
A Known-Plaintext Attack on Two-Key Triple Encryption

Paul C. van Oorschot and Michael J. Wiener

BNR

P.O. Box 3511 Station C

Ottawa, Ontario, Canada, K1Y 4H7

1990 June 29

Abstract. A chosen-plaintext attack on two-key triple encryption noted by Merkle and
Hellman is extended to a known-plaintext attack. The known-plaintext attack has lower
memory requirements than the chosen-plaintext attack, but has a greater running time.
The new attack is a significant improvement over a known-plaintext brute-force attack,
but is still not seen as a serious threat to two-key triple encryption.

Key Words. triple encryption, cryptanalysis, DES.

1. Introduction

Due to questions raised (e.g., see [Diff77]) regarding the adequacy of security by the 56-bit
key in the Data Encryption Standard (DES) [FIPS46], several varieties of multiple
encryption have been considered. Given a few plaintext-ciphertext pairs, an exhaustive
search defeats (single) DES in on the order of 256 operations. Double DES encryption,
using two independent 56-bit keys (see Figure 1), requires on the order of 2112 operations
to attack by this naive approach. This may be reduced to on the order of 256 operations and
256 words of memory using a simple "meet-in-the-middle" attack [Diff77].

S S

K1 K2

P (Plaintext) C (Ciphertext)

S is a private-key cryptosystem such as DES.

Figure 1: Double Encryption

Two-key triple DES (see Figure 2) can be defeated by the naive approach in on the order of
2112 operations. This may be reduced to on the order of 256 operations and 256 words of

memory using a chosen-plaintext attack due to Merkle and Hellman which requires 256

chosen-plaintext plaintext-ciphertext pairs [Merk81]. This latter attack, although
impractical, is of interest in that it exhibits what Merkle and Hellman refer to as a
"certificational" weakness in two-key triple encryption.

S S

K1 K2

P (Plaintext) C (Ciphertext)S-1 BA

or

K1 (two-key triple encryption)

K3 (three-key triple encryption)

Figure 2: Triple Encryption

This paper presents a known-plaintext attack on two-key triple encryption. The Merkle-
Hellman attack is first reviewed in §2. The new attack is presented in §3 and briefly
analyzed in §4, showing it to require a running time on the order of 2120-log2n operations
and n words of memory, where n is the number of available plaintext-ciphertext pairs.
This is the best known-plaintext attack on two-key triple DES that the authors are aware of.
In §5, we consider a hardware implementation of the new attack using n = 232.

As with the Merkle-Hellman attack, the new attack poses no serious threat to two-key triple
encryption in practice. However, it is of interest in that it may be used to both reduce the
memory requirements and relax the chosen-plaintext condition in the Merkle-Hellman
attack, and may lead to further advances. It is also highly amenable to parallel
implementation. As with the Merkle-Hellman attack, the ideas discussed in this paper are
not restricted to DES, but apply to any similar cipher.

2. The Merkle-Hellman Attack on Two-Key Triple Encryption

Let C = SK(P) denote that the plaintext P, enciphered using key K, results in ciphertext C.
Then as in [Merk81], denote two-key triple encryption by the function Enc():

C = Enc(P) = SK1(S
 -1

 K2(SK1(P))). (1)

Let A and B be the intermediate values in Enc(P):

A = SK1(P) and B = S
 -1

 K2(A). (2)

The Merkle-Hellman attack finds the desired two keys K1 = κ1, K2 = κ2 by finding the
plaintext-ciphertext pair such that intermediate value A is 0. The first step is to create a list
of all of the plaintexts that could give A = 0:

Pi = S
 -1

 i (0) for i = 0, 1, ..., 256 - 1. (3)

Each Pi is a chosen plaintext and the corresponding ciphertexts are obtained from the
holder of keys κ1 and κ2:

Ci = Enc(Pi) for i = 0, 1, ..., 256 - 1. (4)

The next step is to calculate the intermediate value Bi for each Ci using K3 = K1 = i .

