
Security Weaknesses in a Randomized Stream
Cipher

Niels Ferguson1, Bruce Schneier1, and David Wagner2

1 Counterpane Systems; 101 E Minnehaha Parkway,
Minneapolis, MN 55419, USA;

{niels, schneier}@counterpane.com
2 University of California Berkeley, Soda Hall,

Berkeley, CA 94720, USA;
daw@cs.berkeley.edu

Abstract. TriStrata appears to have implemented a variation of Mau-
rer’s randomised cipher. We define a variation of Maurer’s cipher that
appears to be similar to the TriStrata version, and show several crypt-
analytical attacks against our variant.

1 Introduction

In 1990, Maurer introduced an information-theoretic provably-secure randomised
cipher [Mau90]. Using a large pool of public random data, he shows how to use
a key made up of multiple pointers into the pool to create a series of random
streams to xor into the plaintext. Someone with the same key can xor the
same random streams into the ciphertext to recover the plaintext; an analyst
without the key must brute-force search the set of possible pointers to recover
the plaintext.

Recently, TriStrata Corporation [Tri98,Bec98] implemented a complexity-
theoretic variation of that technique as a proprietary encryption algorithm. In
this paper we first present what we infer to be the exact variation used by
TriStrata, and take some initial steps in cryptanalysing the cipher.

We should point out that our analysis does not apply to the original cipher
proposed by Maurer, where the pool is chosen to be large enough that it is
infeasible to read the entire contents of the pool. Unfortunately, Maurer’s cipher
is not very practical—in his paper, he proposed digitizing the surface of the
moon as one means of getting enough public randomness to make the cipher
work—and hence not suited to present-technology implementation. We attack a
simplified version, one which is more practical.

2 The TriStrata Cipher

The TriStrata Cipher is a key stream cipher with a two-part key. The first part
of the key is a 1 Mbyte (220 bytes) block of random data which we call the pool.
For practical reasons the pool is not changed very often. In the TriStrata system,



it appears to be fixed for a long time. Additionally, the same pool is used by all
clients in the system.

The second part of the key consists of a number of pointers that point to
a byte in the pool. Although our information is sketchy, we believe there are 5
pointers. Each pointer is 20 bits long, so the pointers together make up a 100-bit
key.1

To generate a byte of the key stream, the five bytes that the pointers point to
are xored together. Each of the pointers is then advanced by one byte position.
If all pointers were to wrap around at the end of the pool, the resulting key
stream would have a period of only 220 bytes. We assume that the first pointer
wraps at the end of the pool, the second pointer wraps around one byte from the
end, etc. We can thus represent the keystream generation algorithm as follows:

ki =
5⊕

j=1

pool[(tj + i) mod (220 − i + 1)]

where tj is the starting position of the j’th pointer and ki is the i’th byte of the
key stream. The i’th byte of the ciphertext is formed by xoring the i’th byte
of the plaintext and ki. This is one possible generalisation of the Morehouse
variation of the Vernam cipher [Kah68].

There are of course many other possible variations. The number of pointers
can be changed, as can the update rule for the pointers (increment one is the
simplest update rule). In Maurer’s cipher, each pointer cycles through its own
unique subset of the pool. These variations do not affect the spirit of our analysis,
and many of our attacks will work against such variations.

In Sections 3–5 we will discuss various attacks on this cipher. Most of our
attacks are known-plaintext attacks, which corresponds to a known-keystream
attack. Some of the attacks are of theoretical interest only (as certificational
attacks), but several are efficient enough to be of practical concern. See Table 1
for a summary of cryptanalytic results.

3 Finding the Pointers from a Known Pool

In many situations the pool does not change very often, and is not really a secret.
For example, in the TriStrata system the same pool is used for all clients in the
system, so it is plausible to assume that the pool is known to the attacker.2

Alternatively, we might be able to recover the pool using the techniques to be
described later in Section 4.

3.1 Exhaustive Search

Given 16 bytes of the key stream, we can search for a set of tj values that would
produce this key stream. It is very unlikely that one of the pointers performed a
1 In comparison: Maurer gave an example that used 50 pointers and a pool of 272 bits.
2 Note that in Maurer’s original system, this pool is assumed to be public information.



