
The NIST Advanced Encryption Standard (AES) Input and Output Block Conventions

Dr B. R. Gladman, version 2.2, 6th June 1999 page 1

Input and Output Block Conventions for AES Encryption Algorithms
By Dr. B. R. Gladman

Introduction

1. Cryptographic algorithms operate in computer
memory and transform memory blocks for inputs,
outputs and keys. When these values need to be
calculated consistently in many different proces-
sor environments it is necessary to have precise
definitions of how they are to be interpreted and
used. This has been a source of difficulty in the
AES effort so far [1, 2] and has also been the
subject of proposals for improvement in the first
round comments [3].

2. When considered at the lowest level, the
memory used in computers is made up of binary
bits that are typically grouped into larger entities
such as 8-bit bytes and 32-bit words, entities that
will be referred to here as units. Although proc-
essors can be designed to interpret these units in
many different ways, it is common practice to
treat them as numbers in which the different bits
represent powers of 2.

3. When integers are being represented it is
common to number the bits within each unit from
0 upwards, with bit number ‘n’ being used to rep-
resent 2n. In such ‘integer’ representations, the
numeric value (significance) associated with bits
increases with bit number from the ‘bottom’ or
‘rightmost’ end of a unit. But it is equally valid,
though less common, to view units as represent-
ing fractions in which bit ‘n’ represents 2-(n+1) so
that bits decrease in numeric significance with
increasing bit number. In such ‘fractional’ repre-
sentations bits are numbered starting at the ‘top’
or ‘leftmost’ end of a unit.

4. This issue also arises when bytes or words
are combined to represent larger numbers.
When arrays of bytes (8-bit units) are used to rep-
resent integers it is common to use byte ‘n’ to
represent multiples of 256n so that higher num-
bered bytes are given higher numeric signifi-
cance. Again, however, such byte arrays can be
considered as fractional values where byte ‘n’
represents multiples of 256-(n+1), with higher num-
bered bytes gaining lower numeric significance.
These two styles of number representation have
become known as ‘big-endian’ and ‘little-endian’
and processors are often designed to directly
process numbers in only one of these two forms.

5. It is important to recognise that this issue only
arises when we consider groups of bits in mem-
ory as higher level entities, for example, repre-
sentations of numbers. When these bits are sim-
ply viewed as arrays of bits without semantic sig-
nificance we do not have to worry about these
matters. In practice, however most algorithms
impose some form of order on bits and this

means that we cannot avoid dealing with such
issues.

6. In considering how this impacts on crypto-
graphic algorithms, we have to decide whether
our algorithms should act on the bits without con-
sidering their meaning or whether we want our
algorithms to act on the higher level abstractions
such as, for example, numbers.

7. In practice, however, sequences of bits in
processor memory can be used to represent a
huge variety of things: unsigned integers, signed
integers (one’s or two’s complement), fractions,
binary coded decimals, floating point numbers (in
many different formats), sequences of characters
(using different character sets) and any of an al-
most infinite variety of user defined abstractions.

8. Numbers are hence just one subset of an ef-
fectively infinite set of possible abstractions that
can be imposed on these bits. And if algorithms
act on these higher level abstractions rather than
on the underlying bits, it is then necessary to
specify, for each such abstraction, how the bits
are being used to represent it. This would be an
impossible task and this clearly suggests that this
approach would not be a sensible one to adopt.

9. In consequence it seems most sensible to im-
pose the minimum possible semantics on algo-
rithm inputs and outputs. By doing this we allow
users and designers to each attach their own
meanings to these interface objects without hav-
ing to share these with each other. Hence while
a user might see the interface objects as num-
bers or character strings, an algorithm designer
may choose to define them as elements in a finite
field.