Bi = S
 -1

 i (Ci) for i = 0, 1, ..., 256 - 1. (5)

A table of triples of the following form is constructed:

(Pi or Bi, i, flag),

where flag indicates either a Pi-type or Bi-type triple. Note that the 256 values Pi from
equation (3) are also potentially intermediate values B, by equation (2). All Pi and Bi

values from equations (3) and (5) are placed in this table, and the table is sorted on the first
entry in each triple, and then searched in order to find consecutive P and B values such that
Bi = Pj. If Bi = Pj, then i, j is a candidate for the desired pair of keys κ1, κ2. This fact is
illustrated in the two-key triple encryption depicted in Figure 3.

S SP C S
-1A = 0

ii

i j i

P = Bj i

see
equation

(3)

see
equation

(3)

see
equation

(5)

Figure 3: Two-Key Triple Encryption with a Candidate Pair of Keys

Because Ci = Enc(Pi) for both the candidate pair of keys i, j and the desired keys κ1, κ2,
it is reasonable to expect that the two pairs of keys might be equal. Each candidate pair of
keys found from the sorted table is tested on a few other plaintext-ciphertext pairs to filter
out "false alarms". The reason the attack succeeds is that a match Pj = Bi is found in the
table with i = κ1; this is that i for which Sκ1(Pi) = 0. Testing all candidate pairs guarantees
that κ1 and κ2 will be found [Merk81].

3. Known-Plaintext Extension of the Merkle-Hellman Attack

Because the Merkle-Hellman algorithm computes a table based on the fixed value A = 0,
and it is not known a priori which plaintext P results in the intermediate value A = 0, it is
necessary to test all 256 possibilities (i.e., S

 -1

i (0) for all possible keys i). Also, the

attacker must request that each of these plaintexts be enciphered for him by his adversary.
This makes the Merkle-Hellman attack far from practical. The idea for extending the
algorithm is to remove the reliance on a single, fixed value of A; rather, we choose values
for A at random, and for each choice, carry out a tabulation. We continue until a "lucky"
choice of A is made which results in the success of the algorithm. As the attacker, we no
longer require access to the adversary's Enc() function. Instead, we assume that we are
given n plaintext-ciphertext pairs.

The new algorithm proceeds as follows. Tabulate the (P, C) pairs, sorted or hashed on the
plaintext values (see Table 1 in Figure 4). Table 1 is independent of A and requires O(n)
words of storage. Now randomly select and fix (for this stage of computation) a value a
for A, and create a second table (see Table 2 in Figure 4) as follows. For each of the 256

possible keys K1 = i, calculate what the plaintext value would be if i were used for K1:

Pi = S
 -1

 i (a).

Next, look up Pi in Table 1. If Pi is found in the first column of Table 1, take the
corresponding ciphertext value C and compute the intermediate value

B = S
 -1

i (C).

Place this value of B along with the key i into Table 2. Table 2 is sorted or hashed on the B
values.

Each entry in Table 2 consists of an intermediate B value and corresponding key i which is
a candidate for κ1; as described above, each (B, i) pair is associated with a (P, C) pair from
Table 1 which satisfies Si(P) = a. The remaining task is to search for the desired value of
K2. For each of the 256 candidate keys K2 = j, calculate what the intermediate B value
would be if j were used for K2:

Bj = S
 -1

 j (a).

Next, look up Bj in Table 2. For each appearance of Bj (if any), the corresponding key i
along with key j is a candidate for the desired pair of keys κ1, κ2. (To handle the rare case
that a given B-value appears more than once in Table 2, a few bits could be added in Table
2 entries to indicate the multiplicity of each B-value.) Each candidate pair of keys (i, j) is
tested on a few other plaintext-ciphertext pairs. If all of these additional (P, C) pairs have
P mapped to C by the key pair (i, j), then (i, j) = (κ1, κ2) and the task is complete.

