
Cryptanalytic Attacks on Pseudorandom
Number Generators

John Kelsey ? Bruce Schneier ??

David Wagner ??? Chris Hall †

Abstract. In this paper we discuss PRNGs: the mechanisms used by
real-world secure systems to generate cryptographic keys, initialization
vectors, “random” nonces, and other values assumed to be random. We
argue that PRNGs are their own unique type of cryptographic primitive,
and should be analyzed as such. We propose a model for PRNGs, discuss
possible attacks against this model, and demonstrate the applicability of
the model (and our attacks) to four real-world PRNGs. We close with
a discussion of lessons learned about PRNG design and use, and a few
open questions.

1 Introduction and Motivation

It is hard to imagine a well-designed cryptographic application that doesn’t
use random numbers. Session keys, initialization vectors, salts to be hashed with
passwords, unique parameters in digital signature operations, and nonces in pro-
tocols are all assumed to be random5 by system designers. Unfortunately, many
cryptographic applications don’t have a reliable source of real random bits, such
as thermal noise in electrical circuits or precise timing of Geiger counter clicks
[FMK85, Gud85, Agn88, Ric92]. Instead, they use a cryptographic mechanism,
called a Pseudo-Random Number Generator (PRNG) to generate these values.
The PRNG collects randomness from various low-entropy input streams, and
tries to generate outputs that are in practice indistinguishable from truly ran-
dom streams [SV86, LMS93, DIF94, ECS94, Plu94, Gut98].

In this paper, we consider PRNGs from an attacker’s perspective. We discuss
the requirements for PRNGs, give a basic model of how such PRNGs must work,
and try to list the possible attacks against PRNGs. Specifically, we consider ways
that an attacker may cause a given PRNG to fail to appear random, or ways
he can use knowledge of some PRNG outputs (such as initialization vectors) to
guess other PRNG outputs (such as session keys).
? Counterpane Systems, kelsey@counterpane.com.
?? Counterpane Systems, schneier@counterpane.com.
??? University of California Berkeley daw@cs.berkeley.edu.
† Counterpane Systems, hall@counterpane.com.
5 Note that “random” is a word that is easily misused. In this paper, unless we say

otherwise, the reader may assume that a “random value” is one sample of a random
variable which is uniformly distributed over the entire set of n-bit vectors, for some
n.



1.1 Applications of Results

This research has important practical and theoretical implications:

1. A PRNG is its own kind of cryptographic primitive, which has not so far
been examined in the literature. In particular, there doesn’t seem to be
any widespread understanding of the possible attacks on PRNGs, or of the
limitations on the uses of different PRNG designs. A better understanding
of these primitives will make it easier to design and use PRNGs securely.

2. A PRNG is a single point of failure for many real-world cryptosystems.
An attack on the PRNG can make irrelevant the careful selection of good
algorithms and protocols.

3. Many systems use badly-designed PRNGs, or use them in ways that make
various attacks easier than they need be. We are aware of very little in the
literature to help system designers choose and use these PRNGs wisely.

4. We present results on real-world PRNGs, which may have implications for
the security of fielded cryptographic systems.

1.2 The Rest of This Paper

In Section 2, we define our model of a PRNG, and discuss the set of possible
attacks on PRNGs that fit this model. In Section 3 discuss applications of those
attacks on several real-world PRNGs. Then, in Section 4, we end with a discus-
sion of the lessons learned, and a consideration of some related open problems.

2 Definitions

In the context of this paper, a PRNG is a cryptographic algorithm used to gener-
ate numbers that must appear random. Examples of this include the ANSI X9.17
key generation mechanism [ANSI85] and the RSAREF 2.0 PRNG [RSA94]. A
PRNG has a secret state, S. Upon request, it must generate outputs that are
indistinguishable from random numbers to an attacker who doesn’t know and
cannot guess S. In this, it is very similar to a stream cipher. Additionally, how-
ever, a PRNG must be able to alter its secret state by processing input values
that may be unpredictable to an attacker. A PRNG often starts in an state that
is guessable to an attacker (usually unintentionally), and must process many
inputs to reach a secure state. Sometimes, the input samples are processed each
time an output is generated: e.g., ANSI X9.17. Other times, the input samples
are processed as they become available: e.g. RSAREF 2.0 PRNG.

Note that the inputs are intended to carry some unknown (to an attacker) in-
formation into the PRNG. These are the values typically collected from physical
processes (like hard drive latencies [DIF94]), user interactions with the machine
[Zim95], or other external, hard-to-predict processes. Typically, system imple-
menters and designers will try to ensure that there is sufficient entropy in these
inputs to make them unguessable by any practical attacker.

2



Note that the outputs are intended to stand in for random numbers in essen-
tially any cryptographic situation. Symmetric keys, initialization vectors, ran-
dom parameters in DSA signatures, and random nonces are common applications
for these outputs.

See Figure 1 for a high-level view of a PRNG. Also, Figure 2 refines the
terminology a bit, and Figure 3 shows a PRNG with periodic reseeding.

PRNGs are typically constructed from other cryptographic primitives, such
as block ciphers, hash functions, and stream ciphers. There is a natural ten-
dency to assume that the security of these underlying primitives will translate
to security for the PRNG.

In this paper, we consider several new attacks on PRNGs. Many of these
attacks may be considered somewhat academic. However, we believe there are
situations that arise in practice in which these attacks are possible. Additionally,
we believe that even attacks that are not usually practical should be brought to
the attention of those who use these PRNGs, to prevent the PRNGs’ use in an
application that does allow the attacks.

Note that in principle, any method of distinguishing between PRNG outputs
and random outputs is an attack; in practice, we care much more about the
ability to learn the values of PRNG outputs not seen by the attacker, and to
predict or control future outputs.

Fig. 1. Black-box view of a PRNG

-

6
PRNG

pseudo-random outputs

unpredictable inputs

2.1 Enumerating the Classes of Attacks

1. Direct Cryptanalytic Attack. When an attacker is directly able to dis-
tinguish between PRNG outputs and random outputs, this is a direct crypt-
analytic attack. This kind of attack is applicable to most, but not all, uses of
PRNGs. For example, a PRNG used only to generate triple-DES keys may
never be vulnerable to this kind of attack, since the PRNG outputs are never
directly seen.