10. For these reasons it has become common
practice to specify algorithm input, output and key
blocks as groups of bits with no specified seman-
tics as illustrated in the diagram above. This is
reasonable for hardware but most processors are
designed to use groups of bits rather than indi-
vidual bits as their basic processing entities.
Hence for software a bit level view is not the most
convenient. Fortunately, however, almost all

unsigned integer signed integer unsigned fraction

input bit block

Cryptographic
Algorithm

output bit block

key bit block
ock

cryptographic
algorithm
interface

The NIST Advanced Encryption Standard (AES) Input and Output Block Conventions

Dr B. R. Gladman, version 2.2, 6th June 1999 page 2

processors offer ways of handling 8-bit units –
bytes – and these are not much higher in abstract
terms than the bit level definitions that have been
employed in the past.

11. Hence by using bytes as convenient groups
of 8-bits, and by using their order in memory, we
can obtain a fairly universal, low level interface to
cryptographic algorithms without imposing a par-
ticular semantic meaning either on external users
or on algorithm designers.

The AES Algorithm Interface

12. The NIST specified AES algorithm interface is
considered both within the source code of the
NIST tool-kit and in the specification of test vec-
tors. Within the source code the input, output and
key blocks are specified as character arrays in a
way that makes it clear that characters are simply
convenient groups of 8 bits without semantic con-
tent. This is fully consistent with the earlier con-
siderations.

13. In the discussion of the test vectors, however,
the concepts of ‘significance’ and ‘leftmost’ are
used in a way that has encouraged designers and
implementers to treat these as numbers rather
than blocks of bits. As a result some designers
have implemented their algorithms with code to
put these numeric values into big or little endian
form whereas others have considered them as
arrays of bytes that do not require such changes
of order. The result has been some confusion
and lack of interoperability between implementa-
tions when running on different processors [1,2].

14. In principle the internal semantics of algo-
rithms are as rich as the external semantics dis-
cussed earlier. While algorithm designers must
be free to decide how they want to interpret and
manipulate the bits in input, output and key
blocks, it is nevertheless important to have a
standard notation for referencing these bits so
that different implementations can each ensure
that they are operating on these bits in an identi-
cal way.

Achieving a Low Level AES Interface

15. For purposes of reference it seems reason-
able to take the traditional approach and hence to
define all AES input, output and key blocks as
sequences of bits in which the bits are numbered
from 0..127, 0..191 or 0..255 as appropriate. At
this primitive level bits have no defined signifi-
cance, grouping or semantics.

16. But in practice, and especially within software
implementations, bits within AES blocks will al-
most always be grouped into larger units each of
which contains a number of bits which is a power
of 2. Although not essential, it is desirable to
have a simple mapping between such units and

the underlying bits and the most simple and intui-
tive choice here is to group adjacently numbered
bits into each unit and to define unit numbers
(and bit numbers in units) using:

  UnitSizeerAesBitNumbberAesUnitNum /=

 UnitSizeerAesBitNumberInUnitAesBitNumb mod=

where  x is defined as “the largest integer not
greater than x”.

17. In practice the grouping of AES bits into 8-bit
units – bytes – is an important ‘canonical refer-
ence’ since almost all processors offer both bytes
and byte level addressing within memory. Hence
a useful representation of AES blocks is as bytes
numbered from 0..15, 0..23 or 0..31 as appropri-
ate with numbering according to the conventions
described earlier. This is fully consistent with the
approach adopted in the NIST programming inter-
face.

18. With these bit and byte numbering conven-
tions at the interface it should be relatively easy
for AES algorithm specifications and implementa-
tions to accurately describe mappings between
AES bits, bytes (and larger units if appropriate)
and those used within algorithms.

AES Test Vector Conventions

19. As discussed earlier, ambiguities in respect of
byte order during the first AES round derive from
uncertainties about whether the KAT test vectors
are specified in terms of memory address order
or by their numeric significance. In fact NIST has
clearly used the latter, which was fairly certain to
cause uncertainty because it is different in princi-
ple to the ‘byte address order’ used in the pro-
gramming interface.

20. The author believes that using ‘byte address
ordering’ for the API and ‘numeric significance
ordering’ for the test vectors is not advisable. This
subtle but important difference of approach has
caused uncertainty about the true NIST intentions
and hence a lack of interoperability in different
implementations. Fortunately this is easy to
avoid by using a consistent byte address order for
both the API and the test vectors by defining test
vector ‘n’ in a set of vectors to be one in which all
bits are 0 except for bit number n, which is 1.
This will be considered further later.

