
Improved Cryptanalysis of Rijndael

Niels Ferguson1, John Kelsey1, Stefan Lucks?2, Bruce Schneier1, Mike Stay3,
David Wagner4, and Doug Whiting5

1 Counterpane Internet Security, Inc., 3031 Tisch Way Suite 100PE, San Jose,
CA 95128

2 University of Mannheim, 68131 Mannheim, Germany
3 AccessData Corp. 2500 N. University Ave. Ste. 200, Provo, UT 84606

4 University of California Berkeley, Soda Hall, Berkeley, CA 94720
5 Hi/fn, Inc., 5973 Avenida Encinas Suite 110, Carlsbad, CA 92008

Abstract. We improve the best attack on Rijndael reduced to 6 rounds
from complexity 272 to 244. We also present the first known attacks on
7- and 8-round Rijndael. The attacks on 8-round Rijndael work for 192-
bit and 256-bit keys. Finally, we discuss the key schedule of Rijndael
and describe a related-key attack that can break 9-round Rijndael with
256-bit keys.

1 Introduction

Rijndael is one of the five AES candidate ciphers that made it to the second round
[DR98]. Rijndael has 10, 12, or 14 rounds, depending on the key size. Previously
it was known how to break up to 6 rounds of Rijndael [DR98]. Independently
from our work, Gilbert and Minier [GM00] presented an attack on 7 rounds of
Rijndael.

In section 2, we describe a new partial sum technique that can dramatically
reduce the complexity of the 6-round attacks. We also show how to use these
ideas to attack 7 and 8 rounds of Rijndael, in some cases using additional known
texts (where available) to reduce the workfactor. The attacks against 7-round
Rijndael with 128-bit keys and 8-round Rijndael with 192-bit and 256-bit keys
require nearly the entire Rijndael codebook (2128−2119 chosen plaintexts); they
are therefore not very practical even for an adversary with sufficient computing
power. All of these attacks use extensions of the dedicated Square attack, as
described in [DKR97,DR98,DBRP99].

In section 3, we turn our attention to the key schedule. We show several
unexpected properties of the key schedule that seem to violate the published
design criteria. Although we do not know of any attacks that critically depend
on these properties, we consider them unsettling. Finally, in section 4, we exploit
the slow diffusion of the Rijndael key schedule to develop a related-key attack
that can be mounted on 9 rounds of Rijndael with a 256-bit key.

A summary of these attacks, including time and data complexities, is de-
scribed in table 1. We also refer the reader to appendix A for a detailed listing
of notation used to refer to intermediate values in the cipher.
? Supported by DFG grant KR 1521/3-2.



Cipher Key Complexity Comments
size [Data] [Time]

Rijndael-6 (all) 232 CP 272 [DR98] (previously known)
Rijndael-6 (all) 6 · 232 CP 244 partial sums (new)
Rijndael-7 (192) 19 · 232 CP 2155 partial sums (new)
Rijndael-7 (256) 21 · 232 CP 2172 partial sums (new)
Rijndael-7 (all) 2128 − 2119 CP 2120 partial sums (new)
Rijndael-8 (192) 2128 − 2119 CP 2188 partial sums (new)
Rijndael-8 (256) 2128 − 2119 CP 2204 partial sums (new)
Rijndael-9 (256) 285 RK-CP 2224 related-key attack (new)

CP – chosen plaintext, RK-CP – related-key chosen plaintext.

Table 1. Summary of Attacks on Rijndael.

2 The Square Attack

2.1 The Original 6-round Attack

We start by describing the 6-round attack in the original proposal [DR98], which
uses a technique first introduced to attack the block cipher Square [DKR97]. This
is an attack that works against all block sizes and key sizes.

We use m(r), b(r), and t(r) to refer to intermediate text values used in round
r after the MixColumn, key addition, and ShiftRow operations, respectively. We
write k(r) for the subkey in round r, and k(r)′ for an equivalent subkey value that
may be xored into the state before instead of after the MixColumn operation
in round r. Please refer to appendix A for a more detailed explanation of our
notation.

The attack starts by obtaining 256 encryptions that only differ in a single
byte of m(1), and that take on all values for that particular byte. One byte of
m(1) depends on four bytes of the plaintext and four bytes of k(0). We first choose
232 plaintexts by taking a fixed starting point and varying those four bytes over
all 232 possible values. We then guess the four key bytes that are involved. For
each possible value of the key bytes, we can find 224 groups of 256 plaintexts
such that within each group the encryptions differ in a specific byte of m(1); as
the plaintexts are different, this one byte of m(1) must take on all 256 possible
values.

Tracking these changes through the cipher, we find that each of the bytes of
t(4) takes on all possible values. For each of these bytes, if we sum the values
it takes on in the 256 encryptions, we get zero. This property is preserved by a
linear function, so each of the bytes of m(4), and of b(4), also sums to zero over
our 256 encryptions.

We now look at a particular byte of b(4), and how that relates to the cipher-
text. For our analysis we rewrite the cipher slightly, and put the AddRoundKey
before the MixColumn in round 5. Instead of applying MixColumn and then



adding in k(5), we first add in k(5)′ and then apply MixColumn. In this config-
uration it is easy to see that any byte of b(4) depends on the ciphertext, four
bytes from k(6), and one byte from k(5)′ . We guess these five key bytes, compute
the value of our b(4) byte for our 256 encryptions and check whether the sum is
zero.

