
Design, analysis and applications of
cryptographic techniques

Chan Yeob Yeun

Technical Report
RHUL–MA–2001–5
1 November 2001

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Design, Analysis and Applications of

Cryptographic Techniques

Chan Yeob Yeun

Thesis submitted to

The University of London

for the degree of

Doctor of Philosophy

2000.

Royal Holloway and Bedford New College,

University of London.

Abstract

Cryptographic techniques, such as encipherment, digital signatures, key manage-

ment and secret sharing schemes, are important building blocks in the implemen-

tation of all security services.

In this thesis, we present a general model for online secret sharing schemes and

investigate the design of online secret sharing schemes which are derived from

this model such as Cachin and Pinch’s schemes [13, 48]. We propose a modified

version of the Pinch multiple secret sharing protocol, which identifies all cheaters,

regardless of their number, improving on previous results by Ghodosi et al. [21].

A new scheme is then proposed for computationally secure online secret sharing,

in which the shares of the participants can be reused. The security of the scheme

is based on the intractability of factoring. This scheme has the advantage that it

detects cheating and it enables the identification of all cheaters by an arbitrator,

regardless of their number. The scheme does not rely on a “last participant” who

reconstructs the secret on behalf of a minimal trusted set: the responsibility is

diffused among all participants.

In addition, we cryptanalyse the recently proposed signature scheme by Shao,

based on the discrete logarithm problem, and show it is subject to homomorphism

attacks, despite a claim in [54] to the contrary. Moreover, we show that there

are major differences between a digital signature with message recovery scheme

and an authenticated encryption scheme and point out that the signature with

message recovery scheme that was recently proposed by Chen [14] is actually not

a signature scheme. It would more accurately be described as an authenticated

encryption scheme.

Furthermore, we propose a modification to the Helsinki protocol [5] which prevents

2

attacks by an adversary.

Some of the material in Chapters 2, 3 and 4 of the thesis has appeared in published

papers [40, 41, 59, 60, 61].

3

Acknowledgements

I would like to thank God for his divine guidance while I lost confidence in my abil-

ities. I am also indebted to my supervisor and adviser, Professors Fred Piper and

Peter Wild, for their reassurance and guidance whenever I encountered difficulties

and hardships. Extra special thanks go to Professor Chris Mitchell for many hours

of useful discussion and for tirelessly reading my work, and for suggesting many in-

valuable comments and ideas. I am also grateful to Dr. Mike Burmester for always

being available, and for many hours of interesting and enlightening discussion.

I should like to thank the staff and postgraduates in the Mathematics Department

for making my time at Royal Holloway an enjoyable one. In particular I would like

to thank Dr. Karl Brincat for helpful comments.

My studies have been sponsored by a Research Studentship and a Maintenance

award from the Mathematics Department.

Finally, and most importantly, I am most grateful to my family for their support,

both financial and emotional, without which this course of study would not have

been possible.

4

Contents

1 Introduction 11

1.1 General introduction . 11

1.2 Contents of this thesis . 13

1.3 Abstract algebra . 15

1.3.1 Groups . 15

1.3.2 Rings and Fields . 17

1.4 Number theory . 23

1.5 Integer factorisation . 26

1.5.1 The RSA problem . 27

1.6 Discrete logarithms . 28

1.6.1 The Diffie-Hellman problem 29

1.7 Complexity theory . 29

1.8 Cryptography . 30

1.9 Symmetric-key cryptography . 31

1.10 Public-key cryptography . 32

5

1.10.1 RSA . 34

1.10.2 ElGamal encryption . 35

1.11 Digital signature . 37

1.11.1 One-way hash-functions . 39

1.11.2 RSA signature . 41

1.11.3 ElGamal signature . 43

1.12 Properties of an authentication protocol 46

1.12.1 Requirements . 48

1.12.2 Authentication mechanisms 49

1.12.3 Freshness mechanisms . 50

1.13 Key establishment, management, and certification 53

1.13.1 Key management through public-key techniques 54

1.13.2 Key authentication and key confirmation 56

1.13.3 Adversaries in key establishment 57

1.14 Secret sharing . 58

1.14.1 The Shamir threshold scheme 60

1.14.2 Secret sharing schemes with extended capabilities 62

2 Online Secret Sharing Schemes 63

2.1 Introduction . 63

2.2 Model for online secret sharing . 66

6

2.2.1 Requirements . 67

2.2.2 Properties of Model . 67

2.2.3 Preliminaries . 69

2.2.4 The protocol . 70

2.2.5 Online multiple secret sharing 75

2.2.6 How cheating may occur . 75

2.2.7 How to detect cheating . 76

2.2.8 How to identify all cheaters 76

2.3 The Cachin scheme . 78

2.3.1 Preliminaries . 79

2.3.2 The basic scheme . 79

2.3.3 Sharing multiple secrets . 80

2.3.4 Comments on Cachin’s scheme 81

2.4 Pinch’s scheme . 82

2.4.1 Preliminaries . 82

2.4.2 The basic scheme . 82

2.4.3 Security remarks . 84

2.4.4 Comments on Pinch’s scheme 85

2.5 A modified version of Pinch’s scheme 85

2.5.1 A vulnerability in Pinch’s scheme 85

2.5.2 Ghodosi et al’s method for detection of cheating 86

7

2.5.3 Ghodosi et al’s method for prevention of cheating 86

2.5.4 Comments on Ghodosi et al’s version 87

2.6 How to identify all cheaters in Pinch’s scheme 88

2.6.1 How to detect cheating . 88

2.6.2 An enhanced protocol which identifies all cheaters 89

2.7 An online secret sharing scheme which identifies all cheaters 91

2.7.1 Preliminaries . 92

2.7.2 A secret sharing protocol . 92

2.7.3 A multiple secret sharing protocol 94

2.7.4 How cheating may occur . 96

2.7.5 How to detect cheating . 96

2.7.6 How to identify all cheaters 96

2.7.7 Security remarks . 97

2.8 Conclusion . 98

3 Cryptanalysis of Digital Signatures 100

3.1 Introduction . 100

3.2 Possible attacks on RSA signatures 102

3.3 Possible attacks on ElGamal type schemes 103

3.4 Shao’s modification to ElGamal signatures 106

3.4.1 Scheme description . 106

8

3.4.2 The attack . 108

3.5 Authenticated encryption schemes 109

3.5.1 Chen’s scheme . 110

3.5.2 Comments on Chen’s scheme 111

3.6 Conclusion . 112

4 Key Transport 114

4.1 Introduction . 114

4.2 Helsinki protocol . 115

4.2.1 Introduction . 115

4.2.2 Specification . 116

4.2.3 Discussion . 119

4.3 The Horng-Hsu attack and an observation 120

4.4 A revised version of the protocol . 121

4.4.1 Description of modification 121

4.4.2 Discussion . 122

4.4.3 Related Work . 124

4.5 Conclusion . 124

5 Conclusion 125

Bibliography 128

9

List of Figures

1.1 Symmetric cryptography . 32

1.2 Asymmetric cryptography or public-key cryptography 33

1.3 Authentication protocol model . 47

1.4 Online Secret Sharing . 72

10

Chapter 1

Introduction

1.1 General introduction

As long as there are creatures endowed with language, there will be confidential

messages intended for a limited audience. How can these messages be transmitted

secretly, so that no unauthorised person gets knowledge of the content of message?

And how can one guarantee that a message arrives in the right hands exactly as

it was transmitted?

Traditionally, there are two ways to answer such questions. One can disguise the

very existence of a message, perhaps by writing with invisible ink; or try to transmit

the message via a trustworthy person. This is the method favoured throughout

history by clandestine lovers and nearly all classical tragedies provide evidence of

the method’s shortcomings.

A totally different approach is to encipher (or encrypt) a message. In this case one

does not disguise its existence. On the contrary, the message is transmitted over

a public, insecure channel, but encrypted in such a way that no one except the

11

intended recipient may decipher it. This offers a rather tempting challenge to an

enemy. Such challenges are usually accepted and not unusually overcome.

There is a satisfying appropriateness to cryptology’s role in the birth of electronic

computing. The arrival of the Information Age has revealed an urgent need for

cryptography in the private sector. Today, vast amounts of sensitive information

such as health and legal records, financial transactions, credit ratings and the like

are routinely exchanged between computers via public communication facilities.

Society turns to the cryptographer for help in ensuring the privacy and authenticity

of such sensitive information.

Cryptographic techniques, such as encipherment, digital signatures, key agreement

and secret sharing schemes, are important building blocks in the implementation

of any security service. A cryptosystem defines encryption and decryption trans-

formations, which depend on the value of keys. A symmetric cryptosystem uses

one key for both transformations. A public key cryptosystem uses separate keys

for each transformation.

The only publicly-standardized symmetric cryptosystem is the U.S. Data Encryp-

tion Standard (DES), which has been widely used since the 1970s. Due to techno-

logical advances, the useful life of single-encryption DES is running out. However,

the use of multiple-encryption DES systems may provide adequate protection for

many applications for some years to come.

The idea of the public-key technique was first introduced by Diffie and Hellman

[18] in 1976, and began a revolution in cryptology. Public-key cryptosystems can

be encryption or authentication schemes. The RSA algorithm can operate in both

modes. The strength of RSA depends on the difficulty of factoring the product of

two large numbers. The selection of an appropriate modulus size can make RSA

12

arbitrarily strong. The ElGamal algorithm is an alternative public-key algorithm,

the strength of which depends on the difficulty of computing discrete logarithms.

A digital signature is an electronic equivalent of verifying the source of a writ-

ten message on the basis of a written signature. A digital signature is stronger

than a seal, in that the recipient must not be able to generate a digital signature

which is indistinguishable from one generated by the originator. Digital signatures

usually employ public-key cryptosystems, often in conjunction with a one-way

hash-function.

‘Key agreement’ denotes a protocol whereby two (or more) parties jointly establish

a secret key by communicating over a public channel. In a key agreement scheme,

the value of the key is determined as a function of inputs provided by both parties.

1.2 Contents of this thesis

The remainder of Chapter 1 introduces the abstract algebra and number theory

which is particularly useful for public-key cryptosystems as well as cryptographic

techniques described in this thesis. It also presents a short survey of cryptographic

evolution along with an overview of cryptographic techniques.

Chapter 2 gives a general model for online secret sharing scheme, and all the

schemes considered in the remainder of this chapter such as Cachin’s scheme and

Pinch’s scheme [13, 48] fit the basic model. A security analysis is given for the

existing schemes and their shortcomings are considered, an enhanced version of

Pinch’s scheme is suggested.

Using the basic model we design a new online secret sharing scheme which detects

cheating and enables the identification of all cheaters by an arbitrator, regardless of

13

their number. The scheme also does not rely on ‘last participant’ who reconstructs

the secret on behalf of a minimal trusted set: the responsibility is diffused among

all participants by contrast with another secret sharing scheme such as Shamir’s

original (t, n) threshold scheme [53].

Chapter 3 studies the cryptanalysis of digital signatures such as RSA [50] and

ElGamal type [50, 19, 1]. We cryptanalyse the recently proposed signature by

Shao [54] based on the discrete logarithm problem, which is claimed to prevent

homomorphism attacks. However, we show that Shao’s scheme is vulnerable to

homomorphism attacks, and we also point out that substitution attacks can be

avoided by the use of one-way hash-function. As a result there no longer appears

to be any reason to use Shao’s scheme.

We also show that there are major differences between a digital signature with

message recovery and authentication encryption (signcryption) and we point out

that the discrete logarithm based signature with message recovery scheme proposed

by Chen [15] is actually not a signature scheme. It would more accurately be

described as an authenticated encryption scheme. In the authenticated encryption

schemes described in Horster-Michels-Petersen and Lee-Chang [28, 33], only the

sender A and the receiver B can verify a protected message with the aid of his/her

private decryption key. It is for this reason that the authors of both [28] and [33]

have been careful to call their schemes authenticated encryption schemes rather

the digital signature with message recovery.

Chapter 4 investigates a key transport public-key cryptographic technique called

the Helsinki protocol and its shortcoming (first pointed out by Horng and Hsu).

We describe a simple modification to the Helsinki protocol which prevents the

Horng-Hsu attack, but yet which does not add significantly to the communications

14

overhead for the protocol. Note that the Horng-Hsu attack is closely related to the

Lowe attack [34] on the Needham-Schroeder protocol. Moreover, the modification

we propose in the revised Helsinki protocol corresponds directly to the modification

Lowe proposes to the Needham-Schroeder protocol.

1.3 Abstract algebra

The purpose of this section is to introduce the algebraic definitions and results

that are necessary for an understanding of the results in this thesis. Most of the

theorems are quoted without a proof, but with references to where a proof can be

found.

Definition 1.3.1 A binary operation ‘·’ on a set S is a mapping from S × S to

S. That is, ‘·’ is a rule which assigns to each ordered pair of elements from S an

element of S.

1.3.1 Groups

Definition 1.3.2 A group G(·) or simply G consists of a set G with a binary

operation · on G satisfying the following properties.

(i) For every a, b, c ∈ G, a · (b · c) = (a · b) · c. (Associative)

(ii) There is an element e ∈ G such that every a in G, a · e = e ·a = a. (Identity)

(iii) For every a ∈ G, there is an element a−1 in G such that a · a−1 = a−1 · a = e.

(Inverse)

A group G is abelian (or commutative) if, furthermore

15

(iv) a · b = b · a for all a, b ∈ G.

Note that a group G is called an additive group when the operation is additive (+),

while a group G is called a multiplicative group under the operation of multiplica-

tive (×). In a group with an additive operation, we have a+(−a) = (−a)+a = 0,

where the inverse element of a is written as −a. In this case, the identity of element

e is 0. Under the multiplicative operation, the identity element e is 1 and inverse

element of a is written as a−1, so that a a−1 = a−1 a = 1.

Definition 1.3.3 Let G be a group. If G has a finite number of elements, say n,

then we say that the order of G is n. We write this symbolically by o(G) = n,

and in this case we say G is a finite group.

Definition 1.3.4 A nonempty subset H of a group G is a subgroup if H is a

group with the same binary operation as G.

Theorem 1.3.5 Let G be a group with binary operation ·, and let g be an element

of G. Then

H = {gi| i is an integer}

is a subgroup of G.

A proof can be found in [32], page 40, Theorem 2.4.4.

Definition 1.3.6 A group H is said to be cyclic if there exists an element g ∈ H

such that every element of H can be written as gn for some integer n. In this case,

H is called the cyclic group generated by g and g is called a generator of H.

If H is a subgroup of another group G, then H is called a cyclic subgroup.

16

Corollary 1.3.7 If G is a finite group of order n, then gn = e for all g ∈ G.

A proof can be found in [32], page 46, Corollary 2.5.7.

Corollary 1.3.8 The order of every element of a finite group is a divisor of the

order of the group.

A proof can be found in [32], page 46, Corollary 2.5.8.

Corollary 1.3.9 If G is a finite group of order p where p is a prime integer, then

G is cyclic and every element of G expect the identity is a generator of G.

A proof can be found in [32], page 46, Corollary 2.5.9.

Definition 1.3.10 A homomorphism from G to H is a mapping α from G to

H such that

α(g1 · g2) = α(g1) · α(g2)

for all g1, g2 ∈ G.

Definition 1.3.11 Let G and H be groups and let α be a homomorphism from G

to H. If α is both onto and one-to-one, then α is called an isomorphism. If α is

an isomorphism, then G and H are said to be isomorphic, and we write G ∼= H.

1.3.2 Rings and Fields

We introduce another algebraic system called a ring. We will define ring and prove

several elementary theorems about rings. Then we study subrings and their ho-

momorphisms and isomorphisms. We also study two special types of rings namely,

17

integral domains and fields. These two algebraic systems are important because

our usual ‘arithmetic’ is carried out in either an integral domain or a field.

Definition 1.3.12 A ring R(+, ·) or simply R consists of a set R with two binary

operations, denoted by + and · and called addition and multiplication, which

satisfy the following axioms.

(i) (a + b) + c = a + (b + c) for all a, b, c ∈ R. (associativity of addition)

(ii) There exists an element 0 ∈ R such that 0 + a = a for all a ∈ R. (existence

of additive identity)

(iii) For each a ∈ R, there exists x ∈ R such that a + x = 0. (existence of

additive inverse)

(iv) a + b = b + a for all a, b ∈ R. (commutative of addition)

(v) (a · b) · c = a · (b · c) for all a, b, c ∈ R. (associativity of multiplication)

(vi) a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c) for all a, b, c ∈ R.

(distributive)

Definition 1.3.13 Let R be a ring. We say R is a ring with unity if there exists

e ∈ R such that a · e = e · a = a for all a ∈ R. If such an element e exists, it is

called a unity element of R.

Definition 1.3.14 Let R be a ring. Then R is said to be commutative ring if

a · b = b · a for all a, b ∈ R.

Definition 1.3.15 A nonempty set S is a subring of a ring R if S is a subset of

R and if S itself is a ring with respect to the addition and multiplication of R.

18

We defined homomorphism between two groups. Since rings have two binary op-

erations defined on them, rather than one, it is not unreasonable that a homomor-

phism between two rings must preserve both the addition and multiplication of the

rings.

Definition 1.3.16 Let R and S be rings. A ring homomorphism is a mapping

α from R to S such that

(i) α(a + b) = α(a) + α(b)

(ii) α(a · b) = α(a) · α(b)

for all a, b ∈ R.

Definition 1.3.17 A field F is a commutative ring in which all the nonzero ele-

ments form an abelian group under multiplication.

Definition 1.3.18 Let a and b be two elements of a commutative ring R, with

a 6= 0. The element a divides b, denoted a|b, if there exists an element c ∈ R such

that b = ac.

Definition 1.3.19 Let a1, . . . , an be elements of a commutative ring R. A nonzero

element c ∈ R is a common divisor of a1, . . . , an if c|ai for i = 1, . . . , n.

Definition 1.3.20 Let a1, . . . , an be elements of commutative ring R. A nonzero

element d ∈ R is a greatest common divisor of a1, . . . , an, denoted d =

gcd(a1, . . . , an), if

(i) d is a common divisor of a1, . . . , an, and

(ii) whenever c|ai for i ∈ {1, . . . , n}, then c|d.

19

Definition 1.3.21 Let a and b be two elements in a commutative ring R with

unity. Then a and b are coprime or relatively prime if gcd(a, b) = 1.

Definition 1.3.22 Let R be a commutative ring. A polynomial in the indeter-

minate x over the ring R is an expression of the form

f(x) = anxn + · · ·+ a2x
2 + a1x + a0

where each ai ∈ R and n ≥ 0. The element ai is called the coefficient of xi in

f(x). The largest integer m for which am 6= 0 is called the degree of f(x), denoted

deg f(x); am is called the leading coefficient of f(x). If f(x) = a0 (a constant

polynomial) and a0 6= 0, then f(x) has degree 0. If all the coefficients of f(x)

are 0, then f(x) is called the zero polynomial and its degree, for mathematical

convenience, is defined to be −1. The polynomial f(x) is said to be monic if its

leading coefficient is equal to 1.

Definition 1.3.23 If R is a commutative ring, the polynomial ring R[x] is the

ring formed by the set of all polynomials in the indeterminate x having coefficients

from R. The two operations are the standard polynomial addition and multiplica-

tion, with coefficient arithmetic performed in the ring R.

Definition 1.3.24 Let f(x) ∈ F [x] be a polynomial of degree at least 1. Then

f(x) is said to be irreducible over F if it cannot be written as the product of

two polynomials in F [x], each of positive degree.

Definition 1.3.25 (division algorithm for polynomial) If g(x), h(x) ∈ F [x],

with h(x) 6= 0, then ordinary polynomial long division of g(x) by h(x) yields

polynomials q(x) and r(x) ∈ F [x] such that

g(x) = q(x)h(x) + r(x), where deg r(x) < deg h(x).