21. Issues of the order in which entities are
printed in human readable input and output are
also important. This applies, for example, to test
vector printouts, where ambiguities can easily
promote incorrect algorithm implementation.
Since the NIST test vectors are printed in hexa-
decimal form the unit for output is 4-bits and
printed AES blocks hence contain either 32, 48 or
64 hexadecimal digits.

The NIST Advanced Encryption Standard (AES) Input and Output Block Conventions

Dr B. R. Gladman, version 2.2, 6th June 1999 page 3

22. For human readable output it is sensible to
apply the following strict ‘big-endian’ approach:

• AES units, or sub-units within units, repre-
sented by printed symbols should have unit
numbers that always increase from left to right
and from top to bottom on pages;

• Where a printed symbol represents a group of
bits (normally 0-9, a-f or A-F representing 4
bits) lower numbered AES bits have higher
numeric significance;

• For sequences in time or within stored files
(e.g. a sequence of AES encryption blocks),
sequence numbers will increase with time or
from the start of the file towards its end. The
overall AES bit number within such sequences
will be the sum of (1): the AES bit number
within a block, and (2): the product of the block
sequence number with the block length in bits

23. These big-endian con-
ventions are natural for
human readable output
and allow test vectors to be
divided into units and sub-
units without changing the
order of digit sequences
‘on the page’ as illustrated
in the box opposite. They
are consistent with the ex-
isting NIST test vectors.

24. The only less common feature in this ap-
proach is the numbering of bits from the most to
the least significant bit, the opposite of the usual
processor bit numbering convention. In practice
this is a small price to pay for the readability ad-
vantages that big-endian notation provides.

25. In any event, even though big-endian conven-
tions are being used, it is bit numbers that are
important, not the numeric significance of bits (the
only place that numeric significance is employed
is in the conversion of 4-bit units into printed
hexadecimal digits).

26. An area of departure from the existing NIST
definitions is that bit numbers (and any sequence
numbers generally) start at zero rather than one.
Without this change the mapping of bit numbers
within units becomes more complex.

27. Once this bit numbering scheme (or any
other) is adopted it will then be incumbent on all
designers (in practice this means AES finalists) to
set out fully within their specifications the corre-
spondence between the entities they use and the
bits within AES input, output and key blocks
numbered in this way. Ideally these specifica-
tions will actually employ the standard numbering
scheme but where this is not possible it will be
essential to set out a precise relationship be-
tween the two sets of definitions.

28. At the same time implementers of algorithms
should always make it clear how the processor bit
and unit numbering relates to AES bit numbering.

29. These steps should help to reduce errors in
algorithm implementation and interoperability.

Algorithm Internals

30. As already discussed, in addition to unit order
at the algorithm interface it is also necessary to
specify any impact that order has on the internal
processing that an algorithm employs.

31. Some processor instructions that act on larger
units, e.g. 32-bit words, are independent of inter-
nal order and these can often be used without the
need to consider the placement of bits within lar-
ger units (provided that this is consistent). Ex-
amples of such instructions are those commonly
known as AND, OR and XOR which act on the
corresponding bits in each of the units involved.

32. As already discussed, when units are proc-
essed as numbers bit and unit order matter and
need to be specified. This is also true of other
instructions as well. For example, shift and rotate
instructions are widely used in cryptographic al-
gorithms and these generally require sub-unit
order within larger units to be specified unless
rotations with special count values are used.

33. In a bit level view of AES blocks, it is reason-
able to view a right shift as one that moves a bit
from a lower numbered position to a higher num-
bered one (this aligns with our normal ideas of
increasing counts from left to right). In most
processors, however, the opposite applies and a
right shift moves bits to positions with lower nu-
meric indices. It is hence easy to become con-
fused about left and right in such situations.

34. In practice one concept for order is not suffi-
cient for all purposes – we need different orders
in different situations. In a little-endian environ-
ment, for example, we have one order for mem-
ory, another for numeric significance and a third
for (big-endian) output.