For each group of 256 plaintexts, this filter rejects 255/256 of all wrong key
guesses. As we guess a total of nine key bytes, we will need 10 or so groups of
256 encryptions to find the key. (Note that these groups depend on the first four
key bytes that we guessed, but not on the last five.)

Overall, this attack requires 232 chosen plaintexts, 232 memory to store those
plaintext/ciphertext pairs, and 272 steps in guessing the nine key bytes. Each
step involves a partial decryption of 256 ciphertexts, but a proper ordering of
these computations can make that very fast. This seems to be comparable to
doing a single encryption, and agrees with the complexity estimate given in
[DR98]. The overall complexity is thus comparable to 272 encryptions.

2.2 A 7-round Extension

This attack can be extended to 7 rounds for 192- and 256-bit keys. One simply
guesses the 16 bytes of the last round key. When used naively, this adds 128
bits to the key guessing, for a total workload of 2200; the plaintext and memory
requirements are not changed, although we do need to use more groups to verify
the potential keys.1

This can be further improved. The key schedule ensures that there are depen-
dencies between the expanded key bytes, and we can exploit them in this attack.
For a 192-bit key, guessing the last round key k(7) gives us two of the four bytes
from k(6)′ that we would otherwise have to guess plus the byte from k(5)′ that
we would guess. This saves us 24 bits of key guessing, and results in an overall
complexity of 2176. For 256-bit keys, the bytes in the key schedule are aligned
differently. Guessing all of k(7) provides no information about k(6)′ but does give
us the one byte from k(5)′ that we need. For this key length, the complexity of
the attack thus becomes 2192. All the details can be found in [Luc00].2

2.3 An Improvement

The attack of section 2.1 on 6 rounds of Rijndael can be improved. Instead of
guessing four bytes of k(0) we simply use all 232 plaintexts. For any value of the
first round key, these encryptions consist of 224 groups of 28 encryptions that
vary only in a single byte of m(1). All we have to do is to guess the five key bytes
1 For this attack we use the alternate round representation for both rounds 5 and 6,

and thus add k(6)′ before the MixColumn in round 6.
2 Note that the attack complexities in [Luc00] are given in S-box lookups, whereas

we roughly approximate the complexity of a single encryption by 28 S-box lookups
and use encryptions as our unit. The result is that all our complexity numbers are a
factor of 28 lower.



at the end of the cipher, do a partial decrypt to a single byte of b(4), sum this
value over all the 232 encryptions, and check for a zero result. Compared to the
original version, we guess only 40 bits of key instead of 72. On the other hand,
we have to do 224 times as much work for each guess. All in all, this improvement
reduces the workload by a factor of 28, although it needs about 6 · 232 plaintexts
to provide enough sets of 232 plaintexts to uniquely identify the proper value for
the five key bytes.

We will now look at this attack in more detail. We have 232 ciphertexts. We
guess five key bytes, do a partial decryption from each of the ciphertexts to a
single byte in b(4), and sum this byte over all ciphertexts. Consider this partial
decryption. From any ciphertext, we use four ciphertext bytes. Each of these
is xored with a key byte. We then apply the inverse S-box to each byte, and
multiply each with an appropriate factor from the inverse MDS matrix. The
four bytes are then xored together, a fifth key byte is xored into the result, the
inverse S-box is applied, and the resulting value is summed over all ciphertexts.

Let ci,j be the jth byte of the ith ciphertext. (We leave out the i subscript
if we are not talking about any particular ciphertext.) For simplicity we will
number the four bytes of each ciphertext that we use from 0 to 3. Let k0, . . . , k4

denote the five key bytes that we are guessing. We want to compute

∑

i

S−1[S0[ci,0 ⊕ k0]⊕ S1[ci,1 ⊕ k1]⊕ S2[ci,2 ⊕ k2]⊕ S3[ci,3 ⊕ k3]⊕ k4] (1)

where S0, . . . , S3 are bijective S-boxes, each of which consists of an inverse Rijn-
dael S-box followed by a multiplication by a field element from the inverse MDS
matrix. Given 232 ciphertexts and 240 possible key guesses, we have to sum 272

different values, which corresponds roughly in amount of work to doing about
264 trial encryptions.

We can organize this more efficiently in the following manner. For each k, we
associate a “partial sum” xk to each ciphertext c, defined as follows:

xk :=
k∑

j=0

Sj [cj ⊕ kj ]

This gives us a map (c0, c1, c2, c3) 7→ (xk, ck+1, . . . , c3) that we can apply to each
ciphertext if we know k0, . . . , kk.

We start out with a list of 232 ciphertexts. We guess k0 and k1 and compute
how often each triple (x1, c2, c3) occurs in the list. That is, for each i, we compute
the three-byte value (S0[ci,0 ⊕ k0] ⊕ S1[ci,1 ⊕ k1], ci,2, ci,3) as a function of the
ith ciphertext and the guessed key material, and we count how many times each
three-byte value appears during this computation. As there are only 224 possible
values for three bytes, we do not have to list all (x1, c2, c3) values; rather, we
count how often each triple occurs. We then guess k2 and compute how often
each tuple (x2, c3) occurs; and guess k3 and compute how often each value of x3

occurs. Finally, we guess k4 and compute the desired sum.



Because all sums are taken using the xor operation, and because z ⊕ z = 0
for all z, it suffices to only count modulo two. Thus, a single bit suffices for each
count, and so the space requirement for the 224 counters is just 224 bits.

