
25-Feb-03 Copyright © QUALCOMM Inc, 2002

Turing:
a fast software stream cipher

Greg Rose, Phil Hawkes
{ggr, phawkes}@qualcomm.com

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 2

DISCLAIMER!

•This version (1.8 of TuringRef.c) is what we
expect to publish. Any changes from now on
will be because someone broke it. (Note: we
said that about 1.5 and 1.7 too.)

•This is an experimental cipher. Turing might
not be secure. We've already found two
attacks (and fixed them). We're starting to get
confidence.

•Comments are welcome.
•Reference implementation source code

agrees with these slides.

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 3

Introduction

•Stream ciphers
•Design goals
•Using LFSRs for cryptography
•Turing
•Keying
•Analysis and attacks
•Conclusion

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 4

Stream ciphers

•Very simple
– generate a stream of pseudo-random bits
– XOR them into the data to encrypt
– XOR them again to decrypt

•Some gotchas:
– can’t ever reuse the same stream of bits

– so some sort of facility for Initialization Vectors is important

– provides privacy but not integrity / authentication
– good statistical properties are not enough for

security… most PRNGs are no good.

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 5

Turing's Design goals

•Mobile phones
– cheap, slow, small CPUs, little memory

•Encryption in software
– cheaper
– can be changed without retooling

•Stream cipher
– two-level keying structure (re-key per data frame)
– stream is "seekable" with low overhead

•Very fast and simple, aggressive design
•Secure (? – we think so, but it's experimental)

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 6

Using LFSRs for
Cryptography

•Linear Feedback Shift Registers have been
intensively studied
– Good and proven distribution properties
– Fast

•Empirical techniques thought to produce
good characteristics
– decimation, irregular clocking, stuttering (not used)
– nonlinear function of state, or memory
– combining multiple registers (not used in Turing)

•Theory all works for any field
– but some things are more efficient in software

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 7

Elements in Turing

•LFSR structure based on SOBER-t32 and
SNOW 2.0

•Nonlinear filter function is a keyed
transformation
– Based on a round of a block cipher
– Blowfish/Twofish for the key-dependent s-box
– SAFER for the pseudo-Hadamard diffusion function
– concept spawned from Tom St Denis' tc24

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 8

LFSRs over GF(28)4

•Elements of field are words-sized polynomials
of byte-sized binary polynomials

•Addition operation is XOR, ⊕
•Multiplication is poly-mod multiplication, ⊗

– only multiply by constant
– use single 8->32 table lookup, shift word by 8 bits

• Instead of shifting the shift register, can use:
– pointers to memory -- sliding window or circular

buffer
– or inline code for real speed

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 9

Turing block diagram

Register Keyed block cipher round Output
PHT
MixA

B

C

D

E

step five
and add

Keyed 8x32 s-boxes
produce mixed words

PHT
Mix

A'

B'

C'

D'

E'

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 10

The Shift Register

•Generates nearly maximal length sequence
– period (2544 – 1)/5, 5 possible cycles

•Recurrence:
– sn+17 = sn+15 ⊕ sn+4 ⊕ y⊗ sn

•Each bit position behaves as output from a
544-bit binary shift register
– recurrence relation has exactly half non-zero

coefficients.
•Shift register is “free running”

– that is, its state is used directly instead of its
output

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 11

The Nonlinear Function

•Offsets are carefully chosen
– feedback taps plus function inputs form “full

positive difference set”
•Combine 10 words of state in a key-dependent

manner
– mix 5 words with PHT
– pass bytes through keyed 8->32 S-boxes
– mix words with PHT again
– step LFSR five times and add other words mod 232

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 12

Pseudo-Hadamard
Transform

•Matrix multiply mod 232:

•Actually:
–E += A + B + C + D;

–A += E; B += E; C += E; D += E

•Extend to n-PHT for key loading

=

E
D
C
B
A

E
D
C
B
A

11111
12111
11211
11121
11112

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 13

Basic S-box

•Permutation
•Fairly nonlinear (min nonlinearity 104)
•made by:

– keying RC4 with "Alan Turing"
– throwing away 736 bytes
– using its permutation
– best observed nonlinearity in 10,000 cycles, used

first one found.

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 14

QUT's "Q-box"

•Developed by Queensland University of
Technology

•8->32 bit S-box
•bit positions are:

– Highly nonlinear (112)
– Balanced
– Pairwise uncorrelated

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 15

keyed S-boxes

•Push through fixed S-box multiple times:
– next slide for details

•four logical S-boxes, one for each byte
position, due to different key material

•words of key are mixed when loaded to help
thwart related-key attacks.

