
RSA Problem

Ronald L. Rivest, MIT Laboratory for Computer Science
rivest@mit.edu

and Burt Kaliski, RSA Laboratories
bkaliski@rsasecurity.com

December 10, 2003

1 Introduction

In RSA public-key encryption [30], Alice encrypts a plaintext M for Bob
using Bob’s public key (n, e) by computing the ciphertext

C = M e (mod n) . (1)

where n, the modulus, is the product of two or more large primes, and e, the
public exponent, is an odd integer e ≥ 3 that is relatively prime to φ(n), the
order of the multiplicative group Z∗

n.
Bob, who knows the corresponding RSA private key (n, d), can easily

decrypt, since de = 1 (mod φ(n)) implies that

M = Cd (mod n) . (2)

An adversary may learn C by eavesdropping, and may very well also
know Bob’s public key; nonetheless such an adversary should not be able to
compute the corresponding plaintext M .

One may formalize the task faced by this adversary as the RSA Problem:

The RSA Problem: Given an RSA public key (n, e) and a ciphertext
C = M e (mod n), to compute M .

To solve the RSA Problem an adversary, who doesn’t know the private
key, must nonetheless invert the RSA function.

1



The RSA Assumption is that the RSA Problem is hard to solve when
the modulus n is sufficiently large and randomly generated, and the plain-
text M (and hence the ciphertext C) is a random integer between 0 and
n − 1. The assumption is the same as saying that the RSA function is a
trapdoor one-way function (the private key is the tradpoor).

The randomness of the plaintext M over the range [0, n− 1] is important
in the assumption. If M is known to be from a small space, for instance,
then an adversary can solve for M by trying all possible values for M .

The RSA Problem is the basis for the security of RSA public-key encryp-
tion as well as RSA digital signature schemes.

See also surveys by Boneh [10] and Katzenbeisser [24].

2 Relationship to integer factoring

The RSA Problem is clearly no harder than integer factoring, since an adver-
sary who can factor the modulus n can compute the private key (n, d) from
the public key (n, e).

However, it is not clear whether the converse is true, that is, whether an
algorithm for integer factoring can be efficiently constructed from an algo-
rithm for solving the RSA Problem.

Boneh and Venkatesan [9] have given evidence that such a construction
is unlikely when the public exponent is very small, such as e = 3 or 17.
Their result means that the RSA Problem for very small exponents could be
easier than integer factoring, but it doesn’t imply that the RSA Problem is
actually easier, i.e., efficient algorithms are still not known. For larger public
exponents, the question of equivalence with integer factoring still open as of
this writing.

3 Recovering the private key

Clearly, if the adversary could compute Bob’s private key (n, d) from his
public key (n, e), then the adversary could decrypt C using equation (2).

However, de Laurentis [15] and Miller [27] have shown that computing
an RSA private key (n, d) from the corresponding RSA encryption key (n, e)
is as hard as factoring the modulus n into its prime factors p and q. As
already noted, given the factors p and q, it is easy to compute d from e, and

2



conversely there is a probabilisitic polynomial-time algorithm which takes as
input n, e, and d, and which factors n into p and q. (See also Fact 1 in
Boneh [10].)

If the modulus n was chosen as the product of two “sufficiently large”
randomly-chosen prime numbers p and q, then the problem of factoring n
appears to be intractable. Thus, the private exponent d is protected from
disclosure by the difficulty of factoring the modulus n.

An adversary might also try to compute d using some method of solving
the discrete logarithm problem. For example, an adversary could compute
the discrete logarithm of M to the base M e (mod n). If d is too small (say,
less than 160 bits), then an adversary might be able to recover it by the baby
step-giant step method.

Even if d is too large to be recovered by discrete logarithm methods,
however, it may still be at risk.

For example, Wiener [33] has shown that if the secret exponent is less than
n1/4/3, an adversary can efficiently compute d given n and e. An improved
bound of n0.292 has been presented by Boneh and Durfee [8].

However, it does appear to be the case that if the RSA parameters were
chosen large enough, then the adversary can not solve the RSA Problem by
computing the private RSA exponent of the recipient.