35. Marcus Kuhn [3] has suggested a notation for
handling unit order within specifications. This
proposal has advantages but it would involve a
considerable use of subscripts and superscripts
where these are already in heavy use. While the

 The 128 bit block with the bits (increasing bit numbers from left to right):

 000..063: 0000000100100011010001010110011110001001101010111100110111101111
 064..127: 0000000100100011010001010110011110001001101010111100110111101111

 is represented by:

0123456789ABCDEF0123456789ABCDEF

 in hexadecimal and as

01234567 89ABCDEF 01234567 89ABCDEF

 when viewed as four 32 bit numbers.

The NIST Advanced Encryption Standard (AES) Input and Output Block Conventions

Dr B. R. Gladman, version 2.2, 6th June 1999 page 4

notation will be valuable when formality is re-
quired, the resulting proliferation of subscripts
and superscripts seems unlikely to help in avoid-
ing the errors that are typically made in handling
such issues at a practical implementation level.

36. For this reason the author is more inclined to
seek a consistent use of ‘byte memory order’ as
described here as a ‘reference order’ and to seek
specifications that clearly define a mapping from
this canonical view of AES blocks onto the inter-
nal variables used in algorithms.

The Main AES Algorithm Tests

37. While the use of a bit/byte level interface re-
moves many difficulties in handling endian is-
sues, it does not eliminate them entirely because
many AES algorithms treat their internal values
as larger units such as 32-bit words. Because of
this it is still possible to make mistakes in imple-
mentation by using the wrong order conventions.

38. Useful features that help in finding such errors
are test vectors that have the same values when
read in big and little endian order. Unfortunately
the current variable text and variable key test vec-
tor sets do not have such ‘endian-neutral’ vectors
and this reduces their value in finding such errors.
The author hence believes that these test vector
sets should be extended to include ‘all zero’ vec-
tors.

39. In pseudo code the variable text and variable
key tests would hence become:

 // ECB Encryption Known Answer Test
 for KeyLength = (128, 192, 256)
 Key{0..KeyLength-1} = 0
 print KeyLength, Key
 for TestNo = 0 to 128
 Ptext{0..127} = 0
 if TestNo > 0 set Ptext{TestNo-1} = 1
 encrypt(Ptext, Ctext, Key)
 print TestNo, Ptext, Ctext
 end for
 end for

 // ECB Decryption Known Answer Test
 for KeyLength = (128, 192, 256)
 Ctext{0..127} = 0
 print KeyLength, Ctext
 for TestNo = 0 to KeyLength
 Key{0..KeyLength-1} = 0
 if TestNo > 0 set Key{TestNo-1} = 1
 decrypt(Ctext, Ptext, Key)
 output TestNo, Key, Ptext
 end for
 end for

where the notation should be fairly self evident.
The notation X{a..b} specifies an inclusive bit
range (or a single bit) for a variable X. Where an
operation is specified on such variables it is per-
formed in parallel on the bits at the corresponding
positions within each respective range.

40. The Electronic Code Book (ECB) Monte Carlo
Tests are fairly easy to describe in the notation
used here:

 // ECB Encryption Monte Carlo Test
 for KeyLength = (128, 192, 256)
 Key{0..KeyLength-1} = KEY0{0..KeyLength-1}
 Ptext{0..127} = PLAINTEXT0{0..127}
 for TestNo = 0 to 399
 print TestNo
 print Key // KEY
 print Ptext // PLAINTEXT
 for Count = 0 to 4999
 encrypt(Ptext, Ctext{0..127}, Key)
 Ptext{0..127} = Ctext{0.127}
 encrypt(Ptext, Ctext{128..255}, Key)
 Ptext{0..127} = Ctext{128..255}
 end for
 print Ctext{128..255} // CIPHERTEXT
 Ptext{0..127} = Ctext{128..255}
 Key{0..KeyLength-1} ^=
 Ctext{256-KeyLength..255}
 end for
 end for

The decryption test is similar except that decryp-
tion is used and the roles of Ptext and Ctext
are reversed.

