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Input and Output Block Conventions for AES Encryption Algorithms 
By Dr. B. R. Gladman  

Introduction 

1. Cryptographic algorithms operate in computer 
memory and transform memory blocks for inputs, 
outputs and keys.  When these values need to be 
calculated consistently in many different proces-
sor environments it is necessary to have precise 
definitions of how they are to be interpreted and 
used.  This has been a source of difficulty in the 
AES effort so far [1, 2] and has also been the 
subject of proposals for improvement in the first 
round comments [3]. 

2. When considered at the lowest level, the 
memory used in computers is made up of binary 
bits that are typically grouped into larger entities 
such as 8-bit bytes and 32-bit words, entities that 
will be referred to here as units.  Although proc-
essors can be designed to interpret these units in 
many different ways, it is common practice to 
treat them as numbers in which the different bits 
represent powers of 2.  

3. When integers are being represented it is 
common to number the bits within each unit from 
0 upwards, with bit number ‘n’ being used to rep-
resent 2n.  In such ‘integer’ representations, the 
numeric value (significance) associated with bits 
increases with bit number from the ‘bottom’ or 
‘rightmost’ end of a unit.   But it is equally valid, 
though less common, to view units as represent-
ing fractions in which bit ‘n’ represents 2-(n+1) so 
that bits decrease in numeric significance with 
increasing bit number.  In such ‘fractional’ repre-
sentations bits are numbered starting at the ‘top’ 
or ‘leftmost’ end of a unit. 

4. This issue also arises when bytes or words 
are combined to represent larger numbers.  
When arrays of bytes (8-bit units) are used to rep-
resent integers it is common to use byte ‘n’ to 
represent multiples of 256n so that higher num-
bered bytes are given higher numeric signifi-
cance.  Again, however, such byte arrays can be 
considered as fractional values where byte ‘n’ 
represents multiples of 256-(n+1), with higher num-
bered bytes gaining lower numeric significance.   
These two styles of number representation have 
become known as ‘big-endian’ and ‘little-endian’ 
and processors are often designed to directly 
process numbers in only one of these two forms. 

5. It is important to recognise that this issue only 
arises when we consider groups of bits in mem-
ory as higher level entities, for example, repre-
sentations of numbers.  When these bits are sim-
ply viewed as arrays of bits without semantic sig-
nificance we do not have to worry about these 
matters. In practice, however most algorithms 
impose some form of order on bits and this 

means that we cannot avoid dealing with such 
issues.   

6. In considering how this impacts on crypto-
graphic algorithms, we have to decide whether 
our algorithms should act on the bits without con-
sidering their meaning or whether we want our 
algorithms to act on the higher level abstractions 
such as, for example, numbers. 

7. In practice, however, sequences of bits in 
processor memory can be used to represent a 
huge variety of things: unsigned integers, signed 
integers (one’s or two’s complement), fractions, 
binary coded decimals, floating point numbers (in 
many different formats), sequences of characters 
(using different character sets) and any of an al-
most infinite variety of user defined abstractions.  

8. Numbers are hence just one subset of an ef-
fectively infinite set of possible abstractions that 
can be imposed on these bits.  And if algorithms 
act on these higher level abstractions rather than 
on the underlying bits, it is then necessary to 
specify, for each such abstraction, how the bits 
are being used to represent it.  This would be an 
impossible task and this clearly suggests that this 
approach would not be a sensible one to adopt. 

9. In consequence it seems most sensible to im-
pose the minimum possible semantics on algo-
rithm inputs and outputs.  By doing this we allow 
users and designers to each attach their own 
meanings to these interface objects without hav-
ing to share these with each other.  Hence while 
a user might see the interface objects as num-
bers or character strings, an algorithm designer 
may choose to define them as elements in a finite 
field. 