4 Self-reducibility

It is conceivable that someone could devise a clever procedure for solving the
RSA Problem without factoring the modulus n or determining the private
key d. An adversary might, for example, have a procedure that decrypts a
small fraction of “weak” ciphertexts. However, the RSA procedure enjoys a
certain kind of “self-reducibility”, since it is multiplicative:

(MR)e = M eRe (mod n) .

An adversary can transform a given ciphertext M e into another one (MR)e

by multiplying it by the encryption Re of a randomly chosen element R of
Z∗

n. Since the result has a chance of being a “weak” ciphertext, it follows
that if there is an adversarial procedure A that can decrypt a fraction ε
of ciphertexts, then there is another (randomized) adversarial procedure A′

that can decrypt all ciphertexts in expected running time that is polynomial

3



in the running time of A, in 1/ε, and in log n (see polynomial time). (See
Motwani and Raghavan [28, Section 14.4].)

Self-reducibility is a double-edged sword. On the one hand, it provides
assurance that “all” random ciphertexts are equally hard to invert. This
property has been helpful in the security proofs for several public-key en-
cryption and signature schemes based on the RSA Problem. On the other
hand, self-reducibility provides an avenue for an adversary to gain informa-
tion about the decryption of one ciphertext from the decryption of other
ciphertexts (see “chosen ciphertext attacks”) below.

5 Low public exponent RSA

A user of the RSA cryptosystem may reasonably wish to use a public expo-
nent e that is relatively short: common choices are e = 3 or e = 216 + 1 =
65537. Using a short public exponent results in faster public-key encryption
and faster public-key signature verification. Does this weaken RSA?

If the public exponent is small and the plaintext M is very short, then
the RSA function may be easy to invert: in particular, if M < e

√
N , then

C = M e over the integers, so M can be recovered as M = e
√

C.
H̊astad [22] shows that small public exponents can be dangerous when

the same plaintext is sent to many different recipients, even if the plaintext
is “padded” in various (simple) ways beforehand.

Coppersmith et al.[12] give a powerful “related messages” attack, which is
effective when the public exponent is small, based on the LLL algorithm [25]
for lattice reduction.

Because of these concerns, small public exponents are sometimes avoided
in industry standards and in practice. However, the concerns can also be
addressed with appropriate padding schemes (see “chosen ciphertext at-
tacks” below), provided they are correctly implemented. For digital signature
schemes, small public exponents are generally not an issue.

6 Strong RSA Assumption

The Strong RSA Assumption was introduced by Barić and Pfitzmann [3] and
by Fujisaki and Okamoto [18] (see also [13]).

This assumption differs from the RSA Assumption in that the adversary

4



can select the public exponent e. The adversary’s task is to compute, given a
modulus n and a ciphertext C, any plaintext M and (odd) public exponent
e ≥ 3 such that C = M e (mod n). This may well be easier than solving
the RSA Problem, so the assumption that it is hard is a stronger assumption
than the RSA Assumption. The Strong RSA Assumption is the basis for a
variety of cryptographic constructions.

7 Bit-security of RSA encryption

It is conceivable that RSA could be “secure” in the sense that the RSA
Assumption holds (i.e. RSA is hard to invert), yet that RSA “leaks” infor-
mation in that certain plaintext bits are easy to predict from the ciphertext.
Does RSA provide security to individual bits of plaintext?

Goldwasser et al. [21] first studied the bit-security of RSA, showing that
an adversary who could reliably extract from a ciphertext the least signficant
bit of the plaintext would in fact be able to decrypt RSA efficiently (i.e.
obtain the entire plaintext efficiently).

This line of research was pursued by other researchers. For example,
Vazirani et al. [32]) showed that the adversary could still decrypt even with
an lsb procedure that was only 0.732 + ε accurate. They also showed that
the low-order log(log(n)) bits of plaintext are 3/4 + ε secure.

Chor and Goldreich [11] improved this result to show that the least-
significant bit of RSA plaintext can not be predicted with probability better
than 1/2 + 1/poly(log(n)) (under the RSA Assumption). Alexi et al. [1, 2]
completed this result to show that the least-significant log(log(n)) bits are
secure in the same sense. (Fischlin and Schnorr [17] provide a simpler and
tighter proof of this result.)

