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Abstract. This paper proposes an efficient and provably secure trans-
form to encrypt a message with any asymmetric one-way cryptosystem.
The resulting scheme achieves adaptive chosen-ciphertext security in the
random oracle model.
Compared to previous known generic constructions (Bellare, Rogaway,
Fujisaki, Okamoto, and Pointcheval), our embedding reduces the encryp-
tion size and/or speeds up the decryption process. It applies to numer-
ous cryptosystems, including (to name a few) ElGamal, RSA, Okamoto-
Uchiyama and Paillier systems.
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1 Introduction

A major contribution of cryptography is information privacy : through encryp-
tion, parties can securely exchange data over an insecure channel. Loosely speak-
ing this means that unauthorized recipients can learn nothing useful about the
exchanged data.

Designing a “good” encryption scheme is a very challenging task. There are
basically two criteria to compare the performances of encryption schemes: ef-
ficiency and security. Security is measured as the ability to resist attacks in a
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given adversarial model [1, 8]. The standard security notion is IND-CCA2 security,
i.e., indistinguishability under adaptive chosen-ciphertext attacks (cf. Section 2).
Usually, an (asymmetric) encryption scheme is proven secure by exhibiting a re-
duction: if an adversary can break the IND-CCA2 security then the same adversary
can solve a related problem assumed to be infeasible.

This paper is aimed at simplifying the security proof by providing a Generic
Encryption Method (gem) to convert any asymmetric one-way cryptosystem into
a provably secure encryption scheme. Hence, when a new asymmetric one-way
function is identified, one can easily design a secure encryption scheme. More-
over, the conversion we propose is very efficient (computationally and memory-
wise): the converted scheme has roughly the same cost as that of the one-way
cryptosystem it is built from.

1.1 Previous work

In [3], Bellare and Rogaway described oaep, a generic conversion to transform a
“partial-domain” one-way trapdoor permutation into an IND-CCA2 secure encryp-
tion scheme in the random oracle model [2, 7]. Later, Fujisaki and Okamoto [5]
presented a way to transform, in the random oracle model, any chosen-plaintext
(IND-CPA) secure encryption scheme into an IND-CCA2 one. They improved their
results in [6] where they gave a generic method to convert a one-way (OW-CPA)
cryptosystem into an IND-CCA2 secure encryption scheme in the random oracle
model. A similar result was independently discovered by Pointcheval [13]. More
recently, Okamoto and Pointcheval [12] proposed a more efficient generic conver-
sion, called react, to convert any one-way cryptosystem secure under plaintext-
checking attacks (OW-PCA) into an IND-CCA2 encryption scheme. Contrary to [5,
6, 13], re-encryption is unnecessary in the decryption process to ensure IND-CCA2

security.

1.2 Our results

This paper presents gem, a generic IND-CCA2 conversion. The converted scheme,
Epk , built from any OW-PCA asymmetric encryption Epk and any length-pre-
serving IND-secure symmetric encryption scheme EK , is secure in the sense of
IND-CCA2, in the random oracle model. As discussed in Section 2, the security
levels we require for Epk and EK are very weak and the security level we obtain
for Epk is very high.

1.3 Organization of the paper

The rest of this paper is organized as follows. In Section 2, we review the secu-
rity notions for encryption, in both the symmetric and the asymmetric settings.
Section 3 is the core of the paper. We present our new padding to convert, in the
random oracle model, any asymmetric one-way cryptosystem into an encryption
scheme that is secure in the strongest sense. We prove the security of our con-
struction in Section 4 by providing and proving a concrete reduction algorithm.
Finally, we illustrate the merits of our conversion in Section 5.
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2 Security Notions

In this section, we recall the definition of an encryption scheme and discuss some
related security notions. A good reference to the subject is [1].

2.1 Encryption schemes

Definition 1. An encryption scheme consists of three algorithms (K, Epk ,Dsk ).

1. On input a security parameter k, the key generation algorithm K(1k) out-
puts a random matching pair (pk , sk) of encryption/decryption keys. For the
symmetric case, we assume wlog that the encryption and decryption keys are
identical, K := pk = sk. The key pk is public and the keys sk and K are
secret.