41. The Cipher Block Chaining tests are some-
what more complex to describe as follows:

 // CBC Monte Carlo (Encryption) Test
 for KeyLength = (128, 192, 256)
 Key{0..KeyLength-1} = KEY0{0..KeyLength-1}
 Block{0..127} = PLAINTEXT0{0..127}
 Block{128..255} = IV0{0..127}
 for TestNo = 0 to 399
 print TestNo, Key
 print Block{128..255} // IV
 print Block{0..127} // PLAINTEXT
 for Count = 0 to 4999
 Block{0..127} ^= Block{128..255}
 encrypt(Block{0..127},
 Block{0..127}, Key)
 Block{128..255} ^= Block{0..127}
 encrypt(Block{128..255},
 Block{128..255}, Key)
 end for
 print Block{128..255} // CIPHERTEXT
 Key{0..KeyLength-1} ^=
 Block{256-KeyLength..255}
 end for
 end for

 // CBC Monte Carlo (Decryption) Test
 for KeyLength = (128, 192, 256)
 Key{0..KeyLength-1} = KEY0{0..KeyLength-1}
 Block{0..127} = IV0{0..127}
 Block{128..255} = CIPHERTEXT0{0..127}
 for TestNo = 0 to 399
 print TestNo, Key
 print Block{0..127} // IV
 print Block{128..255} // CIPHERTEXT
 for TestNo = 0 to 4999
 decrypt(Block{128..255},
 Dtext{0..127}, Key)
 Block{0..127} ^= Dtext{0..127}
 decrypt(Block{0..127},
 Dtext{0..127}, Key)
 Block{128..255} ^= Dtext{0..127}
 end for
 print Block{128..255} // PLAINTEXT
 Key{0..KeyLength-1} ^=
 Block{256-KeyLength..255}
 end for
 end for

42. In these pseudo code test descriptions a sin-
gle 10,000 cycle loop has often been replaced by

The NIST Advanced Encryption Standard (AES) Input and Output Block Conventions

Dr B. R. Gladman, version 2.2, 6th June 1999 page 5

a 5000 cycle double loop with a double length
output block so that the last two 128-bit blocks
are available in the form needed to compute the
next key when the key length is either 192 or 256
bits. The order of these blocks is important since
the new key will be different depending on the
order in which the 128-bit blocks are placed into
the 256-bit block. Here NIST intentions in this
respect are interpreted to mean that the last block
will be placed so that so that bit 127 of the penul-
timate block is followed by bit 0 of the last block.

Conclusions

43. The interface between AES algorithms and
the external world should be defined at the lowest
possible level so that issues of abstract represen-
tation within and external to algorithms are sepa-
rated. The input, output and key blocks used by
AES algorithms should be considered as blocks
of bits without an imposed ordering convention.
In practice the lowest level of interface likely to be
available is that offered by arrays of bytes and it
makes sense to employ this as the interface
standard in the way that NIST has done. This
interface should offer the minimum possible se-
mantics in order to allow both users and design-
ers the freedom to decide such issues for them-
selves. In practice the grouping of bits into bytes
and the use of an order defined by byte memory
addresses as a reference for this interface should
provide a sound basis for consistent specification
and implementation.

44. Where an algorithm design handles larger
units consisting of groups of bytes it is incumbent
on the designer to specify how bytes are com-
bined to form these larger units, either by specify-
ing big or little endian order or by providing a de-
fined mapping between AES bit, byte or unit
numbers and the entities employed within the
algorithm.

Acknowledgement

45. I am most grateful to Markus Kuhn and Mi-
chael Roe of the Cambridge Computer Labora-
tory, Cambridge, UK and to Shai Halevi of IBM for
a helpful exchange of views on the issues of unit
order within cryptographic algorithms.

References

1. Brian R. Gladman: Implementation Experience
with AES Candidate Algorithms. Second AES
Conference, Rome, Italy, March 22-23, 1999.

2. Serge Vaudenay et al: Report on the AES
Candidates. Second AES Conference, Rome,
Italy, March 22-23, 1999.

3. Markus G. Kuhn: A Bit Naming Convention for
Cryptographic Algorithms. AES First Round
Comments.