•every byte of key affects each sbox
•S-boxes can be precalculated

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 16

More on keyed S-boxes

• Si(x) = Sbox[Ki,N-1 ⊕ Sbox[Ki,N-2 ⊕ … Sbox[Ki,0 ⊕ x]…]]
• at each stage, XOR (Qbox[…] rotated left (i*8+j)) to

temporary word
– Thanks to David McGrew and Scott Fluhrer for observing that

this was better mixing than the MDS matrix
• Clobber the byte corresponding to the input byte with

Si(x)
– This ensures that the corresponding output bits are balanced

w.r.t. x.
– If not, there's a possible bias introduced that might be

exploitable.
• not invertible

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 17

Keying

•Two stage keying
– secret key from 4 to 32 bytes (32 to 256 bits)

– length is significant
– must be multiple of 4

– requires further keying operations (eg. frame IV)
•Keying process:

– pass bytes through an invertible S-box construct,
then words through PHT for mixing

– use output in keyed S-boxes
– can set up fast table lookups for the keyed S-boxes

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 18

Initialization Vector

• mixed key material and initialisation vector are used
to fill the LFSR

– IV
– mixed key
– word made from length of key and IV (0x010203kv, where k is

keylength in words, v is IV length in words)
– rest of words made by recurrence of some previous words

• each word is mixed through S-box
– IV goes through an invertible key-independent S-box-based

transformation to avoid equivalent IVs
– key is already mixed
– Others go through the keyed S-box

• Finally whole register is mixed with PHT

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 19

Polynomial details

•Byte polynomial is
– z8 + z6 + z3 + z2 + 1

•Word polynomial is
– y4 + 0xD0.y3 + 0x2B.y2 + 0x43.y + 0x67

•LFSR polynomial is
– x17 + x15 + x4 + α, where α is the polynomial "y"

•"binary equivalent" polynomial has 272 out of 544
non-zero terms

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 20

Performance

•Generates 160 bits at a time
•highly parallel operations
•2304 bytes ROM tables, plus code

– 8x8 S-box, 8x32 Q-box, 8x32 Multiplication table
•Fast implementation:

– 4-5 cycles per byte on newer Pentium-style
machines with multiple parallel instructions

– requires 4K RAM tables computed at key setup
•Small implementation:

– 68 bytes RAM, very little key setup

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 21

Security

•LFSR guarantees good statistical properties
input to the nonlinear function

•Strength is derived from the combination of
unknown input from the LFSR and keyed non-
linear transformation

•Either by itself is potentially weak
•Each frustrates attacks on the other
• If the "block cipher part" is secure, CTR mode

proof applies (but we don't claim this)

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 22

Numbers

Cipher cycles/B Key IV setup tables RAM MByte/s
TuringRef 149.01 477.00 4272.31 2304.00 68.00 6.04
TuringLazy 33.44 1802.70 991.80 2304.00 4164.00 26.91
TuringTab 30.06 72457.93 900.90 2304.00 4164.00 29.94
TuringFast 6.12 72417.12 882.90 2304.00 4164.00 146.95
arrsyfor 37.49 0.00 10347.42 0.00 258.00 24.00
AES enc. 26.85 239.00 0.00 20480.00 176.00 33.53

MHz 900.00 (Mobile Pentium III IBM laptop)

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 23

Recent attack

•paper at
http://www.qualcomm.com.au/Turing_attack.pdf

• Basically, LFSR wasn't being stepped enough
• Reuse of words in final "add" phase allowed algebraic

attack on LSB's
• Attack very specific to Turing 1.6.
• Solution:

– step LFSR total 5 times between blocks
– use a different full positive difference set to extract the words

for the final addition round
• Attack doesn't actually work, but scared us

http://www.qualcomm.com.au/Turing_attack.pdf

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 24

Conclusion

•Turing is not conservatively designed
– I (ggr) think it may be secure, but it's clearly "close

to the edge". Maybe too close.
•OK for hardware implementation
•Suitable for medium embedded applications
•Extremely fast in software

– 146MBytes/sec on 900MHz PIII laptop, 6 cycles/byte
•Source code available worldwide:

– http://people.qualcomm.com/ggr/QC/Turing.tgz
•Being published, reviewed

25-Feb-03 Copyright© QUALCOMM Inc, 2002 slide 25

Stop the presses

•Free licenses!
– for Turing or SOBER (or future ciphers)
– for any purpose
– for hardware or software
– for ever
– our code or yours

• It only took me 5 years to get management
agreement…

	Turing:a fast software stream cipher
	DISCLAIMER!
	Introduction
	Stream ciphers
	Turing's Design goals
	Using LFSRs for Cryptography
	Elements in Turing
	LFSRs over GF(28)4
	Turing block diagram
	The Shift Register
	The Nonlinear Function
	Pseudo-Hadamard Transform
	Basic S-box
	QUT's "Q-box"
	keyed S-boxes
	More on keyed S-boxes
	Keying
	Initialization Vector
	Polynomial details
	Performance
	Security
	Numbers
	Recent attack
	Conclusion
	Stop the presses