2. The encryption algorithm Epk (m, r) outputs a ciphertext c corresponding to
a plaintext m ∈ MSPC ⊆ {0, 1}∗, using the random coins r ∈ Ω. When the
process is deterministic, we simply write Epk (m). In the symmetric case, we
note EK instead of Epk .

3. The decryption algorithm Dsk (c) outputs the plaintext m associated to the
ciphertext c or a notification ⊥ that c is not a valid ciphertext. In the sym-
metric case, we use the notations DK .

Furthermore, we require that for all m ∈ MSPC and r ∈ Ω, Dsk (Epk (m, r)) = m.

The converted scheme we propose in this paper is a combination of an asym-
metric encryption scheme and a length-preserving symmetric encryption scheme.
We assume very weak security properties from those two schemes. Namely, we
require that the asymmetric scheme is OW-PCA and that the symmetric scheme
is IND, as defined below.

2.2 Security requirements

An attacker is said passive if, in addition to the ciphertext, s/he only obtains
some auxiliary information s, which may depend on the potential plaintexts (but
not on the key) [9, § 1.5] and other public information (e.g., the security param-
eter k and the public key pk). Note that in the asymmetric case an attacker can
always construct valid pairs of plaintext/ciphertext from the public encryption
key pk .

A minimal security requirement for an encryption scheme is one-wayness
(OW). This captures the property that an adversary cannot recover the whole
plaintext from a given ciphertext. In some cases, partial information about a
plaintext may have disastrous consequences. This is captured by the notion of
semantic security or the equivalent notion of indistinguishability [10]. Basically,
indistinguishability means that the only strategy for an adversary to distinguish
the encryptions of any two plaintexts is by guessing at random.

In the asymmetric case, suppose that the attacker has access to an ora-
cle telling whether a pair (m, c) of plaintext/ciphertext is valid; i.e., whether
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m = Dsk (c) holds. Following [12], such an attack scenario is referred to as the
plaintext-checking attack (PCA). From the pair of adversarial goal (OW) and
adversarial model (PCA), we derive the security notion of OW-PCA.

Definition 2. An asymmetric encryption scheme is OW-PCA if no attacker with
access to a plaintext-checking oracle Opca can recover the whole plaintext corre-
sponding to a ciphertext with non-negligible probability. More formally, an asym-
metric encryption scheme is (τ, q, ε)-secure in the sense of OW-PCA if for any
adversary A which runs in time at most τ , makes at most q queries to Opca, its
success ε satisfies

Pr
m←{0,1}∗

r←Ω

[
(sk , pk) ← K(1k), c ← Epk (m, r) :

AOpca

(c, s) = m

]
≤ ε

where the probability is also taken over the random choices of A.

For the symmetric case, we consider a passive attacker who tries to break
the indistinguishability property of the encryption scheme. The attacker A =
(A1,A2) runs in two stages. In the first stage (or find stage), on input k, A1

outputs a pair of messages (m0, m1) and some auxiliary information s. Next, in
the second stage (or guess stage), given the encryption cb of either m0 or m1

and the auxiliary information s, A2 tells if the challenge ciphertext cb encrypts
m0 or m1.

Definition 3. A symmetric encryption scheme is IND if no attacker can distin-
guish the encryptions of two equal-length plaintexts with probability non-negligibly
greater than 1/2. More formally, a symmetric encryption scheme is (τ, ν)-secure
in the sense of IND if for any adversary A = (A1,A2) which runs in time at
most τ , its advantage ν satisfies

Pr
b←{0,1}

[
K ← K(1k), (m0,m1, s) ← A1(k),

cb ← EK(mb) : A2(m0, m1, cb, s) = b

]
≤ 1 + ν

2

where the probability is also taken over the random choices of A.

In contrast, for our converted encryption scheme we require the highest secu-
rity level, namely IND-CCA2 security. The notion of IND-CCA2 for an asymmetric
encryption scheme considers an active attacker who tries to break the system by
probing with chosen-ciphertext messages. Such an attack can be non-adaptive
(CCA1) [11] or adaptive (CCA2) [14]. In a CCA2 scenario, the adversary may run a
second chosen ciphertext attack upon receiving the challenge ciphertext cb (the
only restriction being not to probe on cb).