3



Fig. 2. View of internal operations for most PRNGs�
�

�
�

�
�

�
�

6

6

?

?

-

�

generate

collect
unpredictable inputs

pseudo-random outputs

state

2. Input-Based Attacks. An input attack occurs when an attacker is able to
use knowledge or control of the PRNG inputs to cryptanalyze the PRNG,
i.e., to distinguish between PRNG output and random values.
Input attacks may be further divided into known-input, replayed-input, and
chosen-input attacks. Chosen input attacks may be practical against smart-
cards and other tamper-resistant tokens under a physical/cryptanalytic at-
tack; they may also be practical for applications that feed incoming messages,
user-selected passwords, network statistics, etc., into their PRNG as entropy
samples. Replayed-input attacks are likely to be practical in the same situ-
ations, but require slightly less control or sophistication on the part of the
attacker. Known-input attacks may be practical in any situation in which
some of the PRNG inputs, intended by the system designer to be hard to
predict, turn out to be easily predicted in some special cases. (An obvious
example of this is an application which uses hard-drive latency for some of
its PRNG inputs, but is being run using a network drive whose timings are
observable to the attacker.)

3. State Compromise Extension Attacks. A state compromise extension
attack attempts to extend the advantages of a previously-successful effort
that has recovered S as far as possible. Suppose that, for whatever reason—a
temporary penetration of computer security, an inadvertent leak, a crypt-
analytic success, etc.—the adversary manages to learn the internal state, S,
at some point in time. A state compromise extension attack succeeds when
the attacker is able to recover unknown PRNG outputs (or distinguish those
PRNG outputs from random values) from before S was compromised, or re-
cover outputs from after the PRNG has collected a sequence of inputs which
the attacker cannot guess.
State compromise extension attacks are most likely to work when a PRNG is
started in an insecure (guessable) state due to insufficient starting entropy.
They can also work when S has been compromised by any of the attacks

4



in this list, or by any other method. In practice, it is prudent to assume
that occasional compromises of the state S may happen; to preserve the
robustness of the system, PRNGs should resist state compromise extension
attacks as thoroughly as possible.
(a) Backtracking Attacks. A backtracking attack uses the compromise of

the PRNG state S at time t to learn previous PRNG outputs.
(b) Permanent Compromise Attacks. A permanent compromise attack

occurs if, once an attacker compromises S at time t, all future and past
S values are vulnerable to attack.

(c) Iterative Guessing Attacks. An iterative guessing attack uses knowl-
edge of S at time t, and the intervening PRNG outputs, to learn S at
time t+ ε, when the inputs collected during this span of time are guess-
able (but not known) by the attacker.

(d) Meet-in-the-Middle Attacks. A meet in the middle attack is essen-
tially a combination of an iterative guessing attack with a backtracking
attack. Knowledge of S at times t and t+2ε allow the attacker to recover
S at time t+ ε.

3 Attacking Real-World PRNGs

In this section we discuss the strengths and weaknesses of four real-world PRNGs:
the ANSI X9.17 PRNG, the DSA PRNG, the RSAREF PRNG, and CryptoLib.

3.1 The ANSI X9.17 PRNG

The ANSI X9.17 PRNG [ANSI85, Sch96] is intended as a mechanism to generate
DES keys and IVs, using triple-DES as a primitive. (Of course, it is possible to
replace triple-DES with another block cipher.) It has been used as a general-
purpose PRNG in many applications.

1. K is a secret triple-DES key generated somehow at initialization time. It
must be random and used only for this generator. It is part of the PRNG’s
secret state which is never changed by any PRNG input.

2. Each time we wish to generate an output, we do the following:
(a) Ti = EK(current timestamp).
(b) output[i] = EK(Ti ⊕ seed[i]).
(c) seed[i+ 1] = EK(Ti ⊕ output[i]).

This generator is in widespread use in banking and other applications.

Direct Cryptanalytic Attack Direct cryptanalysis of this generator appears
to require cryptanalysis of triple-DES (or whatever other block cipher is in use.)
As far as we know, this has never been proven, however.

5



Input-Based Attacks The X9.17 PRNG has a certificational weakness (as-
suming a 64-bit block size) with respect to replayed-input attacks.

An attacker who can force the T values to freeze can distinguish the PRNG’s
outputs from random outputs after seeing about 232 64-bit outputs. In a sequence
of random 64-bit numbers, we would expect to see a collision after about 232

outputs. However, with T frozen, we expect a collision from X9.17 to require
about 263 outputs. This is a mostly academic weakness, but it may be relevant
in some applications.

Otherwise, knowledge or control of inputs does not appear to weaken the
PRNG against an attacker that doesn’t know K.

State Compromise Extension Attacks The X9.17 PRNG does not properly
recover from state compromise. That is, an attacker who compromises the X9.17
triple-DES key, K, can compromise the whole internal state of the PRNG from
then on without much additional effort.

Two Design Flaws in X9.17 There are two flaws in the ANSI X9.17 PRNG
that become apparent only when the PRNG is analyzed with respect to state
compromise extension attacks.

1. Only 64 bits of the PRNG’s state, seed[i], can ever be affected by the PRNG
inputs. This means that once an attacker has compromised K, the PRNG can
never fully recover, even after processing a sequence of inputs the attacker
could never guess.

2. The seed[i + 1] value is a function of the previous output, the previous Ti,
and K. To an attacker who knows K from a previous state compromise, and
knows the basic properties of the timestamp used to derive Ti, seed[i+ 1] is
simply not very hard to guess.

The Permanent Compromise Attack: Deriving the Internal State from Two Out-
puts Consider an attacker who learns K. Much later, after the seed inter-
nal variable has become totally different, he is given two successive outputs,
output[i, i+ 1]. (He has not seen any intervening outputs from the PRNG.) The
attacker’s goal will be to learn the value of seed[i+1]. Of course, one can trivially
mount a 64-bit search and learn the seed value.