20

Moreover, q(x) and r(x) are unique. The polynomial q(x) is called the quotient,

while r(x) is called the remainder. The remainder of the division is sometimes

denoted g(x) mod h(x), and the quotient is sometimes denoted g(x) div h(x).

Definition 1.3.26 An integral domain R is a Euclidean ring if for all nonzero

a ∈ R, there is defined a non negative integer d(a) such that

(i) for all nonzero a, b ∈ R, d(a) ≤ d(ab), and

(ii) for any a, b ∈ R with b 6= 0, there exist m, r ∈ R such that a = mb + r with

either r = 0 or d(r) < d(b).

Lemma 1.3.27 Let R be a Euclidean ring. Any two elements a and b in R have

a greatest common divisor d which can be expressed in the form d = λa + µb for

some λ, µ ∈ R.

A proof can be found in [26], page 145, Lemma 3.7.1.

The following theorem is often proved for integers or polynomial rings over fields.

A proof is included here for the general case of Euclidean rings. The proof is

adapted from [16], page 157, Theorem 4.

Theorem 1.3.28 Let a and b be two elements in a Euclidean ring R. The gcd(a, b)

can be calculated in R as follows:

a = q0b + r1, where d(r1) < d(b)

b = q1r1 + r2, where d(r2) < d(r1)

...
...

rn−2 = qn−1rn−1 + rn, where d(rn) < d(rn−1)

rn−1 = qnrn,

where rn = gcd(a, b).

21

Proof

Note that d(b) > d(r1) > d(r2) > . . . is a strictly decreasing sequence of non

negative integers, which must terminate when a remainder is zero. Now, r1 =

a−q0b. Therefore, r2 = b−q1r1 = b−q1(a−q0b) = −q1a+b(1+q0q1). Moreover, if

ri−1 = ax+by and ri−2 = ax′+by′, then ri = −ri−1qi−1+ri−2 = a(x′−xqi−1)+b(y′−
yqi−1), so that, by induction, rn = au+ bv, for some u, v ∈ R. Therefore any factor

of a and b also divides rn. Now, rn|rn and rn|rn−1, so that rn|rn−2. Furthermore, if

rn|ri+2 and rn|ri+1, then rn|ri, since ri = qi+1ri+1 + ri+2. Therefore, by induction,

rn|ri for all i. In particular, rn|b and rn|a, so that rn is a common divisor of a and

b. Therefore, rn =gcd(a, b) by definition.

2

Definition 1.3.29 A finite field is a field F which contains a finite number of

elements. The order of F is the number of elements in F .

Definition 1.3.30 A generator g of a finite field Fq is an element of order q− 1;

equivalently, g is a generator if the powers of g run through all nonzero elements

of Fq.

Definition 1.3.31 F∗q is a cyclic group of order q− 1. Hence aq = a for all a ∈ Fq.

The next theorem gives a basic fact about finite fields. It says that the nonzero

elements of any finite field form a cyclic group; in other words, they are all powers

of a single element.

Theorem 1.3.32 Every finite field has a generator. If g is a generator of F∗q,

then gj is also a generator if and only if gcd(j, q − 1) = 1. Thus, there are a total

of φ(q − 1) different generators of F∗q, where φ denotes the Euler φ-function.

22

A proof can be found in [30], page 56–57, Theorem 2.1 and Lemma 2.1.

1.4 Number theory

The set of integers {. . . ,−2,−1, 0, 1, 2, . . .} is denoted by the symbol Z.

Definition 1.4.1 Let a, b be integers. Then a divides b (equivalently: a is a divisor

of b, or a is a factor of b) if there exists an integer c such that b = ac. If a divides

b, then we write a|b.

Proposition 1.4.2 Properties of divisibility For all a, b, c ∈ Z, the following

are true:

(i) a|a

(ii) If a|b and b|c, then a|c.

(iii) If a|b and a|c, then a|(bx + cy) for all x, y ∈ Z.

(iv) If a|b and b|a, then a = ±b.

Definition 1.4.3 Division algorithm for integers If a and b are integers with

b ≥ 1, then ordinary long division of a by b yields integer q (the quotient) and r

(the remainder) such that

a = qb + r, where 0 ≤ r < b.

Moreover, q and r are unique. The remainder of the division is denoted a mod b,

and the quotient is denoted a div b.

23

Definition 1.4.4 A non-negative integer d is the least common multiple of

integers a and b, denoted d = lcm(a, b), if

(i) a|d and b|d; and

(ii) where a|c and b|c, then d|c.

Equivalently, lcm(a, b) is the smallest non-negative integer that divides by both a

and b. In fact, lcm(a, b) = ab / gcd(a, b).

Definition 1.4.5 If a and b are integers, then a is said to be congruent to b

modulo n, write a ≡ b (mod n), if n divides (a − b). The integer n is called the

modulus of the congruence.

Definition 1.4.6 The equivalence class modulo n of an integer b is the set of

all integers congruent to b modulo n.

Definition 1.4.7 The ring of integers modulo n, denoted Zn, is the set of (equiv-

alence class of) integers {0, 1, 2, . . . , n− 1}. Addition, subtraction, and multiplica-

tion in Znare performed modulo n.

Definition 1.4.8 An integer b ∈ Zn is said to be invertible or a unit of Zn, if

there is an integer x ∈ Zn, such that bx ≡ 1 (mod n). If such an x exists, then it

is referred to as the multiplicative inverse of b in Zn, and denoted by b−1.

Theorem 1.4.9 Let a, b and n > 0 be integers, and g =gcd(a, n). The congruence

ax ≡ b (mod n) has a solution if and only if g|b. If this condition is met, then

the solutions form an arithmetic progression with common difference n/g, giving

g solutions modulo n.

24

A proof can be found in [26], page 62, Theorem 2.17. Therefore, b ∈ Zn has a

multiplicative inverse if and only if gcd(b, n) = 1. Therefore, if n is prime, every

non-zero b ∈ Zn has a multiplicative inverse.

Theorem 1.4.10 (Chinese Remainder Theorem) Suppose n1, n2, . . . , nr are

r positive integers that are pair-wise coprime, and let a1, a2, . . . , ar denote any r

integers. Then the congruences

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

have a common solution which is unique modulo n = n1n2 · · ·nr.

A proof can be found in [51], page 136, Theorem 3.12.

So given n1 and n2 are coprime any pair of simultaneous congruences x ≡ a1

(mod n1) and x ≡ a2 (mod n2) have the same solutions as the single congruence

x ≡ a2t1n1 + a1t2n2 (mod n1n2),

where t1n1 + t2n2 = 1. In particular, if a1 = a2, then x ≡ a1 (mod n1n2).

Definition 1.4.11 The multiplicative group of Zn is Z∗n = {a ∈ Zn| gcd(a, n) =

1}.

Definition 1.4.12 Let a ∈ Z∗n. The order of a, denoted o(a), is the least positive

integer k such that ak ≡ 1 (mod n).

Theorem 1.4.13 (Fermat’s Theorem) Let p be a prime. If gcd(p, a) = 1, then

ap−1 ≡ 1 (mod p).

25

A proof can be found in [51], page 187, Theorem 5.3.

Definition 1.4.14 The Euler Totient Function φ(n) is the number of positive

integers less than or equal to n that are coprime to n.

Note that φ(n) = |Z∗n|.

Theorem 1.4.15 (Euler’s Theorem) Let n ≥ 2. If gcd(a, n) = 1, then aφ(n) ≡ 1

(mod n).

A proof can be found in [51], pages 203–204, Theorem 5.14.

Corollary 1.4.16 If gcd(a, n) = 1 then o(a) modulo n divides φ(n).

A proof can be found in [44], page 98, Corollary 2.32.

Theorem 1.4.17 Let n = 1, 2, 4, pα, or 2pα, where p is an odd prime. If

gcd(a, n) = 1, then the congruence xb ≡ a (mod n) has gcd(b, φ(n)) solutions

or no solutions, according as

aφ(n)/ gcd(b,φ(n)) ≡ 1 (mod n)

or not.

A proof can be found in [44], page 104, Corollary 2.42.

1.5 Integer factorisation

The problem of integer factorisation is one of the oldest in number theory and the

advent of computers have stimulated considerable progress in recent years. How-

ever, the security of many cryptographic techniques depends upon the intractabil-

ity of the integer factorisation problem. A partial list of such schemes includes

26

the RSA public-key encryption scheme (see Section 1.10.1) and the RSA signature

scheme (see Section 1.11.2). This section focuses on the current knowledge on

algorithms for the integer factorisation problem.

Definition 1.5.1 The integer factorisation problem is the following: given

a positive integer n, find its prime factorisation; that is, write n = pe1
1 pe2

2 · · · pek
k

where the pi are pairwise distinct primes and each ei ≥ 1.

This problem is believed to be hard for general n when n is large. Some ingenious

methods have been devised in an attempt to factorise large composite numbers n.

The three methods that are most effective on very large numbers are the quadratic

sieve, the elliptic curve method and the number field sieve. Other well-known

methods that were precursors include Pollard’s rho-method and p − 1 method,

Williams’s p + 1 method, the continued fraction algorithm, and of course, trial

division. A good overview of factoring methods can be found in [39, 57].

1.5.1 The RSA problem

The intractability of the RSA problem forms the basis for the security of the RSA

public-key encryption scheme and the RSA signature scheme.

Definition 1.5.2 The RSA problem is the following: given a positive integer n

that is a product of two distinct odd primes p and q, a positive integer e such that

gcd(e, (p − 1)(q − 1)) = 1, and an integer c, find an integer m such that me ≡ c

(mod n).

Clearly the RSA problem is no more difficult then factorisation, since if p and q

can be found then it is simple to find m.

27

1.6 Discrete logarithms

The security of many cryptographic techniques depends on the intractability of

discrete logarithm problem. A partial list of these includes the Diffie-Hellman key

agreement [18] and its derivative, the ElGamal encryption (see Section 1.10.2),

and the ElGamal signature scheme (see Section 1.11.3) and its variants. This

section focuses on the current knowledge regarding methods for solving the discrete

logarithm problem.

Let G be a finite cyclic group of order n with generator g. For a more concrete

approach, one may find it convenient to think of G as the multiplicative group of

integers modulo p (for p prime).

Definition 1.6.1 Let G be a finite cyclic group of order n. Let g be a generator

of G, and let y ∈ G. The discrete logarithm of y to the base g, denoted logg y, is

the unique integer x, 0 ≤ x ≤ n− 1, such that y = gx.

Definition 1.6.2 The Discrete Logarithm Problem (DLP) is the following: given

a prime p, a generator g of Z∗p, and an element y ∈ Z∗p, find the integer x, 0 ≤ x ≤
p− 2, such that y ≡ gx mod p.

As in the case of factorisation, efficient techniques exist for solving the discrete

logarithm problem when the group G has a particular structure, an example of

such a technique being the Pohlig-Hellman algorithm [49], which efficiently com-

putes discrete logarithms when the group G has order n = pa1
1 pa2

2 · · · par
r , where

p1, p2, . . . , pr are primes less than or equal to a small bound B. A good overview

of techniques for calculating discrete logarithms can be found in [39].

28

1.6.1 The Diffie-Hellman problem

The Diffie-Hellman problem is closely related to the well-studied discrete logarithm

problem (DLP). It is of significance to public-key cryptography because its appar-

ent intractability forms the basis for the security of many cryptographic techniques

including the Diffie-Hellman key agreement and its derivatives, and the ElGamal

public-key cryptosystem.

Definition 1.6.3 The Diffie-Hellman problem (DHP) is the following: given a

prime p, a generator g of Z∗p, and elements ga mod p and gb mod p, find gab mod p.

Definition 1.6.4 The generalized Diffie-Hellman problem (GDHP) is the follow-

ing: given a finite cyclic group G, a generator g of G, and group elements ga and

gb, find gab.

Suppose that the discrete logarithm problem in Z∗p could be efficiently solved. Then

given g, p, ga mod p and gb mod p, one could first find a from g, p and ga mod p by

solving a discrete logarithm problem, and then compute (gb)a = gab mod p. Thus,

the DHP is no harder than DLP.

1.7 Complexity theory

Definition 1.7.1 Suppose that for all n ≥ n0 the two functions f(n) and g(n)

are defined, take positive values, and for some constant C satisfy the inequality

f(n) ≤ C · g(n). Then we say that f = O(g).

Definition 1.7.2 An algorithm to perform a computation is said to be a poly-

nomial time algorithm if for an instance of length at most n there exists an

29

integer d such that the number of bit operations required to perform the algorithm

is O(nd).

Thus, the usual arithmetic operations +,−,×,÷ are examples of polynomial time

algorithms; so is conversion from one base to another. On the other hand, compu-

tation of n! is not. (However, if one is satisfied with knowing n! to only a certain

number of significant figures, e.g., its first 1000 binary digits, then one can obtain

that by a polynomial time algorithm using Stirling’s approximation for n!)

1.8 Cryptography

The word cryptology stems from Greek meaning ‘hidden word’, and is the um-

brella term used to describe the entire field of secret communications. Cryptology

splits into two subdivisions: cryptography and cryptanalysis.

Cryptography is the study of mathematical techniques related to aspects of infor-

mation security such as confidentiality, data integrity, entity authentication, data

origin authentication and non-repudiation. The cryptanalyst seeks to undo the

cryptographer’s work by breaking a cipher or by forging coded signals that will be

accepted as authentic.

General information on cryptography can be found in [39], [57] and [56]. There are

two major types of cryptosystems. One is Symmetric-key cryptosystems and the

other is Public-key cryptosystems. We will pay particular attention to Public-key

cryptosystems. Thus, we first give a formal definition of a cryptosystem:

Definition 1.8.1 A cryptosystem is a five-tuple (M, C,K, E ,D), where the fol-

lowing condition are satisfied

30

1. M is a finite set of possible plaintexts or messages

2. C is a finite set of possible ciphertexts or cryptograms

3. K is a finite set of possible keys

4. For each K ∈ K, there is an encryption rule EK ∈ E and a corresponding

decryption rule DK ∈ D. Each EK : M → C and DK : C → M are

functions such that DK(EK(x)) = x for every message x ∈M.

The main property is property 4. It is this property that enables a user to decrypt

a received cryptogram, since DK(EK(x)) = x for all messages x ∈ M. For un-

ambiguous decryption, it is obviously required that EK(x1) 6= EK(x2) if x1 6= x2.

Otherwise, if EK(x1) = EK(x2), x1 6= x2, decryption is not unique, and therefore

it is not possible for a user to decide whether the intended message was x1 or x2

upon receipt of EK(x1) = EK(x2).

1.9 Symmetric-key cryptography

Consider an encryption scheme consisting of the sets of encryption and decryption

transformations EK : K ∈ K and DK : K ∈ K, respectively, where K is the key

space. The encryption scheme is said to be symmetric-key if for each associated

encryption/decryption transformation pair (EK , DK), it is computationally “easy”

to determine DK knowing only EK , and to determine EK from DK .

Since EK = DK in most practical symmetric-key encryption schemes, the term

symmetric-key becomes appropriate. Other terms used in the literature are single-

key, one-key and conventional encryption.

31

Encryption Decryption-Plaintext -Ciphertext -Plaintext

Key
EK = DK

? ?

Figure 1.1: Symmetric cryptography

1.10 Public-key cryptography

In 1976, the idea of public-key cryptography was presented by Diffie and Hellman

[18]. Although revolutionary, the idea is still very simple.

In public-key cryptosystems, one can safely publicise one’s encryption method.

This means that also the cryptanalyst will know it. However, he/she is still unable

to decrypt your ciphertext. This is what public-key cryptography is all about: the

encryption method can be made public.

What does safety in giving away the encryption method actually mean? Of course,

the encryption method gives away the decryption method in a mathematical sense

because the two are “inverses” of each other. However, suppose it will take hun-

dreds of years for the cryptanalyst to compute the decryption method from the

encryption method. Then in practice we do not compromise anything by publiciz-

ing the encryption method. This is how “safety” is to be understood.

With regard to Public-key cryptography, it is computationally infeasible to com-

pute the decrypting transformation DK from the encryption transformation EK .

32

The encryption key EK can therefore be made public without compromising the

security of the decryption key DK . Anyone can then encrypt a message using the

public encryption key, but only the intended recipient can decrypt the message

using the secret decryption key.

Encryption Decryption-Plaintext -Ciphertext -Plaintext

?

EK

?

DK

Figure 1.2: Asymmetric cryptography or public-key cryptography

Definition 1.10.1 A one-way function is a function f such that for each x in

the domain of f , it is easy to compute f(x); but for essentially all y in the range

of f , it is computationally infeasible to find any x such that y = f(x).

Definition 1.10.2 A trapdoor one-way function is a one-way function f with

the additional property that given some extra information (the trapdoor informa-

tion) it becomes computationally feasible to compute for any y in the range of f

an x such that y = f(x).

In public-key cryptography, the encryption rule EK determined by the public en-

cryption key e can be viewed as a trapdoor one-way function, with the secret

decryption key d being viewed as the trapdoor.

It has yet to proved that there exist any true one-way functions. Consequently, it

has yet to be proved that there exist any true trapdoor one-way functions. There

33

are, however, several good candidates for one-way functions. One candidate is

based on the multiplication of two large primes p and q, the factorisation of the

product n = pq being an example of the integer factorisation problem. Another

well known candidate one-way function is exponentiation in finite fields, which can

be computed efficiently using the ‘square and multiply’ algorithm, but with the

inverse being the discrete logarithm problem. An example of a candidate trapdoor

one-way function is the RSA public-key cryptosystem, described in the following

subsection.

1.10.1 RSA

The RSA public-key cryptosystem [50] was introduced in 1978, and may be used

for both secrecy and digital signatures. The cryptosystem works in Zn, where n is

the product of two large primes p and q, and its security is based on the difficulty

of factoring n, that is, the integer factorisation problem as mentioned in section

1.5.

A general overview of the choice of primes p and q can be found in [39], page 290.

An overview of the generation of primes can be found in [39], Chapter 4.

To use the RSA public-key cryptosystem, a user A first generates their public and

secret keys by

(i) generating two large distinct primes p and q.

(ii) computing n = pq and φ(n) = (p − 1)(q − 1), where φ(n) is as defined in

Section 1.4 (Euler Totient Function).

(iii) choosing a random integer e such that 0 < e < φ(n), and gcd(e, φ(n)) = 1,

34

(iv) using the Euclidean Algorithm to compute the unique integer d, where 0 <

d < φ(n), such that ed ≡ 1 (mod φ(n)), and

(v) publishing the pair (n, e) as the public key, and keeping d as the private key.

RSA is an example of block cipher, that is, a message is encrypted by being bro-

ken down into blocks (or strings) of a fixed length, and each block is encrypted

individually. The plaintext and the ciphertext space are P = C = Zn. To encrypt

a message block m for user A, a user B

(i) obtains A’s authentic public key (n, e),

(ii) represents the message m as an integer in the range 0, . . . , (n− 1),

(iii) computes the ciphertext EK(m) = c = me mod n, and

(iv) transmits the ciphertext c to user A.

To decrypt the ciphertext c, user A computes DK(c) = cd = m mod n. The fact

that RSA works, that is, why med ≡ m (mod n) is an immediate corollary of

Theorem 1.4.15.

RSA has the property that for any two distinct messages m1 and m2 with cipher-

texts c1 and c2 respectively, the ciphertext of m = m1 ·m2 mod n is

c ≡ me ≡ (m1 ·m2)
e ≡ me

1m
e
2 ≡ c1 · c2 (mod n).

This is often referred to as the homomorphic property of RSA.

1.10.2 ElGamal encryption

The ElGamal public-key cryptosystem [19] is based on the discrete logarithm prob-

lem. We begin by describing this cryptosystem in the setting of finite field Zp.

