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Abstract. SEAL was first introduced in [1] by Rogaway and Copper-
smith as a fast software-oriented encryption algorithm. It is a pseudo-
random function which stretches a short index into a much longer pseu-
dorandom string under control of a secret key pre-processed into internal
tables. In this paper we first describe an attack of a simplified version
of SEAL, which provides large parts of the secret tables from approxi-
mately 224 algorithm computations. As far as the original algorithm is
concerned, we construct a test capable of distinguishing SEAL from a
random function using approximately 230 IV values. Moreover, we de-
scribe how to derive some bits of information about the secret tables.
These results were confirmed by computer experiments.

1 Description of the SEAL Algorithm

SEAL is a length-increasing ”pseudorandom” function which maps a 32-bit string
n to an L-bit string SEAL(n) under a secret 160-bit key a. The output length
L is meant to be variable, but is generally limited to 64 kbytes. In this paper,
we assume it is worth exactly 64 kbytes (214 32-bit words), but all our results
could be obtained with a smaller output length.

The key a is only used to define three secret tables R, S, and T . These tables
respectively contain 256, 256 and 512 32-bit values which are derived from the
Secure Hash Algorithm (SHA) [2] using a as the secret key and re-indexing the
160-bit output into 32-bit output words.

SEAL is the result of the two cascaded generators shown below.
The first generator uses a routine depending on the a-derived tables R and

T depicted at figure 1. It maps the 32-bit string n and the 6-bit counter l to
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Fig. 1. The first generator of SEAL
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four 32-bit words A0, B0, C0, D0 and another four 32-bit words n1, n2, n3, n4.
These eight words are to be used by the second generator.

The second generator uses a routine depending on the a-derived tables de-
picted at figure 2. There are 64 iterations of this routine, indexed by i =
1 to 64. A0B0C0D0 serves as an input to the first iteration, producing an
A1B1C1D1 block. For the next iterations, the input block is alternately (Ai−1 +
n1, B

i−1, Ci−1+n2, D
i−1) for even i values and (Ai−1+n3, B

i−1, Ci−1+n4, D
i−1)

for odd i values. At iteration i, the output block (Y i
1 , Y i

2 Y i
3 , Y i

4 ) is deduced from
the intermediate block (Ai,Bi,Ci,Di) using the a-derived table S as shown below
in figure 3.

? ? ? ?

- - - -
⊕ ⊕

+ +

Ai Bi Ci Di

Yi
1

Yi
2

Yi
3

Yi
4

S[4i− 1] S[4i− 4] S[4i− 3] S[4i− 2]

Fig. 3. Deriving the generator output

In the above figures:

– ⊕ stands for the XOR function;
– � stands for the sum (mod 232);
– � stands for a right rotation of 9 bits;
– � N stands for a right rotation of N bits;
– p1 through p4 and q1 through q4 stand for the inputs of table T obtained

from the 9 bits 2 to 11 of values A, B, C and D; for instance in figure 1,
p1 = A&0x7fc.

Concerning the definition of SEAL, more details can be found in [1] and in [2].
The algorithm is divided into three steps.

– First we compute the internal tables under the secret key a. The security of
this step relies on SHA which is assumed to be highly secure. Therefore, R,
S and T are pseudorandom tables.

– Second we compute A0, B0, C0, D0, n1, n2, n3 and n4 from n, l and table R.
This is what we already called the first generator. Let us assume the output
is pseudorandom as well.

– Finally, the second generator computes iteratively the AiBiCiDi blocks,
from which the Y i

1 , Y i
2 , Y i

3 , Y i
4 values are derived. We change the original

notations as follows:

• Y i
1 = Ai

⊕ Si
1

• Y i
2 = Bi + Si

2



4 Helena Handschuh and Henri Gilbert

• Y i
3 = Ci

⊕ Si
3

• Y i
4 = Di + Si

4.

In this part we found certain weaknesses which are investigated in Sections
3 and 4.

2 Preliminary

2.1 Role of mod 232 additions

Although the combined use of the + and ⊕ operations probably strengthens
SEAL as compared with a situation where only one of these operations would
be used, we do not believe that this represents the main ingredient of the security
of SEAL, which is essentially a table-driven algorithm.

As a matter of fact, any x + y sum can be written:
x + y = x ⊕ y ⊕ c(x, y)
where the carry word c(x, y) is far from being uniformly distributed thus + just
introduces an additional, unbalanced term, as compared with ⊕.

This remark led us to assume that replacing in SEAL (more precisely in the
second generator of figure 2) all + operators by xors would not fundamentally
modify the nature of the algorithm, and that cryptanalytic results obtained with
such a simplified version could at least partially be transposed to the real cipher.
The results of our analysis of this simplified version of SEAL are summarised in
Section 3 hereafter.