How much work has this been? In the first phase we guessed 16 bits and
processed 232 ciphertexts, so this phase costs 248 overall. In the next phase,
we guessed a total of 24 bits but we only had to process 224 triples, so this
costs 248 as well. This holds similarly for each of the phases. In total, the entire
computation requires the equivalent of about 248 evaluations of equation 1, or
about 250 S-box applications.

This is the amount of work required for a single structure of 232 ciphertexts.
The first structure already weeds out the overwhelming majority of the wrong
key guesses, but we still have to do the first steps of our partial sum computation
for each of the six structures that we use. The total number of S-box lookups is
thus about 252.

Using our earlier rough equivalence of 28 S-box applications to a trial en-
cryption with a new key, the 252 S-box applications are comparable to 244 trial
encryptions. This is a significant improvement over the earlier 272 workfactor.

2.4 Extension to 7 Rounds

We can apply this our improvement to the 7-round attack of section 2.2. To
express a single byte of b(4) in the key and the ciphertext, we get a formula
similar to equation 1 but with three levels, 16 ciphertext bytes, and 21 key bytes.
The partial sum technique is only helpful during the last part of the computation
as it only saves work if there are more ciphertexts than possible values for the
intermediate result. With 232 plaintext/ciphertext pairs in a structure, these
techniques will not help until the very last part of the computation.

For 192-bit keys we first guess the 128 bits of the last round key. These
guesses also define two of the four key bytes in round 6 that we are interested
in, and the one key byte in round 5 that we need. Thus, after guessing the last
round key we can reduce each structure to 224 counters with our partial sum
technique. Using some precomputed tables, we can do this for each of the 2128

key guesses in about 232 memory lookups. The next phase guesses one byte more
and requires 224 steps to reduce the partial sum to 216 counters, and the last
phase guesses the last remaining byte and produces the final result. Each of
these phases has a cost of 2160 lookups. We have three phases, each of which
costs 2160, and we need to process three structures before we start eliminating
guesses for the last round key, so the overall cost of this attack is on the order
of 2163 S-box lookups or about 2155 trial encryptions.

For 256-bit keys the alignment in the key schedule is different. Guessing the
last round key does not give us any information about the round key of round 6,
but it provides most of the round key for round 5. Working in a similar fashion as
before, we guess 128 bits of the last round key and compute the four bytes we are
interested in after round 6 for each of the 232 texts for a total cost of 2160 lookups.
The next phase guesses 16 more key bits and results in 224 one-bit counters for
a total cost of 2176 lookups. The remaining phases have a similar cost. The cost



per structure is thus about 2178 lookups or about 2170 trial encryptions. We need
five structures before we start cutting into the guesses of the last round key, so
the overall complexity of this attack is about 2172.

2.5 A Second Improvement

It is possible to push these attacks even further, if we are willing to trade texts
for time and increase the data complexity to save on the workfactor.

We first show that 7 rounds of Rijndael may be broken with 2128 known
texts (the entire codebook!) and workfactor equivalent to approximately 2120

trial encryptions. These encryptions consist of 296 packs of 232 encryptions that
vary only in four bytes of m(1). Those four bytes are in a proper position to apply
the attack of section 2.3: specifically, each pack of 232 encryptions consists of 224

groups of 28 encryptions that vary only in a single byte of m(2). Equivalently,
we may view the entire set of 2128 encryptions as consisting of 2120 groups of
28 encryptions that vary only in one byte of m(2). This ensures that summing
a single byte in b(5) over the 28 encryptions in a group yields zero, and thus
summing over all 2128 encryptions also yields zero in this byte. This simple
property is the basis for several attacks, as described below.

A naive way that one might try to exploit this property is to guess five key
bytes at the end of the cipher, partially decrypt each ciphertext to a single byte
of b(5), sum over all 2128 ciphertexts, and check for zero. However, the naive
approach does not actually work. Even the wrong keys will yield zero when
summing the byte in b(5) over all 2128 encryptions, because for any bijective 128-
bit block cipher, b(5) (or any other intermediate value) will take on all possible
128-bit values as you cycle through all 2128 encryptions. Consequently, we will
need to modify the attack slightly.

Instead, we use the following technique. Focus our attention on a fifth byte
in m(1) (different from the four bytes selected earlier), say, m

(1)
a,b. Fixing a value

x for this byte gives us a set of 2120 encryptions where m
(1)
a,b = x; this gives us

a list of 288 packs, where each pack contains 224 groups of 28 encryptions that
vary only in a single byte of m(2). We call this structure of 2120 encryptions a
herd. Now we obtain 2128 known texts (28 herds), guess four key bytes at the
beginning of the cipher, calculate m

(1)
a,b for each encryption using our guessed

key material, and separate the texts into herds. Examining a single such herd,
we find that summing a byte in b(5) over all the encryptions in the herd yields
zero, and moreover this property is unlikely to hold if our guesses at the key
were incorrect. This yields a working attack against 7 rounds of Rijndael, but
the complexity is very high (2128 × 272 steps of computation or so).

One can do much better. Note that the byte in b(5) depends only on four
bytes of the ciphertext (for simplicity, call them c0, . . . , c3) and the byte m

(1)
a,b

depends on only four bytes of the plaintext (p4, . . . , p7, say). We use a three-
phase attack; the first phase uses 264 counters (the my’s), the second phase uses
232 counters (the nz’s), and the third phase provides the filtering information



for key guesses. As usual, all counters may be taken modulo 2, so we need just
one bit for each counter.