35

Thus, the prime p must be chosen such that computing discrete logarithms in Zp is

hard. In particular, to guard against the Pohlig-Hellman algorithm [49], the prime

p must be chosen such that (p− 1) contains at least one large prime factor q.

To use the ElGamal cryptosystem, a user A first generates their public and secret

keys by the following procedures

(i) Let p be a prime such that the discrete logarithm problem in Zp is intractable,

and p− 1 also contains at least one large prime factor q, and let g ∈ Z∗p be a

primitive element. Let P = Z∗p, C = Z∗p×Z∗p. The values p and g will often be

shared by a group of users and are often referred to as domain parameters.

(ii) Choose a random integer x such that 0 < x < (p− 2), and define

K = {(p, g, x, y) : y ≡ gx (mod p))}

(iii) Publish the triple (p, g, y) as the public key, and keep x as the secret key.

Like RSA, ElGamal is a block cipher, that is, a message is encrypted by being

broken down into blocks of a fixed length, and each block encrypted individually.

To encrypt a message block m for user A, a user B

(i) obtains A’s authentic public key (p, g, y),

(ii) represents the message m as an integer in the range 0, . . . , (p− 1),

(iii) chooses a random integer k such that 1 ≤ k ≤ (p− 2),

(iv) computes EK(m, k) = (c1, c2),

where

c1 = gk mod p,

36

and

c2 = myk mod p,

(v) transmits the ciphertexts (c1, c2) to A.

To decrypt the ciphertexts (c1, c2), user A computes

DK(c1, c2) = c2(c
x
1)
−1 = m mod p.

It is essential to the security of ElGamal that the integer k is not used to encrypt

more than one message, since if the same integer k is used to encrypt message m

and m′ with resulting ciphertext (c1, c2) and (c′1, c
′
2), then

c2(c
′
2)
−1 ≡ m(m′)−1 (mod p),

so that if m is known, m′ can easily be computed without knowing x.

1.11 Digital signature

Handwritten signatures have long been used as proof of authorship of, or at least

agreement with, the contents of a document. A digital signature is the counterpart

to a handwritten signature. A digital signature should comprise of some data which

establishes that the signer was the originator. Moreover, it must be such that the

receiver can save it as evidence which can be presented to an arbitrator who can

then check the validity of the signature and settle any dispute. It should thus

prevent fraud such as the forging of a signature by the receiver (or any third

party) and the repudiation of the transmission of a message by the sender. A

generic description follows.

• M is the set of messages which can be signed.

37

• S is a set of elements called signatures, possibly binary strings of fixed length.

• SA is a transformation from the message set M to the signature set S, and is

called a signing transformation for entity A. The transformation SA is kept

secret by A, and will be used to create signatures for messages from M.

• VA is a transformation from the set M × S to the set {true, false}. VA

is called a verification transformation for A’s signatures, is publicly known,

and is used by other entities to verify signatures created by A. VA has the

property that VA(m, s) = true, if and only if s = SA(m)

Signing procedure

Entity A (the signer) creates a signature for a message m ∈ M by doing the

following:

(i) Compute s = SA(m).

(ii) Transmit the pair (m, s). s is called the signature for message m.

Verification procedure

To verify that a signature s on a message m was created by A, an entity B (the

verifier) performs the following steps:

(i) Obtain the verification function VA of A.

(ii) Compute u = VA(m, s).

(iii) Accept the signature as having been created by A if u = true, and reject the

signature if u = false.

38

A digital signature scheme with message recovery can be constructed from a public

key encryption scheme by defining the signature of a message m to be s = DK(M),

where M = R(m), and R is some function which adds redundancy to the message

m, an example being R(m) = m||h(m), where || denotes concatenation and h is a

hash function. Both R and R−1 must be made public. The signature s is verified

by computing EK(s) = M ′, and checking that M ′ has the correct redundancy cor-

responding to m and R. Provided that EK(s) does have the required redundancy,

the message m can be recovered by computing R−1(M ′) = m.

1.11.1 One-way hash-functions

Cryptographic hash functions play a fundamental role in modern cryptography. A

hash function is a function which maps bit-strings of arbitrary length to bit-strings

of a fixed (short) length. For a hash function which outputs n-bit hash-values it

is desirable that the probability that a randomly chosen string gets mapped to

a particular n-bit hash-value (image) is 2−n. The basic idea is that a hash-value

serves as a compact representative of an input string. To be of cryptographic use, a

hash function h is typically chosen such that it is computationally infeasible to find

two distinct inputs which hash to a common value (i.e., two colliding inputs x and y

such that h(x) = h(y), and that given a specific hash-value y, it is computationally

infeasible to find an input (pre-image) x such that h(x) = y.

The most common cryptographic uses of hash functions are with digital signatures

and for data integrity. With digital signatures, a long message is usually hashed

(using a publicly available hash function) and only the hash-value is signed. The

party receiving the message then hashes the received message, and verifies that

received signature is correct for this hash-value. This saves both time and space

39

compared to signing the message directly, which would typically involve splitting

the message into appropriate-sized blocks and signing each block individually. Note

that the inability to find two messages with the same hash-value is a security

requirement, since if there are two messages with the same hash-value then the

digital signature on one message’s hash-value would be the same as that on another,

allowing a signer to sign one message and at a later point in time claim to have

signed another.

Hash functions may be used for data integrity as follows. The hash-value corre-

sponding to a particular input is computed at some point in time. The integrity

of this hash-value is protected in some manner. At a subsequent point in time,

to verify that the input data has not been altered, the hash-value is recomputed

using the input at hand, and compared for equality with the original hash-value.

Specific applications include virus protection and software distribution.

Definition 1.11.1 A one-way hash-function is a one-way function h which

has, as a minimum, the following two properties:

(i) compression –h maps an input x of arbitrary finite bitlength n.

(ii) ease of computation –given h and an input x, h(x) is easy to compute.

In order to meet the requirements of a signature scheme the following three prop-

erties are required of a hash-function h with inputs x, x′ and outputs y, y′.

1. preimage resistance: for essentially all pre-specified outputs, it is com-

putationally infeasible to find any input which hashes to that output, i.e.,

to find any preimage x′ such that h(x′) = y when given any y for which a

corresponding input is not known.

40

2. 2nd-preimage resistance: it is computationally infeasible to find any sec-

ond input which has the same output as any specified input, i.e., given x, to

find a 2nd-preimage x′ 6= x such that h(x) = h(x′).

3. collision resistance: it is computationally infeasible to find any two distinct

inputs x, x′ which hash to the same output, i.e., such that h(x) = h(x′).

(Note that there is free choice of both inputs.)

1.11.2 RSA signature

The RSA public-key cryptosystem [50] can be used to provide digital signatures

by reversing the roles of encryption and decryption as follows:

The RSA signature with appendix

A user A also generates their public and private keys exactly as in the RSA public-

key cryptosystem. The set of users of signatures also need to agree on a hash

function h. Then to generate a signature of a message m, user A

(i) computes M = h(m),

(i) computes s = Md mod n, and

(ii) outputs s as the signature of m.

To verify the signature, a user B

(i) obtains A’s authentic public key (n, e),

(iii) verifies that s ≤ n; if not, then reject the signature

41

(ii) computes M ′ = se mod n,

(iii) computes M = h(m)

(iv) accepts the signature s if and only if M ′ = M .

The RSA signature with message recovery

A user A also generates their public and private keys exactly as in the RSA public-

key cryptosystem. The set of users of signatures agree on a redundancy function

R. Then to generate a signature of a message m, user A

(i) computes M = R(m),

(i) computes s = Md mod n, and

(ii) outputs s as the signature of m.

To verify the signature, a user B

(i) obtains A’s authentic public key (n, e),

(ii) computes M ′ = se mod n,

(iii) verifies that M ′ has the required redundancy, and

(iv) recovers the message m = R−1(M ′).

Note that due to the homomorphic property of RSA, for any two distinct message

m1 and m2 with corresponding signatures s1 and s2 respectively, the signature of

m = m1 ·m2 mod n is

s = (m1 ·m2)
d ≡ md

1 ·md
2 ≡ s1 · s2 (mod n).

42

In particular, for any message m1 with signature s1, the signature of m = −m1 mod

n is s = −s1 mod n. It is important, therefore, that the redundancy function R is

not multiplicative, that is, R(m1 ·m2) 6= R(m1) ·R(m2).

1.11.3 ElGamal signature

This section presents the ElGamal signature [19] and several related signature

schemes such as the DSS [1], the Nyberg-Rueppel signature [46] i.e., the ElGamal

signature scheme with message recovery.

The ElGamal signature scheme

A user A generates their public and private keys exactly as in the ElGamal public-

key cryptosystem. Then to generate a signature of a message m, user A

(i) selects a random secret k, 1 ≤ k ≤ p− 2, with gcd(k, p− 1) = 1

(ii) computes r = gk mod p, and

(iii) computes k−1 mod p− 1,

(iv) computes s = k−1(m− xr) mod p− 1

(v) outputs the pair (r, s) as the signature.

To verify the signature, a user B

(i) obtains A’s authentic public key (g, p, y),

(ii) verifies that 1 ≤ r ≤ p− 1; if not, then reject the signature

(iii) computes v1 = yr rs mod p, and

43

(iv) computes v2 = gm mod p

(v) accept the signature if and only if v1 = v2.

Note that in step (iv) of signature generation it is standard practice to replace m

with h(m)

(a) to allow signature generation on long messages.

(b) to prevent attacks.

where h is a hash function which has been agreed by the set of users.

The Digital Signature Standard (DSS)

To use the DSS, a user A first generates their public and private keys by

(i) letting p be a large prime such that the discrete logarithm problem in Zp is

intractable, letting q be a large prime that divides p− 1, and letting g ∈ Z∗p
be a qth root of 1 modulo p,

(ii) choosing a random integer x such that 0 < x < q, and calculating y =

gx mod p,

(iii) publishing the four tuples (p, q, g, y) as the public key, and keeping x as the

secret key.

The set of users of signatures agree on a hash function h. Then to generate a

signature of a message m, user A

(i) selects a random secret k, 1 ≤ k ≤ q − 1,

44

(ii) computes r = (gk mod p) mod q,

(iii) computes k−1 mod q

(iv) computes s = k−1{h(m) + xr} mod q

(v) outputs the pair (r, s) as the signature.

To verify the signature, a user B

(i) obtains A’s authentic public key (p, q, g, y),

(ii) verifies that 1 ≤ r ≤ q− 1 and 1 ≤ s ≤ q− 1; if not, then reject the signature

(iii) computes v1 = s−1h(m) mod q and v2 = rs−1 mod q.

(iv) accept the signature if and only if gv1yv2 = r.

The ElGamal signature scheme with message recovery

A user A also generates their public and private keys exactly as in the DSS. The

set of users of signatures agree on a redundancy function R. Then to generate a

signature of a message m, user A

(i) computes M = R(m),

(ii) selects a random secret k, 1 ≤ k ≤ q − 1, and computes r = g−k mod p, and

(iii) computes e = Mr mod p

(iv) computes s = xe + k mod q

(v) outputs the pair (e, s) as the signature.

45

To verify the signature, a user B

(i) obtains A’s authentic public key (g, p, q, y),

(ii) verifies that 1 ≤ r ≤ p− 1; if not, then reject the signature

(iii) verifies that 1 ≤ s ≤ q − 1; if not, then reject the signature

(iv) computes v = gsy−e mod p and M ′ = ve mod p.

(v) verifies that M ′ has the required redundancy, and

(vi) recovers the message m = R−1(M ′).

1.12 Properties of an authentication protocol

Authentication may be informally defined as the process of verifying that an iden-

tity is as claimed, including who, what, and when.

ISO 7498-2 [2] distinguishes between data origin authentication (i.e. verifying the

origin of received data - a connectionless operation), and entity authentication (i.e.

verifying the identity of one entity by another - a connection-oriented operation).

Definition 1.12.1 Entity authentication is the process whereby one party is

assured (through acquisition of corroborative evidence) of the identity of a second

party involved in a protocol, and that the second has actually participated (i.e., is

active at, or immediately prior to, the time the evidence is acquired).

ISO 7498-2 [2] defines entity authentication as ‘the corroboration that an entity

is the one claimed’. We also need to distinguish between protocols providing uni-

lateral authentication and those providing mutual authentication. Unilateral au-

46

thentication is defined as ‘entity authentication which provides one entity with

assurance of the other’s identity but not vice versa’ and mutual authentication is

defined as ‘entity authentication which provides both entities with assurance of

each other’s identity’.

Definition 1.12.2 Data origin authentication techniques provide to a party

which receives a message assurance (through corroborative evidence) of the identity

of the party which originated the message.

We now consider what properties we require an authentication protocol to satisfy.

To do this we set up a model of an authentication protocol and consider what we

might require of a protocol in general.

We suppose that there are a pair of communicating entities A and B. A and B

wish to use an authentication protocol to provide either unilateral or mutual au-

thentication. We suppose that the protocol consists of a finite sequence of messages

as follows:

A B

-M1

� M2

-M3

� M4

...

Figure 1.3: Authentication protocol model

More specifically, we suppose that A starts the protocol and sends B the message

M1. B then sends A the message M2. A then sends B the message M3, and so on

47

until the protocol is complete. Note that we assume that the messages sent by A

and B are always alternating.

In addition we always assume that A or B will not send message Mi until message

Mi−1 has been correctly received (i.e. all cryptographic checks performed on the

message give valid results).

1.12.1 Requirements

After completion of the protocol, both parties will have ‘belief’ requirements re-

garding the messages exchanged. We first consider the beliefs that A wishes to

have (given that the protocol is designed to prove B’s identity to A).

A will want to be sure that:

1. M2,M4, . . . were all sent by B (as received),

2. M2,M4, . . . are ‘fresh’, i.e. not replays of old messages,

3. M2,M4, . . . were intended for A, and not for any other entity, and

4. M2,M4, . . . were only generated by B after M1,M3, . . . (respectively) were

received correctly by B.

In a similar way, B will want to be sure that:

1. M1,M3, . . . were all sent by A (as received),

2. M1,M3, . . . are ‘fresh’, i.e. not replays of old messages,

3. M1,M3, . . . were intended for B, and not for any other entity, and

48

4. M3,M5, . . . were only generated by B after M2,M4, . . . (respectively) were

received correctly by A.

In some sense property (4) implies both of properties (1) and (2), except for the

special case of B knowing message M1 was sent by A and is fresh (since property

(4) has nothing to say about message M1).

It is important to observe that A and B may well not be sure of these ‘beliefs’

until after completion of the protocol.

The exact list of properties needed for a protocol in a particular application may be

a subset of these lists; however, if we are defining ‘generic’ protocols for widespread

use (as in ISO/IEC 9798 [6]) then our selected protocol [5] in Chapter 4 should

have the specified properties which have been described above.

1.12.2 Authentication mechanisms

Authentication protocols require the use of a combination of either shared secrets

(keys or passwords) or signature/verification key pairs and accompanying cryp-

tographic mechanisms. These are used to ensure that the recipient of a protocol

message knows:

• where it has come from (original checking),

• that it has not been interfered with (integrity checking).

Note that cryptographic mechanisms (by themselves) cannot provide freshness

checking, i.e. the verification that a protocol message is not simply a replay of a

previously transmitted (valid) protocol message, protected using a currently valid

key. We consider the provision of freshness verification later.

49

A variety of different types of cryptographic mechanism can be used to provide

integrity and origin checking for individual protocol messages. We mention three

main possibilities:

• encipherment,

• integrity mechanism (MAC or Cryptographic Check Function),

• digital signature.

1.12.3 Freshness mechanisms

As we have already briefly noted, providing origin and integrity checking for pro-

tocol messages is not all that is required. We also need a means of checking the

‘freshness’ of protocol messages to protect against replays of messages from previ-

ous valid exchanges.

There are two main methods of providing freshness checking:

• the use of time stamps (either clock-based or ‘logical’ time-stamps),

• the use of nonces or challenges (as in the challenge-respond protocols).

We consider these two approaches in turn.

Clearly the inclusion of a date/time stamp in a message enables the recipient

to check it for freshness, as long as the time-stamp is protected by cryptographic

means.

However, in order for this to operate successfully all entities must be equipped with

securely synchronised clocks.

50

Every entity receiving protocol messages will need to define a time acceptance

‘window’ either side of their current clock value. A received message will then

be accepted as ‘fresh’ if and only if it falls within this window. This acceptance

window is needed for two main reasons:

• clocks vary continuously, and hence no two clocks will be precisely synchro-

nised, except perhaps at some instant in time, and

• messages take time to propagate from one machine to another, and this time

will vary unpredictably.

The use of an acceptance window is itself a possible security weakness, since it

allows for undetectable replay of messages for a period of time up to the length of

the window. To avert this threat requires each entity to store a ‘log’ of all recently

received messages.

One alternative to the use of clocks is for every pair of communicating entities

to store a pair of sequence numbers, which are used only in communications

between that pair. For example, for communications between A and B, A must

maintain two counters: NAB and NBA (B will also need to maintain two counters

for A).

Every time A sends B a message, the value of NAB is included in the message, and

at the same time NAB is incremented by A.

Every time A receives a message from B, then the sequence number put into the

message by B (N say) is compared with NBA (as stored by A):

• if N > NBA then

(i) the message is accepted as fresh, and

51

(ii) NBA is reset to equal N ,

• if N ≤ NBA then

(i) the message is rejected as an ‘old’ message.

Note that all time stamp protocols (both clock-based and logical time-stamp based)

have problems in providing property (4) from the list of desired properties for an

authentication protocol.

Nonce-based (or challenge-response) protocols use a quite different mechanism to

provide freshness checking. One party A say, sends the other party, B say, a nonce

(Number used ONCE) as a challenge. B then includes this nonce in the response

to A. Because the nonce has never been used before, at least within the lifetime

of the current key, A can verify the ‘freshness’ of B’s response (given that message

integrity is provided by some cryptographic mechanism).

Note that it is always up to A, the nonce provider, to make sure it is ‘new’. The

main property is the ‘one-time’ property, and this, in theory, could be provided

using a counter.

However, in order to prevent a special type of attack, many protocols also need

nonces to be unpredictable to any third party. More specifically, there are problems

with provision of properties (2) and (4) with some nonce-based protocols if nonces

can be predicted by third parties. Hence nonces are typically chosen at random

from a set sufficiently large to mean that the probability of the same nonce being

used twice is effectively zero.

We will consider an example of an authentication protocol, its shortcoming and a

fix in Chapter 4.

52

1.13 Key establishment, management, and cer-

tification

Cryptographic techniques depend upon cryptographic keys. Management of these

keys is itself a complex subject and a crucial aspect of providing security.

Key management includes ensuring that key values generated have the necessary

properties, making keys known in advance to the parties that will use them, and

ensuring that keys are protected as necessary against disclosure and/or substitu-

tion. The methods of key management vary substantially depending on whether

the keys being managed are those of symmetric cryptosystems or of public-key

cryptosystems. This section gives a brief introduction to a methodology for ensur-

ing the secure distribution of keys for cryptographic purposes.

Key establishment protocols and related cryptographic techniques provide shared

secrets between two or more parties, typically for subsequent use as symmetric

keys for a variety of cryptographic purposes including encryption, message au-

thentication, and entity authentication. The main focus here is two party key

establishment, with the aid of a trusted third party in some cases.

Definition 1.13.1 Key management is the set of processes and mechanisms

which support key establishment and the maintenance of ongoing keying relation-

ships between parties, including replacing older keys with new keys as necessary.

Definition 1.13.2 Key establishment is a process or protocol whereby a shared

secret becomes available to two or more parties, for subsequent cryptographic use.

Key establishment may be broadly subdivided into key transport and key agree-

ment, as defined below.