This algorithm will find κ1 and κ2 the first time any one of the available (P, C) pairs has a
first intermediate value (Sκ1(P)) that is equal to a chosen a. If the algorithm does not
succeed for a given a, the process is repeated for another value of A until ultimately the
desired keys κ1, κ2 are found.

P C

B key i

Table 1 Table 2

sorted or hashed
on P values

sorted or hashed
on B values

(for fixed a)

Figure 4: Tables used in the Known-Plaintext Attack

4. Time and Space Analysis

In this section, we briefly summarize the running time and memory requirements of the
known-plaintext attack.

The time required for building and hashing Table 1 is the time required to hash n items.
This time is dominated by other computations required in the attack, for n < 256. The space
required for Table 1 is O(n).

For each value of A that is tried, the time required to build Table 2 is on the order of 256,
assuming that Table 1 is hashed on the plaintext values so that lookups take constant time.
Because only 256 out of 264 possible texts are searched for in Table 1, the expected number
of entries in Table 2 is n/28. This space is reusable across different values of A. The time
required to work with Table 2 to find candidate pairs of keys is on the order of 256.

The probability of selecting a value of A that leads to success is n/264. The expected
number of draws required to draw one red ball out of a bin containing n red balls and N - n
green balls is (N + 1)/(n + 1) if the balls are not replaced. Therefore, assuming that one
does not try the same value of a more than once, the expected number of values of a that
must be tried is

(264 + 1)/(n + 1) ≈ 264/n for n large.

Thus, the expected running time for the attack is on the order of (256)(264/n) = 2120-log2n,
and the space required is O(n).

5. Parallel Hardware Implementation

In this section we present one possible parallel hardware implementation of the known-
plaintext attack on two-key triple DES, assuming that n = 232 plaintext-ciphertext pairs are
available. Given a number of assumptions concerning the cost of components and the
performance that can be achieved by present-day technology, the illustrated implementation
of the attack is shown to be four orders of magnitude faster (for an attacker with fixed
resources) than a brute-force known-plaintext attack. This is the best known-plaintext
attack the authors are aware of, but this attack is still not feasible. We conclude that two-
key triple DES is currently not vulnerable to attack in practice.

The following hardware implementation is suitable for an attacker with a large amount of
resources. We will assume that the attacker has 1 billion (109) dollars and n = 232

plaintext-ciphertext pairs available to him. Note that the execution time is not particularly
sensitive to n (provided that n is not too small) because as n increases, the number of
operations required for the attack (2120-log2n) decreases, but memory requirements
increase, and the number of machines that can be built with a fixed amount of money
decreases.

Each machine for attacking two-key triple DES (see Figure 5) consists of a central
component containing Table 1, and 512 peripheral components each containing its own
version of Table 2 (for distinct sets of values for A).

Central
Component

(Table 1)

Peripheral
Component

(Table 2)

Peripheral
Component

(Table 2)

Peripheral
Component

(Table 2)

Peripheral
Component

(Table 2)

. . .
512 peripheral components in all

Figure 5: A Single Machine for Attacking Two-Key Triple DES

The function of the central component is to service requests from the peripheral
components for the ciphertexts (if any) which correspond to a specified plaintext. In order
to service these requests quickly, Table 1 is hashed on the plaintext values. To reduce
overhead during table lookup of hashed values caused by hashing collisions, the density of
the hashing table is restricted to 50%. In this case, the total memory required for Table 1 is

2(232 words)(64 + 64 = 128 bits per word) = 240 bits.

Assuming that bulk memory can be obtained for $10/Mbit, the cost of this memory is
approximately $10 million.

If each memory chip is 1M x 1-bit, then Table 1 is organized as approximately 8000 rows,
with 128 chips in each row. These rows are independent and can be accessed in parallel.
This makes it possible for the central component to service the requests from the peripheral
components in parallel. Each request will be directed to one of the 8000 rows. There
should be few collisions among 512 requests out of 8000 rows. We will assume that the
cost of the complex routing and arbitration circuitry required to make this work will double
the cost of the memory making the total cost of a central component $20 million.