2.2 The three words Di−1, Ci and Di are correlated

Let us consider the function depicted at figure 2. Given a fixed value of the
iteration index i (say i = 3), the input and output to this function are known
from the generator outputs (Y i−1

1
, Y i−1

2
, Y i−1

3
, Y i−1

4
) and (Y i

1 , Y i
2 , Y i

3 , Y i
4 ) up

to the following unknown words:

– the 8 words (Si−1

1
, Si−1

2
, Si−1

3
, Si−1

4
) and (Si

1, Si
2, Si

3, Si
4), which value does

not depend upon the considered initial value (n, l).
– the 2 words n1 and n2, which value depends upon (n, l).

The involvement of the IV-dependent words n1 and n2 in the function consider-
ably complicates the analysis of the ith iteration because of the randomisation
effect upon the input to output dependency.

In order to find statistics applicable to any IV value, we investigate how
to ”get rid” of any dependency in n1 and n2 in some relations induced by the
equation of iteration i.

Let us consider the Di−1 input word and the Ci and Di input words. Denote
the output tables involved in the right part of figure 2 by: T1 = T [p2], T2 = T [q3]
and T3 = T [p4]. It is easy to establish the relation:

(Di−1 + T1) ⊕ (Ci
� 9 + T2) = (Di

� 18)⊕ (T3 � 9) (1)
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This relation does not involve n1 and n2. The T1, T2, T3 terms in this relation
can be seen as three random values selected from the T table. Since there are only
29 values in the T table, given any two words out of the (Di−1, Ci, Di) triplets,
there are at most 227 possible values for the third word of the triplet instead of
232 if Di−1, Ci and Di were statistically independent. This gives some evidence
that the Di−1 input and the Ci and Di output are statistically correlated, in a
way which does not depend upon n1 and n2. In other words, the SEAL generator
derives from an (n, l) initial value three slightly correlated output words Y i−1

4
,

Y i
3 and Y i

4 .
Relation (1) above represents the starting point for the various attacks re-

ported in Sections 3 and 4 hereafter.

3 An Attack of a Simplified Version of SEAL

In this Section we present an attack of the simplified version of SEAL obtained
by replacing in figure 2 all mod 232 additions by xors. The attack is divided into
four steps.

3.1 Step 1

We derive the unordered set of values of the T table, up to an unknown 32-bit
constant Di. Relation (1) above represents the starting point for this derivation.
After replacing + by ⊕ in (1) and Di−1, Ci, Di by X4 = Y i

4 , Y3 = Y i
3 and

Y4 = Y i
4 respectively, we obtain the relation:

Y4 ⊕ Y3 � 9⊕ X4 � 18 = T3 � 9 ⊕ (T1 ⊕ T2) � 18⊕ ∆i
� 9 (2)

where the ∆i constant depends upon the S table. T1 and T2 are 2 among 512
values of table T . Statistically speaking, once in 29, T1 = T2, and T1 ⊕T2 = 0. If
we compute 218 samples, each of the 512 values of table T ⊕ ∆i should appear
once in average.
We collect the combination of the generator output words given by the left term
of (2) for about 221 (n, l) samples. Whenever one value appears more than 4
times, we assume this is a value of table T ⊕ ∆i. All the other values have a

probability of about 2
21

232 to appear. This way, we find about 490 out of 512 values
of table T up to one constant value.

3.2 Step 2

The purpose of the second step is to compute a constant αi which is needed in
the third step in order to find out statistics involving Bi−1, Di, Ai and Bi (see
Fig. 2.). Consider the following equation (3) established in a similar way to (2)
from the relation between Bi−1 and the output words:

Y4 � 9 ⊕ Y2 ⊕ Y1 � 9 ⊕ X2 � 18⊕ T3 � 18 (3)

= (T ′

1 ⊕ T ′

2) � 18⊕ (T ′

3 ⊕ T ′

4) � 9 ⊕ (Si
4 � 9 ⊕ Si−1

2
� 18⊕ Si

2 ⊕ Si
1 � 9)
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where

αi = Si
4 � 9 ⊕ Si−1

2
� 18 ⊕ Si

2 ⊕ Si
1 � 9 ⊕ ∆i

� 18

For each sample, we can find out T3 ⊕ ∆i by searching exhaustively the right
combination (T1, T2, T3) in equation (2). In order to save time, we compute once
and for all a table with the 218 values of (T1 ⊕T2) � 18 and search for the right
third value. We perform this search as well as the computation of the left term
of (3) for 221 samples. Once in 218, T ′