Definition 4. An asymmetric encryption scheme is IND-CCA2 if no attacker
with access to a decryption oracle ODsk can distinguish the encryptions of two
equal-length plaintexts with probability non-negligibly greater than 1/2. More for-
mally, an asymmetric encryption scheme is (τ, q, ε)-secure in the sense of IND-

CCA2 if for any adversary A = (A1,A2) which runs in time at most τ , makes at
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most q queries to ODsk , its advantage ε satisfies

Pr
b←{0,1}

r←Ω




(sk , pk) ← K(1k),
(m0,m1, s) ← A1

ODsk (k, pk),
cb ← Epk (mb, r) :

A2
ODsk (m0, m1, cb, s) = b


 ≤

1 + ε

2

where the probability is also taken over the random choices of A, and A2 is not
allowed to query on cb.

3 GEM: Generic Encryption Method

A very appealing way to encrypt a message consists in using a hybrid encryption
mode. A random session key R is first encrypted with an asymmetric cryptosys-
tem. Then the message is encrypted under that session key with a symmetric
cryptosystem. Although seemingly sound, this scheme does not achieve IND-CCA2

security under weak security assumptions for the two underlying cryptosystems.
This section shows how to modify the above paradigm for attaining the IND-CCA2

security level.

3.1 REACT transform

The authors of react imagined to append a checksum to the previous construc-
tion and prove the IND-CCA2 security of the resulting scheme in the random oracle
model [12]. Briefly, react works as follows. A plaintext m is transformed into
the ciphertext (c1, c2, c3) given by

react(m) = Epk (R, u)︸ ︷︷ ︸
=c1

∥∥ EK(m)︸ ︷︷ ︸
=c2

∥∥ H(R, m, c1, c2)︸ ︷︷ ︸
=c3

where u is a random, K = G(R), and G, H are hash functions.

Building on this, we propose a new generic encryption method. Our method
is aimed at shortening the whole ciphertext by incorporating the checksum (i.e.,
c3) into c1 while maintaining the IND-CCA2 security level, in the random oracle
model.

3.2 New method

Let Epk and EK denote an asymmetric and a length-preserving symmetric en-
cryption algorithms, respectively, and let F, G, H denote hash functions. Let also
Dsk and DK denote the decryption algorithms corresponding to Epk and EK , re-
spectively. For convenience, for any element x defined over a domain A, we write
] x for |{x ∈ A}|. So, for example, ]m represents the cardinality of the message
space, i.e., the number of different plaintexts.
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Encryption

Input : Plaintext m, random ρ = r‖u.
Output : Ciphertext (c1, c2) given by

Epk (m, ρ) = Epk (w, u)︸ ︷︷ ︸
=c1

∥∥ EK(m)︸ ︷︷ ︸
=c2

where s = F(m, r), w = s ‖ r ⊕H(s),
and K = G(w, c1).

Decryption

Input : Ciphertext (c1, c2).
Output : Plaintext ṁ or symbol ⊥ according to

Dsk (c1‖c2) =
{

ṁ if ṡ = F(ṁ, ṙ)
⊥ otherwise

where ẇ := ṡ‖ṫ = Dsk (c1), K̇ = G(ẇ, c1),
ṁ = DK̇(c2), and ṙ = ṫ⊕H(ṡ).

4 Security Analysis

We now prove the security of our conversion. We show that if the hybrid encryp-
tion scheme Epk can be broken under an adaptive chosen-ciphertext attack then
either the length-preserving symmetric encryption scheme EK or the asymmet-
ric encryption scheme Epk underlying our construction is highly insecure, namely
the IND-security of EK or the OW-PCA security of Epk gets broken.