Attack type Time Space Data Attack model
Exhaustive search 293 — 16 bytes Known-pool
Meet-in-the-middle 257 239 16 bytes Known-pool
Improved MITM 257 223 16 bytes Known-pool
Weak keys 239 239 217 keys Known-pool
Linear algebra ≤ 260 ≤ 240 220 bytes Known-pointers
Exhaustive search ≤ 2160 ≤ 240 220 bytes Nothing known
Vigenere analysis ≤ 260 ≤ 240 222.3 bytes Nothing known
Diff. related-key ≤ 260 ≤ 240 221 bytes Related-key; nothing known
Diff. related-key 5 · 220 — 80 bytes 5 related keys; known-pool
Diff. fault 239 219 16 bytes Fault attack; known-pool

Table 1. A summary of our attacks on the Maurer-like stream cipher.

wrap-around within these 16 bytes, so we assume that this did not happen. We
are thus looking for 5 sub-ranges in the pool of 16 bytes each that when xored
together results in the key stream.

If all tj values are distinct, then we have to try
(
220

5

) ≈ 293 different sets of
values. If two tj values are the same their contributions to the key stream cancel
out, and we look for a set of 3 pointers. The extreme case is when there are
two pairs of tj values that are identical, in which case the key stream is just a
sub-range of the pool. These special cases do not contribute significantly to the
complexity of the attack.

If one of the pointers did wrap around, the attack fails. We can repeat the
attack on the next 16 bytes of the key stream, which will most likely succeed.

We conclude that an exhaustive search over the pointer values for a known
pool has a complexity of 293 steps. Simple optimisations can make each of these
steps extremely efficient.

3.2 Meet-in-the-Middle on the Pointers

We can improve this if we use a meet-in-the-middle attack on the pointer space.
We generate all pairs (t1, t2) and consider the key stream contributions made
by these pointers. As (t1, t2) produce the same result as (t2, t1) we can restrict
ourselves to the 239 cases where t1 < t2. We store these pairs in a list, and sort
them lexicographically by the key stream that they generate. We have 239 pairs
of 5 bytes each, which requires 2.5 Terabytes of memory. This list is computed
once for a given pool and then stored. The complexity of this phase is 239 steps.

We then try all possible values for t3, t4, and t5 in a second phase. There are(
220

3

) ≈ 257 different values (again taking advantage of the fact that swapping
two t values gives the same key stream). From these three t values and the known
key stream, we compute the key stream contribution of the first two pointers.
We now look in the sorted list to see if there is a pair of values for (t1, t2) that



generates the required key stream. Each such search in the sorted list may be
performed quickly using binary search or hashing.

The complexity of the second phase of the attack is about 257 steps, where
each step requires a lookup in a sorted list of 239 elements.

We can make this attack practical by a simple divide-and-conquer technique.
We split the work into 216 tasks, each identified by a two-byte string σ. For each
task, we first generate all pairs (t1, t2) as above whose contribution to the key
stream start with σ. There are about 223 elements in this list. If we pre-compute
a table that given a two-byte string points to all places in the pool where this
two-byte string occurs, then we can construct this list in about 223 steps. The
entire list requires about 40 Mbytes of memory, well within the range of even a
standard desktop PC.

The second phase is to try all possible values for t3, t4, and t5 with the
restriction that their contribution xored with the key stream starts with σ. We
try all possible values for t3 and t4, compute the desired first two bytes of the
key stream contribution of t5 and use the same pre-computed table to find these
values. We then search for a suitable pair (t1, t2) in our list for which the rest of
the key stream also matches.

For any single task σ, the first phase has a complexity of 223 steps, and
the second phase has a complexity of about 241 steps if we use some simple
ordering requirements to avoid equivalent pointer values. As we have to perform
a total of 216 tasks, the overall complexity of our attack is still 216 × (223 +
241) ≈ 257 steps. However, this improved version has a very reasonable memory
requirement, and can be spread out over many machines. This attack should
certainly be considered feasible for any reasonably sized organisation.

3.3 Weak Keys

If the pointer values are generated randomly, then about one in every 217 keys
has at least two pointers with the same starting value. The contributions of these
pointers cancels, and we are left with at most three relevant pointers. Using the
techniques described here, these pointers can be found with very little work.
Thus about one in every 217 keys is a weak key.