1 = T ′

2 and T ′

3 = T ′

4. This way the constant
value αi we are looking for appears at least 4 times.

3.3 Step 3

The purpose of this step is to find out various values of n1. Once we have these
values, we can make out the relation between the in and outputs of table T up
to one constant value. Let us consider equation (4) established from the relation
between Ai−1 and the output words:
(4)

X1 � 18 ⊕ Y1 ⊕ Y4 ⊕ T ′

2 � 9 ⊕ T ′

4 ⊕ T3 � 9 = n1 � 18⊕ Si−1

1
� 18⊕ Si

4 ⊕ Si
1

We can find out T ′

2 ⊕ ∆i and T ′

4 ⊕ ∆i by searching the right combination
of (T ′

1, T
′

2, T
′

3, T
′

4) in equation (2) using the value αi we made out in step 2. For
each sample we compute, we get about 16 possibilities, as (T ′

1, T
′

2, T
′

3, T
′

4) gives
236 possible values for a 32-bit word.

In order to find the right combination, let us consider two distinct iteration
indexes i and j: we know that for a given l value, if i is even (or odd), we always
xor the same n1 (or n3) to the input A. Let us therefore take two rounds i and
j that are both odd (or even). We need to know table T ⊕∆i, table T ⊕∆j , αi

and αj .

We collect samples of:

– n1 � 18 ⊕ βi

where βi = Si−1

1
� 18 ⊕ Si

4 ⊕ Si
1 ⊕ ∆i;

– n1 � 18 ⊕ βj
⊕ ∆j

� 9 ⊕ ∆i
� 9

as value T3 is found through table T ⊕ ∆i and values T ′

2 and T ′

4 through
table T ⊕ ∆j .

We xor all the samples of round i with all the samples of round j. One of these
values is the right combination of βi

⊕ βj
⊕ (∆i

⊕ ∆j) � 9

Then we find all the samples for rounds i and j of another value n1 (i.e. of
round l). We compare these two sets of samples and make out the right value of
n1 � 18 ⊕ βi.

This step can be repeated various times to collect values of n1 while com-
puting only once the tables T ⊕ ∆ and the constants α.
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3.4 Step 4

In this step we finally derive the in and outputs of table T from equation (5):
(5)

p1 = ((X1 ⊕ n1 ⊕ Si−1

1
)&0x7fc)/4

In this equation p1 is the input of table T . We have seen in the first three steps
that we can derive the value of T1 from in and output samples of SEAL.

So we finally derive several values of:
T [p⊕ δi] ⊕ ∆i

where δi = ((Si−1

1
⊕ βi

� 18)&0x7fc)/4.

3.5 Summary

Summing up the four steps we have just described, we can break the T table up
to one constant value using about 2 × 221 samples of (n, l) for step 1, 2 × 221

samples of (n, l) for step 2 and about 29 values of (n, l) for steps 3 and 4. This
means, the T table can be broken using about 224 samples of (n, l).

We could probably go on breaking the simplified version of SEAL by finding
out sets of values (n1, n2, n3, n4), then trying to break the first generator and
find table R, but this is not our purpose here.

4 A Test of the Real Version of SEAL

In this Section we use some of the ideas of Vaudenay’s Statistical Cryptanalysis
of Block Ciphers [3] to distinguish SEAL from a truly random function.

4.1 χ2 Cryptanalysis

The purpose of Vaudenay’s paper is to prove that statistical analysis on ciphers
such as DES may provide as efficient attacks as linear or differential cryptanal-
ysis. Statistical analysis enables to recover very low biases and a simple χ2 test
can get very good results even without knowing exactly what happens inside the
inner loops of the algorithm or the S-boxes.

We intend to use this property to detect low biases of a certain combination
of the output words of SEAL suggested by the analysis made in Section 3 in
order to prove SEAL is far from being undistinguishable from a pseudo-random
function. This provides a first test of the SEAL algorithm.

4.2 Number of samples needed for the χ2 test to distinguish a

biased distribution from an unbiased one

We denote by N the number of samples computed. We assume the samples are
drawn from a set of r values. We call ni the number of occurrences of the ith of
the r values among the N samples and Sχ2 the associated indicator:

Sχ2 =

∑r

i=1
(ni −

N
r

)2

N
r
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The χ2 test compares the value of this indicator to the one an unbiased
distribution would be likely to provide. If the ni were drawn according to an
unbiased multinomial distribution of parameters ( 1

r
, 1
r
,..., 1

r
), the expectation and

the standard deviation of the Sχ2 estimator would be given by:

– E(Sχ2) → µ = r − 1

– σ(Sχ2 ) → σ =
√

2(r − 1)

If the distribution of the ni is still multinomial but biased, say with probabilities
p1, ..., pr, then we can compute the new expected value µ′ of the Sχ2 :