6



However, there is a much more effective way to mount this attack. Suppose
that each timestamp value has ten bits that aren’t already known to the attacker.
(This is a reasonable assumption for many systems. For example, consider a
millisecond timer, and an attacker who knows to about the nearest second when
an output was generated.) An attacker with two successive outputs can mount
a meet-in-the-middle attack to discover the internal seed value, requiring about
211 trial encryptions under the known key K. This works because we have

seed[i+ 1] = DK(output[i+ 1])⊕ Ti+1

seed[i+ 1] = EK(output[i]⊕ Ti)

The attacker tries all possible values for Ti, and forms one sorted list of possible
seed[i + 1] values. He then tries all possible values for Ti+1, and forms another
sorted list of possible seed[i+ 1] values. The correct seed[i+ 1] value is the one
that appears in both lists.

The Iterative Guessing Attack If an attacker knows seed[i], and sees some func-
tion of output[i + 1], he can learn seed[i + 1] in almost all cases. This is true
because the timestamp sample will seldom have much entropy. Using our earlier
assumption of ten bits of entropy per timestamp sample, this means the attacker
will need only a ten-bit guess. Note that the attacker needs only to see a function
of the output, not the output itself. This means that a message encrypted with
a key derived from the output value is sufficient to mount this attack. (Note the
difference between this and the permanent compromise attack, above, in which
the attacker needs raw PRNG outputs.)

Backtracking The attacker can move backwards as easily as forward with the
iterative guessing attack, assuming he can find functions of the PRNG outputs.
Alternatively, he may look for the successive pair of directly available PRNG
outputs nearest to the unknown outputs he wants to learn, and mount the per-
manent compromise attack there.

Meet-in-the-Middle Attack Sometimes, a PRNG may generate a large secret
value, and not directly output any bits of it. The attacker may thus know seed[i]
and seed[i + 8], but no intervening values. Since this leaves him with (say) 80
bits of entropy, it might be naively assumed that he cannot recover these output
values. However, this isn’t necessarily the case, because a meet-in-the-middle
attack is available. This works as follows:

1. The attacker mounts the attack described above to learn the PRNG state
before and after the run of values that were used together.

2. The attacker carries out a meet-in-the-middle attack, deriving one set of
possible values for seed[i+4] by guessing Ti+1..i+4 and deriving a second list
by guessing Ti+5..i+8. If each sequence of four timestamps holds 40 bits of
entropy, this will require 241 effort. The correct value of seed[i + 4] will be

7



present in both lists, so the seed[i+4] values that match (there will be about
216 of these) yield the possible sequences of timestamps, and thus, output
blocks.

3. The attacker can try all these possible output sequences until he finds the
right one. (For example, if the eight output blocks are used as an encryption
key, 216 trial decryptions will suffice to eliminate all the false alarms.)

Timer Entropy Issues In the above discussion, we have assumed that individual
PRNG inputs have fixed amounts of entropy, and thus, take fixed amounts of
effort to guess. In practice, this usually won’t be the case. An RSA keypair
generation might reasonably use two 512-bit pseudorandom starting points, thus
requiring a total of sixteen PRNG output requests. However, these calls will
almost certainly be made in rapid succession. Unless the timestamp on which
the Ti values are based has a great deal of precision, many of these Ti values
will be based on the same or very close timestamp values. This may well make
meet-in-the-middle attacks practical, even though it might normally make sense
to estimate at least three bits of unpredictability per timestamp.

Summary The ANSI X9.17 key generator appears to be fairly secure from all
attacks that don’t involve either stopping the timer used or compromising the
internal triple-DES key. Replaying any timer input about 232 times leads to a
certificational weakness: a way to distinguish large numbers of X9.17 PRNG
outputs from a truly random sequence of bits. Compromising the internal triple-
DES key completely destroys the X9.17 PRNG: it never recovers, even after
getting thousands of bits worth of entropy in its sampled timer inputs6.

For systems that use X9.17, the most obvious way to resist this class of
attack is to occasionally use the current X9.17 state to generate a whole new
X9.17 state, including a new K and a new starting seed[0].

3.2 The DSA PRNG

The Digital Signature Standard specification [NIST94] also describes a fairly
simple PRNG based on SHA (or, alternatively, a DES construction) which was
6 Wei Dai’s Crypto++ library [Dai97] includes an implementation of a X9.17 variant

with increased security against seed compromise attacks. That variant is

1. Ti = EK(Ti−1 ⊕ current timestamp).
2. output[i] = EK(Ti ⊕ seed[i]).
3. seed[i+ 1] = EK(Ti ⊕ output[i]).

This corresponds to encrypting the timestamps in CBC mode, instead of in ECB
mode as is done in the standard X9.17 generator. The timestamp is based on the
program’s CPU usage, and its resolution is platform-dependent; on Linux, it has a
0.01 second resolution. We have not examined this PRNG closely, but we note that
our permanent compromise attack, above, can be extended to work on Crypto++’s
X9.17 variant at a cost of requiring a 264 search in the attack

8



intended for generating pseudorandom parameters for the DSA signature algo-
rithm. Since this generator appears to come with an NSA stamp of approval, it
has been used and proposed for applications quite different than those for which
it was originally designed.

The DSA PRNG allows an optional user input while generating keys, but
not while generating DSA signature parameters. For our purposes, though, we
will assume that the PRNG can be given user inputs at any time, as is true with
the other PRNGs discussed in this paper. Each time the DSA PRNG generates
an output, it may be provided with an optional input, Wi. Note that omitting
the input from the PRNG design would guarantee that the PRNG could never
recover from a state compromise.

All arithmetic in this PRNG is allowed to be done modulo 2N , where 160 ≤
N ≤ 512. In the remainder of this document, we will assume this modulus to be
160, since this is the weakest value (with respect to one attack) that is allowed
by the design.