With sufficient cryptanalytic targets, we could expect to break our first key
after about 239 steps. Build a table of 239 elements by enumerating all possibili-
ties for the first two pointers. Next, for each cryptanalytic target, check whether
it forms a weak key by guessing the third pointer and doing a table lookup. This
takes 220 work to see if a key is weak; after 217 such attempts, we expect to find
a single weak key which we can break. Thus, the total complexity is 239 work
and 239 space, assuming at least 217 different keystream segments are available
for analysis.

4 Finding the Pool

The attacks in Section 3, above, assumed that the pool was known to the ad-
versary. However, as we now show, even when the pool is unknown, it may be



possible to recover the pool using more sophisticated techniques, and then the
techniques of Section 3 will apply.

4.1 The Known-Pointers Case: Linear Algebra

Let us assume that we know the tj values for a given encryption. Then each
known byte of the key stream gives us a linear equation in 5 values of the
pool. After one million key stream bytes we expect to have a non-singular set of
equations and can solve for the bytes in the pool.

If we do not use the correct values for tj , then we can expect the set of
equations to be contradictory very soon after the first million key stream bytes.
This allows us to detect whether a set of values for tj is correct.

If we are just interested in detecting whether a set of tj values is correct, we
can perform this analysis for some subset of the bits in a byte. For example, it
could be done for the least significant bit of each pool byte. This optimisation
requires less memory and might be faster. We have not investigated the exact
performance tradeoffs of this attack in detail. It might be possible to take advan-
tage of the highly structured form of the equations instead of using an algorithm
for general linear equations.

4.2 When Pointers are Unknown: Exhaustive Search

We can use the result of Section 4.1 to mount an exhaustive search attack. For
each possible set of tj values, perform the attack of Section 4.1. If the set of
equations is contradictory, the values for tj are incorrect. If a consistent set of
pool bytes is found, the full key has been recovered. This attack requires about
2100 steps, where each step consists of setting up just over a million equations
and checking for a contradiction.

4.3 Unknown Pointers: A Vigenere Analysis

When the tj values are unknown, we can still recover the entire pool from about
5·220 bytes of known keystream by treating the cipher as a multiple-loop Vigenere
cipher. We let

ki,j = pool[(tj + i) mod (220 − i + 1)]

so that ki = ki,1 ⊕ . . .⊕ ki,5. Each k·,j takes the form of a Vigenere cipher, and
their xor is a five-loop Vigenere cipher. Here we shall ignore the fact that the
five streams are related, and simply treat them as independent values.

Such ciphers can be readily cryptanalyzed by standard methods [Sin68,Tuc70],
such as the application of linear algebra. In this way, with about 5 · 220 bytes of
known keystream, we can completely recover the five streams ki,1, . . . , ki,5. Once
the ki,j are known, the initial pointer values tj and the contents of the pool can
be readily obtained by inspection of the ki,j .

The discussion in Section 2 suggested using a different modulus for each
pointer, because otherwise the keystream ki would have a relatively short period



of only 220 bytes. This attack shows that using a different modulus for each
pointer does not extend the security of the cipher very much: not more than
by a factor of five, in any case. Also, we note that this attack does not work
against the variant where each stream has the same period, because we will not
be able to obtain the required quantity of known keystream material. These
observations suggest that it might not make much difference whether we use the
same modulus for the pointers or not.

5 Differential Fault and Related-Key Attacks

We next show that, when a few bits from the pool can be corrupted, improved
attacks are available. We first discuss how to mount such attacks when the
adversary can make related-key queries, and then we illustrate how random bit
errors can enable a differential fault attack on the cryptosystem.

5.1 Differential Related-Key Attack on the Pool

Let us assume that the attacker can force a low-weight change in the pool. This
can either be done by manipulating the distribution protocol, tampering with
the stored pool, or waiting for a random bit error to occur.

In this case, the attacker can determine the distances between the different
pointers by observing where the erroneous key stream deviates from the proper
key stream. If two Megabytes of key stream is available, this reveals the distance
between the pointers. If the attacker knows where the error in the pool occurred,
then the pointer values are revealed and the pool can be reconstructed using the
attacks in Section 4. If the attacker does not know this, then he has to guess the
position and has to perform some attack from Section 4 at most 220 times.