Theorem 1. Suppose that there exists an adversary that breaks, in the ran-
dom oracle model, the IND-CCA2 security of our converted scheme Epk within
a time bound τ , after at most qF, qG, qH, qDsk

queries to hash functions F, G, H
and decryption oracle ODsk , respectively, and with an advantage ε. Then, for all
0 < ν < ε, there exists

– an adversary that breaks the IND security of EK within a time bound τ and
an advantage ν; or

– an adversary with access to a plaintext-checking oracle Opca (responding in
time bounded by τpca) that breaks the OW-PCA security of Epk within a time
bound

τ ′ = τ + (qF qH + qG + qDsk
(qF + qG)) (τpca + O(1)) ,

after at most
qpca ≤ qF qH + qG + qDsk

(qF + qG)
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queries to Opca, and with success probability

ε′ ≥ ε− ν

2
− qF

] r
− qDsk

(
1
] s + qF

(
1
] r + 1

] s

)
+ ν + 1

] m

)
.

From this, we immediately obtain:

Corollary 1. For any OW-PCA asymmetric encryption Epk and any length-
preserving IND-secure symmetric encryption scheme EK , our converted scheme
Epk is IND-CCA2 secure in the random oracle model. ut

To prove Theorem 1, we suppose that there exists an adversary A = (A1,A2)
able to break the INC-CCA2 security of Epk . We further suppose that EK is
(τ, ν)-secure in the sense of IND. From A, we then exhibit an adversary B (i.e.,
a reduction algorithm) that inverts Epk using a plaintext-checking oracle, and
thus breaks the OW-PCA security of Epk .

4.1 A useful lemma

The assumption that EK is length-preserving and (τ, ν)-IND secure implies the
following lemma.

Lemma 1. Assume that EK is a length-preserving (τ, ν)-IND symmetric encryp-
tion scheme, where τ denotes the time needed for evaluating EK(·). Then given
a pair (m, c) of plaintext/ciphertext, we have

Pr
K

[EK(m) = c] ≤ ν +
1

]m
.

Proof. Given the pair (m, c), we consider the following distinguisher A. A ran-
domly chooses a bit d ∈ {0, 1}, sets md = m and m¬d to a random value m′. The
pair (md, m¬d) is then sent to the encryption oracle which returns cb = EK(mb)
for a random key K and a random b ∈ {0, 1}. A then checks if cb = c, returns d
if the equality holds and ¬d otherwise. Letting ε the advantage of A, we have

ε = 2 Pr
m′,K,d,b

[A returns b]− 1

= 2 Pr
m′,K,d,b

[(cb = c) ∧ (d = b)] +

2 Pr
m′,K,d,b

[(cb 6= c) ∧ (¬d = b)]− 1

= 2 Pr
m′,K,d,b

[(EK(m) = c) ∧ (d = b)] +

2 Pr
m′,K,d,b

[(EK(m′) 6= c) ∧ (¬d = b)]− 1

= Pr
K

[EK(m) = c] + Pr
m′,K

[EK(m′) 6= c]− 1

= Pr
K

[EK(m) = c]− Pr
m′,K

[EK(m′) = c] ≤ ν .

The proof follows by noting that as EK is length-preserving, it permutes the set
of messages for any key K and so Prm′,K [EK(m′) = c] = 1/]m. ut
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4.2 Description of the reduction algorithm

B is given a challenge encryption y = Epk (w̃, ∗), an oracle Opca which answers
plaintext-checking requests on Epk , and an adversary A = (A1,A2) that breaks
the IND-CCA2 security of Epk . B’s goal is to retrieve all the bits of w̃. Wlog, we
assume that Opca responds to any of B’s requests with no error and within a
time bounded by τpca.

Throughout, the following notations are used. For any predicate R(x), R(∗)
stands for ∃x s.t. R(x). If O is an oracle to which A has access, we denote
by query 7→ response the correspondence O establishes between A’s request
query and the value response returned to A. Hist [O] stands for the set of
correspondences established by O as time goes on: Hist [O] can be seen as an
history tape which gets updated each time A makes a query to O. We denote
by qO the number of calls A made to O during the simulation.