H̊astad and Näslund [23] have shown that all of the plaintext bits are
well-protected by RSA, in the sense that having a nontrivial advantage for
predicting any one plaintext bit would enable the adversary to invert RSA
completely.

The results about bit-security of RSA generally involve a reduction tech-
nique (see computational complexity theory), where an algorithm for solv-
ing the RSA Problem is constructed from an algorithm for predicting one
(or more) plaintext bits. Like self-reducibility, bit-security is a double-edged
sword. This is because the security reductions also provide an avenue of
attack on a “leaky” implementation. If an implementation of an RSA de-

5



cryption operation leaks some bits of the plaintext, then an adversary can
potentially solve the RSA Problem for any ciphertext just by observing the
implementation’s behavior on some number of other ciphertexts. Such at-
tacks have been described by Bleichenbacher [7] and by Manger [26].

8 Chosen ciphertext attacks

An adversary may be able to decrypt an RSA ciphertext C if he can obtain
decryptions (e.g. from the legitimate recipient) of other ciphertexts C1, C2,
. . . , Ck (which may or may not be related to C). Such attacks are known
as chosen ciphertext attacks (CCA1 and CCA2, depending on whether the
Ci’s are allowed to depend upon C (of course they can’t be equal to C)); see
Bellare et al. [4] for details.

(The attacks related to bit-security are a special case of chosen-ciphertext
attacks in which the adversary only obtains partial information about the
decryption, not the full plaintext.)

Davida [14] first studied chosen ciphertext attacks for RSA, utilizing the
multiplicative property of RSA.

Desmedt and Odlyzko [16] provided another chosen ciphertext attack,
based on obtaining the decryption of many small primes.

To defeat chosen ciphertext attacks, researchers have turned to (possi-
bly randomized) “padding” schemes that (reversibly) transform a plaintext
before encryption.

One such proposal is Optimal Asymmetric Encryption Padding (OAEP)
[5] which has been proven secure for chosen ciphertext attacks by Fujisaki et
al. [19] under the RSA assumption. Other proposals that also avoid cho-
sen ciphertext attacks have better security properties [29, 31]. See also
RSA public-key encryption for related discussion.

Chosen-ciphertext attacks on digital signature schemes are the analogue
to chosen ciphertext attacks on public-key encryption, and various padding
shemes have been developed to defeat them as well, such as the Probabilis-
tic Signature Scheme (PSS) of Bellare and Rogaway [6] and the scheme of
Gennaro et al. [20]. See also RSA digital signature scheme.

6



9 Conclusions

The RSA Problem is now over a quarter century old. The elegant simplic-
ity of the problem has led to numerous observations over the years, some
yielding attacks, others avoiding them. Public-key encryption schemes and
digital signature schemes have been developed whose strength is derived fully
from the RSA Problem. The remaining open question, still, is how closely
the security of the RSA Problem depends on integer factoring, and as with
any hard problem in cryptography, whether any methods faster than those
currently available for solving the problem will ever be discovered.

References

[1] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA/Rabin
bits are 1/2 + 1/poly(log(N)) secure. In Proc. FOCS ’84, pages 449–
457, Singer Island, 1984. IEEE.

[2] W. B. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA/Rabin
functions: certain parts are as hard as the whole. SIAM J. Computing,
17(2):194–209, April 1988.

[3] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-
stop signature schemes without trees. In Advances in Cryptology—
EUROCRYPT ’97, volume 1233 of Lecture Notes in Computer Science,
pages 480–494. Springer-Verlag, 1997.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption. In H. Krawczyk, editor,
Proceedings Crypto ’98, pages 26–45. Springer-Verlag, 1998. Lecture
Notes in Computer Science No. 1462.

[5] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption—
how to encrypt with RSA. In A. DeSantis, editor, Proceedings Eurocrypt
’94, pages 92–111. Springer-Verlag, 1994. Lecture Notes in Computer
Science No. 950.

[6] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures—how to sign with RSA and Rabin. In U. Maurer, editor,
Proc. Eurocrypt ’96, pages 399–416. Springer Verlag, 1996.

7



[7] D. Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS #1. In H. Krawczyk, editor,
Proc. CRYPTO ’98, pages 1–12. Springer, 1998.

[8] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less
than N0.292. IEEE Transactions on Information Theory, 46(4):1339–
1349, July 2000.