53

Definition 1.13.3 A key transport protocol or mechanism is a key establish-

ment technique where one party creates or otherwise obtains a secret value, and

securely transfers it to the others.

Definition 1.13.4 A key agreement protocol or mechanism is a key establish-

ment technique in which a shared secret is derived by two or more parties as a

function of information contributed by, or associated with, each of these, such that

no party can predetermine the resulting value.

1.13.1 Key management through public-key techniques

There are a number of ways to address the key management problem through

public-key techniques. Chapter 4 describes some of these in detail. For the purpose

of this section a very simple model is considered.

Each entity in the network has a public/private encryption key pair. The public-

key along with the identity of the entity is stored in a central repository called

a public file. If an entity Ai wish to send encrypted messages to entity Aj, Ai

retrieves the public-key ej of Aj from the public file, encrypts the message using

this key, and sends the ciphertext to Aj, where i = 1, . . . , n, j = 1, . . . , n, i 6= j.

Advantages of this approach include:

(i) No trusted third party is required,

(ii) The public file could reside with each entity,

(iii) Only n public keys need to be stored to allow secure communications between

any pair of entities, assuming the only attack is that by a passive adversary.

54

The key management problem becomes more difficult when one must take into

account an adversary who is active (i.e. an adversary who can alter the public

file containing public keys). For example, the adversary alters the public file by

replacing the public key ej of entity Aj by the adversary’s public key e∗. Any

message encrypted for Aj using the public key from the public file can be decrypted

by only the adversary. Having decrypted and read the message, the adversary can

now encrypt it using the public key of Aj and forward the ciphertext to Aj. Ai

however believes that only Aj can decrypt the ciphertext c.

To prevent this type of attack, the entities may use a Trusted Third Party (TTP) to

certify the public key of each entity. The TTP has a private signing algorithm and

a verification algorithm assumed to be known by all entities. The TTP carefully

verifies the identity of each entity, and signs a message consisting of an identifier

and the entity’s authentic public key. This is a simple example of a certificate,

binding the identity of an entity to its public key. Ai uses the public key of Aj

only if the certificate signature verifies successfully.

Advantages of using a TTP to maintain the integrity of the public file include the

following.

(i) It prevents an active adversary from impersonation on the network.

(ii) The TTP cannot monitor communications. Entities need only trust the TTP

to bind identities to public keys properly.

(iii) Per-communication interaction with the public file can be eliminated if enti-

ties store certificates locally.

Even with the use of TTPs, some concerns still remain:

55

(i) If the signing key of the TTP is compromised, all communications become

insecure.

(ii) All trust is placed with one entity.

1.13.2 Key authentication and key confirmation

It is generally desired that each party in a key establishment protocol be able to

determine the true identity of all other entities who could possibly gain access to

the resulting key, implying preclusion of any unauthorised additional parties from

deducing the same key.

Definition 1.13.5 Key authentication is the property whereby one party is

assured that no other party aside from a specifically identified second party (and

possibly additional identified trusted parties) may gain access to a particular secret

key.

Definition 1.13.6 Key confirmation is the property whereby one party is as-

sured that a second (possibly unidentified) party actually has possession of a par-

ticular secret key.

Note that in key authentication it is the identity of the second party which is the

significant feature, rather than the value of the key, whereas in key confirmation

the opposite is true. Key confirmation typically involves one party receiving a

message from the second containing evidence demonstrating the latter’s possession

of the key.

56

1.13.3 Adversaries in key establishment

When examining the security of protocols, it is assumed that the underlying cryp-

tographic mechanisms used, such as encryption algorithms and digital signatures

schemes, are secure. If not, then there is no hope of a secure protocol. An adver-

sary is hypothesized to be not a cryptanalyst attacking the underlying mechanisms

directly, but rather one attempting to subvert the protocol objectives by defeating

the manner in which such mechanisms are combined, i.e., attacking the protocol

itself. In addition, the presence of an unauthorised third party is given many names

under various circumstances, including: adversary, intruder, opponent, enemy, at-

tacker, eavesdropper and impersonator.

Definition 1.13.7 A passive attack involves an adversary who attempts to de-

feat a cryptographic technique by simply recording data and thereafter analysing

it (e.g., in key establishment, to determine the session key). An active attack

involves an adversary who modifies or injects messages.

An adversary in a key management protocol may pursue many strategies, including

attempting to:

(i) deduce a session key using information gained by eavesdropping,

(ii) participate covertly in a protocol initiated by one party with another, and

influence it, e.g., by altering messages so as to be able to deduce the key,

(iii) initiate one or more protocol executions, and combine (interleave) messages

from one with another, so as to masquerade as some party or carry out one

of the above attacks,

57

(iv) without being able to deduce the session key itself, deceive a legitimate party

regarding the identity of the party with which it shares a key. A protocol

susceptible to such an attack is not resilient.

In entity authentication, where there is no session key to attack, an adversary’s

objective is to arrange that one party receives messages which satisfy that party

that the protocol has been run successfully with a party other than the adversary.

Distinction is sometimes made between adversaries based on the type of informa-

tion available to them. An outsider is an adversary with no special knowledge

beyond that generally available, e.g., by eavesdropping on protocol messages over

open channels. An insider is an adversary with access to additional informa-

tion (e.g., session keys or secret partial information), obtained by some privileged

means (e.g. physical access to computer resources, conspiracy, etc). A one-time

insider obtains such information at one point in time for use at a subsequent time,

a permanent insider has continual access to privileged information.

1.14 Secret sharing

Secret sharing is an important and widely studied tool in cryptography and dis-

tributed computation. Informally, a secret sharing scheme is a protocol in which

a dealer distributes a secret among a set of participants such that only specific

subsets of them, defined by the access structure, can recover the secret at a later

time. The surveys by Stinson [57] (see Chapter 11) and Simmons [56] (see Chapter

9) provide a general description of secret sharing schemes.

Much research in the area of secret sharing has concentrated on the size of the

shares. Although the size of the shares is important because the shares have to

58

be transmitted and stored secretly, this is not the only information the partici-

pants must know to reconstruct the secret. Additional knowledge needed includes,

for example, the identity of the participants and the description of the protocol,

including the access structure. These parameters are publicly known, but at the

same time it is vital that they are authentic, i.e. that no malicious participant has

changed these descriptions. This is particularly important if the participants are

computer systems that receive the descriptions over a potentially insecure commu-

nications link.

Suppose that you want to give enough information to a group of people so that

a secret (e.g., a key or password), which we think of as an integer, say N , can

be determined by any group of t of them, but if only t− 1 collaborate they learn

nothing about the secret. This problem can be solved by means of a secret sharing

scheme which is a multi-party protocol related to key establishment. The original

motivation for secret sharing is the following. To safeguard cryptographic keys from

loss, it is desirable to create backup copies, although these copies are themselves

a security risk. Secret sharing addresses this issue by allowing enhanced reliability

without increased risk. They also facilitate distributed trust or shared control

for critical activities (e.g., signing corporate cheques, opening bank vaults), by

requiring cooperation by t out of n users for access to a critical action.

The idea of secret sharing is to start with a secret, and divide it into pieces called

shares which are distributed amongst users such that the pooled shares of specific

subsets of users allow reconstruction of the original secret. This may be viewed

as a key distribution technique, facilitating one-time key establishment, wherein

the recovered key is pre-determined (static), and in the basic case, the same for all

groups. We provide below a simple definition of a secret sharing scheme.

59

Definition 1.14.1 A secret sharing scheme is a protocol involving a set P =

{P1, . . . , Pn} of participants and a dealer D, where D 6∈ P . Let Γ ⊂ 2P be the set

of subsets of participants permitted access to the secret; this is called the access

structure. The dealer D chooses a secret K and distributes privately to each

participant Pi ∈ P a share Si of K such that:

(i) any authorized set X ∈ Γ can reconstruct the secret K from its shares,

(ii) no unauthorized set X 6∈ Γ can do so.

Definition 1.14.2 Let Γ∗ ⊂ Γ be the set of minimal authorised sets, that is, of

sets X ∈ Γ such that: Y ⊆ X and Y ∈ Γ implies that Y = X.

Definition 1.14.3 A secret sharing scheme is perfect if the shares corresponding

to each unauthorized subset provide absolutely no information about the shared

secret.

Definition 1.14.4 Let t, n be positive integers, t ≤ n. A (t, n)-threshold

scheme is a method of sharing a key K among a set of n participants (denoted

by P), in such a way that any t participants can compute the value of K, but no

group of t− 1 participants can do so. In other words it is a secret sharing scheme

for which the access structure Γ consists of all t-subsets of P .

1.14.1 The Shamir threshold scheme

The Shamir (t, n)-threshold scheme [53] is based on polynomial interpolation over

a finite field Fp, where p is a prime, and the fact that a polynomial f(x) of degree

t− 1 is uniquely determined by a set of t pairs (xi, f(xi)), where all xi are distinct.

60

Let the set of possible secrets be K = Zp, where p ≥ t + 1 is prime, and let

S = Zp. The secret key will be an element of Zp, as will be the shares given to the

participants. The Shamir threshold scheme is described as follows:

(i) Initialization phase

D chooses t distinct, non zero elements of Zp, denoted xi, 1 ≤ i ≤ t (this is

where we require p ≥ t + 1). For 1 ≤ i ≤ t, D gives the value xi to Pi. The

values xi are public.

(ii) Distribution phase

1. Suppose D wants to share a key K ∈ Zp. D secretly chooses (indepen-

dently at random) t− 1 elements of Zp, a1, . . . , at−1.

2. For 1 ≤ i ≤ t, D computes yi = f(xi), where

f(x) = K +
t−1∑

j=1

ajx
j mod p.

3. For 1 ≤ i ≤ t, D gives the share yi to Pi.

(iii) Reconstruction phase

Any set X ∈ Γ of t where X = {xi1 , . . . , xit} or more participants can

reconstruct the secret key K = f(0) by substituting x = 0 into the Lagrange

interpolation formula:

K =
t∑

j=1

yij

∏

1≤k≤t,k 6=j

xik

xik − xij

.

In 1988, Tompa and Woll [58] demonstrated that Shamir’s original (t, n) threshold

scheme is vulnerable to cheating. That is, the last participant of an authorised

set can always cheat the other participants during the reconstruction of the secret,

without being detected. As a result, the dishonest participant obtains the true

secret while the other participants obtain a false one.

61

1.14.2 Secret sharing schemes with extended capabilities

Secret sharing schemes with a variety of extended capabilities exist, including:

(i) pre-position secret sharing schemes. All necessary secret information is

put in place excepting a single (constant) share which must later be commu-

nicated, e.g., by broadcast, to activate the scheme.

(ii) dynamic secret sharing schemes. There are pre-positioned schemes

wherein the secrets reconstructed by various authorised subsets vary with

the value of communicated activating shares.

(iii) multi-secret threshold schemes. In these secret sharing schemes different

secrets are associated with different authorised subsets.

(iv) detection of cheaters and verifiable secret sharing. These schemes

respectively address cheating by one or more group members, and the dis-

tributor of the shares.

(v) secret sharing with disenrollment. These schemes address the issue that

when a secret share of a (t, n) threshold scheme is made public, it becomes

a (t− 1, n) scheme.

62

Chapter 2

Online Secret Sharing Schemes

2.1 Introduction

In this chapter we will focus on novel computationally secure secret sharing schemes

for general access structures, where all shares are as short as the secret.

Online secret sharing schemes provide the capability to dynamically change

the secret and add participants, without having to redistribute new shares secretly

to the current participants.

These capabilities are traded for the need to store online additional authentic

(but not secret) information at a publicly accessible location, e.g. on a notice

board. Alternatively, this information can be broadcast to the participants over

a public channel. In particular, online secret sharing schemes have the following

properties:

(i) All shares that must be transmitted and stored secretly once for every partic-

ipant are as short as the secret.

63

(ii) Different secrets can be shared with different access structures without requir-

ing the shares held by participants to change. This includes the ability for

the dealer to change the secret after the shares have been distributed.

(iii) The dealer can update the scheme online: When a new participant is added

and the access structure is changed, already distributed shares remain valid.

Apart from the new participant’s share that is secretly transmitted to him,

only publicly readable information has to be changed.

Compared to traditional secret sharing schemes, online secret sharing schemes are

very flexible and use only small shares. The difference lies in the additional use of

publicly accessible information and in the security model being based on computa-

tional security. As for the use of authentic storage, we note that public information

is needed in all traditional secret sharing schemes, and that authenticity usually

costs much less than secrecy to implement.

Online secret sharing schemes have potential practical applications in situations

where the participants and the access rules or the secret itself frequently change.

No new shares have to be distributed secretly when new participants are included

or participants leave. Such situations often arise in key management and escrowed

encryption systems.

For example, consider a high security area within a bank where employees and

managers are not permitted outside of normal working hours. At such times, only

groups consisting of one manager and at least two employees may enter and a

secret sharing scheme is used to share the access code. If, for instance, a manager

is fired, he may disclose his share. With an online secret sharing scheme, only the

access code and the notice board have to be updated, and the other managers and

employees do not have to be given new shares.

64

Another example is a group of frequently changing participants of varying size,

where at all times two thirds of the current group members are needed to invoke

some action, for instance to reconstruct a master key used for escrowing keys of

malicious users.

In this Chapter we will study and analyse online secret sharing schemes. In section

2.2, we give a model for online secret sharing schemes. We describe a method for

detecting cheating and identifying all cheaters within the context of this general

model. All the schemes considered in the remainder of this chapter are concrete ex-

amples derived from the basic model. Note that this general model, whilst implicit

to the previously proposed schemes, has not previously been made explicit. In sec-

tion 2.3, we study an online secret sharing scheme with general access structures

due to Cachin [13]. This scheme has shares as short as the secret, and participants

may be dynamically added or deleted without having to redistribute new shares se-

cretly to the existing participants. However, this scheme does not allow the shares

to be reused after the secret has been reconstructed without a further distributed

computation subprotocol such as Goldreich et al. [22]. Alternatively, for access to

a predetermined number of secrets in fixed order, an additional mechanism such

as a variant of the one time user authentication protocol of Lamport [31] needs to

be used.

Section 2.4 presents Pinch’s scheme [48] which is a modified version of the Cachin

protocol in which the participants’ shares can be reused, thus overcoming these

problems. It is based on the intractability of the Diffie-Hellman problem [18].

In section 2.5, we review the work of Ghodosi et al. [21], who pointed out that

Pinch’s scheme is vulnerable to cheating. They then modified the Pinch scheme in

such a way that cheating is prevented.

65

However Ghodosi et al.’s modification to Pinch’s scheme does not protect a mi-

nority of participants of the authorised set from a colluding majority, who falsely

accuses the minority of cheating. Thus, we propose a further novel modification

to Pinch’s scheme to fix this problem in section 2.6.

In section 2.7, we propose a new scheme for computationally secure online secret

sharing, in which the shares of the participants can be reused. The security of the

scheme is based on the intractability of factoring. This scheme has the advantage

that it detects cheating and enables the identification of all cheaters, regardless of

their numbers, improving on the previous results by Pinch and Ghodoshi et al.

2.2 Model for online secret sharing

The main reasons for using online secret sharing in comparison to a traditional

secret sharing are as follows:

In traditional secret sharing, the shares and key are fixed when the scheme is

set up. Once the secret has been constructed, the participants’ shares cannot be

used again. Shares must be distributed to share new secrets or change the access

structure. Whereas in online secret sharing, a participant can be added or removed

online without having to distribute new secret shares to existing participants

and the participants’ shares can be used to construct multiple secrets. These

capabilities are gained by using data stored in a publicly accessible location such as

a notice board. Moreover, with this facility one can detect cheating by comparing

the hashed value of the reconstructed secret with the hashed value of the secret

which is stored in the publicly accessible location. Furthermore, one can identify

cheaters by checking the signatures of the messages sent during the reconstruction

66

phase.

2.2.1 Requirements

There are four requirements for the general model for online secret sharing of

multiple secrets.

1. Online: It must provide a method to update the scheme online.

2. Multiple secrets: It must provide a method to construct multiple secrets.

3. Detect cheating: It must provide a method to detect cheating when a par-

ticipant or a group of collaborating participants deliberately contributes in-

correct shares to the protocol and prevents incorrect reconstruction of the

secret.

4. Identify cheaters: It must provide a method to identify cheaters once the

cheating has occurred.

2.2.2 Properties of Model

We now describe the properties of the model which meet the above mentioned

requirements.

1. The simplest example of a secret sharing scheme is where the key K is the

exclusive-or of the shares Sx, x ∈ X, held by the participants of an authorised

subset X.

K =
∑

x:Px∈X Sx.

67

As Cachin [13] has shown this can be turned into an online scheme for a set

Y of participants by choosing K and the shares Sy arbitrarily and publishing

a function f and a value TX for each authorised subset X ⊆ Y where

TX = K − f(
∑

x:Px∈X Sx).

For new values of K and new authorised subset X it is sufficient to publish

new value TX . The function f must be one-way to ensure that information

about the shares cannot be deduced by manipulating such equations. It is

this method that we adopt to make our scheme online.

A participant can be added or removed online without having to distribute

new secret shares to existing participants. These capabilities are gained by

using data stored on the notice board. Also, the dealer can update the pub-

licly readable information and the access structure from a publicly accessible

location.

2. When multiple secrets are to be shared, it is sufficient to have a different

one-way function f for each key K. However, this requires that the recon-

struction protocol is such that the value
∑

x:Px∈X Sx does not become public

in the reconstruction phase. This would be achieved, for example, by using

a distributed computation subprotocol such as Goldreich et al. [22] in the

reconstruction phase. Alternatively one can protect the shares from being

revealed by encapsulating them. Thus instead of a simple sum, a one-way

function of the shares is calculated in such a way that only an encapsulation

of share from which no information about the share can be calculated, be-

comes public. In this case multiple secrets can be shared by using different

encapsulating functions.

A dealer and the participants use an encapsulation function to safeguard the

68

participants’ shares to ensure that the reconstruction of one or more does

not compromise the others of a collection of multiple secrets.

3. The public notice board provides an efficient means for detecting cheating.

A dealer publishes a hash of the secret key on the notice board which is then

compared with the hash of the reconstructed secret key by each participant

to detect cheating.

4. The identification of cheaters depends on having a method of verifying what

each participant has contributed to the reconstruction of the secret. This

can be achieved using digital signatures.

Each participant signs the encapsulated share. If cheating is detected, then

the dealer verifies the signatures of the encapsulated share sent during the

reconstruction phase to identify cheaters.

2.2.3 Preliminaries

We adopt the simple definition of secret sharing scheme (see Section 1.14). Let g

and f be globally agreed functions, and let e be a encapsulation function which is

used to conceal the secret shares. We shall require that finding the participant’s

shares is computationally infeasible given knowledge of g, f , K, e and the pub-

licly accessible information. We also require that it is easy to compute K given

knowledge of g, f , e, the participants’ shares, and publicly accessible information.

We shall also make use of a one-way hash-function h which is collision-resistant

(for further information see Definition 1.11.1 and Sections 9.2 and 9.7 of [39]). In

order to identify all cheaters, every participant will use an agreed digital signature

scheme, and must have selected a private/public key pair for this scheme. More-

69

over, every participant must have a means of obtaining a verified copy of the public

signature verification key of every other participant. This could, for example, be

provided by having a Trusted Third Party (e.g. the dealer, D) certify the public

key of every participant, and having every participant distribute their certificate

with every signed message they send.

2.2.4 The protocol

We present a model for online secret sharing scheme in which the participants of

an authorised set compute the secret K by combining their encapsulated secret

shares with a function f . In this way the participants will not reveal their secret

shares during the process of recovering K. The protocol uses a publicly accessible

location, e.g. a notice board, where the dealer can store non-forgeable information

accessible to all participants. This location will, at least, indicate the number

of participants n, the access structure Γ, and the function f for each authorised

subset X of participants.