10.  For these reasons it has become common 
practice to specify algorithm input, output and key 
blocks as groups of bits with no specified seman-
tics as illustrated in the diagram above.  This is 
reasonable for hardware but most processors are 
designed to use groups of bits rather than indi-
vidual bits as their basic processing entities.  
Hence for software a bit level view is not the most 
convenient.  Fortunately, however, almost all 
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processors offer ways of handling 8-bit units – 
bytes – and these are not much higher in abstract 
terms than the bit level definitions that have been 
employed in the past.  

11.   Hence by using bytes as convenient groups 
of 8-bits, and by using their order in memory, we 
can obtain a fairly universal, low level interface to 
cryptographic algorithms without imposing a par-
ticular semantic meaning either on external users 
or on algorithm designers.   

The AES Algorithm Interface 

12.  The NIST specified AES algorithm interface is 
considered both within the source code of the 
NIST tool-kit and in the specification of test vec-
tors.  Within the source code the input, output and 
key blocks are specified as character arrays in a 
way that makes it clear that characters are simply 
convenient groups of 8 bits without semantic con-
tent. This is fully consistent with the earlier con-
siderations. 

13.  In the discussion of the test vectors, however, 
the concepts of ‘significance’ and ‘leftmost’ are 
used in a way that has encouraged designers and 
implementers to treat these as numbers rather 
than blocks of bits. As a result some designers 
have implemented their algorithms with code to 
put these numeric values into big or little endian 
form whereas others have considered them as 
arrays of bytes that do not require such changes 
of order.  The result has been some confusion 
and lack of interoperability between implementa-
tions when running on different processors [1,2]. 

14.  In principle the internal semantics of algo-
rithms are as rich as the external semantics dis-
cussed earlier.  While algorithm designers must 
be free to decide how they want to interpret and 
manipulate the bits in input, output and key 
blocks, it is nevertheless important to have a 
standard notation for referencing these bits so 
that different implementations can each ensure 
that they are operating on these bits in an identi-
cal way. 

Achieving a Low Level AES Interface 

15.  For purposes of reference it seems reason-
able to take the traditional approach and hence to 
define all AES input, output and key blocks as 
sequences of bits in which the bits are numbered 
from 0..127, 0..191 or 0..255 as appropriate.  At 
this primitive level bits have no defined signifi-
cance, grouping or semantics. 

16.  But in practice, and especially within software 
implementations, bits within AES blocks will al-
most always be grouped into larger units each of 
which contains a number of bits which is a power 
of 2.   Although not essential, it is desirable to 
have a simple mapping between such units and 

the underlying bits and the most simple and intui-
tive choice here is to group adjacently numbered 
bits into each unit and to define unit numbers 
(and bit numbers in units) using: 

  UnitSizeerAesBitNumbberAesUnitNum /=  

 UnitSizeerAesBitNumberInUnitAesBitNumb mod=  

where  x  is defined as “the largest integer not 
greater than x”.   

17. In practice the grouping of AES bits into 8-bit 
units – bytes – is an important ‘canonical refer-
ence’ since almost all processors offer both bytes 
and byte level addressing within memory.  Hence 
a useful representation of AES blocks is as bytes 
numbered from 0..15, 0..23 or 0..31 as appropri-
ate with numbering according to the conventions 
described earlier.  This is fully consistent with the 
approach adopted in the NIST programming inter-
face. 

18.  With these bit and byte numbering conven-
tions at the interface it should be relatively easy 
for AES algorithm specifications and implementa-
tions to accurately describe mappings between 
AES bits, bytes (and larger units if appropriate) 
and those used within algorithms. 

AES Test Vector Conventions  

19.  As discussed earlier, ambiguities in respect of 
byte order during the first AES round derive from 
uncertainties about whether the KAT test vectors 
are specified in terms of memory address order 
or by their numeric significance.  In fact NIST has 
clearly used the latter, which was fairly certain to 
cause uncertainty because it is different in princi-
ple to the ‘byte address order’ used in the pro-
gramming interface. 