The DSA PRNG works as follows:

1. The PRNG maintains an ever-changing state, Xi.
2. The PRNG accepts an optional input, Wi. This may be assumed to be zero

if not supplied.
3. The PRNG generates each output as follows:

(a) output[i] = hash(Wi +Xi mod 2160)
(b) Xi+1 = Xi + output[i] + 1 (mod 2160)

Direct Cryptanalytic Attack If the PRNG’s hash function is good, then
the resulting output sequence appears to be hard to distinguish from a random
sequence. It would be nice, from a system designer’s point of view, to have some
proof of the quality of this PRNG’s outputs based on the collision-resistance or
one-wayness of the hash function; to our knowledge, no such proof exists.

Input-Based Attacks Consider an attacker who can control the inputs sent
into W . If these inputs are sent directly in, there is a straightforward way to
force the PRNG to repeat the same output forever. This has a direct relevance
if this PRNG is being used in a system in which the attacker may control some
of the entropy samples sent into the PRNG. To force the PRNG to repeat, the
attacker forms

Wi = Wi−1 − output[i− 1]− 1 (mod 2160)

This forces the seed value to repeat, which forces the output values to repeat.
Note, however, that this attack fails quickly when the user hashes his entropy
samples before sending them into the PRNG. In practice, this is the natural way
to process the inputs, and so we suspect that few systems are vulnerable to this
attack.

9



State Compromise Extension Attacks The DSA PRNG doesn’t handle
state compromises as well as we might have liked, but it is much better in this
regard than ANSI X9.17. Consider an attacker who has somehow compromised
the entire internal state of the PRNG, but then lost track of its inputs and
outputs for a long period. If enough entropy existed in those samples, then the
DSA PRNG will become as strong as ever against attack.

Leaking Input Effects Just as with ANSI X9.17, the DSA PRNG leaks the effects
of unguessable inputs in its output. Consider an attacker who has compromised
the PRNG’s state. The application feeds in an input that the attacker can’t guess
(e.g., a sample with 90 bits of entropy). If the attacker sees the next output, he
doesn’t need to guess the sample, because the only effect on future outputs this
sample can have is through that output. Note that if the new Xi+1 depended
directly on Wi and Xi, this weakness wouldn’t exist. An attacker who knew the
state could still try guessing the entropy sample, but if he did not guess the right
value, he would lose knowledge of the state.

The Iterative Guessing Attack This PRNG is vulnerable to an iterative guessing
attack after the state has been compromised. That is, if an attacker knows Xi

and knows that Wi has only 20 bits of entropy, he can mount a 220 search, and
have a list of 220 160-bit outputs, one of which is output[i]. Note that the attacker
needs only a function of the output that he can check, such as a DSA signature
made with output[i] as its secret parameter value. Note also that knowledge of
the correct value for output[i] also uniquely determines the value of Xi+1.

Backtracking If an attacker knows Xi, and output[i− 1], then he is clearly able
to backtrack to knowledge of Xi−1. This doesn’t immediately gain him much,
since he has to already know output[i − 1] to be able to do this. However, in
some circumstances, this could turn out to be useful.

Filling in the Gaps Consider a situation in which the attacker knows Xi, Xi+2,
and output[i+ 1], but still needs to know output[i]. In this case he can solve for
output[i] directly:

output[i] = Xi+2 −Xi − 2− output[i+ 1]

Summary The DSA standard’s PRNG appears to be quite secure when used in
the application for which it was designed: DSA signature parameter generation.
However, it doesn’t perform well as a general-purpose cryptographic PRNG be-
cause it handles its inputs poorly, and because it recovers more slowly from state
compromise than it should.

To adapt the DSA PRNG to more general use, the following measures would
eliminate most of the attacks we have observed:

1. Require hashing of all PRNG inputs before applying them.

10



2. Update X by the following formula:

Xi+1 = Xi + hash(output[i] +Wi). modulo 2160

3.3 The RSAREF PRNG

The PRNG included with RSAREF 2.0 is built almost entirely around two op-
erations: MD5 hashing and addition modulo 2128. It is the most conceptually
simple design of any we have analyzed. The RSAREF 2.0 PRNG consists of the
following:

1. A 128 bit counter, Ci.
2. A method for processing inputs. To process input Xi, we do the following:

Ci+1 = Ci + MD5(Xi) modulo 2128.

3. A method for generating outputs. To generate output output[i], we do the
following:

output[i] = MD5(Ci) modulo 2128

Ci+1 = Ci + 1 modulo 2128.

Direct Cryptanalytic Attack We will treat MD5 as a random function. While
there have been interesting cryptanalytic results on MD5 in the last several years,
none of them offer an obvious way to attack the RSAREF PRNG.

Partial Precomputation Attack There is a straightforward attack on a counter-
mode generator of this kind: an attacker chooses some number of successive
outputs, t, that he expects to see, and then computes the hash of every tth
possible counter value. He is guaranteed to see one of these hashes after t outputs;
at that point, he knows the whole counter value. This attack is impractical for a
128-bit counter, but it gives an upper bound on the strength of this generator.
With 232 outputs, an attacker would need to do a 296 precomputation to mount
the attack; with 248 outputs, he would need to do a 280 precomputation. These
attacks also require a great deal of memory, though time/memory trade-offs can
reduce that.

Timing Attack The C code to add to and increment the 128-bit internal counter
has the property that it will leak some information about the resulting 128-bit
counter by how many 8-bit add operations the computer must execute. This
opens a timing channel for an attacker.

An attacker able to observe the time taken to generate each new output can
learn how many zero bytes are in the counter each time it is incremented. This
is simply a matter of determining how many bytewise additions had to be done
to increment the counter properly. There are two facets to this attack. First,

11



counter values that are all-zero in their low-order few bytes leak a great deal of
information through the timing channel; these can be considered a kind of weak
state. Second, when combined with the partial precomputation attack discussed
above, the timing information can be used to know when to bother checking the
PRNG output against precomputed table. This is a small advantage.