µ′ = E(

∑r

i=1
(ni −

N
r

)2

N
r

) =
N

r

r
∑

i=1

E((ni − piN + piN −
N

r
)2)

It can be easily shown that:

µ′
→ µ + r(N − 1)

r
∑

i=1

(pi −
1

r
)2

An order of magnitude of the number N of samples needed by the χ2 test to dis-
tinguish a biased distribution from an unbiased one with substantial probability
is given by the condition:

µ′
− µ � σ

which gives us the following order of magnitude for N :

N �

√

2(r − 1)

r
∑r

i=1
(pi −

1

r
)2

4.3 Model of the test

Let us consider equation (2) with the real scheme (including the sums). We can
rewrite it:
Y4 ⊕Y3 � 9⊕X4 � 18 = T3 � 9⊕ (T1⊕T2) � 18⊕ (r1⊕ r2 ⊕ r3) � 18⊕∆i

�

9 ⊕ r4

where r1 and r2 are the carry bits created by the addition of T1 and T2, and r3

and r4 the ones of the addition of Si−1

4
and Si

4.

We apply the χ2 test to the four leftmost bits of Y4 ⊕ Y3 � 9 ⊕ X4 � 18
suspecting a slight bias in this expression. Without having carefully analysed
the exact distribution of the sum of the four carries, we intend to prove that its
convolution with the biased distribution of T3 � 9 ⊕ (T1 ⊕ T2) � 18 ⊕ ∆i

� 9
does result in a still slightly unbalanced distribution.

As we take 4-bit samples, we apply the χ2 test with r − 1 = 15 degrees of
freedom. Detailed information about this test can be found in [4].
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4.4 Results

Whenever we analyse at least 233 samples, the test proves with probability 1

1000

to be wrong, that SEAL has a biased distribution. We have made several tests,
and each time the value of the Sχ2 estimator we obtained for this order of
magnitude of N was greater than 45 for the 4 leftmost bits and greater than 320
for the 8 leftmost bits. In other words, the test proves that the distribution is a
biased one.

If the two leftmost bits of Si
4 can be found, the test works with 230 samples

or less. Similar results are found when testing the eight leftmost bits of the
samples. Figure 4 shows the value of the Sχ2 estimator for tests made with
a = 0x67452301.

Sχ2 223 224 225 226 227 228 229 230 231 232 233 234 235

4 bits 14.27 25 13.97 9.41 26.96 16.5 16.78 29.65 21.05 30.15 45.74 44.69 55.96

8 bits 261 293 274 238 229 227 246 225 278 313 331 378 453

Fig. 4. Results of the tests with up to 235 samples of (n, l).

These and many more figures have been computed using various tests and
trying out different cases.

4.5 Deriving first information on SEAL

It appears in equation (2), only r4 has some influence in making the number of
samples increase by a factor 4. Whenever the two leftmost bits of S i

4 are found,
we know part of r4 and the χ2 test gives much better results then with wrong
bits of Si

4. Therefore we can derive at least two bits of information on table S.
If the test is applied to more than the four leftmost bits of the samples, more
than 2 bits can be derived from secret table T . Whenever these bits are right,
the χ2 rises much faster than for wrong values.

Compute about 232 samples of the four leftmost bits of Y3 � 9 ⊕ X4 �

18 and Y4 and store the frequencies of every value of these 8 bits. For every
possible value of the four leftmost bits of Si

4, compute the new frequencies of
(Y4 − Si

4) ⊕ Y3 � 9 ⊕ X4 � 18. The two leftmost bits of Si
4 correspond to the

ones used for the two highest values of the χ2 of the samples.
As the evolution of the χ2 is quite close to a straight line when the diver-

gence starts, check the results by applying the test to 220 through 232 samples.
Divergence becomes obvious when about 230 samples have been computed.

5 Conclusion

We have shown in some detail in Section 3 that the simpler scheme with xors
instead of sums can be broken with about:

– 221 samples of (n, l) for each one of the two tables T ⊕ ∆ of step 1;
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– 221 samples of (n, l) for each one of the two values of α of step 2;
– 512 samples of n for n1 and β in steps 3 and 4, depending mostly upon how

many elements of table T ⊕∆ you find in step 1. For each n, we find l and l′

such that the corresponding values n1 and n′

1 can be found when comparing
all the results between rounds i and j.

The attack of Section 3 can therefore be realised with about 224 samples of (n, l).
The test of Section 4 can be applied with about 232 samples of (n, l) and

first information about table S can be derived from this test with 232 samples of
(n, l) as well. A good idea of secret table S can therefore be obtained with the
same amount of samples of (n, l) but slightly more operations.

We believe the attack we showed can be adapted to the real scheme of SEAL,
but we did not investigate wether the complexity is within reasonable range.
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