20.  The author believes that using ‘byte address 
ordering’ for the API and ‘numeric significance 
ordering’ for the test vectors is not advisable. This 
subtle but important difference of approach has 
caused uncertainty about the true NIST intentions 
and hence a lack of interoperability in different 
implementations.  Fortunately this is easy to 
avoid by using a consistent byte address order for 
both the API and the test vectors by defining test 
vector ‘n’ in a set of vectors to be one in which all 
bits are 0 except for bit number n, which is 1.  
This will be considered further later.  

21.  Issues of the order in which entities are 
printed in human readable input and output are 
also important.  This applies, for example, to test 
vector printouts, where ambiguities can easily 
promote incorrect algorithm implementation.  
Since the NIST test vectors are printed in hexa-
decimal form the unit for output is 4-bits and 
printed AES blocks hence contain either 32, 48 or 
64 hexadecimal digits.   
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22.  For human readable output it is sensible to 
apply the following strict ‘big-endian’ approach:  

• AES units, or sub-units within units, repre-
sented by printed symbols should have unit 
numbers that always increase from left to right 
and from top to bottom on pages; 

• Where a printed symbol represents a group of 
bits (normally 0-9, a-f or A-F representing 4 
bits) lower numbered AES bits have higher 
numeric significance;  

•  For sequences in time or within stored files 
(e.g. a sequence of AES encryption blocks), 
sequence numbers will increase with time or 
from the start of the file towards its end. The 
overall AES bit number within such sequences 
will be the sum of (1): the AES bit number 
within a block, and (2): the product of the block 
sequence number with the block length in bits 

23. These big-endian con-
ventions are natural for 
human readable output 
and allow test vectors to be 
divided into units and sub-
units without changing the 
order of digit sequences 
‘on the page’ as illustrated 
in the box opposite.  They 
are consistent with the ex-
isting NIST test vectors. 

24. The only less common feature in this ap-
proach is the numbering of bits from the most to 
the least significant bit, the opposite of the usual 
processor bit numbering convention. In practice 
this is a small price to pay for the readability ad-
vantages that big-endian notation provides. 

25. In any event, even though big-endian conven-
tions are being used, it is bit numbers that are 
important, not the numeric significance of bits (the 
only place that numeric significance is employed 
is in the conversion of 4-bit units into printed 
hexadecimal digits). 

26. An area of departure from the existing NIST 
definitions is that bit numbers (and any sequence 
numbers generally) start at zero rather than one.  
Without this change the mapping of bit numbers 
within units becomes more complex. 

27. Once this bit numbering scheme (or any 
other) is adopted it will then be incumbent on all 
designers (in practice this means AES finalists) to 
set out fully within their specifications the corre-
spondence between the entities they use and the 
bits within AES input, output and key blocks 
numbered in this way.  Ideally these specifica-
tions will actually employ the standard numbering 
scheme but where this is not possible it will be 
essential to set out a precise relationship be-
tween the two sets of definitions. 

28. At the same time implementers of algorithms 
should always make it clear how the processor bit 
and unit numbering relates to AES bit numbering. 

29. These steps should help to reduce errors in 
algorithm implementation and interoperability. 

Algorithm Internals 

30. As already discussed, in addition to unit order 
at the algorithm interface it is also necessary to 
specify any impact that order has on the internal 
processing that an algorithm employs.   

31. Some processor instructions that act on larger 
units, e.g. 32-bit words, are independent of inter-
nal order and these can often be used without the 
need to consider the placement of bits within lar-
ger units (provided that this is consistent).  Ex-
amples of such instructions are those commonly 
known as AND, OR and XOR which act on the 
corresponding bits in each of the units involved. 

32.  As already discussed, when units are proc-
essed as numbers bit and unit order matter and 
need to be specified. This is also true of other 
instructions as well.  For example, shift and rotate 
instructions are widely used in cryptographic al-
gorithms and these generally require sub-unit 
order within larger units to be specified unless 
rotations with special count values are used. 

33. In a bit level view of AES blocks, it is reason-
able to view a right shift as one that  moves a bit 
from a lower numbered position to a higher num-
bered one (this aligns with our normal ideas of 
increasing counts from left to right).  In most 
processors, however, the opposite  applies and a 
right shift moves bits to positions with lower nu-
meric indices.  It is hence easy to become con-
fused about left and right in such situations.   