Input-Based Attacks Several input-based attacks are possible against RSAREF’s
PRNG. In particular, chosen input attacks exist against the RSAREF PRNG.
They become quite powerful when the attacker can also monitor precise timing
information from the machine on which the PRNG is running.

Shortening the Cycle with a Chosen-Input Attack An attacker can force the
RSAREF PRNG into a shortened cycle by choosing the input value properly.
Let inputn be a chosen input for the PRNG such that MD5(inputn) has all ones
in its low-order n bytes. If an attacker requests a long sequence of outputs by
requesting these inputs once per output, he forces the PRNG to cycle much
faster, because the low-order n bytes of the counter are fixed. Thus, for n = 8,
the cycle length is shortened to 264 outputs. Note that the attacker doesn’t know
what those n bytes are, but he does know that they are the same every time the
PRNG uses them to generate another output.

A more powerful way to shorten the cycle takes advantage of the birthday
paradox. Suppose x1, x2 are two chosen inputs such that MD5(x1) + MD5(x2)
has all ones in its low-order n bytes. Then an attacker can feed the periodic
sequence x1, x2, x1, x2, . . . as inputs to the RSAREF PRNG and observe the
outputs; with this procedure, he should see a cycle after about 2128−8n outputs.
For example, for the case n = 16, it takes about 264 offline work to find suitable
x1, x2, if an attacker uses an efficient collision search algorithm (see e.g. [OW95,
OW96]); this choice of chosen inputs will force the RSAREF generator to repeat
immediately 7.

More generally, we can get a simple “time travel” attack: if no new inputs
were mixed in during the last j outputs, then the attacker can send the RSAREF
PRNG back in time j steps by finding two chosen inputs whose MD5 digests
sum to −j (again with the same time complexity).

A Timing + Chosen Input Attack A much more powerful attack is available
if the attacker can monitor precise operation timings, and if MD5 operates in
constant time. The counter increment operation in the RSAREF source code will
leak how many zero bytes are in the resulting counter value by how many 8-bit
additions were required, and thus, by how long the counter increment operation
took. During the counter increment operation (unlike the add operation used to
7 We note that MD5 is designed for only 64 bits of collision-resistance, and so perhaps

might not be expected to provide more than 64 bits of security. However, this PRNG
appears to be in use for generating 1024-bit RSA moduli and establishing triple-DES
keys, so it is apparently being trusted for more than 64 bits of security.

12



combine in entropy from a input), detecting n 8-bit additions means that the
resulting low-order n− 1 bytes are zero.

The attack occurs in two stages: in the precomputation stage, which is done
once, the attacker generates the chosen entropy values he is to use later, and also
generates a table of hashed counter values. In the Execution stage, which is done
each time he wishes to attack some RSAREF PRNG state, he uses those chosen
entropy values to force the internal counter to a value that has its low-order
104 bits set to all zeros. The attack requires 248 offline trial hashes and 2000
chosen-entropy requests.

The precomputation stage works as follows:

1. For n= 1 to 12, the attacker finds input0,n, input1,n such that MD5(input0,n)+
MD5(input1,n) is all ones in its low-order n bytes, and that its next lowest
order byte is even. This is expected to take about 24n effort using a collision-
search algorithm.

The stage of executing the attack works as follows:

1. The attacker watches increment timing values until he knows that the low-
order byte of the counter is a zero. (He can see this, because of the extra
addition operation, which alters the time taken for the input to be processed.)

2. For n = 1 to 12, he does the following:
(a) He requests update with inputn. This forces the counter value to be all

ones in its low n bytes.
(b) He requests an output value, and observes the time taken for the output

generation, inferring how many times the PRNG executed an 8-bit add
operation in the increment. He keeps requesting the update with inputn
and the output, until he gets n+2 8-bit add operations, instead of n+1.

(c) At this point, he has forced the low n+ 1-bytes to zeros.
3. At the end of the above loop, the attacker has forced the low-order thirteen

bytes of the counter to zero values. He now carries out a brute-force search
of the remaining three bytes of C, and breaks the PRNG.

State Compromise Extension Attacks

Losing Entropy in Inputs The PRNG’s input-processing mechanism has a po-
tentially dangerous flaw: it is order-independent. That is, updating the PRNG
with A, and then with B, is the same as updating it first with B, and then with
A. This flaw was originally discovered by Paul Kocher [Koc95, Bal96], but it
is still worth noting here. The effect of this is to make the PRNG more likely
to start in an insecure state, and also to make the PRNG require considerably
more entropy in its inputs before its state is unguessable.

13



Iterative Guessing The iterative guessing attack works here. That is, if an at-
tacker has compromised Ci, each time the user updates his state with some Xi

guessable by an attacker, and then generates an output, output[i + 1], which
the attacker can see (even if that output is used as a symmetric encryption or
authentication key, or as a key or pad encrypted under a public-key) he can
maintain his knowledge of the PRNG’s state. If the RSAREF PRNG manages
to get updated with an unguessable input between a compromised state and a
visible output, however, then he loses his knowledge of the state.

Backtracking The RSAREF PRNG is vulnerable to backtracking in a straight-
forward way. The iterative guessing attack works exactly as well backward as
forward, and when an attacker doesn’t have new entropy samples, backtracking
is exactly as easy as walking the generator forward.

3.4 Summary

The RSAREF 2.0 PRNG is vulnerable to chosen-input attacks which can force
it into short cycles, chosen-input timing attacks which can reveal its secret state,
and iterative guessing and backtracking attacks which can allow an attacker to
extend his knowledge of the secret state backward and forward through time.
It also must be used very carefully, due to the fact that inputs affect it in an
order-independent way.

To minimize the danger of these attacks, we make the following recommen-
dations:

1. Guard against chosen-input attacks in the design of the system that uses the
RSAREF PRNG.

2. Be careful using the RSAREF PRNG in situations where timing information
might be leaked.

3. Append a current timestamp and/or a counter to all inputs before sending
them into the PRNG, to eliminate the order-independence of PRNG inputs.