The attack goes as follows. In the first phase, we increment the counter
my corresponding to the 64-bit quantity y = (c0, . . . , c3, p4, . . . , p7) as we see
each known text (p, c). The second phase guesses four key bytes from the first
round, separates the counters into herds (by computing m

(1)
a,b for each counter

position using (p4, . . . , p7) and the guessed key material), selects a single herd,
and updates the counter nz by adding my to it for each y that is in the correct
herd and that agrees with z = (c0, . . . , c3). Afterwards, in the third phase, we
guess five key bytes at the end of the cipher, partially decrypt each z to a single
byte in b(5), sum this byte over all 232 values of z (with multiplicities as given
by the nz), and check for zero. The third phase must be repeated for each guess
of the four key bytes in the first round.

What is the complexity of this attack? The first phase requires us to update a
counter for each ciphertext, so using our rough equivalence of 28 memory lookups
to a trial encryption, the counting should take time comparable to 2120 trial
encryptions. Compared to the first phase, the rest of the attack has negligible
workfactor (equivalent to 296 encryptions); there is no need to compute partial
sums, an exhaustive key search will suffice.

This shows that one may break 7 rounds of Rijndael using 2128 known texts,
2120 work, and 264 bits of memory. This 7-round attack trades texts for time:
it uses a huge number of known texts, but it has better workfactor and overall
complexity than the 7-round attack of section 2.3; and moreover, it applies to
all key sizes (including the 128-bit keys).

There are a few more small improvements. We used a single byte of m(1) to
define our herds, but the four plaintext bytes that we use in our attack and the
four key bytes of the first round key that we guess define four bytes of m(1).
We can create more (but smaller) herds by fixing three bytes of m(1) for each
herd. This gives us 224 herds of 2104 texts each.3 We can even choose which
of the four bytes will take on every value, and thus create 226 herds of 2104

texts each, in which case each text is used in four different herds. Furthermore,
we do not need all the plaintext/ciphertext pairs. If the four plaintext bytes
take on 232 − 223 of the 232 possible values (and for each of these values the
other 12 bytes take on all possible values), then about half of our herds will
have missing plaintext/ciphertext pairs while the other half are complete and
undamaged. We can use the undamaged herds in our attack. This reduces the
plaintext requirements to 2128 − 2119 texts. These changes do not change the
complexity of the attack, but give us a slight reduction in the text requirements.

2.6 Extension to 8 Rounds

We can further extend the idea to break 8 rounds of Rijndael, though apparently
not for 128-bit keys. As before, we obtain 2128−2119 texts (about 223 undamaged
3 Note that we cannot use all four bytes, as at least one of the four bytes has to vary

within the pack.



herds), focus attention on a single herd, and use the fact that a single byte in
b(5) will yield zero when summed over all 2104 encryptions in the herd. However,
the byte in b(5) now depends on the entire ciphertext and on 21 subkey bytes
at the end of the cipher, so now we must apply the partial sum techniques of
section 2.4. Guessing the four key bytes of the first round first to define our
herds and computing the partial sums xk one at a time allows one to calculate
the desired sum with 2104 bits of storage and work equivalent to about 2202 trial
encryptions. We need to do this for about four herds before we start to cut our
search tree. (We will need about 26 herds in total to get a unique solution, but
the workload is dominated by the first four herds.) The overall attack complexity
comes out at 2204 encryptions, and thus faster than exhaustive key search for
256-bit keys.

As this attack needs the equivalent of more than 2192 encryptions, it seems to
be useless for 192-bit keys. But the 192-bit key schedule allows a 216-fold speed-
up for the 8-round attack, which thus requires the equivalent of about 2204−16 =
2188 encryptions. We stress that the time complexity of 2188 encryptions only
holds for 192-bit keys, not for 256-bit keys.

Each byte of b(5) depends on 21 subkey bytes, namely: all the 16 bytes from
k(8), 4 bytes from k(7)′ and one byte from k(6)′ . Similar to Section 2.2, fixing the
last round key k(8) determines two of the four bytes from k(7)′ and, depending
on which byte of b(5) we target, possibly also the relevant subkey byte from k(6)′ .
More precisely, by choosing three columns (12 bytes) of k(8) one can learn two
columns of k(7)′ , and the fourth column of k(8) also determines one column of
k(6)′ . In each column of k(7)′ we find one subkey byte we need for the attack. In
other words, fixing k(8)′ (or even only three columns of k(8)′) gives us two useful
key bytes of k(7)′ . (This holds for the 192-bit key schedule. See [Luc00], where
the Rijndael key schedule and this weakness are explained in more detail.)

To describe the attack, we look at the partial sums technique from a slightly
different point of view. To attack 8-round Rijndael, we check the sum of the
values taken on by one byte from b(5) in the 2104 encryptions of a herd. For
this, we evaluate equation 1 five times: four times on the “bottom level”, and,
using these four results, a last time taking these four values instead of the ci-
phertexts ci,0, . . . , ci,3. Each evaluation of equation 1 starts with counters for
(c0, c1, c2, c3, 〈other〉), where the bytes ci and the corresponding keys are aligned
in the same column. It can be described by the following substeps:

1. Guess two key bytes, w.l.o.g. k0 and k1, and compute the counters (mod 2)
for (x0,1, c2, c3, 〈other〉).

2. Guess one key byte, w.l.o.g. k2, and count (x0,1,2, c3, 〈other〉).
3. Guess one key byte (k3), and count (x0,... ,3, 〈other〉).

(Note that we just introduced a slightly different notation for the x〈some〉. The
reason will become obvious below.)