Overview of B At the beginning, B chooses a random value K̃. B then runs A
and provides a simulation for F, G, H and Dsk . A = (A1,A2) runs in two stages.
At the end of the first stage (find stage), A1 outputs a pair (m0,m1). B then
randomly chooses b ∈ {0, 1}, computes c̃2 = E eK(mb) and builds (y, c̃2). This
challenge is provided to A2, which outputs some bit at the end of the second
stage (guess stage). Once finished, B checks whether some w̃ has been defined
during the game. If so, w̃ is returned as the inverse of Epk on y; otherwise a
failure answer is returned. The detailed description of the simulation follows.

Wlog, we assume that A keeps track of all the queries throughout the game
so that A never has to make the same query twice to the same oracle.

Simulation of F For each new query (m, r),

(Event E1) if processing guess stage and m = mb and there exists s 7→ h ∈
Hist [H] such that y = Epk (s‖r ⊕ h, ∗) then F sets w̃ := s‖r ⊕ h, returns s
and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of G For each new query (w, c1),

(Event E2) if c1 = y and y = Epk (w, ∗) then G sets w̃ := w, returns K̃ and
updates its history,

(Event E3) else if c1 6= y and y = Epk (w, ∗) then G sets w̃ := w, returns a
random value and updates its history,

(no event) else G outputs a random value and updates its history.

Simulation of H For each new query s, H outputs a random value and updates
its history.
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Simulation of Dsk (plaintext extractor) For each new query (c1, c2), Dsk

first checks (this verification step only stands while the guess stageA2 is running)
that (c1, c2) 6= (y, c̃2) since if this equality holds, the query must be rejected as
A attempts to decrypt its own challenge ciphertext. Then, Dsk tries to find the
only (if any) message m matching the query. To achieve this, Dsk invokes the
simulation of G, H and F provided by B as follows.

– Find the unique pair (r, s) such that (∗, r) 7→ s ∈ Hist [F], s 7→ h ∈ Hist [H]
and c1 = Epk (s‖r ⊕ h, ∗). If such a pair exists,
• query G to get K = G(s‖r ⊕ h, c1),
• letting m = DK(c2), query F to check if F(m, r) = s. If the equality

holds, return m; otherwise reject the query (Event RJ1).
– If the search for (r, s) is unsuccessful, check if there exists w with (w, c1) 7→

K ∈ Hist [G] and c1 = Epk (w, ∗). If such an w exists,
• define s and t by w = s‖t, and query H to get h = H(s),
• letting m = DK(c2), query F to check if F(m, t⊕ h) = s. If the equality

holds, return m; otherwise reject the query (Event RJ2).
– If the search for w is unsuccessful, reject the query (Event RJ3).

4.3 Soundness of B
Unless otherwise mentioned, all probabilities are taken over the random choices
of A and B.

Simulation of random oracles The plaintext w̃ uniquely defines s̃ and t̃ such
that w̃ = s̃‖t̃. We note r̃ the random variable t̃⊕H(s̃).

Soundness of F. The simulation of F fails when (mb, r̃) is queried and answered
with some value s 6= s̃ before s̃ appears in Hist [H].

Let q1
F denote the number of oracle queries A1 made to F during the find

stage. Since r̃ is a uniformly-distributed random variable throughout the find
stage, we certainly have Pr[F incorrect in the find stage] ≤ q1

F/] r.
Moreover, throughout the guess stage, A2 cannot gain any information about

r̃ without knowing H(s̃) because H is a random function. Hence, letting q2
F

the number of oracle queries A2 made to F during the guess stage, we have
Pr[F incorrect in the guess stage] ≤ q2

F/] r.
Consequently, the probability that an error occurs while B simulates the

oracle F is upper-bounded by

Pr[F incorrect] ≤ q1
F + q2

F

] r
=

qF

] r
.

Soundness of G. The simulation is perfect.

Soundness of H. The simulation is perfect.
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Plaintext extraction The simulation of Dsk fails when Dsk returns ⊥ although
the query c = (c1, c2) is a valid ciphertext. Let then m, r, s, t, h, w, K be the
unique random variables associated to c in this case. Obviously, c was rejected
through event RJ3, because a rejection through RJ1 or RJ2 refutes the validity
of c. Therefore, if Dsk is incorrect for c, we must have

(
(m, r) 6∈ Hist [F]︸ ︷︷ ︸

:=¬EF

∨ s 6∈ Hist [H]︸ ︷︷ ︸
:=¬EH

) ∧ (
(w, c1) 7→ K 6∈ Hist [G]︸ ︷︷ ︸

:=¬EG

)
.