3.5 Cryptolib’s PRNGs

Cryptolib is a cryptographic library developed primarily by Jack Lacy, Donald
Mitchel, William Schnell, and Matt Blaze, and initially described in [LMS93].
The primary source of randomness in Cryptolib is TrueRand, a mechanism for
pulling (hopefully) unpredictable values out of the clock skew between different
timers available to the system. These values can be used directly (though the
documentation warns callers not to rely on more than 16 bits of entropy per
32-bit word), or can be used to seed one of the available pseudorandom number
generators, fsrRand or desRand.

fsrRand and desRand are not PRNGs by our definition, but rather are stream
ciphers. That is, they do not have defined mechanisms for processing additional

14



inputs “on the fly,” but rather are seeded once and then run to generate pseudo-
random numbers. This is not unreasonable, given the assumption that TrueRand
delivers truly random bits as needed–the system designer can simply generate a
whole new state every few minutes, and otherwise needn’t worry about entropy
collection. When combined, TrueRand and fsrRand or TrueRand and desRand
can be analyzed in the same way as the other PRNGs in this paper. That is, we
assume that the system initializes the state of either fsrRand or desRand using
TrueRand, and uses one of these mechanisms to generate whatever pseudoran-
dom values are needed, and that the whole mechanism is periodically reinitialized
from TrueRand. TrueRand is thus the source of PRNG inputs, and fsrRand or
desRand is the source of PRNG outputs.

Description of Algorithms

fsrRand fsrRand is described in [LMS93]. Its secret state consists of a secret
DES key, K, and an array of seven 32-bit values, X0..6, organized as a shift-
register. Each time an output is required, two of the 32-bit values are taken and
concatenated to form a 64-bit value. This value is encrypted with DES under
the secret key. The resulting ciphertext is split into two 32-bit halves; one half
is XORed back into one of the 32-bit values (in the same way a shift register
value might be updated), the other half is output. The register is then shifted, so
that two new values will be used to generate the next output. A more complete
description can be found in [LMS93].

desRand desRand appears in the Cryptolib source code (version 1.2). Its secret
state consists of a 64-bit counter, C, a secret three-key triple-DES key, K, a
secret 20-byte prefix, P , and a secret 20-byte suffix, S. Each new 32-bit output
is generated as follows:

1. Use the SHA1 hash function to compute hash(P,C, S).
2. Use triple-DES to compute EK(C).
3. XOR together the high-order bytes of the hash value with the result from

the encryption; output the high-order four bytes of this result.
4. Set C = C + 1.

Direct Cryptanalysis

fsrRand There is a direct cryptanalytic attack on fsrRand requiring 289 effort.
The attack uses the fact that, once the attacker knows K and any one PRNG
output, he can build a table of the 232 possible halves of the DES ciphertext
that was used for feedback. For each value, he gets a whole 64-bit ciphertext,
which he can decrypt into a 64-bit plaintext, yielding both 32-bit values from
the array.

15



1. The attacker guesses the key, K.
2. The attacker obtains the output when the shift register pairs used are (Xi, Xj),

(Xj , U), and (V,Xi) for some other U and V . In the pair (A,B), A will be
updated with the feedback.

3. For the first two output values, the attacker computes all 232 possible feed-
back values (the 32-bit half of the DES ciphertext that was not output).
This allows him to compute Xj . For each K guess, we expect there to be
only one pair of feedback guesses that leads to the same Xj value.

4. The attacker uses the feedback value from the first output (learned in the
previous
step) to compute what the new Xi value should be. He then mounts another
232 guess of the feedback value for the third step, and uses this to derive the
current Xi and other register value. If he has the wrong K value, he expects
not to find any matching value for Xi; if he has the right K value, he expects
to find one value that agrees.

This demonstrates a certificational weakness in fsrRand, at most; the compu-
tational requirements are very probably outside the reach of any attacker right
now 8.

desRand We are not aware of any direct cryptanalytic attacks available on
desRand. The desRand design appears to us to be very conservative, and un-
likely to be attacked in the future. Note that nothing like the timing attack on
RSAREF’s PRNG is available here, despite the use of a counter.

Input-Based Attacks These systems accept input only once, and accept it
directly from TrueRand or a buffer provided by the caller. This (re)initializes the
PRNG. In the context of the following discussion, a known-input attack means
that the attacker has learned how to predict some TrueRand values. Clearly, if
the attacker can know all the TrueRand values, there is no cryptanalysis to be
performed. An interesting result occurs if the PRNG becomes weak with only a
small number of predictable TrueRand values.

fsrRand An attacker who knows any two X values used as a plaintext block
for DES can mount a keysearch attack, and reduce the possible number of keys
to about 224. He must then wait until the first of those values makes it into
the DES input again, and carry out an additional 232 search per candidate key;
this will determine the key uniquely. This requires a total of about 257 trial
encryptions, and about 224 blocks of memory. From this point, the attacker can
quickly recover the remaining state of the PRNG. An attacker who can guess
8 It could be argued that since DES has only 56 bits of strength, this construction

was intended for no more strength than that. We find this argument unconvincing.
fsrRand was clearly an attempt to get more than 56 bits of strength from DES;
otherwise, DES in OFB- or counter-mode would have been used.

16



any two such X values with 2t work can mount the same attack with 257+t trial
encryption and 224 blocks of memory.

An attacker who knows the key, K can recover the remaining PRNG state
with a 233 effort, using the same method described for direct cryptanalysis of
the PRNG, above.

A more subtle concern might involve flaws in the quality of seed values from
TrueRand. Consider an attacker who knows, for a given system, that only 28

32-bit outputs from TrueRand are possible. If fsrRand is reseeded directly from
TrueRand, this leads to fairly simple attack: fsrRand’s DES key must come
from TrueRand, and the attacker can quickly list all possible 56-bit values that
could have been generated, getting about 216 of them. He can then carry out
the attack described above. In general, if there are 2m possible values for the
fsrRand’s DES key to get, then the attack will take 2m+33 trial decryptions. This
is an improvement for m < 56, naturally.