To attack 8-round Rijndael with 192-bit keys, we obtain 2128 − 2119 texts,
guess four first-round subkey bytes to obtain our herds, concentrate on a single
herd, and target a single byte in b(5). We continue with guessing three columns of



k8 and evaluating equation 1 for each column. This gives us gives us 256 counters
(mod 2) for

(x0,... ,3, x4,... ,7, x8,... ,11, c12, c13, c14, c15).

Note that the values x0,... ,3, x4,... ,7, and x8,... ,11 correspond to the bytes c0, c1,
and c2 we use within equation 1 to get the final count for the byte of b(5). Now we
evaluate (not guess!)4 two key bytes of k(7) and execute the first substep of the
partial sums technique. Essentially for free, we reduce the number of counters
from 256 to 248, and we get counters (mod 2) for

(x0,... ,7, x8,... ,11, c12, c13, c14, c15).

By guessing the last column of k(8) and get 224 counters for

(x0,... ,7, x8,... ,11, x12,... ,15).

Guessing another two bytes of k(7) we get 28 counters for x15. We can evaluate
one byte of k(6), which allows us to check the balancedness of one byte of b(5).

Note that the order in which things are done is crucial for the time complexity.
If we first guessed all 16 bytes from k(8) and only then evaluated the two key
bytes from k(7)′ which we get for free, the speed-up would only be 28 compared to
the running time for attacking Rijndael with 256-bit keys. In this case, the time
complexity would be 2196 for 192-bit keys, i.e. slower than exhaustive search.

2.7 Summary

The Square attack can be improved so that it requires 244 work to attack 6
rounds of Rijndael. The extension to 7 rounds has complexity 2155 for 192-bit
keys and complexity 2172 for 256-bit keys. There is also an alternative extension
to 7 rounds that can break all key sizes with lower overall complexity (2120 work)
but which requires virtually the entire codebook of texts (2128 − 2119 texts).
Another result of our analysis is that, for the 256-bit and 192-bit key sizes, one
may break 8 rounds of Rijndael faster than by exhaustive search, again with
2128 − 2119 texts. The 256-bit key size requires 2204 work, the 192-bit key size
2188.

3 The Key Schedule

Compared to the cipher itself, the Rijndael key schedule appears to be more of
an ad hoc design. It has a much slower diffusion structure than the cipher, and
contains relatively few non-linear elements.

4 This is where the 216-fold speed-up for 192-bit keys comes from.



3.1 Partial Key Guessing

The Rijndael submission document states that the key schedule was designed
with the requirement that “Knowledge of a part of the Cipher Key or Round Key
bits shall not allow to calculate many other Round Key bits” [DR98, section 7.5].
The key schedule does not seem to achieve that goal.

Let us look at the case of a 128-bit block size and 256-bit key in more detail.
The key schedule consists of 8 cycles, which produces a total of 15 round keys
(the last half of the last cycle is never used). The key schedule can be seen as
four separate rows that only have a limited interaction. We will concentrate on a
particular row; say, number i. We guess the values K

(s)
i,7 for s = 0, . . . , 6. (There

is no point in guessing it for s = 7, as that byte is not used in an expanded key.)
Using the recurrent computation rule of the key schedule, we can now compute
K

(s)
i,6 for s = 1, . . . , 6, K

(s)
i,5 for s = 2, . . . , 6, etc. (Please refer to appendix A for

definitions of our notation, if it is not clear.) All in all, we learn 28 bytes of the
expanded key for the cost of having guessed only seven bytes.

The bytes that we guessed in row i are exactly those bytes that affect row
i− 1 mod 4. Thus, if we now guess the first eight bytes of row i− 1, then we can
compute the rest of that row for a total of 60 bytes, and if we guess a total of
15 bytes, we learn 88 bytes of the expanded key.

We can extend this with further rows, and get 148 bytes of the expanded key
by guessing 23 bytes, and 208 bytes by guessing 31 bytes. There are of course
many other ways in which guessing some bytes results in knowledge of many
more. On a smaller scale, several of our attacks in section 2 used dependencies
between round key bytes to reduce the complexity of the attack.

3.2 Key Splitting

Another interesting property is that the key can be “split” into two halves. The
two topmost rows interact with the two bottommost rows through only 14 bytes
(in the case of 128-bit block size and 256-bit key). If we guess (or know) those 14
bytes, then the rest of the key has been split into two independent halves, each
of which controls half of the expanded key bytes. There are many ways to split
the key. By rows is the easiest way, but it is also possible to split it by column
(at least for a few cycles).

This immediately suggests some kind of meet-in-the-middle attack to a crypt-
analyst. However, as the expanded key bytes of the two halves are mixed very
thoroughly in the non-linear cipher, we have not found a way to exploit this
property. Note that the DES key schedule allows the key bits to be split into 56
independent parts, but no attack is known that uses this property.

3.3 Summary

The fact that these properties are present in spite of the stated design goal is
unsettling. Some of our attacks make use of the relations between expanded key
bytes and would have a higher complexity if these relations did not exist. The



attack on 8-round Rijndael with 192-bit keys would be slower than exhaustive
key search without these relations. Our attack in the next section also makes
extensive use of the properties of the key schedule.

4 A 9-Round Related-Key Attack

Related-key attacks were first introduced by Biham in [Bih93] and later extended
in [KSW96,KSW97]. We assume that the reader is familiar with the basics of
related-key cryptanalysis.