Hence,

Pr[Dsk incorrect for c] = Pr[(¬EF ∨ ¬EH) ∧ ¬EG]
= Pr[((m, r) 6= (mb, r̃)) ∧ (¬EF ∨ ¬EH) ∧ ¬EG] +

Pr[((m, r) = (mb, r̃)) ∧ (¬EF ∨ ¬EH) ∧ ¬EG]
≤ Pr[((m, r) 6= (mb, r̃)) ∧ (¬EF ∨ ¬EH)] + Pr[((m, r) = (mb, r̃)) ∧ ¬EG]
= Pr[((m, r) 6= (mb, r̃)) ∧ ¬EF] + Pr[((m, r) 6= (mb, r̃)) ∧ (EF ∧ ¬EH)] +

Pr[((m, r) = (mb, r̃)) ∧ ¬EG] .

1. Assume (m, r) 6= (mb, r̃) and (m, r) 6∈ Hist [F]. Since F is a random func-
tion, F(m, r) is a uniformly distributed random value unknown to A. The
fact that c is a valid ciphertext implies that F(m, r) = s, which happens
with probability

Pr[c is valid ∧ (m, r) 6∈ Hist [F]] =
1
] s

.

2. Assume (m, r) 6= (mb, r̃) and (m, r) ∈ Hist [F]∧s 7→ h 6∈ Hist [H]. Suppose
that s 6= s̃. Since H is a random function, H(s) is a uniformly distributed
random value unknown to A. The validity of c implies that (m, t⊕H(s)) 7→
s ∈ Hist [F], which happens with probability

Pr[(m, t⊕H(s)) 7→ s ∈ Hist [F]] ≤ qF

] r
.

Now assume s = s̃. In this case, we must have (m, r) 7→ s̃ ∈ F which occurs
with probability

Pr[(m, r) 7→ s̃ ∈ Hist [F]] ≤ qF

] s
.

3. Assume (m, r) = (mb, r̃) and (w, c1) 7→ K 6∈ Hist [G]. This implies s = s̃,
t = t̃, w = w̃ and c1 6= y. Hence, if c is valid, we must have EK(mb) = c2 for
a uniformly distributed K. By virtue of Lemma 1, this is bounded by

Pr
K

[EK(mb) = c2] ≤ ν +
1

] m
.

Gathering all preceding bounds, we get

Pr[c is valid ∧ Dsk incorrect for c]

≤ 1
] s

+ qF

(
1
] r

+
1
] s

)
+ ν +

1
]m

,
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which, taken over all queries of A, leads to

Pr[Dsk incorrect] ≤ qDsk

(
1
] s

+ qF

(
1
] r

+
1
] s

)
+ ν +

1
]m

)
.

Conclusion We have

Pr[B incorrect] = Pr[F incorrect] + Pr[Dsk incorrect]

≤ qF

] r
+ qDsk

(
1
] s

+ qF

(
1
] r

+
1
] s

)
+ ν +

1
]m

)
.

4.4 Reduction cost

Success probability Let us suppose that A distinguishes Epk within a time
bound τ with advantage ε in less than qF, qH, qG, qDsk

oracle calls. Defining
Pr2[·] = Pr[· | ¬(B incorrect)], this means that

Pr2[A → b] ≥ 1 + ε

2
.

Suppose also that EK is (τ, ν)-indistinguishable. Assuming that the oracles are
correctly simulated, if none of the events E1, E2 or E3 occurs, then A never asked
r̃ to the random oracle F, neither did it learn the key K̃ under which mb was
encrypted in c̃2 (this is due to the randomness of F and G). This upper-limits the
information leakage on b by ν, since A’s running time is bounded by τ . Noting
Ewin = E1 ∨ E2 ∨ E3, this implies

Pr2[A → b | ¬Ewin ] ≤ 1 + ν

2
.