There are two versions of the protocol, according as the participants of an autho-

rised set

(Version 1) perform calculation in sequence (each participant using the result of

his/her predecessor in his/her own calculation) or

(Version 2) perform independent calculations which are then combined in a final

single calculation.

Note that this protocol relies on globally agreed functions g and f .

Distribution phase

70

The basic protocol to share the secret K according to an access structure Γ is as

follows.

First the dealer D randomly chooses secret shares Si, i = 1, 2, . . . , n. Then D

transmits each share Si to participant Pi over a secret channel in Figure 1.4, and

securely stores Si for subsequent use to identify cheaters, if cheating is detected.

For each minimal authorised set X ∈ Γ∗ the dealer D selects an encapsulation

function e and finds a value TX for which

(Version 1) Calculation in sequence

K = g(TX , f(e(S1, . . . , St)))

where e(S1, . . . , St) denotes the outcome of a sequence of encapsulating func-

tion by participants P1, . . . , Pt or

(Version 2) Independent calculation

K = g(TX , f(e(S1), . . . , e(St)))

where e(Si) denotes encapsulation by participant Pi.

Thus the globally agreed function g should be invertible to allow the recovery of

TX from K and the output of f . Example of possible candidates for the function

g include the invertible group operation or exclusive-or of bit-strings.

The function f must be one-way. Note that examples of one-way functions include

RSA, ElGamal and one-way collision-resistant hash-functions such as MD4, MD5

and SHA-1.

The properties of the encapsulation function e are described below in the recon-

struction method 1 and 2.

71

In order to detect cheating the dealer D posts the following items on the notice

board: (X, TX) for every X ∈ Γ∗, and the value h(K). Also note that we assume

that the items on the notice board can be altered only by the dealer D. In other

words, only the dealer can write data items on the notice board in Figure 1.4. We

assume that each participant can read data items from the notice board.

Dealer Notice Board

P1 P2 Pt

S1 S2 . . . St

R

. . .

6

R: Read only

W: Write only

M: Modify only

-R,W,M

?

@
@
@
@
@R

PPPPPPPPPPPPPPq

Figure 1.4: Online secret sharing

We now describe two different ways to perform secret reconstruction. In version 1

reconstruction method 1 relies on a ‘last participant’ who reconstructs the secret

on behalf of a minimal trusted set. In version 2 reconstruction method 2 diffuses

the responsibility among all participants who reconstruct the secret.

Reconstruction method 1

In this sequential method participant Pi uses the output of participant Pi−1, de-

noted e(S1, . . . , Si−1), to encapsulate his/her share Si and we write e(S1, . . . , Si)

for his/her output too.

Note that function e is used to conceal the values of secrets S1, S2, . . . , St. Thus,

function e must have the following properties for use in this reconstruction method.

72

(i) Given Si and e(S1, S2, . . . , Si−1) it must be feasible to compute e(S1, S2, . . . , Si).

(ii) Knowledge of e(S1, S2, . . . , Si) yields no useful information about the values

of S1, S2, . . . , Si

To recover the secret K, a minimal trusted set X = {P1, P2, . . . , Pt} of participants

comes together and performs the following steps:

Step 1 Participant P1 reads h(K) and computes and sends e(S1) and a signature

on a data string consisting of e(S1) and X (using his/her private signature

key) i.e. sP1 = signP1
(e(S1)||X) to P2, where || denotes concatenation of data

items.

Step 2 Each subsequent participant Pi, for 1 < i < t, reads h(K) and receives

e(S1, S2, . . . , Si−1). Pi verifies the signature, sPi−1
= signPi−1

(e(S1, S2, . . . , Si−1)||X),

it received from the previous participant Pi−1 by using his/her public key. Pi

then computes e(S1, S2, . . . , Si) from Si and e(S1, S2, . . . , Si−1), signs it, and

sends the result and its signature sPi
to Pi+1.

Step 3 The final participant Pt also reads h(K) and receives e(S1, S2, . . . , St−1),

verifies the signature sPt−1 , and uses this value with St to form

VX = e(S1, S2, . . . , St).

The last participant sends VX to the other participants using a secret channel.

Step 4 Each participant reads TX from the notice board and can now reconstruct

K as K = g(TX , f(VX)).

One can easily verify the completeness of the protocol: every authorised subset

X ∈ Γ∗ can recover K.

73

Reconstruction method 2

In this method the participants individually encapsulate their shares using a func-

tion e and the results are combined.

Note that the function e is used to conceal the values of secrets S1, S2, . . . , St.

Function e must have the following properties for use in this reconstruction method.

(i) Given Si it must be feasible to compute e(Si).

(ii) Knowledge of e(Si) yields no useful information about the value of Si.

A minimal authorised set X ∈ Γ∗ of participants can compute K by performing

the following steps:

Step 1 Each participant Pi ∈ X reads h(K) and the value TX corresponding

to the appropriate set X from the notice board. Then Pi signs the data

string consists of e(Si) and X (using his/her private signature key) i.e. sPi
=

signPi
(e(Si)||X). e(Si) and sPi

are sent by each participant Pi to all the other

participants in X on a secret channel.

Step 2 Each participant Pi ∈ X verifies all the signatures it has received, by

using the public keys of the senders, and then combines encapsulated t secret

shares to form

VX = e(S1), . . . , e(St).

Step 3 Each participant Pi ∈ X reads TX from the notice board and reconstructs

K as follows:

K = g(TX , f(VX)).

One can easily verify the completeness of the protocol: every authorised subset

X ∈ Γ∗ can recover K.

74

2.2.5 Online multiple secret sharing

The protocol satisfies requirement 1 of section 2.2.1 i.e. it is online. Indeed if the

key is changed or new participants join the collection of authorised subsets then

only the possible values TX need to be updated (after shares are chosen for the

new participants).

In order to share multiple secrets Kh, one can replace f by a family F = {fh :

h = 1, 2, . . . , w} of functions, so that different functions are employed for different

secrets. However, as discussed above for the case of the Cachin scheme, this would

require VX to be calculated using a distributed computation subprotocol. An

alternative method that enables reuse of the same shares Si and the same function

f , is to ensure that each entry on the notice board has a fresh encapsulation

function eh attached, e.g. K = g(TX , f(eh(S1, . . . , St))) for reconstruction method

1 and K = g(TX , f(eh(S1), . . . , eh(St))) for reconstruction method 2. Whenever eh

is changed, new values of TX are placed on the notice board. By the properties

of the encapsulating function no information about the shares is revealed in the

reconstruction of a secret. Hence the scheme may be used for multiple secret

sharing and so the protocol satisfies requirement 2.

2.2.6 How cheating may occur

Note that almost all secret sharing schemes are vulnerable to cheating. For in-

stance, an untrustworthy participant Pi may cheat by submitting a share S ′i differ-

ent than its own Si, but carefully computed such that pooling of shares provides

other participants with no information about the secret K while allowing Pi to

recover K. Whereas the reconstruction calculates a fake secret K ′ (from the false

75

share S ′i), participant Pi can use K ′ and Si to calculate the correct secret K.

2.2.7 How to detect cheating

We now describe a simple and general method for detecting cheating which applies

to any online secret sharing scheme.

In the initialisation phase of the scheme, the dealer D publishes h(K) on the notice

board for every secret K that is being shared. Every participant, having recon-

structed the secret, say K ′, can verify its validity by hashing it and comparing the

resulting hashed value h(K ′) with the value on the notice board. If the verifica-

tion fails, then most probably cheating has occurred in the protocol and thus the

computed secret is not correct. Thus the protocol satisfies requirement 3.

This technique detects cheating but does not identify the cheater(s). We now show

how to identify all the cheaters.

2.2.8 How to identify all cheaters

In the event of cheating having been detected by the method just described, the

participants in the authorised set X can appeal to the dealer D to help to discover

the identity of the cheaters. Notice that the dealer will only be involved in arbi-

tration after cheating has been detected, and will not need to be actively involved

in the normal operation of the reconstruction phase of the scheme.

If cheating is detected by the method described above, then every participant sends

to the dealer the signed data strings they received during execution of the protocol

and the hash of the key.

There are two ways of identifying cheaters, the choice of which depends on the

76

method used in the reconstruction phase.

Theorem 2.2.1 In an online secret sharing scheme using reconstruction method

1 (described in section 2.2.4), the dealer D can identify all cheaters if a secure

digital signature scheme is used.

Proof

Every participant sends to the dealer the signed data strings they received during

execution of the protocol. The dealer D calculates e(S1), e(S1, S2), . . . , e(S1, . . . , St−1)

in sequence, checking that these are what was submitted by P1, P2, . . . , Pt−1. As

soon as a calculated value e(S1, S2, . . . , Si) does not equal the submitted value, D

knows that Pi cheated. Pi cannot claim to have been framed, since D has Pi’s

signature on sPi
.

Then D uses the cheater’s submission to check Pi+1’s submission and so on (i.e. for

every i, D verifies that the value signed by Pi used to encapsulate Si+1 produces

an encapsulation equal to the value signed by Pi+1). Thus, D will then be able

to identify all the parties who sent incorrect values during the protocol. If all

submission are correct but the hash of the key is not correct then participant Pt

has cheated.

2

Theorem 2.2.2 In an online secret sharing scheme using reconstruction method

2 (described in section 2.2.4), the dealer D can identify all cheaters if a secure

digital signature scheme is used.

Proof

Every participant Pi ∈ X sends to the dealer the data received during execution

77

of the protocol, signed with their private key. The dealer verifies the signed data

received from each Pi, and compares the submitted value of e(Si) with that com-

puted by using the stored value of the share Si. If a submitted value is different

from the calculated value, then Pi cheated. Pi cannot claim to have been framed,

since D has Pi’s signature sPi
on the data. Therefore, the dealer will be able to

identify all the parties who sent incorrect values during the protocol.

2

By theorem 2.2.1 and 2.2.2 the protocol satisfies requirement 4. In the remainder

of this chapter we study and analyse several online secret sharing schemes which

are examples of the basic general model.

2.3 The Cachin scheme

In 1995, Cachin [13] proposed the first computationally secure secret sharing

scheme for general access structures providing the capability to share multiple

secrets and to dynamically add or remove participants online, without the need to

redistribute new shares secretly to the current participants.

The scheme is secure given a secure one-way function in the sense that a non-

qualified set of participants running a polynomial time algorithm cannot determine

the secret with non-negligible probability. To prevent an attack by exhaustive

search, however, the set of possible secrets must not be too small.

78

2.3.1 Preliminaries

We assume the simple definition of secret sharing scheme (see Section 1.14). Cachin

assumed that the secret K is an element of a finite Abelian group G, e.g. the set

of `-bit strings under bitwise addition modulo 2.

We will make use of a one-way function f : G → G such that f(x) is easy to

compute for all x ∈ G (i.e. can be computed in time polynomial in `) and that it is

computationally infeasible, for a given y ∈ G, to find an x ∈ G such that f(x) = y.

To achieve reasonable security, the security parameter ` and thus the set of possible

secrets have to be chosen to be sufficiently large. Today, many apparently secure

one-way functions exist with typical l ranging from 64 to 160.

2.3.2 The basic scheme

We first describe Cachin’s online scheme for sharing one secret.

Distribution phase

The basic protocol to share a secret K ∈ G amongst n participants P1, P2, . . . , Pn

works as follows:

Step 1 The dealer randomly chooses n elements S1, S2 . . . , Sn from G according

to the uniform distribution.

Step 2 For all i = 1, 2, . . . , n the dealer transmits Si over a secret channel to Pi.

Step 3 For each minimal qualified subset X ∈ Γ∗, the dealer computes

TX = K − f(
∑

x:Px∈X Sx)

and publishes TX and X ∈ Γ∗ on the bulletin board.

79

Reconstruction phase

To recover the secret K, a qualified set of participants Y proceeds as follows:

Step 1 The members of Y agree on a minimal qualified subset X ⊆ Y .

Step 2 The members of X add their shares together to get VX =
∑

x:Px∈X Sx and

apply the one-way function f to the result VX .

Step 3 They fetch TX from the bulletin board and compute K = TX + f(VX).

One can easily verify the completeness of the protocol, i.e. every qualified subset

X ∈ Γ∗ can recover K. This scheme only meets requirement 1 of section 2.2.1.

2.3.3 Sharing multiple secrets

In order to share multiple secrets, Cachin replaced f by a family F = {fm} of

one-way functions so that different one-way functions are employed for different

secrets.

Distribution phase & Reconstruction phase

The following protocol is used to share w secrets Km amongst n participants

P1, P2, . . . , Pn with different access structures Γm for m = 1, 2, . . . , w:

Step 1 The dealer randomly chooses n elements S1, S2, . . . , Sn from G according

to the uniform distribution.

Step 2 For all i = 1, 2, . . . , n, the dealer transmits Si over a secret channel to Pi.

80

Step 3 For each secret Km to share, m = 1, 2, . . . , w, and for each minimal quali-

fied subset X ∈ Γ∗m, the dealer computes

TX,m = Km − fm(
∑

x:Px∈X Sx)

and publishes TX,m and fm.

It is important to note that the shares have to be protected from other partici-

pants during the reconstruction phase. Otherwise, these participants could subse-

quently recover other secret shares Si which they are not allowed to know (without

agreement of the other memebers of the authorised subset). Therefore, in the re-

construction phase that the computation of fm(VX) must be performed without

revealing the set of inputs {Si|Pi ∈ X}. Cachin suggested possible ways of achiev-

ing this including the presence of a trusted device to perform the computation or

the use of a distributed evaluation protocol such as Goldreich et al. [22]. Thus this

scheme satisfies requirements 1 and 2 of section 2.2.1.

2.3.4 Comments on Cachin’s scheme

Cachin never considers two requirements, namely the detection of cheating and the

identification of cheaters. Thus, there are some drawbacks to the Cachin scheme,

notably that if a participant or a group of participants decides to cheat then there

is no way to identify the cheat (observing that the scheme omits the hashed key

h(K) included in the general model of section 2.2).

81

2.4 Pinch’s scheme

First note that Cachin’s protocol, as discussed in Section 2.3, does not allow the

shares to be reused after the secret has been reconstructed without a further dis-

tributed computation subprotocol such as Goldreich et al. [22] as part of the

reconstruction. Alternatively for access to a predetermined number of secrets in

fixed order, a variant of the one time user authentication protocol of Lamport [31]

or some other analogous technique can be used.

Pinch’s scheme [48] is a modified protocol which overcomes these problems. It is

based on the intractability of the Diffie-Hellman problem [18].

2.4.1 Preliminaries

We assume the simple definition of secret sharing scheme (see Section 1.14) as in

the scheme of Cachin. In the remainder of this section we work within the ring of

integers modulo p, for some prime p. We suppose p− 1 has a large prime factor q,

and we choose an element g ∈ Zp of order q. The primes p and q must be chosen

so that determining discrete logarithms to the base g modulo p is computationally

infeasible. Most of our calculations involve working within the multiplicative cyclic

group of order q generated by g. It is possible to describe the schemes in a more

general group-theoretic framework, although we do not consider this here. We also

use a one-way function f : G → G.

2.4.2 The basic scheme

Distribution phase

82

The basic protocol to share K ∈ Zp amongst n participants P1, P2, . . . , Pn works

as follows:

Step 1 The dealer D, who knows the secret K, randomly chooses secret shares

Si < q for each participant Pi and transmits Si over a secure channel to Pi.

Step 2 For each minimal trusted set X ∈ Γ∗ the dealer D randomly chooses gX

to be an element of multiplicative order q (mod p), and computes

TX = K − f(g

∏
Px∈X

Sx

X) mod p

and posts the pair (gX , TX) on the notice board.

Reconstruction phase

To recover the secret K, a minimal trusted set X = {P1, P2, . . . , Pt} of participants

comes together and performs the following steps:

Step 1 Participant P1 reads gX from the notice board and sends gX
S1 mod p to

P2.

Step 2 Each subsequent participant Pi, for 1 < i < t, receives gX
S1S2...Si−1 mod p,

raises it to the power Si and sends the result, which equals gX
S1S2...Si mod p,

to Pi+1.

Step 3 The final participant Pt receives gX
S1S2···St−1 mod p and raises this value

to the power St to form

VX = gX
S1S2···St mod p = g

∏
Px∈X

Sx

X mod p.

Step 4 On behalf of group X, member Pt reads TX from the notice board and

can now reconstruct K as K = TX + f(VX) mod p.

83

This scheme meets requirements 1 and 2 of section 2.2.1. If there are multiple

secrets Ki to share, then it is possible to use the same shares Si and one way

function f , provided that each entry on the notice board has a fresh value gX

attached.

Pinch also has a variant proposal which avoids the necessity for the first participant

P1 to reveal gX
S1 mod p at step 1. P1 takes r modulo q at random and forms

gX
rS1 mod p and passes the result to P2, who continues as before. At the end of

the protocol, Pt returns the computed value gX
rS1S2···St mod p to P1 who computes

VX = (gX
rS1S2···St)r−1

mod p

where r−1 is the inverse of r mod q (the other parts of the protocol are the same

as the original protocol).

2.4.3 Security remarks

Pinch claims in his scheme [48], the Diffie-Hellman Problem (DHP) is used for

safeguarding the secret shares Si. In fact if the DHP were a polynomial-time com-

putable function, anyone could obtain the secret shares Si. Therefore computing

Si from

gS1S2···St
X mod p

reduces to the DHP. That is, given elements g, gx and gy in the ring of integer

modulo p it is computationally infeasible to obtain gxy. This implies in particular

the intractability of the corresponding Discrete Logarithm Problem (DLP): i.e.

given g and gx in the ring of integer modulo p it is computationally infeasible

to recover the exponent x. The DHP can certainly be solved using the discrete

logarithm, and Maurer [38] presents some evidence for the equivalence of the two

84

problems.

2.4.4 Comments on Pinch’s scheme

Note that, in Pinch’s scheme, if a participant or a group of participants decides to

cheat then, just as in Cachin’s scheme, there is no way to identify the cheat.

Cheats can be detected and identified by adopting the approach described in Sec-

tion 2.2.7 and 2.2.8 (as described in detail in Section 2.6).

2.5 A modified version of Pinch’s scheme

An important issue in a secret sharing scheme is that the reconstruction must

provide the valid secret to all participants from an authorised set. That is, a

dishonest participant must not be able to fool the others so that they obtain an

invalid secret while the deceiver is able to get the valid secret. This problem has

been discussed by several authors [11, 58].

We review the work of Ghodosi et al. [21], who pointed out that Pinch’s scheme

is vulnerable to cheating. They then modified Pinch’s scheme in such a way that

cheating is prevented. In this section we describe the cheating problem and also

the solution given in [21].

2.5.1 A vulnerability in Pinch’s scheme

As we have already observed, Pinch’s scheme has a major disadvantage in that

it is vulnerable to cheating. In this scheme, a dishonest participant Pi ∈ X may

contribute a fake share S ′ = αSi, where α is a random integer modulo q. Since

85

every participant of an authorised set X(|X| = t) has access to the final results

g
S1···S′i···St

X , the participant Pi can calculate the value

(g
S1···S′i···St

X)α−1

= gS1···Si···St
X = gX

∏
Px∈X Sx mod p = VX

and hence obtain the correct secret, while the other participants calculate an invalid

secret.

2.5.2 Ghodosi et al’s method for detection of cheating

Suppose in the initialisation phase of the Pinch scheme, the dealer publishes gVX
X

corresponding to every authorised set X. Let the reconstruction protocol be the

same as in the original Pinch scheme and let V ′
X be the final result. Every partici-

pant x ∈ X, can verify whether

gVX
X

?
= g

V ′X
X

If the verification fails, then cheating has occurred in the protocol and thus the

computed secret is not valid. This protocol detects cheating but does not detect

the cheat(s) and also cannot prevent cheating. That is, the cheat(s) obtain the

secret while the others gain nothing.