The submission states that “The key schedule of Rijndael, with its high
diffusion and non-linearity, makes it very improbable that [related-key attacks]
can be successful for Rijndael” [DR98, section 8.7], and also lists resistance to
related-key attacks as one of the requirements for the Rijndael key schedule
[DR98, section 7.5]. We do not feel that the Rijndael key schedule has a very
high level of diffusion. It can take many cycles before a low-weight difference
starts to affect a significant number of other bytes. This can best be seen if
we run the key schedule backwards; each byte affects two other bytes that are
(almost) a full cycle further back.

We show how a related-key attack can be mounted on 9 rounds of Rijndael
with a 256-bit key. This is basically a variant of the Square attack; we use 256
related keys that differ in a single byte in the fourth round key. We use plaintext
differences to cancel out the earlier round key differences, and get three bytes
at the end of round 6 that sum to zero when taken over the 256 encryptions.
We guess key bytes of the last three rounds to compute backwards from the
ciphertext and detect this property.

4.1 The Key Difference Pattern

Starting with an unknown base key L, we derive a set of 256 related keys
L0, . . . , L255. The difference La ⊕ L takes on the value a in bytes 21 and 25,
and is zero elsewhere. The diffusion in the key schedule is slow enough that we
can track all the differences in the round keys. Figure 1 shows the difference pat-
tern. The key schedule for the 9-round cipher needs to generate 10 round keys.
With a 128-bit block size and a 256-bit key, this requires five cycles of the key
schedule, which are shown in the figure. Each of the cycles provides two round
keys.

The dark gray bytes are the bytes of L that we guess. The light gray bytes
are bytes that we can deduce from the guesses that we have made using the
recurrence relationship between the expanded key bytes. We guess a total of
27 bytes of the key, and this allows us to compute a total of 66 bytes of the
expanded key. We will use all of our guesses in the attack, but for the moment
we concentrate on tracking the differences through the key schedule.

In the first cycle we have a difference a in K
(0)
1,5 and K

(0)
1,6 . In the next cycle

we get a difference a in K
(1)
1,5 . In the third cycle we have difference a in K

(2)
1,5 ,



a a

a

a a a

a a

b b b b c c c c

b⊕ d d b⊕ d d c⊕ f f c⊕ f f

e e e e g g g g

a a

K(0)

K(1)

K(2)

K(3)

K(4)

Fig. 1. Difference and guessing pattern in the key of the 9-round attack.

K
(2)
1,6 , and K

(2)
1,7 . At this point the difference is first confronted with a non-linear

S-box. To track the difference, we need to know K
(2)
1,7 of key L; this allows us

to compute the output difference b of the S-box given the input difference a. As
the shading shows, this key byte can be deduced from the guesses that we have
made. In the fourth cycle we get the difference b in K

(3)
0,i for i = 0, . . . , 3. Again

we encounter an S-box, and therefore we need to know K
(3)
0,3 of L. This gives

us the output difference c of that S-box given input difference b. We thus get a
difference c in K

(3)
0,i for i = 4, . . . , 7. The differences from the previous cycle also

come through as a difference a in K
(3)
1,5 and K

(3)
1,7 . We can track the rest of the

difference propagation in a similar way as is shown in the figure. All in all, it
turns out that we have guessed more than enough bytes of L to be able to track
all of the changes. That is, for each value of a, we know the exact value of b, c,



d, e, f , and g. Although we are guessing a very large number of bytes that we
will use in our attack, we would only need to guess six bytes in order to track
the difference pattern through the key schedule.

4.2 The Encryptions

Having guessed the dark-gray bytes shown in figure 1, we encrypt one plaintext
under each key. These plaintexts are chosen such that all encryptions end up in
the same state after the first round (i.e., after adding the second round key).
We know the differences in the second round key k(1) and the key bytes that we
guessed allow us to introduce appropriate differences in the plaintexts to ensure
the same state after round 1. We now get a single byte difference introduced at
the end of round 3; if we look at all our 256 encryptions, this one byte takes on
each value exactly once. This propagates to ensure that each byte of m(5) runs
over all possible values when taken over the 256 encryptions.

The next few steps are shown in figure 2. The round keys for round 5 and
6 are on the left, with their differences marked. On the right are some of the
state differences. The bytes marked O are bytes that take on every possible value
exactly once. Bytes marked X can behave in any manner. Bytes marked σ have
the property that if you sum them over all 256 encryptions, the sum is zero. The
important item to note is that we have three σ bytes in b(6).

We are going to compute b
(6)
1,3 from the ciphertext, our known key bytes, and

some additional guessed key bytes. This is shown in the figure with the gray color.
Note that we are using an equivalent representation for round 8, where we have
swapped the order of the MixColumn and AddRoundKey, and add k(8)′ instead
of k(8). We know the ciphertext and the last round key, so we can compute
backwards up to the AddRoundKey of round 8. We now guess the four marked
bytes in k(8)′ . (We know several bytes of k(8), but that provides no information
about these bytes of k(8)′ . However, as each column of k(8)′ is the result of an
inverse MixColumn operation on k(8), we can propagate our knowledge of the
differences from k(8) to k(8)′ .) We can now compute the marked bytes in t(8),
s(8), and t(7), and finally we can compute b

(6)
1,3. We check whether this value sums

to zero when taken over all 256 encryptions. If this is not the case, we have made
a wrong guess somewhere. As before, we can generate enough sets of plaintexts
to uniquely identify the correct key guesses that we have made.