We then get

1 + ε

2
≤ Pr2[A → b] ≤ Pr2[A → b | ¬Ewin ] + Pr2[Ewin ]

≤ 1 + ν

2
+ Pr2[Ewin ] ,

whence Pr2[Ewin ] ≥ (ε− ν)/2. But Pr2[B → w̃] = Pr2[Ewin ] and finally,

Pr[B → w̃] ≥ Pr2[B → w̃]− Pr[B incorrect]

≥ ε− ν

2
− qF

] r
−

qDsk

(
1
] s

+ qF

(
1
] r

+
1
] s

)
+ ν +

1
] m

)
.

Hence B succeeds with non-negligible probability.
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Total number of calls to Opca Checking that a pair of the form (w, y) satisfies
y = Epk (w, ∗) is done thanks to the plaintext-checking oracle Opca. Therefore,
oracle F makes at most qF · qH queries to Opca, and oracle G makes at most
qG · 1 queries to Opca. Moreover, it is easy to see that oracle ODsk makes at
most qDsk

(qF + qG) calls since in the worst case Dsk has to call Opca for all
elements ((∗, r) 7→ s) ∈ Hist [F] and for all elements ((w, c1) 7→ K) ∈ Hist [G].
In conclusion, the total number of calls actually needed by B is upper-bounded
by

qpca ≤ qF qH + qG + qDsk
(qF + qG) .

Total running time The reduction algorithm runs in time bounded by

τB = τ + (qF qH + qG + qDsk
(qF + qG)) (τpca + O(1)) .

This completes the proof of Theorem 1.

5 Concluding Remarks

A very popular way to (symmetrically) encrypt a plaintext is to use a stream
cipher. The simplest example is the Vernam cipher where a plaintext m is pro-
cessed bit-by-bit to form the ciphertext c under the secret key K. With this
cipher, each plaintext bit mi is xor-ed with the key bit Ki to produce the ci-
phertext bit ci = mi ⊕Ki. If K is truly random and changes for each plaintext
m being encrypted, then the system is unconditionally secure. This ideal situ-
ation is, however, impractical for a real-world implementation. To resolve the
key management problem, a stream cipher is usually combined with a public-
key cryptosystem. Contrary to the obvious solution consisting in encrypting a
random session key with an asymmetric cryptosystem and then using that key
with a stream cipher, our hybrid scheme achieves provable security. Compared
to a purely asymmetric solution, our scheme presents the advantage to encrypt
long messages orders of magnitude faster thanks to the use of a symmetric cryp-
tosystem.

Another merit of our scheme resides in its generic nature. The set of possible
applications of the new conversion scheme is similar to that of react: it concerns
any asymmetric function that is OW-PCA under a conjectured intractability as-
sumption. A specificity of react is that it can operate “on the fly”. The session
key does not depend on the plaintext to be encrypted and can thus be computed
in advance. This property is particularly advantageous when the asymmetric
encryption is expensive, as is the case for discrete-log based cryptosystems. Re-
mark that our scheme does not allow “on-the-fly” encryption, that was the price
to pay for shortening the ciphertext.

In other cases such as for rsa (with a low encryption exponent, e.g., 3 or 216+
1) or Rabin cryptosystem, on-the-fly encryption is not an issue and our scheme
may be preferred because the resulting ciphertext is shorter. Furthermore, it is
worth noting that for a deterministic asymmetric encryption scheme Epk , the
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notions of OW-PCA and OW-CPA are identical: the validity of a pair (m, c) of
plaintext/ciphertext can be publicly checked as c = Epk (m). So, our method
allows one to construct, for example, an efficient IND-CCA2 hybrid encryption
scheme whose security relies on the hardness of inverting the rsa function or
factoring large numbers.

In conclusion, our generic conversion may be seen as the best alternative to
react when the underlying asymmetric encryption is relatively fast or when
memory/bandwidth savings are a priority.
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Fig. 1. Description of gem in encryption mode.
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ṡ ṫ

comparison

⊥ṁ
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Fig. 2. Description of gem in decryption mode.