2.5.3 Ghodosi et al’s method for prevention of cheating

Let C =
∑

Px∈X gSx
X mod p correspond to an authorised set X. We assume that in

the initialisation phase of the Pinch scheme the dealer also publishes

CX = gC
X .

Ghodosi et al. argue that this extra public information gives no useful information

about the secret or about participants’ shares. They argue that one would have to

86

solve the discrete logarithm problem and thus easily solve the DHP.

Let X be an authorised set of participants. At the reconstruction phase, every

participant Pi ∈ X computes gSi
X and broadcasts it to all participants in the set X.

Thus, every participant Pi ∈ X receives t − 1 values g
Sj

X corresponding to all

Pj ∈ X, Pj 6= Pi. Each participant computes C and verifies

CX
?
= gC

X .

If the verification fails, then the protocol stops. Suppose the participants agree to

perform computation in the cyclic order P1, P2, . . . , Pt. If the check is successful,

then each participant Pi (i = 1, 2, . . . , t) knows the true value g
Si−1

X of its prede-

cessor (Pt is the predecessor of P1). So participant Pi (i = 1, . . . , t) initiates the

protocol by computing (g
Si−1

X)Si and passing it to Pi+1. The protocol proceeds as

in the original Pinch scheme and ends at Pi−2. In this way, the participant Pi−1

cannot directly contribute to the computation which started by Pi.

Suppose there exists only one cheat, Pi (1 ≤ i ≤ t) in the system. If Pi cheats, the

computation initiated by Pi+1 must be correct (the correctness can be verified as

gVX
X

?
= g

V ′X
X , where V ′

X is the result obtained by Pi−1). That is, although cheating

has occurred, the honest set of participants can recover the secret.

2.5.4 Comments on Ghodosi et al’s version

As we have already observed, Pinch never considered two of the requirements listed

in section 2.2.1. One is to detect cheating and the other is to identify cheaters.

However, Ghodosi et al’s version of Pinch’s scheme detects cheating and recovers

the secret if a majority of participants of the authorised set are honest.

However, if there exists a group of two or more collaborating cheats, then this

87

protocol (see Section 2.5.3) is not able to identify the cheaters or enable the honest

participants to recover the secret. We will discuss how to fix this problem in the

next section.

2.6 How to identify all cheaters in Pinch’s

scheme

We propose an enhanced modified version of Pinch’s secret sharing protocol which

has advantages over the original scheme, and its modification by Ghodosi et al.,

in that it detects cheating and enables the identification of all cheaters by an

arbitrator, regardless of their number. This modified scheme is based on the general

model specified in Section 2.2.

2.6.1 How to detect cheating

As already detailed, Ghodosi et al. [21] describe a method for detecting cheating in

the above protocols. Suppose in the initialisation phase of the scheme, the dealer

D sends gX
VX mod p to every authorised set X. Let the reconstruction protocol

be the same as in the above scheme and let V ′
X be the computed result. Every

participant x ∈ X can verify that

gX
V ′X ≡ gX

VX (mod p).

If the verification fails, then cheating has occurred in the protocol and thus the

computed secret is not correct.

However, this method should be carefully implemented to prevent attacks which

exploit the arithmetic of exponents. Since we choose our generator gX to have

88

order q, we know that gX
V ′X ≡ gX

VX (mod p) if and only if V ′
X ≡ VX (mod q).

Hence, if a malicious participant could arrange for everyone to accept V ′
X = VX +rq

for some non-zero integer r, then cheating will not be detected.

For this reason, we propose an alternative way of detecting cheating. Suppose in

the initialisation phase of the scheme, the dealer D publishes h(Ki) on the notice

board for every secret Ki that is being shared (where h is a one-way collision-

resistant hash-function). Every participant, having reconstructed the secret (K ′
i,

say), can verify its validity by hashing it and comparing the resulting hash-code

h(K ′
i) with the value on the notice board. If the verification fails, then cheating

has occurred in the protocol and thus the computed secret is not correct.

Note that the second method requires less storage space on the notice board than

the first method. In the first method D stores gX
VX mod p on the notice board,

and hence needs to store |Γ| values for every secret. In the second method, D

stores h(Ki) on the notice board, and hence D only needs to store one hash-code

for every secret. Thus, the second method is a more efficient way of detecting

cheating.

2.6.2 An enhanced protocol which identifies all cheaters

We now describe an enhanced version of the protocol, which will enable the identi-

fication (by the dealer) of all cheaters. As a pre-requisite to using the scheme, every

participant must have an implementation of an agreed digital signature scheme,

and must have selected a key pair for this signature scheme which is described in

the basic model in section 2.2.8.

In order to identify the cheaters in Pinch’s scheme, one must adopt the approach

given in section 2.2.8. In particular the modified protocol will operate exactly

89

as described in section 2.4.2, with the exception of the following modifications.

In distribution phase Steps 1 and 2 of the protocol, participant Pi, as well as

forwarding gX
S1S2···Si mod p, also forwards a signature on a data string, signed

using his or her private signature key. More specifically, if sPi
(Y) denotes the

digital signature on data Y computed using the private signature key of Pi, then

Pi computes and forwards the signature

sPi
(gX

S1S2···Si mod p||X||gX)

to the next participant Pi+1 (where || denotes concatenation of data items). Also,

when participant Pi receives gX
S1S2...Si−1 mod p and the signed string containing

gX
S1S2...Si−1 mod p, Pi checks the signature before proceeding with the protocol.

If cheating is detected by the method described in the second scheme in sec-

tion 2.6.1, then every participant sends to the dealer the signed data strings

they received during execution of the protocol. The dealer D calculates

gS1
X , gS1S2

X , . . . , gS1···St
X in sequence, checking that what D gets is what was sub-

mitted by P1, P2, . . . , Pt. As soon as a calculated value gS1S2···Si
X does not equal the

submitted value, D knows that Pi cheated. Pi cannot claim to have been framed,

since D has Pi’s signature on sPi
(gX

S1S2···Si mod p||X||gX).

Then D uses the cheater’s submission to check Pi+1’s submission and so on (i.e.

for every i, D verifies that the value signed by Pi raised to the power Si+1 mod p

is equal to the value signed by Pi+1). Thus, D will then be able to identify all

the parties who sent incorrect values during the protocol. If all signatures verify

correctly but the key is not verified by its hash then Pt has cheated.

This use of signatures will also protect a minority of the members of an authorised

set against a majority colluding to falsely accuse the minority of cheating.

90

2.7 An online secret sharing scheme which iden-

tifies all cheaters

The main motivation of our proposed scheme is as follows:

Ghodosi et al. [21] pointed out that Pinch’s scheme is also vulnerable to cheating.

They presented a modified version of Pinch’s protocol which detects and prevents

cheating, under the assumption that a majority of the participants of the authorised

reconstruction set are honest. However, this scheme does not protect a minority

of participants of the authorised set from a colluding majority, who falsely accuse

the minority of cheating. Thus, we proposed the modified Pinch’s scheme in the

previous section to fix this problem.

Moreover, all previously described schemes rely on a “last participant” to recon-

struct the secret which could be a disadvantage. That is, the last participant

for secret reconstruction always has the opportunity to cheat and obtain the true

secret, while the others obtain a false one.

We design a computationally secure online secret sharing scheme which is based

on the intractability of the RSA problem by using our basic model. Compared

to Pinch’s scheme, and its modification by Ghodosi et al., our scheme has the

following advantages: it detects cheating and it enables the identification of all

cheaters by an arbitrator, regardless of their number. The scheme does not rely

on a “last participant” who reconstructs the secret on behalf of a minimal trusted

set: the responsibility is diffused among all participants by adopting reconstruction

method 2 in section 2.2.4. Thus the proposed scheme is a good example of an online

secret sharing scheme which is based on the model of Section 2.2 which enables

the detection of cheating and the identification of all cheaters.

91

2.7.1 Preliminaries

We assume the simple definition of secret sharing scheme (see Section 1.14). Let

N = pq be the product of two large primes p and q, and let e (1 < e < φ(N)) be

chosen so that (e, φ(N)) = 1, where φ(N) = (p−1)(q−1). The values N and e are

public, and the values p, q and φ(N) are secret. Throughout this scheme we work

within the multiplicative group of integers modulo N , and we shall assume that

factoring N is infeasible [50]. In other words, we assume that the RSA problem is

difficult to solve in polynomial time.

In the secret sharing schemes we will describe below we shall make use of a one-

way hash-function h which is collision-resistant, as described in the basic model in

section 2.2.7. As a pre-requisite to using the scheme, every participant must have

an implementation of an agreed digital signature scheme, and must have selected a

key pair for this signature scheme, as described in the basic model in section 2.2.8.

2.7.2 A secret sharing protocol

We now present a new secret sharing protocol in which the participants of an

authorised set compute the secret K by combining their secret shares in encrypted

form. In this way the participants will not reveal their secret shares during the

process of recovering K. The protocol uses a publicly accessible location, e.g. a

notice board, where the dealer can store non-forgeable information accessible to

all participants. This location will, at least, indicate the number of participants n

and the access structure Γ.

Distribution phase

The basic protocol to share the secret K is as follows:

92

First the dealer D selects N and e, and randomly chooses secret shares Si < N ,

i = 1, 2, . . . , n. Then D transmits to each Pi over a secure channel the share Si, and

securely stores Si for subsequent use to identify cheaters, if cheating is detected.

For each minimal authorised set X ∈ Γ∗ the dealer D uses e and N to compute

TX = K ⊕ h(
∏

x:Px∈X Se
x mod N),

where ⊕ denotes exclusive-or of bit-strings. The dealer D posts the following items

on the notice board: the four-tuple (X, e, N, TX) for every X ∈ Γ∗, and the value

h(K).

Reconstruction phase

A minimal authorised set X ∈ Γ∗ of participants can compute K by performing

the following steps:

Step 1 Each participant Pi ∈ X reads h(K) and the values e,N, TX from the

four-tuple corresponding to the appropriate set X on the notice board. Then

Pi computes Se
i mod N and signs the data (Se

i mod N,X, e, N) using his/her

private signature key to form sPi
= signPi

(Se
i mod N ||X||e||N), where ||

denotes concatenation of data items. Finally, Se
i mod N and sPi

are sent by

each participant Pi to all the other participants in X on a secret channel.

Step 2 Each participant Pi ∈ X verifies all the signatures it has received, by using

the public keys of the senders, and then computes

VX =
∏

x:Px∈X Se
x mod N.

Step 3 Each participant Pi ∈ X reads TX from the notice board and reconstructs

K as follows:

K = TX ⊕ h(VX).

93

One can easily verify the completeness of the protocol: every authorised subset

X ∈ Γ∗ will recover K.

New participants can be added online by updating new values of TX on the notice

board. Similarly the key K can be changed by updating new values of TX for all

authorised subset X. So the scheme satisfies requirement 1 of section 2.2.1

2.7.3 A multiple secret sharing protocol

If there are multiple secrets Km (with m = 1, 2, . . . , w) to share, it is now possible

to use the same one-way hash-function h and the set of secrets S1, S2, . . . , Sn,

provided that each entry on the notice board has a fresh value of em, Nm and TX,m

attached.

In the following protocol, the dealer D initially chooses secret shares Si for each

participant Pi. The dealer D distributes Si over a secure channel to Pi. Whenever

a new secret is to be shared, the protocol below is repeated, without any need to

distribute new shares to the participants. Note also that, whenever a new secret

Km is to be shared, the access structure may be different to that used for previous

secrets, and hence we denote the access structure for secret Km by Γm.

Distribution phase

The multiple protocol to share w secrets Km amongst n participants P1, P2, . . . , Pn

work as follows: The dealer generates a new pair (Nm, em), to be used in sharing the

secret Km. For each minimal trusted set X ∈ Γ∗m the dealer D uses his encryption

key em and computes

TX,m = Km ⊕ h(
∏

x:Px∈X Sem
x mod Nm)

94

and posts the four-tuples (X, em, Nm, TX,m) on the notice board.

Reconstruction phase

To recover the secret Km, a minimal authorised set X = {P1, P2 . . . , Pt} of partic-

ipants comes together and performs the following steps:

Step 1 Each participant Pi ∈ X reads h(K) and the values em, Nm, TX,m from the

four-tuple corresponding to the appropriate set X on the notice board. Then

Pi computes Sem
i mod Nm and signs the data (Sem

i mod Nm, X, em, Nm) using

his/her private signature key to form sPi
= signPi

(Sem
i mod Nm||X||em||Nm),

where || denotes concatenation of data items. Finally, Sem
i mod Nm and sPi

are sent by each participant Pi to all the other participants in X on a secret

channel.

Step 2 Each participant Pi ∈ X verifies all the signatures it has received, by using

the public keys of the senders, and then computes

VX =
∏

x:Px∈X Sem
x mod Nm.

Step 3 Each participant Pi ∈ X reads TX,m from the notice board and recon-

structs Km as follows:

Km = TX,m ⊕ h(VX).

Thus one can easily verify the completeness of the protocol : every qualified subset

X ∈ Γ∗m can recover Km.

The shares Sx are encapsulated as Sem
x mod Nm. Since the RSA problem is difficult

no users obtain useful information about Sx from the values Sem
x mod Nm. Hence

the shares can be reused for multiple secrets. Thus the scheme satisfies requirement

2 of section 2.2.1.

95

2.7.4 How cheating may occur

In both the proposed protocol and its generalisation to multiple secrets it is possible

for one of the participants to cheat the others in such a way that the cheater will

get the correct secret but the other participants do not.

Suppose that participant Pj contributes a fake encrypted share S ′ instead of Se
j mod

N . Then every participant of the authorised set X will compute VX incorrectly as

V ′
X = S ′ · ∏

x 6=j:Px∈X Se
x mod N instead of VX =

∏
x:Px∈X Se

x mod N . However Pj,

who knows Se
j mod N , can calculate the correct secret VX .

2.7.5 How to detect cheating

In the initialisation phase of the scheme, the dealer D publishes h(Km) on the

notice board for every secret Km that is being shared. Every participant, having

reconstructed the secret, say K ′
m, can verify its validity by hashing it and comparing

the resulting hashed value h(K ′
m) with the value on the notice board. If the

verification fails, then most probably cheating has occurred in the protocol and

thus the computed secret is not correct. Thus the scheme satisfies requirement 3

of section 2.2.1. This test detects cheating but does not identify the cheater(s).

We now show how to identify all the cheaters.

2.7.6 How to identify all cheaters

In the event of cheating having been detected by the method just described, the

participants in the authorised set X can appeal to the dealer D to help to discover

the identity of the cheaters. Notice that the dealer will only be involved in arbi-

tration after cheating has been detected, and will not need to be actively involved

96

in the normal operation of the reconstruction phase of the scheme.

In order to identify all cheaters, every participant Pi ∈ X sends to the dealer

the data received during execution of the protocol, together with the signatures

on it. The dealer verifies the signed data received from each Pi, and compares

the submitted value of Se
i mod N , with that computed by using the stored value

of the share Si. If a submitted value is different from the calculated value, then

Pi cheated. Pi cannot claim to have been framed, since D has Pi’s signature sPi

on (Se
i mod N ||X||e||N). Therefore, the dealer will be able to identify all the

parties who sent incorrect values during the protocol. Thus the scheme satisfies

requirement 4 of section 2.2.1.

This use of signatures will also protect a minority of participants of an authorised

set from a colluding majority who falsely accuses the minority of cheating.

2.7.7 Security remarks

In our proposed scheme, RSA encryption is used for safeguarding the secret shares

Si. In fact if RSA were a polynomial-time computable function, anyone could

obtain the secret shares Si. Therefore computing Si from Se
i mod p reduces to

computing the RSA problem (see Section 1.5.1). In other words, the security

against safeguarding the secret shares Si depends on the difficulty of breaking

RSA.

Attacks resulting from repeated use of RSA key values

In the description of the protocol we stated that new values N and e must be used

for every new secret to be shared. If a value is used more than once then problems

97

can arise, as we now describe.

Suppose the same value of N is used twice. Then an interceptor might obtain

Se1
i mod N and Se2

i mod N

for e1 6= e2 and some i. Then, if (e1, e2) = 1, the interceptor could find values u

and v such that

ue1 − ve2 = 1,

and hence the interceptor could compute

Si = (Se1
i)u · (Se2

i)−v mod N.

If the same (small) value of e was used more than e times, then an interceptor

might obtain

Se
i mod Nj (j = 1, 2, . . . , t; t ≥ e)

Using the Chinese Remainder Theorem (see Theorem 1.4.10) these values can be

combined to obtain

Se
i mod N1N2 · · ·Nt.

If t ≥ e (as we assumed) then this will simply equal Se
i , and it will then be simple

to deduce Si.

Thus, the properties of well-chosen pairs (em, Nm) and the function h, ensure that

the reuse of the set of secret shares S1, S2, . . . , Sn does not leak any information

which may be useful to cheaters and/or other malicious users.

2.8 Conclusion

We have given a model for online secret sharing. We have studied online secret

sharing schemes which are examples of the basic model, such as those of Cachin

98

[13] and Pinch [48], and have outlined their shortcomings. We have suggested an

enhanced version of Pinch’s scheme [59] which can be used in such a way that

cheating by participants can be detected, in which case the participants in an

authorised set X can request help from the dealer D, who can always uniquely

identify the cheaters.

In addition, we have presented a scheme (also described in [60]) which allows the

reconstruction of an arbitrary number of secrets and provides the capability to

dynamically add or remove participants online, without having to redistribute new

shares secretly, by storing additional authentic (but not secret) information on a

notice board.

Moreover, our scheme can be used in such a way that cheating by participants will

be detected, in which case the honest participants can also request help from the

dealer D, who will always be able to uniquely identify the cheaters by adopting

the model of section 2.2.

Furthermore, compared to previous schemes, our scheme does not rely on a last

participant who reconstructs the secret on behalf of a minimal trusted set of par-

ticipants: we have diffused responsibility among all participants.

99

Chapter 3

Cryptanalysis of Digital

Signatures

3.1 Introduction

A cryptographic technique which is fundamental to authentication, authorisation,

and non-repudiation is the digital signature. The purpose of a digital signature is

to provide a means for an entity to bind its identity to a piece of information. The

process of signing entails transforming the message and some secret information

held by the entity into a tag called a signature.

Section 1.11 provides terminology used throughout the chapter, and describes dig-

ital signatures that permits a useful classification of the various schemes. Section

1.11.2 provides a description of the RSA signature which is based on the intractabil-

ity of the factorisation problem. Section 1.11.3 describes cryptographic techniques

based on the intractability of the discrete logarithm problem, such as ElGamal

signature, DSS, and the ElGamal signature with message recovery.

100

The goal of an adversary is to forge signatures; that is, produce signatures which

will be accepted as those of some other entity. The following provides a set of

criteria for what it means to break a signature scheme (see Section 11.2.4 of [39]).

(i) Total break. An adversary is either able to compute the private key informa-

tion of the signer, or find an efficient signing algorithm functionally equivalent

to the valid signing algorithm.

(ii) Selective forgery. An adversary is able to create a valid signature for a par-

ticular message or class of messages chosen a priori. Creating the signature

does not directly involve the legitimate signer.

(iii) Existential forgery. An adversary is able to forge a signature for at least

one message. The adversary has little or no control over the message whose

signature is obtained, and the legitimate signer may be involved in the de-

ception.

In section 3.2, we study possible attacks on RSA signatures such as integer factori-

sation, existential forgery and using the multiplicative property of RSA. Similarly,

in section 3.3 we study possible attacks on ElGamal type signatures, including

selective forgery, existential forgery and making use of the homomorphic property

of ElGamal.