Note that this demonstrates that fsrRand doesn’t profit from the full entropy
it receives during reseeding; In the example above, fsrRand would get 8 bits of
entropy per 32-bit word used to reseed it, for a total of 112 bits of entropy.

desRand We are aware of no reasonable known-input attacks on desRand. An
attacker with knowledge of C, P , and S, but not K, appears to have no chance
to defeat the PRNG; similarly, and attacker with knowledge of C and K, but
not P or S, appears to have no chance to defeat the PRNG.

State Compromise Extension Attacks The desRand and fsrRand gener-
ators don’t process inputs, and so can never recover from state compromise.
However, if TrueRand is used to generate a whole new state every few minutes,
the scope of a state compromise is made very small. It is worth noting that
both desRand and fsrRand allow an attacker in possession of their current state
to go backward as well as forward, learning all values ever generated by them.
That is, if the PRNG state ever is compromised, the attacker can learn every
output ever generated by that state. If the system is designed to reinitialize its
PRNG with TrueRand values once every hour, then this means a compromise
of all PRNG outputs for that hour. If the system reinitializes the PRNG more
frequently, then the attacker learns fewer outputs; if less frequently, then the
attacker learns more outputs.

Summary Assuming TrueRand is a good source of unpredictable values, the
PRNGs built by putting it together with either fsrRand or desRand appear to
be of reasonable strength, but desRand appears to be more resistant to various
attacks than fsrRand. Note, however, that nearly all of these attacks require
keysearching DES or doing some similarly computationally expensive task.

We make the following recommendations:

17



1. System designers should verify both by statistical analysis and by an anal-
ysis of their target systems’ designs whether TrueRand will reliably provide
unpredictable numbers on their systems. (This holds true for every source
of unpredictable inputs, for every PRNG.)

2. In environments where TrueRand’s outputs may be suspect (perhaps due
to malicious actions by the attacker), we recommend that desRand, rather
than fsrRand, be employed.

4 Summary, Conclusions, and Open Problems

In this paper, we have argued for treating PRNGs as their own kind of cryp-
tographic primitive, distinct from stream ciphers, hash functions, and block ci-
phers. We have discussed the requirements for a PRNG, developed abstract at-
tacks against an idealized PRNG, and then demonstrated those attacks against
four real-world PRNGs.

4.1 Guidelines for Using Vulnerable PRNGs

In the earlier sections, we discussed possible countermeasures for many of the
attacks we had developed. Here, we propose a list of ways to protect a PRNG
against each of the classes of attacks we discussed.

1. Use a hash function to protect vulnerable PRNG outputs. If a
PRNG is suspected to be vulnerable to direct cryptanalytic attack, then
outputs from the PRNG should be preprocessed with a cryptographic hash
function. Note that not all possible flawed PRNGs will be secure even af-
ter hashing their outputs, so this doesn’t guarantee security, but it makes
security much more likely.

2. Hash PRNG inputs with a counter or timestamp before use. To
prevent most chosen-input attacks, the inputs should be hashed with a times-
tamp or counter, before being sent into the PRNG. If this is too expensive
to be done every time an input is processed, the system designer may want
to only hash inputs that could conceivably be under an attacker’s control.

3. Occasionally generate a new starting PRNG state. For PRNGs like
ANSI X9.17, which leave a large part of their state unchangeable once ini-
tialized, a whole new PRNG state should occasionally be generated from the
current PRNG. This will ensure that any PRNG can fully reseed itself, given
enough time and input entropy.

4. Pay special attention to PRNG starting points and seed files. The
best way to resist all the state-compromise extension attacks is simply never
to have the PRNG’s state compromised. While it’s not possible to guarantee
this, system designers should spend a lot of effort on starting their PRNG
from an unguessable point, handling PRNG seed files intelligently, etc. (See
[Gut98] for several ways that this can be done.)

18



Fig. 3. Generalized PRNG, with periodic reseeding�
�

�
�

�
�

�
�

�
�

�
�

6

6

?

?

-

?

6

6

?
�

generate
pseudo-random outputs

seed

unpredictable inputs

reseed

collect

pool

4.2 Guidelines for Designing a PRNG

Having described a set of possible attacks on PRNGs, it is reasonable to try
to discuss ways to develop new PRNGs that will resist them. We propose the
following guidelines for developing new PRNGs:

1. Base the PRNG on something strong. The PRNG should be designed
so that a successful direct cryptanalytic attack implies a successful attack
on some cryptographic primitive that’s believed to be strong. Ideally, this
would be proven.

2. Make sure the whole PRNG state changes over time. The whole
secret internal state should change over time. This prevents a single state
compromise from being unrecoverable.

3. Do “catastrophic reseeding” of the PRNG. The part of the internal
state that is used to generate outputs should be separate from the entropy
pool. The generation state should be changed only when enough entropy
has been collected to resist iterative guessing attacks, according to a con-
servative estimate. Figure 3 depicts a possible architecture for implementing
catastrophic reseeding.

19



4. Resist backtracking. The PRNG should be designed to resist backtrack-
ing. Ideally, this would mean that output t was unguessable in practice to
an attacker who compromised the PRNG state at time t + 1. It may also
be acceptable to simply pass the PRNG’s state through a one-way function
every few outputs, limiting the possible scope of any backtracking attack.

5. Resist Chosen-Input Attacks. The inputs to the PRNG should be com-
bined into the PRNG state in such a way that, given an unguessable sequence
of inputs, an attacker who starts knowing the PRNG state but not the input
sequence, and an attacker who starts knowing the input sequence but not
the state, are both unable to guess the ending state. This provides some pro-
tection against both chosen-input and state compromise extension attacks.

6. Recover from Compromises Quickly. The PRNG should take advantage
of every bit of entropy in the inputs it receives. An attacker wanting to learn
the effect on the PRNG state of a sequence of inputs should have to guess
the entire input sequence.

