test was 
implemented (as described in section ? of this report) to insure that p and q are 
prime. 

2. n calculated as p*q. 
3. Φ(n) = (p-1)(q-1) calculated. 
4. A random number b, such that 1 < b < Φ(n), is chosen. 
5. a = b-1 mod Φ(n) is computed. 

 
At this point, a user may request n and b via the RSA_system::b_key()  and 
RSA_system::n_key() methods, respectively.  A decrypted message may be obtained by 
calling the RSA_system::decrypt(longint y) method. 
 
For encryption, the function encrypt(longint n, longint b, longint x) returns the encryption 
of x using public key (n, b).  It is not part of RSA_system class in order to remain general 
for any instance of an RSA system. 
 
 
 



Test Cases 
 
Table VI gives 3 encryption test cases for a sample RSA system, comparing the results of 
the program with those obtained by hand calculations.  Table VII gives the decryptions 
for the encryption cases above, both for the program and hand-calculated results.  
  

Table VI.  Encryption Test-Cases 
 

Test x b n yprogram yhand-calc 
1 100 13 391 87 87 
2 71 13 391 165 165 
3 223 13 391 49 49 

 
 

Table VII.  Decryption Test-Cases 
 

Test y a n xprogram xhand-calc 
1 87 325 391 100 100 
2 165 325 391 71 71 
3 49 325 391 223 223 

 
As shown, the encryption and decryption routines perform correctly for the given test 
cases.  The following is a program output listing for a test case with a larger number: 
 

$ ./rsatest.exe 
Plaintest? (less than 2^128) 
123456789012345678901234567890 
RSA: Initializing MP integers... 
RSA: Finding prime p... 
932469648110791547 
RSA: Finding prime q... 
1033504800643134977 
RSA: Calculating n = p*q... 
963711857776517841314857615031639419 
RSA: Calculating phi(n) = (p-1)*(q-1)... 
963711857776517839348883166277712896 
RSA: Finding b such that gcd(b,phi(n))=1 -- 
1418227916859036949 
RSA: finding a = b^(-1) mod phi(n)... 
463464869620517003929737175919345213 
RSA: Finished building RSA, cleaning up. 
Generated plainnum = 123456789012345678901234567890 
Encryption: y = x^b mod n... 
Ciphernum = 82362662845077651455620486062105588 
RSA: Decrypting as x = y^a mod n... 
Decrypted plainnum = 123456789012345678901234567890 

 
As shown, the system works for larger numbers, up to 128 bits, as well.  A simple re-
configuration will allow even larger numbers, at the expense of slower performance. 