[9] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to
factoring. In K. Nyberg, editor, Proc. EUROCRYPT ’98, pages 59–71.
Springer, 1998.

[10] Dan Boneh. Twenty years of attacks on the RSA cryptosystem. Notices
of the AMS, 46(2):203–213, 1999.

[11] Benny Chor and Oded Goldreich. RSA/rabin least significant bits are
1
2

+ 1/ poly(log n) secure. In G. R. Blakley and D. C. Chaum, editors,
Proc. CRYPTO ’84, pages 303–313. Springer, 1985. Lecture Notes in
Computer Science No. 196.

[12] D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent
RSA with related messages. In Proc. EUROCRYPT 1996, pages 1–9.
Springer-Verlag, 1996. Lecture Notes in Computer Science No. 1070.

[13] Ronald Cramer and Victor Shoup. Signature schemes based on the
strong RSA assumption. ACM Transactions on Information and System
Security, 3(3):161–185, 2000.

[14] G. Davida. Chosen signature cryptanalysis of the RSA (MIT) public
key cryptosystem. Technical Report Tech Report TR-CS-82-2, Dept of
EECS, University of Wisconsin, Milwaukee, Oct 1982.

[15] J. M. DeLaurentis. A further weakness in the common modulus protocol
for the RSA cryptoalgorithm. Cryptologia, 8:253–259, 1984.

[16] Y. Desmedt and A. M. Odlyzko. A chosen text attack on the RSA
cryptosystem and some discrete logarithm schemes. In H. C. Williams,
editor, Proc. CRYPTO ’85, pages 516–522. Springer, 1986. Lecture
Notes in Computer Science No. 218.

8



[17] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for
RSA and Rabin bits. Journal of Cryptology, 13(2):221–244, 2000.

[18] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge pro-
tocols to prove modular polynomial relations. In Burton S. Kaliski
Jr., editor, Proc. CRYPTO ’97, volume 1294 of LNCS, pages 16–30.
Springer-Verlag, 1997.

[19] Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques
Stern. RSA-OAEP is secure under the RSA assumption. Journal of
Cryptology, ??(??):??–??, to appear.

[20] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign
signatures without the random oracle. In Proc. EUROCRYPT ’99, pages
123–139. Springer-Verlag, 1999. Lecture Notes in Computer Science No.
1592.

[21] S. Goldwasser, S. Micali, and P. Tong. Why and how to establish a
private code on a public network. In Proc. FOCS ’82, pages 134–144,
Chicago, 1982. IEEE.

[22] J. Hastad. Solving simultaneous modular equations of low degree. SIAM
J. Computing, 17:336–341, 1988.

[23] Johan H̊astad and Mats Näslund. The security of individual RSA bits.
In IEEE Symposium on Foundations of Computer Science, pages 510–
521, 1998.

[24] Stefan Katzenbeisser. Recent Advances in RSA Cryptography. Kluwer
Academic Publishers, 2001.

[25] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Ann., 261:513–534, 1982.

[26] J. Manger. A chosen ciphertext attack on RSA Optimal Asymmetric
Encryption Padding (OAEP) as standardized in PKCS #1 v2.0. In
J. Kilian, editor, Proc. CRYPTO 2001, pages 260–274. Springer, 2001.

[27] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal
of Computer and Systems Sciences, 13(3):300–317, 1976.

9



[28] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[29] T. Okamoto and D. Pointcheval. REACT: Rapid enhanced-security
asymmetric cryptosystem transform. In D. Naccache, editor, Proc.
Cryptographers’ Track RSA Conference (CT-RSA) 2001, pages 159–175.
Springer, 2001.

[30] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communi-
cations of the ACM, 21(2):120–126, 1978.

[31] V. Shoup. A Proposal for an ISO Standard for Public Key Encryp-
tion (Version 2.1). Manuscript, December 20, 2001. Available from
http://shoup.net/papers/.

[32] Umesh Vazirani and Vijay Vazirani. RSA bits are .732 + ε secure. In
D. Chaum, editor, Proc. CRYPTO ’83, pages 369–375. Plenum Press,
1984.

[33] M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Trans.
on Inform. Theory, 36(3):553–558, May 1990.

10