5.2 Differential Related-Key Attack on the Pointers

If the pool is known, a differential attack on a pointer will reveal the position of
the pointer. Let us assume the attacker flips the least significant bit of pointer
1. The difference between the modified key stream and the original key stream
uniquely determines the value of pointer 1. This attack can be repeated for each
of the pointers, resulting in an attack that requires 5 related key queries and a
complexity of 5 · 220.

The attack can be generalized to use fewer related key queries; see the next
subsection for an example.

5.3 Random Error Attack

We can extend this to the case where the attacker suspects there is a random bit
error in the pointers. As before, the attacker can determine one of the pointers
from the difference in the key stream. The remaining 4 pointers can be found
with a meet-in-the-middle attack like the one in Section 3.2 with a complexity
of 239. This is a kind of differential fault analysis, where a low-weight difference
in the key input yields information that helps the attacker significantly.



6 Security Improvements

The obvious way to improve the security is to increase the number of pointers.
This will make many of the attacks harder to implement in practice, but also
results in a slower cipher. A rough estimate shows that a version with the same
size of pool but 14 pointers can be attacked in 2128 steps using the meet-in-the-
middle attack of Section 3.2. The resulting cipher would be slower by a factor
of 3 or so, and still be vulnerable to the attack in Section 4.3.

7 Uses of Maurer-Type Ciphers

Simplified variants of Maurer’s cipher might be useful for very specific appli-
cations. For example, let us suppose we need to encrypt a very long stream of
data very rapidly. We generate a pool and a set of starting pointers using a
cryptographically strong pseudo-random generator, and use the type of cipher
we described here to encrypt the bulk data. Using 4, 8, or even 16-byte words
instead of bytes would increase the efficiency of the algorithm even further. Such
a construction would have to be carefully crafted and analysed. This deserves a
lot of further study, and until that has been done this type of cipher should not
be used.

The cipher we analyzed is similar (in some ways) to other ciphers published
elsewhere. For instance, Chameleon [AM97] uses four pointers into a pool of
216 64-bit words; however, the primary difference is that Chameleon drives the
pointers with another (slower) stream cipher, rather than generating them by
incrementing. In fact, in Chameleon the random bit error property of Section 5.1
is a feature, not a bug: it is exploited to detect traitors. Another paper [AVV95]
describes a “provably secure” stream cipher which uses a Maurer-like cipher as
an internal component; there, they use eight pointers into a pool of 28 512-bit
words, and again, the pointers are updated as in Chameleon rather than by
incrementing. We leave it as an open question to extend our analysis to these
cases.

8 Conclusion

Simplified Maurer-like ciphers are not always secure. We have shown that many
variations can be broken far more effectively than an exhaustive search of the
key space. Several of our attacks are quite practical.

9 Acknowledgements

We are grateful to David Bernier and to the anonymous reviewers for their
helpful comments.



References

[AM97] Ross Anderson and Charalampos Manifavas, “Chameleon—A New Kind of
Stream Cipher,” FSE’97, Springer, 1997.

[AVV95] W. Aiello, S. Venkatesan, and R. Venkatesan, “Design of practical and prov-
ably good random number generators,” SODA’95, ACM, 1995, pp. 1–9.

[Bec98] Dan Beckman, “TriStrata: A Giant Step In Enterprise Security,” Network
Computing, 15 September 1998.

[Kah68] David Kahn, The Codebreakers, 1968.
[Mau90] Ueli M. Maurer, “A Provably-Secure Strongly-Randomized Cipher,” Ad-

vances in Cryptology - Eurocrypt ’90, Springer-Verlag, 1990, pp 361–373.
[Sin68] A. Sinkov, Elementary Cryptanalysis, A Mathematical Approach. New York:

Random House, 1968.
[Tri98] TriStrata webpage, http://www.tristrata.com.
[Tuc70] B. Tuckerman, “A study of the Vigenere-Vernam single and multiple loop en-

ciphering systems,” IBM Research Report RC2879, 14 May 1970, Yorktown
Heights NY.