All in all, we have guessed 31 bytes of key material, and for each guess we
perform an amount of work comparable to a single encryption. This puts the
overall complexity of the attack at 2248.

Looking at the plaintext requirements, we do not have to perform 256 en-
cryptions for each of the key byte guesses that we have made. The eight bytes of
plaintext that we use to cancel the differences can take on only 264 values, so we
can encrypt 264 plaintexts with each of the 256 related keys for a total chosen
plaintext requirement of 272.



⊕

S

⊕

S

⊕

S

⊕

S

⊕

a a a

b b b b

O

O

X

X

O

O

X

X

O

O

X

X

O

O

σ

X

O

O

X

X

O

X

X

X

O

X

X

X

O

X

σ

σ

O

O

X

X

O

O

X

X

O

O

X

X

O

O

σ

σ

O

O

X

X

O

O

X

X

O

O

X

X

O

O

σ

σ

k(5)

k(6)

k(7)

k(8)′

k(9)

m(5)

m(6)

b(5)

b(6)

t(7)

s(8)

t(8)

Fig. 2. Rounds 6–9 of the attack.



4.3 An Improvement

We can now use the techniques of section 2.3 to improve this attack. Instead of
guessing the eight bytes of the first round key, we use all 264 plaintexts for each
of the keys, and sum over all 272 encryptions. We will need about 32 structures
of 272 texts overall to uniquely identify the correct key guess, so our plaintext
requirement grows to 277. We now guess the 19 dark gray bytes (152 bits) of K(4)

in figure 1. (This also provides the required information to track the differences
between the 256 keys.) We decrypt each of the 272 ciphertexts of one structure
for one round, and count how often each of the possible values for the four
remaining interesting bytes occurs. We are now left with something very similar
to equation 1, which requires 248 elementary steps. It is clear that this process
is dominated by the work of decrypting the last round. This reduces the attack
complexity to 5·2224. (The factor 5 comes from the fact that we need five of these
structures before we start cutting into the guesses that dominate the workload.)

4.4 Further Work

There are many ways in which variations on this attack can be made, such as
using a different key difference pattern, or possibly applying the partial-sum
technique further to reduce the workload. We have not investigated these in any
detail. This remains an area for further study.

4.5 Summary

There is a related-key attack on 9 rounds of Rijndael with 256-bit keys that uses
277 plaintexts under 256 related keys, and requires 2224 steps to complete.

5 Conclusions

We examined the security of the AES candidate Rijndael, and described several
new attacks and unexpected properties of the cipher. Up to now we have only
looked at the Rijndael versions with a 128-bit block size. Although similar in
structure, Rijndael with larger block sizes is different enough—the byte align-
ments that are so crucial to some of our attacks are different—that it will have
to be analyzed separately.

We introduced the “partial sum” technique, which substantially reduces the
workfactor of the dedicated Square attack. We also showed how one may trade
texts for time, to penetrate through more rounds of Rijndael when many known
texts are available. These techniques allowed us to find attacks that break as
many as 7 (of 10) rounds for 128-bit keys, 8 (of 12) rounds for 192-bit keys, and
8 (of 14) rounds for 256-bit keys. Many of these attacks require virtually the
entire codebook of texts and hence are not very practical.

The key schedule does not achieve its stated design goals, especially for 192-
bit and 256-bit keys. Although we have not found a large-scale exploit of the key
schedule properties described in section 3, we find them worrisome.



The 9-round related-key attack has a complexity of 2224, which is of course
completely impractical; but it is faster than an exhaustive key search, which is the
standard measure to compare against. Our results have no practical significance
for anyone using the full Rijndael.

6 Acknowledgments

The “extended Twofish team” met for two week-long cryptanalysis retreats dur-
ing fall 1999, once in San Jose and again in San Diego. This paper is a result of
those collaborations. Our analysis of Rijndael has very much been a team effort,
with everybody commenting on all aspects. Tadayoshi Kohno contributed to our
discussions. Ian Goldberg very kindly performed some calculations for us. We
would like to thank them both for their contributions and for the great time we
had together.

References

[Bih93] Eli Biham. New types of cryptanalytic attacks using related keys. In Tor
Helleseth, editor, Advances in Cryptology—EUROCRYPT ’93, volume 765
of Lecture Notes in Computer Science, pages 398–409. Springer-Verlag, 1993.

[DBRP99] Carl D’Halluin, Gert Bijnens, Vincent Rijmen, and Bart Preneel. Attack
on six rounds of Crypton. In Lars Knudsen, editor, Fast Software Encryp-
tion ’99, volume 1636 of Lecture Notes in Computer Science, pages 46–59.
Springer-Verlag, 1999.

[DKR97] J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square. In Fast
Software Encryption ’97, pages 149–165. Springer-Verlag, 1997.

[DR98] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. In
AES Round 1 Technical Evaluation CD-1: Documentation. NIST, August
1998. See http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ or http:
//www.nist.gov/aes.

[GM00] Henri Gilbert, Marine Minier. A collision attack on 7 rounds of Rijndael.
In The third Advanced Encryption Standard Candidate Conference, pages
230–241. NIST, April 2000. See http://www.nist.gov/aes.

[KSW96] John Kelsey, Bruce Schneier, and David Wagner. Key-schedule cryptanalysis
of IDEA, G-DES, GOST, SAFER, and triple-DES. In Neal Koblitz, editor,
Advances in Cryptology—CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 237–251. Springer-Verlag, 1996.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanaly-
sis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In
Information and Communications Security, First International Conference
Proceedings, pages 203–207. Springer-Verlag, 1997.