We will assume that the average time required to service a request from a peripheral
component is 250 ns. This may seem slow considering the current speed of memories, but
this figure takes into account delays caused by the routing and arbitration circuitry, delays
due to collisions among the 512 requests, and delays due to hashing collisions which lead
to extra probes into Table 1.

The expected number of words required for Table 2 is n/28 = 224. Again, restricting the
density of Table 2 to 50%, the total memory required for Table 2 is

2(224 words)(64 + 56 + 4 = 124 bits per word) ≈ 4000 Mbits.

(Four extra bits have been allocated to handle the problem of possible duplicate B-values as
indicated in §3.) Assuming that bulk memory can be obtained for $10/Mbit, the cost of this
memory is $40 000. For all 512 peripheral components in a machine, the total memory
costs are approximately $20 million. Peripheral components have some circuitry other than
memory, such as DES chips, but there is just enough of this circuitry that the 250 ns
request rate is not slowed down. The cost of this circuitry is negligible compared to the
cost of memory. Then the total cost of one machine is $40 million. Therefore, the attacker
who has $1 billion can afford to build 25 machines.

The expected number of values of A that must be tried is 264/n = 232. For each value a of
A, 256 accesses of Table 1 are required to build Table 2. Also 256 accesses of Table 2 are
required to find all candidate pairs of keys. Assuming that accesses of Table 2 also require
250 ns, the expected time required to find the desired pair of keys is

(232)(256 + 256)(250 ns) / (25 x 512 peripheral components) ≈ 4 x 108 years.

Next, we consider a brute-force known-plaintext attack. Analysis indicates that a DES chip
could be built in volume for about $10/chip [BNR]. A similar chip with added comparison
circuitry and modified input/output could be built for about the same cost and used for
attacking DES. The cost of building a machine for attacking two-key triple DES would
include overhead in addition to the cost of the DES chips; assume this overhead cost to be
roughly equal to the total cost of the DES chips. Then for $1 billion, the attacker could
afford to build a machine with 50 million DES chips. Using current technology, each DES
chip could perform a DES operation in about 500 ns. One would expect to have to search
through about half of the 2112 pairs of keys, and testing each pair of keys requires 3 DES
operations. Therefore, the expected time required for a brute-force search is

(3)(0.5)(2112)(500 ns) / (50 x 106 DES chips) ≈ 2.5 x 1012 years.

Therefore, the known-plaintext attack is approximately four orders of magnitude faster than
a brute-force search, based on the assumptions made in the preceding arguments.
However, this is of little practical consequence unless new ideas improve the running time
of the former by several more orders of magnitude.

6. Conclusion

The new attack presented in this paper demonstrates a known-plaintext variation of the
chosen-plaintext Merkle-Hellman attack, with a decreased memory requirement. The
penalty that is paid for these improvements is increased running time.

The new attack gives approximately four orders of magnitude improvement over a brute-
force known-plaintext attack, provided that a sufficient number of plaintext-ciphertext pairs
are available. Despite the improvement, for practical purposes, two-key triple encryption
remains currently invulnerable to known-plaintext attacks.

The authors encourage others to pursue other known-plaintext attacks on two-key triple
encryption, which further reduce the running time.

References

[Merk81] Merkle, R. and M. Hellman, "On the Security of Multiple Encryption",
Communications of the ACM, vol. 24, no. 7, pp. 465-467, July 1981. See
also Communications of the ACM, vol. 24, no. 11, p. 776, November 1981.

[Diff77] Diffie, W. and M. Hellman, "Exhaustive Cryptanalysis of the NBS Data
Encryption Standard", Computer, vol. 10, no. 6, pp. 74-84, June 1977.

[FIPS46] "Data Encryption Standard", National Bureau of Standards (U.S.), Federal
Information Processing Standards Publication (FIPS PUB) 46, National
Technical Information Service, Springfield VA, 1977.

[BNR] Internal study, BNR, Ottawa, 1989.