In section 3.4, we describe Shao’s digital signature scheme [54], which is based on

the difficulty of computing discrete logarithms. Shao claims that his scheme can

resist both homomorphism and substitution attacks. Contrary to Shao’s claim, we

show in section 3.4.2 that Shao’s scheme is vulnerable to a homomorphism attack

just like all ElGamal type signature schemes.

101

In section 3.5 we show that there are major differences between a digital signature

with message recovery, and an authenticated encryption scheme. We point out that

the discrete logarithm based signature with message recovery scheme proposed by

Chen in [14] is actually not a signature scheme. It would more accurately be

described as an authenticated encryption scheme.

3.2 Possible attacks on RSA signatures

The security of RSA signatures is based on the intractability of the integer factori-

sation problem (see Section 1.5). RSA can be used as the basis of digital signatures

with and without message recovery (see Section 1.11.2).

Three possible attacks on the RSA signature scheme are as follows (for further

details see Section 11.3.2 of [39]):

(i) Attack 1 (Integer factorisation)

If an adversary is able to factor the public modulus n of some entity A, then

the adversary can compute φ(n) and then, using the extended Euclidean

algorithm (see Theorem 1.3.27), deduce the private key d from φ(n) and

public exponent e by solving ed ≡ 1 (mod φ(n)). This constitutes a total

break of the system. To guard against this, one must select p and q so that

factoring n is a computationally infeasible task. For further information, see

section 1.5.

(ii) Attack 2 (Existential forgery)

The basic idea behind RSA signatures is to compute s = Md (mod n)

where M is (some function of) the message. This means that an adversary

can choose an arbitrary s∗ and compute m∗ = (s∗)e (mod n) and claim s∗

102

is a valid signature on m∗.

This is one reason why RSA signatures are always either of the form

(a) s = (h(m))d (mod n), where h is a one-way collision resistance hash-

function, giving a signature with appendix, or

(b) s = (R(m))d (mod n), where R is a redundancy-adding function, giv-

ing a signature with message recovery for a message m of limited length.

(iii) Attack 3 (Multiplicative property of RSA)

The RSA signature scheme (as well as the encryption scheme) has the fol-

lowing multiplicative property (see Section 1.11.2), sometimes referred to as

the homomorphic property. If s1 = md
1 mod n and s2 = md

2 mod n are

signatures on messages m1 and m2, respectively (or, more properly, on mes-

sages with redundancy added), then s = s1s2 mod n has the property that

s = (m1m2)
d mod n. If m = m1m2 has the proper redundancy, then s will be

valid signature for it. Hence, it is important that the redundancy function R

is not multiplicative, i.e., R(m1 m2) 6= R(m1) R(m2). Alternatively this ho-

momorphism weakness of RSA can be eliminated by applying some one-way

hash-function h to m before signing m, as long as h is not multiplicative.

3.3 Possible attacks on ElGamal type schemes

The digital signature scheme proposed by ElGamal in 1984 [19] (see Section 1.11.3)

is of considerable practical importance. The security of the ElGamal scheme is

based on the difficulty of computing discrete logarithms. There are, however,

some technical problems concerning its security; for example, each time a message

is to be signed, a new session key k is needed and r = gk mod p is publicised as one

103

component of the signature. If k is ever divulged (e.g. because it was not chosen

at random) then the secret key is compromised.

Briefly, the ElGamal signature scheme works as follows. Let p be a large prime

number such that p− 1 has a large prime factor, and let g be a primitive element

modulo p. Any user A has a private key x (1 < x < p − 1) and a public key

y = gx mod p. To sign a message m, user A does the following:

(i) Randomly chooses an integer k, 1 < k < p− 1.

(ii) Computes

r = gk mod p

(iii) Computes

s = (m− xr)k−1 mod (p− 1)

(iv) Sends Sig(m) = (r, s) as the signature.

Possible attacks on the ElGamal signature scheme are as follows.

(i) Attack 1 (Total break)

An adversary might attempt to forge A’s signature on m by selecting a ran-

dom integer k and computing r = gk mod p. The adversary must then de-

termine s = (m − xr)k−1 mod p− 1. If the discrete logarithm problem is

computationally infeasible, the adversary cannot do better than to choose an

s at random; the success probability is only p−1, which is negligible for large

p.

(ii) Attack 2

A different k must be selected for each message signed; otherwise, the private

104

key can be determined with high probability as follows. Suppose s1 = (m1−
xr)k−1 mod p− 1 and s2 = (m2 − xr)k−1 mod p− 1. Then (s1 − s2)k ≡
(m1 − m2) (mod p − 1). If s1 − s2 6≡ 0 (mod p − 1), then k = (s1 −
s2)

−1(m1 −m2) mod p− 1. Once k is known, x is easily found.

(iii) Attack 3 (Existential forgery)

The signing equation is s = (m − xr)k−1 mod (p− 1). It is then easy for

an adversary to mount an existential forgery attack as follows. Select any

pair of integers (u, v) with gcd(v, p − 1) = 1. Compute r = guyv mod p =

gu+xv mod p and s = −rv−1 mod p− 1. The pair (r, s) is a valid signature for

the message m = su mod p− 1, since (gmg−xr)s−1
= guyv = r. This attack

is one reason that, in practice, the signing equation is normally specified as

s = (h(m) − xr)k−1 (mod p − 1) where h is a one-way, collision resistant,

hash-function.

(iv) Attack 4 (Homomorphism attack)

He and Kiesler [25] describe the following ‘homomorphism attack’. Suppose

that, in computing three distinct signatures, the random values k used satisfy

k3 = k1 + k2. An observer of these signatures will be able to deduce this by

noting that r3 = r1r2. This will then immediately yield the private key from

x = (m1s2s3 + m2s1s3 −m3s1s2)× (r1s2s3 + r2s1s3 − r1r2s1s2)
−1.

Note that the biggest threat to ElGamal type schemes comes from the progress

being made in the computation of the discrete logarithm. Steady improvements

have been occurring in the computation of discrete logarithms. We can cope with

this threat by using larger keys.

105

3.4 Shao’s modification to ElGamal signatures

3.4.1 Scheme description

Shao [54] proposed a new digital signature scheme which does not use a one-

way hash-function, the security of which is based on the difficulties of computing

discrete logarithms, and performance of which is similar to those of DSS and RSA.

The purpose of Shao’s scheme is to prevent ElGamal attack 3 without requiring

use of a hash-function, and to prevent ElGamal attack 4 by removing the ‘homo-

morphic’ property.

We now briefly describe the scheme of Shao. The system parameters known to all

users are a large prime modulus p, a prime divisor q of p−1, and an integer g with

order q, that is, gq ≡ 1 (mod p), and 1 < g < p. Any user A has two secret keys

x1, x2 (1 < x1, x2 < q), and two public keys:

y1 = gx1 mod p, y2 = gx2 mod p.

The digital signature of a message m (1 < m < p) is the triple (r, s1, s2) such that

r = ((ys1
1 + mys2

2)gr+m mod p) mod q

To sign a message m, user A does the following:

(i) Randomly chooses two integers k1 and k2, 1 < k1, k2 < q.

(ii) Computes

r∗ = gk1 + mgk2 mod p

r = r∗ mod q

106

(iii) Computes

s1 = (k1 − r −m)x−1
1 mod q (3.1)

s2 = (k2 − r −m)x−1
2 mod q (3.2)

(iv) Sends Sig(m) = (r, s1, s2) as the signature.

From equations 3.1 and 3.2

x1s1 + r + m ≡ k1 (mod q)

x2s2 + r + m ≡ k2 (mod q)

so

ys1
1 gr+m ≡ gk1 (mod p)

mys2
2 gr+m ≡ mgk2 (mod p)

Taking sums

(ys1
1 + mys2

2)gr+m ≡ r∗ (mod p)

so

((ys1
1 + mys2

2)gr+m mod p) ≡ r (mod q)

Therefore, if the signer follows the above protocol, the recipient always accepts the

signature.

Shao claims that the partial signature r = gk mod p of the ElGamal type signature

scheme is replaced by r∗ = gk1 + mgk2 mod p in his scheme, and hence the isomor-

phism relation between the multiplicative cyclic group g and the additive cyclic

group Zp no longer exists. Hence the scheme is not subject to the homomorphism

attacks. However, in the following section we show that this is not the case.

107

3.4.2 The attack

The signer cannot prevent the attackers from computing gk1 , gk2 (mod p) from

the corresponding published message m and its signature (r, s1, s2), since

gki ≡ gxisi+r+m ≡ ysi
i gr+m (mod p), i = 1, 2.

Suppose three pairs of session keys (k1, k2), (k′1, k
′
2), (k′′1 , k

′′
2) were used to generate

the signatures (r, s1, s2), (r′, s′1, s
′
2), (r′′, s′′1, s

′′
2) of the messages m,m′,m′′ respec-

tively as in equations (1.1) and (1.2). If k1 = k′1 + k′′1 , then this relation can be

recognised by the attackers, as

gk1 ≡ gk′1gk′′1 (mod p).

Now, we have three linear equations in x1, k1, k
′
1, k

′′
1 from equation (3.1):

x1s
′
1 ≡ k′1 − r′ −m′ (mod q),

x1s
′′
1 ≡ k′′1 − r′′ −m′′ (mod q),

and

x1s1 ≡ k1 − r −m (mod q).

From these equations, and knowing that k1 = k′1 + k′′1 , one can easily obtain the

first part of private key

x1 = {(r′ + r′′ − r) + (m′ + m′′ −m)} × (s1 − s′1 − s′′1)
−1 mod q.

Similarly, if k2 = k′2 +k′′2 , then this relation can also be recognised by the attackers,

as

gk2 ≡ gk′2gk′′2 (mod p).

108

Now, we have three linear equations in x2, k2, k
′
2, k

′′
2 from equation (3.2):

x2s
′
2 ≡ k′2 − r′ −m′ (mod q),

x2s
′′
2 ≡ k′′2 − r′′ −m′′ (mod q),

and

x2s2 ≡ k2 − r −m (mod q).

From these equations, and knowing that k2 = k′2 + k′′2 , one can also easily obtain

the second part of private key

x2 = {(r′ + r′′ − r) + (m′ + m′′ −m)} × (s2 − s′2 − s′′2)
−1 mod q.

Contrary to Shao’s claim, we have shown that Shao’s scheme is vulnerable to

homomorphism attacks just like all ElGamal type signature schemes.

The main justification given in [54] for the use of Shao’s scheme is its resistance

to homomorphism and substitution attacks. Substitution attacks can be avoided

by the use of a one-way hash-function, and thus there no longer appears to be any

reason to use Shao’s scheme.

Although the ElGamal scheme and its variants (e.g. DSS) are subject to homo-

morphism attacks, such an attack being successful appears to be no more likely

than finding a discrete logarithm, as long as the random integer used to construct

the signature is chosen at random.

3.5 Authenticated encryption schemes

In many applications it is necessary to provide both confidentiality and in-

tegrity/origin protection for a transmitted message. This can be achieved using a

109

combination of encryption and a digital signature. However, this doubles the cost

of protection, and motivates the work of Horster, Michels and Petersen [28] who

introduced an authenticated encryption scheme, designed to provide a combination

of services at reduced cost.

Subsequently Lee and Chang [33] modified the HMP scheme to remove the need

for a one-way function, whilst keeping communication costs the same. This scheme

may be advantageous in environments where implementing a one-way function is

difficult, e.g. in a smart card with limited memory and/or computational capabil-

ity.

More recently, Chen [14] introduced a variant of the Lee and Chang scheme, which

is claimed to provide the same security level with a simpler specification. However,

some of the claims made by Chen are incorrect as we point out in section 3.5.2.

3.5.1 Chen’s scheme

Chen’s scheme [14] is based on the discrete logarithm problem and is claimed to

combine the same efficiency as Horster-Michels-Petersen and Lee-Chang [28, 33],

with a simpler specification.

We now briefly describe the scheme of Chen. Let p and q be large primes with

q|(p − 1) and g an element in Z∗p of order q. The signer has a secret key xA ∈ Z∗p
and public key yA ≡ gxA (mod p). To generate a signature for message m, the

signer A does the following:

(i) picks a random number k ∈ Z∗q,

(ii) computes e ≡ yk
B (mod p) and e′ = e

gcd(e,p−1)
,

110

(iii) computes r ≡ me′ (mod p),

(iv) solves s from k ≡ (r + s)xA (mod q).

Signer A then sends (r, s) as the signature to receiver B. After receiving (r, s), B

does the following:

(i) computes e ≡ yk
B ≡ y

(r+s)xA

B ≡ y
(r+s)xB

A (mod p),

(ii) solves d from e′d ≡ 1 (mod q), where e′ = e

gcd(e,p−1)
,

(iii) recovers the message m ≡ rd (mod p).

Note that the public key yB is also an element of order q in Z∗p, so all values e′ are

different. If p and q are cryptographic safe primes and are chosen carefully, then

the probability that an e is computed from two different e′ is negligible, especially

for p = 2q + 1.

To avoid a forgery attack on the new signature scheme, the message m is required

to contain redundancy (see Section 1.11 page 39 or Section 3.2, Attack 2).

3.5.2 Comments on Chen’s scheme

In a signature with message recovery scheme, see for example (See Section 1.11.3

or [46]), the Trusted Third Party (TTP) can always verify the signatures which are

sent by the receiver B without B having to divulge any long term secret information

to the TTP. However, in the authenticated encryption schemes described in [28, 33],

only the sender A and the receiver B can verify a protected message sent from

A to B. This is because B can only verify such a message with the aid of his

private decryption key. It is for this reason that the authors of both [28] and [33]

111

have been careful to call their schemes authenticated encryption schemes rather

than combined signature/encryption schemes, although nowhere is this point made

explicit in [28] or [33].

In order to verify a signature generated using the scheme proposed by Chen, the

receiver B needs to use his private key. It seems that the only feasible way a

third party can verify the ‘signature’ (r, s) is that the shared secret yxB
A = yxA

B is

divulged. It is not possible however to tell whether A or B produced the signature,

but with this information the third party can read all the messages sent between A

and B. This holds even if B is prepared to supply the recovered plaintext message

m and both A’s and B’s public keys, in addition to the received signature.

This is an unacceptable property for a true signature scheme, where one would

normally expect signature verification to be possible without compromise of any

private keys. Thus it would be more appropriate to refer to the scheme as an

authenticated encryption scheme, analogously to the terminology used in [28, 33].

Finally note that similar remarks have been made in [47] regarding schemes recently

proposed by Zheng.

3.6 Conclusion

We have described several general types of attack against RSA and ElGamal sig-

natures. For RSA signatures the homomorphism property could only be used by

a forger to forge a signature, but in the ElGamal scheme that property could be

used to recover the signer’s secret.

We then considered the Shao signature scheme and showed that it is subject to

homomorphism attacks, contrary to the claim of Shao. This essentially means that

112

Shao’s scheme has no practical value.

We pointed out that the discrete logarithm based signature with message recovery

scheme proposed by Chen in [14] is actually not a signature scheme. It would more

accurately be described as an authenticated encryption scheme.

113

Chapter 4

Key Transport

4.1 Introduction

Key transport techniques can be divided into two classes: those using symmetric

encryption, and those using asymmetric encryption.

This chapter considers key transport techniques based on asymmetric, or public-

key, encryption. Such methods involve one party choosing a symmetric key and

transferring it to a second, using that party’s encryption public key. This provides

key authentication to the originator (only the intended recipient has the private key

allowing decryption), but the originator itself obtains neither entity authentication

nor key confirmation. The second party receives no source authentication. Authen-

tication assurances can be provided with digital signatures or by other methods

such as entity authentication via public-key decryption (see Section 4.2). In the

latter case, the intended recipient may authenticate itself by returning some time-

variant value which it alone may produce or recover. This allows authentication

of both the entity and a transferred key.

114

By using public-key encryption alone, assurances of mutual entity authentication

and mutual key authentication may be obtained through additional messages, as

illustrated in the Helsinki protocol presented in section 4.2.

Previous work, as described in Section 4.3, has shown that Helsinki protocol is

vulnerable to attack.

We provide a simple modification to the protocol which prevents all possible attacks

in section 4.4.

4.2 Helsinki protocol

4.2.1 Introduction

The Helsinki protocol is actually a derivation of a protocol originally described by

Needham and Schroeder in 1978 [43]. It also embodies features from the COM-

SET protocol, which was devised as part of the RIPE project, [9]. For further

information see Section 12.5.1 and 12.10 of [39].

This protocol is designed to establish a shared secret key between two entities A

and B, and is specified as Key Transport Mechanism 6 in Clause 7.6 of ISO/IEC

11770-3, [5]. This mechanism securely transfers in three passes two secret keys,

one from A to B and one from B to A. In addition, both entities are authenticated

and obtain key confirmation about their respective keys. This mechanism has the

following two requirements:

(i) Each entity X has an asymmetric encipherment system (EX , DX).

(ii) Each entity has access to an authenticated copy of the public encipherment

115

transformation of the other entity.

4.2.2 Specification

The mechanism operates in a series of stages labelled A1, B1, A2.1, A2.2 and B2,

as described below.

Message contraction (A1)

A has obtained a key KA and wants to transfer it securely to B. A selects a

random number rA and constructs a key data block consisting of its distinguishing

name A, the key KA, the number rA and an optional data field Text1. Then A

enciphers the key block using B’s public encipherment transformation EB, thereby

producing the enciphered data block

BE1 = EB(A||KA||rA||Text1)

A constructs the message M1, consisting of enciphered data block and some op-

tional data field Text2. A sends M1 to B:

M1 : A → B : BE1||Text2

Message contraction (B1)

B extracts the enciphered key block BE1 from the received message M1 and de-

ciphers it using its private decipherment transformation DB. Then B verifies the

sender identity A included in the enciphered data block.

B has obtained a key KB and wants to transfer it securely to A. B selects a random

number rB and constructs a key data block consisting of the key KB, the random

number rB, the random number rA (as extracted from the deciphered block) and

an optional data field Text3. Then B enciphers the key block using A’s public

116

encipherment transformation EA, thereby producing the enciphered data block

BE2 = EA(KB||rA||rB||Text3)

Then B constructs the message M2, consisting of the enciphered data block BE2

and an optional data field Text4. B sends M2 to A.

M2 : B → A : BE2||Text4

Key and Entity confirmation (A2.1)

A extracts the enciphered key block BE2 from the received message M2 and de-

ciphers it using its private decipherment transformation DA. Then A checks the

validity of the message through comparison of the random number rA with the

random number rA contained in the enciphered block BE2. If the verification is

successful, A has authenticated B and at the same time obtained confirmation that

KA has safely reached entity B.

Message response (A2.2)

A extracts the random number rB from the deciphered key block and constructs

the message M3, consisting of the random number rB and an optional data field

Text5. A sends M3 to B.

M3 : A → B : rB||Text5

Key and Entity confirmation (B2)

B verifies that the response rB extracted from M3 is consistent with the random

number rB sent in enciphered form in M2. If the verification is successful, B has

authenticated A and at the same time has obtained confirmation that KB has

safely reached entity B.

Note that this key transport mechanism has following properties:

117

1. Number of passes: 3

2. Entity authentication: This mechanism provides mutual entity authentica-

tion.

3. Key confirmation: This mechanism provides mutual key confirmation.

4. Key control: A can choose the key KA, since it is the originating entity.

Similarly, B can choose the key KB. Mutual key control can be achieved by

each entity by combining the two keys KA and KB on both sides to form a

shared secret key KAB. However, the combination function must be one-way,

otherwise B can choose the shared secret key. This mechanism could then

be classified as a key agreement mechanism.