34. In practice one concept for order is not suffi-
cient for all purposes – we need different orders 
in different situations. In a little-endian environ-
ment, for example, we have one order for mem-
ory, another for numeric significance and a third 
for (big-endian) output. 

35. Marcus Kuhn [3] has suggested a notation for 
handling unit order within specifications.  This 
proposal has advantages but it would involve a  
considerable use of subscripts and superscripts 
where these are already in heavy use.  While the 

  The 128 bit block with the bits (increasing bit numbers from left to right): 

  000..063: 0000000100100011010001010110011110001001101010111100110111101111 
  064..127: 0000000100100011010001010110011110001001101010111100110111101111 

  is represented by:  

0123456789ABCDEF0123456789ABCDEF  

  in hexadecimal and as  

01234567 89ABCDEF 01234567 89ABCDEF  

  when viewed as four 32 bit numbers. 
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notation will be valuable when formality is re-
quired, the resulting proliferation of subscripts 
and superscripts seems unlikely to help in avoid-
ing the errors that are typically made in handling 
such issues at a practical implementation level.  

36.  For this reason the author is more inclined to 
seek a consistent use of ‘byte memory order’ as 
described here as a ‘reference order’ and to seek 
specifications that clearly define a mapping from 
this canonical view of AES blocks onto the inter-
nal variables used in algorithms.  

The Main AES Algorithm Tests 

37. While the use of a bit/byte level interface re-
moves many difficulties in handling endian is-
sues, it does not eliminate them entirely because 
many AES algorithms treat their internal  values 
as larger units such as 32-bit words.  Because of 
this it is still possible to make mistakes in imple-
mentation by using the wrong order conventions. 

38. Useful features that help in finding such errors 
are test vectors that have the same values when 
read in big and little endian order.  Unfortunately 
the current variable text and variable key test vec-
tor sets do not have such ‘endian-neutral’ vectors 
and this reduces their value in finding such errors.  
The author hence believes that these test vector 
sets should be extended to include ‘all zero’ vec-
tors. 

39. In pseudo code the variable text and variable 
key tests would hence become: 

 // ECB Encryption Known Answer Test 
  for KeyLength = (128, 192, 256) 
    Key{0..KeyLength-1} = 0 
    print KeyLength, Key   
    for TestNo = 0 to 128 
      Ptext{0..127} = 0 
      if TestNo > 0 set Ptext{TestNo-1} = 1 
      encrypt(Ptext, Ctext, Key) 
      print TestNo, Ptext, Ctext 
    end for 
  end for 
   
  // ECB Decryption Known Answer Test 
  for KeyLength = (128, 192, 256)  
    Ctext{0..127} = 0 
    print KeyLength, Ctext 
    for TestNo = 0 to KeyLength 
      Key{0..KeyLength-1} = 0 
      if TestNo > 0 set Key{TestNo-1} = 1 
      decrypt(Ctext, Ptext, Key) 
      output TestNo, Key, Ptext 
    end for 
  end for 

where the notation should be fairly self evident.  
The notation X{a..b} specifies an inclusive bit 
range (or a single bit) for a variable X. Where an 
operation is specified on such variables it is per-
formed in parallel on the bits at the corresponding 
positions within each respective range. 

40. The Electronic Code Book (ECB) Monte Carlo 
Tests are fairly easy to describe in the notation 
used here: 

  // ECB Encryption Monte Carlo Test 
  for KeyLength = (128, 192, 256) 
    Key{0..KeyLength-1} = KEY0{0..KeyLength-1} 
    Ptext{0..127}       = PLAINTEXT0{0..127} 
    for TestNo = 0 to 399 
      print TestNo 
      print Key              // KEY  
      print Ptext            // PLAINTEXT 
      for Count = 0 to 4999 
        encrypt(Ptext, Ctext{0..127}, Key) 
        Ptext{0..127} = Ctext{0.127} 
        encrypt(Ptext, Ctext{128..255}, Key) 
        Ptext{0..127} = Ctext{128..255} 
      end for 
      print Ctext{128..255}  // CIPHERTEXT 
      Ptext{0..127} = Ctext{128..255} 
      Key{0..KeyLength-1} ^= 
                   Ctext{256-KeyLength..255} 
    end for 
  end for 

The decryption test is similar except that decryp-
tion is used and the roles of Ptext and Ctext 
are reversed.  