[Luc00] Stefan Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit
keys. In The third Advanced Encryption Standard Candidate Conference,
pages 215–229. NIST, April 2000. See http://www.nist.gov/aes.



A Notation

The original description of Rijndael uses pictures to define the cipher, and re-uses
symbols several times. This makes it difficult to refer in an unambiguous manner
to intermediate values in an encryption. To help resolve this problem, we define
some extra terminology and symbols for various values in the cipher. We have
tried to retain as many of the symbols of [DR98] as possible. For completeness,
we have named every intermediate value that seemed of use to us. Many of these
definitions are not used in this paper but are included for completeness. All our
explanations of the symbols refer to the description in [DR98].

3a The byte 3a16 (and similarly for all other byte values). This can either be
a direct byte value, or it can be interpreted as an element of GF(28).

a
(r)
i,j The byte at position (i, j) at the beginning of round r.

b
(r)
i,j The byte at position (i, j) at the output of round r (just after the key

addition).
c(x) The polynomial 03x3 + 01x2 + 01x + 02 that is used to define the MDS

matrix.
ci The bytes of the ciphertext, where i ∈ {0, . . . , 4Nb − 1}.
Ci The number of positions that row i is shifted left in the ShiftRow function.
k

(r)
i,j The expanded key byte in round r at position (i, j) where r ∈ {0, . . . , Nr},

i ∈ {0, . . . , 3} and j ∈ {0, . . . , Nb − 1}. For r = 0, it is the key that is
xored into the state before the first round. The entire round key is referred
to as k(r).

k
(r)′

i,j This is a simple linear function of the round key k(r). xoring k(r)′ into the
state before the MixColumn operation is equivalent to xoring k(r) into
the state after the MixColumn operation (when looking at encryption).

Ki The bytes of the expanded key in their canonical order, where i ∈ {0, . . . ,
4Nb(Nr + 1) − 1}. Note that the bytes K0, . . . , K4Nk−1 form the key of
the cipher itself.

K
(s)
i,j The expanded key bytes in cycle s at position (i, j), where s ∈ {0, . . . , Ns−

1}, i ∈ {0, . . . , 3}, and j ∈ {0, . . . , Nk − 1}.
m

(r)
i,j The byte at position (i, j) at the output of the MixColumn operation in

round r.
M The MDS matrix.
Nb The block size (in bits) divided by 32.
Nk The number of key bits divided by 32.
Nr The number of rounds.
Ns The number of cycles in the key expansion; Ns = d(Nr + 1)Nb/Nke.
pi The bytes of the plaintext, where i ∈ {0, . . . , 4Nb − 1}.
r The round number. The rounds are numbered 1, . . . , Nr, and the value 0

is sometimes used to refer to the initial AddRoundKey operation.
R

(s)
i The round constant used at position (i, 0) in cycle s.

s The cycle number in the key expansion. Each cycle produces 4Nk ex-
panded key bytes. The cycles are numbered from 0 to Ns − 1.



s
(r)
i,j The byte at position (i, j) at the output of the S-boxes in round r.

S The S-box. Entry x is written as S[x]. The inverse S-box is written as
S−1.

t
(r)
i,j The byte at position (i, j) at the output of the ShiftRow operation in

round r.

Note that the key schedule operates in what we call “cycles.” This is to distin-
guish it from the rounds of the cipher itself. If the block size and key size are the
same, then a cycle corresponds to a round, but this is not the case in general.

We can now give the various formulae through which these values are tied
together. This provides a complete specification of the cipher, although not one
that is easy to understand. Note that Nb and Nk are the cipher parameters that
can each take on the values 4, 6, and 8. The multiplication of two bytes is defined
as multiplication in GF(2)[x]/(x8 +x4 +x3 +x+1) and the byte value

∑7
i=0 ai2i

with ai ∈ GF(2) is identified with the field element
∑7

i=0 aix
i.

a
(1)
i,j = p4j+i ⊕ k

(0)
i,j Initial key addition

s
(r)
i,j = S[a(r)

i,j ] ByteSub

t
(r)
i,j = s

(r)
i,(j+Ci)modNb

ShiftRow

[m(r)
0,j , . . . ,m

(r)
3,j ]

T = M [t(r)0,j , . . . , t
(r)
3,j ]

T MixColumn

b
(r)
i,j = m

(r)
i,j ⊕ k

(r)
i,j AddRoundKey

a
(r)
i,j = b

(r−1)
i,j for r = 2, . . . , Nr

c4j+i = t
(Nr)
i,j ⊕ k

(Nr)
i,j Final round

k
(r)
i,j = K4rNb+4j+i Round keys

K4sNk+4j+i = K
(s)
i,j

K
(s)
i,0 = K

(s−1)
i,0 ⊕R

(s)
i ⊕

S[K(s−1)
(i+1)mod4,Nk−1] for s = 1, . . . , Ns − 1

K
(s)
i,4 = S[K(s)

i,3 ]⊕K
(s−1)
i,j if Nk = 8

K
(s)
i,j = K

(s)
i,j−1 ⊕K

(s−1)
i,j if j > 0 and (j 6= 4 ∨Nk 6= 8)

Ci = i + bi/2c · bNb/8c for i = 0, . . . , 3
Nr = max(Nb, Nk) + 6 Number of rounds

R
(s)
i = 0 for i > 0

R
(s)
0 = field element xs−1

M =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02