5. Key usage: This mechanism uses asymmetric techniques to mutually transfer

two secret keys: KA from to A to B and KB from B to A. The following

cryptographic technique separation may be derived from the mechanism: A

uses its key KA to encipher messages for B and to verify authentication codes

from B. B in turn uses the received key KA to decipher message from A and

generate authentication codes for A. The cryptographic functions of KB may

be separated in an analogous manner. In such a way, the asymmetric basic

of the key transport mechanism may be extended to the usage of the secret

keys.

6. Origin: This mechanism is derived from the three pass protocol known as

COMSET.

7. Background: This mechanism is based on zero-knowledge techniques. From

the execution of the mechanism neither of the entities learns anything that

it could not have computed itself.

118

4.2.3 Discussion

We consider the four requirements we listed for an authentication protocol (see

Section 1.12):

First of all, we consider the four requirements for B:

1. Can B be sure that M1 and M3 were generated by A? B can check that M3

was generated by A because it contains rB which only A has access to from

M2. B can also check that M1 was generated by A because B included rA in

M2 that A replied to, and A must recognise, so ‘Yes’.

2. Can B be sure that M1 and M3 are fresh? Given that rB is unpredictable

then B can check the freshness of M3, and hence is convinced of the freshness

of M1. This is because M3 was in response to a message containing both rA

from M1 and rB, and these could only be read by A, so ‘Yes’.

3. Can B be sure that M1 and M3 were intended for it? M1 is intended for B

because it is encrypted with B’s public key. Also B can reason that A would

not have sent M3 unless it was A who sent M1, and hence we have ‘Yes’.

4. Can B be sure that M3 was reply to M2? ‘Yes’ because of the inclusion of

rB.

We next consider A’s requirements:

1. Can A be sure that M2 was generated by B? Because M2 contains rA which

only B can get from M1. But B could give it to anyone so ‘No’.

2. Can A be sure that M2 is fresh? ‘Yes’ because of inclusion of rA (rA must be

unpredictable).

119

3. Can A be sure that M2 is intended for it? M2 is intended for A because it is

encrypted with A’s public key, so ‘Yes’.

4. Can A be sure that M2 is reply to M1? ‘Yes’ because of the inclusion of rA.

Thus, we would suggest that the Helsinki protocol is not secure against an insider

attack. In the following section we describe an attack proposed by Horng and Hsu.

4.3 The Horng-Hsu attack and an observation

Horng and Hsu [27] observed that the Helsinki protocol is subject to attack. The

attack operates as follows. C commences the attack by causing A to inaugurate a

run of the protocol with C. A then sends the following message:

M1 : A → C : EC(A||KA||rA)

C decrypts the message to obtain rA, and uses it to create a forged message M ′
1

containing a new key component K ′
A, which C sends to B. When sending this

message, C pretends that it is from A.

M ′
1 : C → B : EB(A||K ′

A||rA)

B responds to C (thinking it is responding to A) with the following message:

M ′
2 : B → C : EA(KB||rA||rB)

C intercepts this message and forwards it (unchanged) to A. A responds to C with

following message:

120

M3 : A → C : rB

C then forwards this message to B.

After these exchanges:

(i) A believes it has established a shared secret key with C, based on the key

components KA and KB (although C does not know KB), and

(ii) B believes it has established a shared secret key with A, based on the key

components K ′
A and KB (although A does not know K ′

A).

Note that this is an example of an ‘Insider attack’. This holds since, in order to

launch the attack, C must persuade A to inaugurate a run of the protocol, and

hence C must be an entity with whom A is prepared to establish a shared secret

key.

Note also that this attack is possible since, whereas B actually generates M2, A

will believe it comes from C. This is possible because message M2 contains no

indication of its source (unlike message M1). Hence although C cannot discover

the precise contents of message M2, C can forward it to A and have it accepted as

originating from C, although it was actually generated by B.

4.4 A revised version of the protocol

4.4.1 Description of modification

Based on the observation we have just made about why the attack is possible, we

propose that the protocol should be modified in the following minimal way. The

121

second message M2 should be replaced by a modified message, which we call N2:

N2 : B → A : EA(B||KB||rA||rB)

That is, the only change is to insert an identifier for B in the second protocol

message. The other two protocol messages remain unchanged. We now discuss

this modification to the Helsinki protocol.

4.4.2 Discussion

We have discussed the basic protocol in section 4.2.1, where we come to the con-

clusion that the Helsinki protocol is vulnerable for an insider attack. However, we

show that a revised version of the protocol overcomes this attack. Let us consider

the four requirements we listed for an authentication protocol (see Section 1.12).

First of all, we consider the four requirements for B:

1. Can B be sure that M1 and M3 were generated by A? B can check that

M3 was generated by A because it contains rB which only A has access to

from N2. A has no reason to respond M3 unless A sent M1 and wishes to

acknowledge receipt of N2. B can also check that M1 was generated by A

because B included rA in N2 that A replied to, and A must recognise rA, so

‘Yes’.

2. Can B be sure that M1 and M3 are fresh? Given that rB is unpredictable

then B can check the freshness of M3, and hence is convinced of the freshness

of M1. This is because M3 was in response to a message containing both rA

from M1 and rB, and these could only be read by A, so ‘Yes’.

122

3. Can B be sure that M1 and M3 were intended for it? M1 is intended for B

because it is encrypted with B’s public key. Also B can reason that A would

not have sent M3 unless it was A who sent M1, and hence we have ‘Yes’.

4. Can B be sure that M3 was reply to N2? ‘Yes’ because of the inclusion of

rB.

We next consider A’s requirements:

1. Can A be sure that N2 was generated by B? ‘Yes’ because it contains B’s

name and rA which only B can get from M1. If N2 was generated by a third

party then B has revealed rA to that third party and that third party has not

followed the protocol (by including B’s name in a message it has generated).

Thus B and the third party are colluding participants.

2. Can A be sure that N2 is fresh? ‘Yes’ because of inclusion of rA (rA must be

unpredictable).

3. Can A be sure that N2 is intended for it? N2 is intended for A because it is

encrypted with A’s public key, so ‘Yes’.

4. Can A be sure that N2 is reply to M1? ‘Yes’ because of the inclusion of rA.

Therefore, the revised version of the protocol is capable of providing all of the

specified properties which are described in section 1.12.

In short, B accepts A as valid and sends message N2. When A receives N2, it

checks on the data string for the freshness and the inclusion of name B to prevent

the insider attack which is described in section 4.3.

123

4.4.3 Related Work

Lowe [34] pointed out an attack upon the Needham-Schroeder authentication pro-

tocol [43]. The attack allows an intruder to impersonate another agent. Also the

revised protocol proposed by Lowe prevents all other attacks.

The Horng-Hsu attack is closely related to the Lowe attack on the Needham-

Schroeder protocol. Moreover, the modification we propose in the revised Helsinki

protocol corresponds directly to the modifications Lowe proposes to the Needham-

Schroeder protocol.

4.5 Conclusion

We have described a key transport technique called the Helsinki protocol. We have

also described an attack on this protocol due to Horng and Hsu.

We have described a simple modification to the Helsinki protocol which prevents

the Horng-Hsu attack [27], but yet which does not add significantly to the commu-

nications or computational overhead for the protocol. Note that both the original

and amended protocols depend very much on an implicit property of the public

key encryption scheme. Specifically, the protocols require the encryption scheme

to provide a measure of integrity protection for encrypted strings.

124

Chapter 5

Conclusion

In this chapter we provide a summary of the work presented in this thesis and

present some conclusions and further areas for work.

In Chapter 1 we gave an introduction to the abstract algebra, number theory and

cryptography necessary for the remainder of the thesis. We followed the history

behind some of the issues leading to the development of the design, analysis and

application of cryptographic techniques.

Chapter 2 presented the first part of the novel contribution of this thesis. We

proposed a general model for online secret sharing which makes it possible to detect

cheating and identify all cheaters. All the schemes considered in the remainder of

this chapter such as those of Cachin [13] and Pinch [48] fit the general model. We

identified shortcomings of existing schemes, and suggested an enhanced version of

Pinch’s scheme [59] which solved cheating problems by requesting help from the

dealer, who can always uniquely identify the cheaters. We then introduced a new

online secret sharing scheme [60] which can be used in such a way that cheating

by participants will be detected, in which case the honest participants can also

125

request help from the dealer, who will always be able to uniquely identify the

cheaters. Moreover, compared to previous schemes the new protocol does not rely

on a ‘last participant’ who reconstructs the secret on behalf of a minimal trusted

set of participants: we have diffused responsibility among all participants.

Chapter 3 introduced possible attacks on ElGamal type signature schemes. In

section 3.4, we described Shao’s digital signature scheme [54] which is based on

the difficulties of computing discrete logarithms. Contrary to Shao’s claim, we

have shown that Shao’s scheme is vulnerable to homomorphism attacks just like all

ElGamal type signature schemes. Moreover, substitution attacks can be avoided by

the use of a one-way hash-function, and therefore, there no longer appears to be any

reason to use Shao’s scheme. In section 3.5 we studied authenticated encryption

schemes and identified the differences between an authenticated encryption scheme

and a digital signature with message recovery. We observed that the discrete

logarithm based signature with message recovery scheme proposed by Chen [15]

is actually not a signature scheme. It would more accurately be described as an

authenticated encryption scheme.

In Chapter 4 we examined the Helsinki key transport protocol based on public-key

encryption. We identified its shortcoming by considering four requirements (see

Section 1.12) for an authentication protocol. In section 4.4 we described a simple

modification to the Helsinki protocol which prevents the Horng-Hsu attack, but yet

which does not add significantly to the communications or computational overhead

for the protocol.

In general, one of the better ways to design a cryptographic technique is to embed

several computationally hard problems within the cryptographic technique itself.

However care must be taken to ensure that the strength of the scheme does not

126

rest solely on the hard problems involved, but also on their interaction, otherwise

there may still be the possibility of attacks, as has been demonstrated in several

cryptographic techniques (see Section 3.4 and 4.2).

127

Bibliography

[1] “The digital signature standard proposed by NIST”. Communications of the

ACM, 35(7):36–40, 1992.

[2] ISO 7498-2: 1989. “Open systems Interconnection - Basic reference Model -

Part 2: Security Architecture”. International Organization for Standardiza-

tion, 1989.

[3] ISO/IEC 9796: 1991. “Digital signature scheme giving message recovery”.

International Organization for Standardization, 1991.

[4] ISO/IEC 11770-2: 1996. “Key management - Part 2: Mechanisms using

symmetric techniques”. International Organization for Standardization, 1996.

[5] ISO/IEC 11770-3: 1999. “Key management - Part 3: Mechanisms using asym-

metric techniques”. International Organization for Standardization, 1999.

[6] ISO/IEC 9798. “Entity authentication - Parts 1 to 5”. International Organi-

zation for Standardization.

[7] G.R. Blakley. “Safeguarding cryptographic keys”. In Proceedings of AFIPS

National Computer Conference, pages 313–317, 1979.

128

[8] R. Blom. “An optimal class of symmetric key generation schemes”. In Ad-

vances in Cryptology – Proceedings of EUROCRYPT ’84, pages 335–338.

Springer-Verlag, 1985.

[9] A. Bosselaers and B. Preneel. “Integrity Primitives for Secure Information

Systems: Final Report of RACE Integrity Primitives Evaluation RIPE-RACE

1042”. In Number 1007 in Lecture Notes in Computer Science. Springer-

Verlag, 1995.

[10] E. Brickell, D. Stinson, and S. Goldwasser. “The detection of cheaters in

threshold schemes”. In S. Goldwasser, editor, Advances in Cryptology – Pro-

ceedings of CRYPTO ’88, pages 564–577. Springer-Verlag, 1988.

[11] E. Brickell, D. Stinson, and S. Goldwasser. “The detection of cheaters in

threshold schemes”. In Advances in Cryptology – Proceedings of CRYTO ’88,

pages 564–577. Springer-Verlag, 1990.

[12] David M. Burton. “Elementary number theory”. Wm. C. Brown Publishers,

1994.

[13] C. Cachin. “On-line secret sharing”. In C. Boyd, editor, Proceedings of the

5th IMA Conference on Cryptography and Coding, pages 190–198. Springer-

Verlag, 1995.

[14] K. Chen. “Signature with message recovery”. Electronics Letters, 34(20):1934,

1998.

[15] L. Chen, D. Gollmann, C.J. Mitchell, and P. Wild. “Secret sharing with

reusable polynomials”. In Vijay Varadharajan, Josef Pieprzyk, and Yi Mu,

editors, Proceedings of ACISP ’97, pages 183–193. Springer-Verlag, 1997.

129

[16] P. Cohn. “Algebra, volume 1”. Wiley, 1982.

[17] D. Denning. “Digital signatures with RSA and other public-key cryptosys-

tems”. Communications of the ACM, 27(4):388–392, 1984.

[18] W. Diffie and M.E. Hellman. “New directions in cryptography”. IEEE Trans-

actions on Information Theory, 22:644–654, 1976.

[19] T. ElGamal. “A public key cryptosystem and a signature scheme based on

discrete logarithms”. IEEE Transactions on Information Theory, 31:469–472,

1985.

[20] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to identi-

fication and signature problems”. In Advances in Cryptology – Proceedings of

CRYPTO ’86, pages 186–194. Springer-Verlag, 1987.

[21] H. Ghodosi, J. Pieprzyk, G.R. Chaudhry, and J. Seberry. “How to prevent

cheating in Pinch’s scheme”. Electronics Letters, 33(17):1453–1454, 1997.

[22] O. Goldreich, S. Micali, and A. Widgerson. “How to play any mental game or

a completeness theorem for protocols with honest majority”. In Proceedings

of 19th ACM Symposium on the Theory of Computing, pages 218–229, 1987.

[23] L.C. Guillou and J.J. Quisquater. “A practical zero knowledge protocol fitted

to security micoprocessor minimising both transmission and memory”. In

Advances in Cryptology – Proceedings of EUROCRYPT ’88, pages 123–128.

Springer-Verlag, 1988.

[24] L. Harn. “Digital signature with (t, n) shared verification based on discrete

logarithms”. Electronics Letters, 29(24):2094–2095, 1993.

130

[25] J. He and T. Kiesler. “Enhancing the security of ElGamal’s signature scheme”.

IEE Proc. Digit. Tech., 141(4):249–252, 1994.

[26] I. Herstein. “Topics in Algebra”. Wiley, 1987.

[27] G. Horng and C.K. Hsu. “Weakness in the Helsinki protocol”. Electronics

Letters, 34(4):354–355, 1998.

[28] P. Horster, M. Michels, and H. Petersen. “Authenticated encryption schemes

with low communication costs”. Electronics Letters, 30(15):1212–1213, 1994.

[29] C.L. Hsu and T.C. Wu. “Authenticated encryption scheme with (t, n) shared

verification”. IEE Proc. Digit. Tech., 145(2):117–120, 1998.

[30] N. Koblitz. “Algebraic aspects of cryptography”. Springer-Verlag, 1998.

[31] L. Lamport. “Password authentication with insecure communication”. Com-

munication in ACM, 34:770–772, 1981.

[32] M.D. Larsen. “Introduction to modern algebraic concepts”. Addison-Wesley

Publishing Company, 1969.

[33] W. Lee and C. Chang. “Authenticated encryption scheme without using a

one-way function”. Electronics Letters, 31(19):1656–1657, 1995.

[34] G. Lowe. “An attack on the Needham-Schroeder public-key authentication

protocol”. Information Processing Letters, 56:131–133, 1995.

[35] K. Manders and L. Adleman. “NP-complete decision problems for binary

quadratics”. Journal of Computer and System Sciences, 16:168–184, 1978.

131

[36] J.L. Massey and J.K. Omura. “A new multiplicative algorithm over finite fields

and its applicability in public key cryptography”. Presented at EUROCRYPT

’83 Udine, Italy, 1983.

[37] J.L. Massey and J.K. Omura. “Method and apparatus for maintaining the

privacy of digital messages conveyed by public transmission”. U.S Patent No:

4,567,600 28 Jan, 1986.

[38] U.M. Maurer. “Towards the equivalence of breaking the Diffie Hellman proto-

col and discrete logarithms”. In Y.G. Desmedt, editor, Advances in Cryptology

– Proceedings of CRYPTO ’94, pages 271–281. Springer-Verlag, 1994.

[39] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. “Handbook of Applied

Cryptography”. CRC Press, 1996.

[40] C.J. Mitchell and C.Y. Yeun. “Fixing a problem in the Helsinki protocol”.

ACM Operating Systems Review, 32(4):21–24, 1998.

[41] C.J. Mitchell and C.Y. Yeun. “Comment–Signature scheme with message

recovery”. Electronics Letters, 35(3):217, 1999.

[42] T. Nagell. “Introduction to number theory”. Chelsea Publishing Company,

1981.

[43] R.M. Needham and M.D. Schroeder. “Using encryption for authentication

in large networks of computers”. Communications of the ACM, 21:993–999,

1978.

[44] I. Niven, H. Zuckerman, and H. Montgomery. “An Introduction to the theory

of numbers”. Wiley, 1991.

132

[45] K. Nyberg. “New digital signature scheme based on discrete logarithm”. Elec-

tronics Letters, 30(6):481, 1994.

[46] K. Nyberg and R.A. Rueppel. “Message recovery for signature schemes based

on the discrete logarithm problem”. In Advances in Cryptology – Proceedings

of EUROCRYPT ’94, pages 175–190. Springer-Verlag, 1995.

[47] H. Petersen and M. Michels. “Crytanalysis and improvement of signcryption

schemes”. IEE Proceedings on Computers and Digital Techniques, 145:149–

151, 1998.

[48] R.G.E. Pinch. “Online multiple secret sharing”. Electronics Letters,

32(12):1087–1088, 1996.

[49] S. Pohlig and M.E. Hellman. “An improved alogrithm for computing loga-

rithms over GF (P) and its cryptographic significance”. IEEE Transactions

on Information Theory, 24:106–110, 1978.

[50] R.L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digi-

tal signatures and public key cryptosystems”. Communications of the ACM,

21:120–126, 1978.

[51] K. H. Rosen. “Elementary number theory and its applications”. Wiley, 1993.

[52] C.P. Schnorr. “Efficient signature generation by smart cards”. Journal of

Cryptology, 4(3):161–174, 1991.

[53] A. Shamir. “How to share a secret”. Communications of the ACM, 22:612–613,

1979.

[54] Z. Shao. “Signature scheme based on discrete logarithm without using one-way

hash-function”. Electronics Letters, 34(11):1079–1080, 1998.

133

[55] Z. Shao. “Signature schemes based on factoring and discrete logarithms”. IEE

Proc. Digit. Tech., 145(1):33–36, 1998.

[56] G.J. Simmons. “Contemporary Cryptography: The Science of Information

Integrity”. IEEE Press, 1992.

[57] D.R. Stinson. “Cryptography theory and practice”. CRC Press, 1995.

[58] M. Tompa and H. Woll. “How to share a secret with cheaters”. Journal of

Cryptology, 1(2):133–138, 1988.

[59] C.Y. Yeun and C.J. Mitchell. “How to identify all cheaters in Pinch’s scheme”.

In Proceedings of JWIS’98, Singapore, pages 129–133, 1998.

[60] C.Y. Yeun, C.J. Mitchell, and M.Burmester. “An online scret sharing scheme

which identifies all cheaters”. In Proceedings of NORDSEC’98, Trondheim,

Norway, November 1998, and presented at the 1st IMA Conference on Math-

ematics in Communication, Loughborough, UK, December 1998.

[61] C.Y. Yeun, C.J. Mitchell, and S.L. Ng. “Comment–Signature scheme based on

discrete logarithm without using one-way hash-function”. Electronics Letters,

34(24):2329–2330, 1998.

[62] Y. Zheng. “Digital signcryption or how to achieve cost(signature+encryption)

<< cost(signature)+cost(encryption)”. In Advances in Cryptology – Proceed-

ings of Crypto ’97, pages 165–179. Springer-Verlag, 1997.

134