41. The Cipher Block Chaining tests are some-
what more complex to describe as follows: 

  // CBC Monte Carlo (Encryption) Test 
  for KeyLength = (128, 192, 256) 
    Key{0..KeyLength-1} = KEY0{0..KeyLength-1} 
    Block{0..127}       = PLAINTEXT0{0..127} 
    Block{128..255}     = IV0{0..127}   
    for TestNo = 0 to 399 
      print TestNo, Key  
      print Block{128..255}  // IV 
      print Block{0..127}    // PLAINTEXT 
      for Count = 0 to 4999 
        Block{0..127} ^= Block{128..255} 
        encrypt(Block{0..127}, 
                   Block{0..127}, Key) 
        Block{128..255} ^= Block{0..127} 
        encrypt(Block{128..255}, 
                   Block{128..255}, Key) 
      end for 
      print Block{128..255}  // CIPHERTEXT 
      Key{0..KeyLength-1} ^=  
                   Block{256-KeyLength..255} 
    end for 
  end for 
 
  // CBC Monte Carlo (Decryption) Test 
  for KeyLength = (128, 192, 256) 
    Key{0..KeyLength-1} = KEY0{0..KeyLength-1} 
    Block{0..127}       = IV0{0..127} 
    Block{128..255}     = CIPHERTEXT0{0..127} 
    for TestNo = 0 to 399 
      print TestNo, Key  
      print Block{0..127}    // IV 
      print Block{128..255}  // CIPHERTEXT 
      for TestNo = 0 to 4999 
        decrypt(Block{128..255}, 
                   Dtext{0..127}, Key) 
        Block{0..127} ^= Dtext{0..127} 
        decrypt(Block{0..127},  
                   Dtext{0..127}, Key) 
        Block{128..255} ^= Dtext{0..127} 
      end for 
      print Block{128..255}  // PLAINTEXT 
      Key{0..KeyLength-1} ^=  
                   Block{256-KeyLength..255} 
    end for 
  end for 

42. In these pseudo code test descriptions a sin-
gle 10,000 cycle loop has often been replaced by 
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a 5000 cycle double loop with a double length 
output block so that the last two 128-bit blocks 
are available in the form needed to compute the 
next key when the key length is either 192 or 256 
bits.  The order of these blocks is important since 
the new key will be different depending on the 
order in which the 128-bit blocks are placed into 
the 256-bit block. Here NIST intentions in this 
respect are interpreted to mean that the last block 
will be placed so that so that bit 127 of the penul-
timate block is followed by bit 0 of the last block. 

Conclusions 

43. The interface between AES algorithms and 
the external world should be defined at the lowest 
possible level so that issues of abstract represen-
tation within and external to algorithms are sepa-
rated.  The input, output and key blocks used by 
AES algorithms should be considered as blocks 
of bits without an imposed ordering convention.  
In practice the lowest level of interface likely to be 
available is that offered by arrays of bytes and it 
makes sense to employ this as the interface 
standard in the way that NIST has done.  This 
interface should offer the minimum possible se-
mantics in order to allow both users and design-
ers the freedom to decide such issues for them-
selves.  In practice the grouping of bits into bytes 
and the use of an order defined by byte memory 
addresses as a reference for this interface should 
provide a sound basis for consistent specification 
and implementation. 

44. Where an algorithm design handles larger 
units consisting of groups of bytes it is incumbent 
on the designer to specify how bytes are com-
bined to form these larger units, either by specify-
ing big or little endian order or by providing a de-
fined mapping between AES bit, byte or unit 
numbers and the entities employed within the 
algorithm. 
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