4.3 Open Problems

In this paper, we’ve begun the process of systematically analyzing PRNGs. How-
ever, there are several interesting areas we haven’t dealt with here:

1. Dedicated PRNG Designs. Early in this paper, we made the assertion
that PRNGs are a distinct kind of cryptographic primitive. Existing PRNGs
are almost all built out of existing cryptographic primitives. This raises the
question of whether it makes sense to build dedicated PRNG algorithms.
Typically, the motivation for building a dedicated algorithm is to improve
performance. Are there applications where the PRNG’s performance is a
serious enough issue to merit a new algorithm?

2. Security Proofs. Since most currently-fielded PRNGs are based on exist-
ing cryptographic primitives, it would be nice to see some security proofs,
demonstrating that mounting some class of attack on the PRNG is equivalent
to breaking an underlying block cipher, stream cipher, or hash function.

3. Starting Points. One likely way for an attacker to compromise the PRNG
state is for the PRNG to be started in a guessable state. This raises the issue
of how a designer can ensure that his system always starts its PRNG at an
unguessable state. We would like to see more discussion of these issues in
the literature.

4. Seed Compromise. We would like to see more discussion of how to resist
state compromises in fielded systems. This is an enormous practical issue,
which has received relatively little attention in the literature.

5. Analyzing Other PRNGs. There are many PRNGs we have not discussed
here, mainly due to time and space constraints. In particular, we would like to
see a complete discussion of the class of PRNG used in PGP and Gutmann’s
Cryptlib, among other places. These PRNGs fit into our model, but look
very different than any of the systems we have reviewed here: they typically

20



maintain a considerably larger state (or “pool”), in hopes of accumulating
large amounts of entropy.

6. Developing New PRNGs. We have discussed flaws in existing PRNGs.
We are interested in seeing new designs proposed that resist our attacks. A
PRNG of our own is currently under development; details will be posted to
http://www.counterpane.com as they become available.

5 Acknowledgements

The authors would like to thank Greg Guerin, Peter Gutmann, and Adam
Shostack for helpful conversations and comments on early drafts of this pa-
per, and Ross Anderson and several anonymous referees for helpful suggestions
on improving the paper’s presentation.

References

[Agn88] G.B. Agnew, “Random Source for Cryptographic Systems,” Advances in
Cryptology — EUROCRYPT ’87 Proceedings, Springer-Verlag, 1988, pp.
77–81.

[ANSI85] ANSI X 9.17 (Revised), “American National Standard for Financial In-
stitution Key Management (Wholesale),” American Bankers Association,
1985.

[Bal96] R.W. Baldwin, “Proper Initialization for the BSAFE Random Number
Generator,” RSA Laboratories Bulletin, n. 3, 25 Jan 1996.

[Dai97] W. Dai, Crypto++ library,
http://www.eskimo.com/~weidai/cryptlib.html.

[DIF94] D. Davis, R. Ihaka, and P. Fenstermacher, “Cryptographic Random-
ness from Air Turbulience in Disk Drives,” Advances in Cryptology —
CRYPTO ’94 Proceedings, Springer-Verlag, 1994, pp. 114–120.

[ECS94] D. Eastlake, S.D. Crocker, and J.I. Schiller, “Randomness Requirements
for Security,” RFC 1750, Internet Engineering Task Force, Dec. 1994.

[FMK85] R.C. Fairchild, R.L. Mortenson, and K.B. Koulthart, “An LSI Ran-
dom Number Generator (RNG),” Advances in Cryptology: Proceedings
of CRYPTO ’84, Springer-Verlag, 1985, pp. 203–230.

[Gud85] M. Gude, “Concept for a High-Performance
Random Number Generator Based on Physical Random Noise,” Frequenz,
v. 39, 1985, pp. 187–190.

[Gut98] P. Gutmann, “Software Generation of Random Numbers for Crypto-
graphic Purposes,” Proceedings of the 1998 Usenix Security Symposium,
1998, to appear.

[Koc95] P. Kocher, post to sci.crypt Internet newsgroup (message-ID
pckDIr4Ar.L4z@netcom.com), 4 Dec 1995.

[LMS93] J.B. Lacy, D.P. Mitchell, and W.M. Schell, “CryptoLib: Cryptography in
Software,” USENIX Security Symposium IV Proceedings, USENIX Asso-
ciation, 1993, pp. 237–246.

[NIST92] National Institute for Standards and Technology, “Key Management Us-
ing X9.17,” NIST FIPS PUB 171, U.S. Department of Commerce, 1992.

21



[NIST93] National Institute for Standards and Technology, “Secure Hash Stan-
dard,” NIST FIPS PUB 180, U.S. Department of Commerce, 1993.

[NIST94] National Institute for Standards and Technology, “Digital Signature Stan-
dard,” NIST FIPS PUB 186, U.S. Department of Commerce, 1994.

[OW95] P.C. van Oorschot and M.J. Wiener, “Parallel collision search with ap-
plication to hash function and discrete logarithms,” 2nd ACM Conf. on
Computer and Communications Security, New York, NY, ACM, 1994.

[OW96] P.C. van Oorschot and M.J. Wiener, “Improving implementable meet-
in-the-middle attacks by orders of magnitude,” CRYPTO ’96, Springer-
Verlag, 1996.

[Plu94] C. Plumb, “Truly Random Numbers, Dr. Dobbs Journal, v. 19, n. 13,
Nov 1994, pp. 113-115.

[Ric92] M. Richterm “Ein Rauschgenerator zur Gweinnung won quasi-idealen Zu-
fallszahlen fur die stochastische Simulation,” Ph.D. dissertation, Aachen
University of Technology, 1992. (In German.)

[RSA94] RSA Laboratories, RSAREF cryptographic library, Mar 1994,
ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa/
rsaref2.tar.gz.

[SV86] M. Santha and U.V. Vazirani, “Generating Quasi-Random Sequences
from Slightly Random Sources,” Journal of Computer and System Sci-
ences, v. 33, 1986, pp. 75–87.

[Sch96] B. Schneier, Applied Cryptrography, John Wiley & Sons, 1996.
[Zim95] P. Zimmermann, The Official PGP User’s Guide, MIT Press, 1995.

This article was processed using the LATEX macro package with LLNCS style

22


