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Abstract. By considering the role of non-linear approximations in lin-
ear cryptanalysis we obtain a generalization of Matsui’s linear cryptan-
alytic techniques. This approach allows the cryptanalyst greater flexibil-
ity in mounting a linear cryptanalytic attack and we demonstrate the
effectiveness of our non-linear techniques with some simple attacks on
LOKI91. These attacks potentially allow for the recovery of seven addi-
tional bits of key information with less than 1/4 of the plaintext that is
required using current linear cryptanalytic methods.

1 Introduction

The technique of linear cryptanalysis [7] is now well known. Most dramatically
it has provided the first experimental (though barely practical) compromise [8]
of the Data Encryption Standard DES [9].

In addition to some theoretical and practical enhancements or extensions to
linear cryptanalysis [4, 6, 11] it is natural to consider whether the linear approx-
imations on which linear cryptanalysis relies can be replaced with non-linear
approximations. Since there are far more non-linear approximations than lin-
ear approximations, it seems fair to say that by opening ourselves to their use,
we might obtain a much improved attack on some cipher. As a motivational
example, the best linear approximation to a DES S-box is to S5, and this ap-
proximation holds with an absolute valued bias of 20/64, yet there is a relatively
simple non-linear approximation to S8 involving four input bits3, which holds
with absolute bias 28/64. While previous work [3] has already demonstrated in-
surmountable problems in the general use of non-linear approximations, we will
show that they should not be abandoned and that non-linear approximations
can offer effective additions to the basic techniques in use today.

In the following sections we describe the essential issues in linear cryptanal-
ysis and the use of non-linear approximations within such an attack. We show
that current linear cryptanalytic techniques are essentially special instances of

3 Labeling the input bits to DES S-box S8 as x5 . . . x0 and the output bits as y3 . . . y0

the approximation 1⊕ x3 ⊕ x4 ⊕ x2x3 ⊕ x3x4 ⊕ x1x2x4 ⊕ x2x3x4 = y0 ⊕ y1 ⊕ y2 ⊕ y3

holds with probability 60/64.



our more general approach and we demonstrate that our techniques have im-
plications for both the design and cryptanalysis of block ciphers. In particular,
our techniques pose a threat even when Matsui’s advanced linear cryptanalytic
attacks (in which the cryptanalyst guesses the key bits used to evaluate some
S-box) are rendered impractical due to the use of large S-boxes. While we will
motivate our discussion with examples that involve DES (since this is the cipher
with which most people are familiar) we note that our current techniques do not
seem to offer any significant advantage over existing attacks on DES. There are
however some open questions in this regard and future research alone will de-
termine if this is indeed the case. Instead, our techniques have been most useful
in improving existing attacks [16] on LOKI91 [1] where it is straightforward to
recover seven additional bits of the user-defined key while using less than 1/4
of the plaintext that is currently required. We also expect our techniques to be
applicable to many other block ciphers.

2 Linear Cryptanalysis

In a linear cryptanalytic attack the cryptanalyst identifies a linear relation be-
tween some bits of the plaintext, some bits of the ciphertext and some bits of
the user-provided key. While a relation between single bits of information which
holds all the time (or none of the time) would be especially useful to a crypt-
analyst, Matsui [7] showed that provided the relation does not hold exactly half
the time, there are ways to extract key information by analyzing a large enough
set of known plaintext and ciphertext pairs.

There are two basic approaches. The first is to use an approximation which
relates bits of the user-defined key and the plaintext/ciphertext data in a linear
way thereby providing one bit of key information when sufficient data is available.
The second is to identify, by analysis of the block cipher, some bits of a linear
approximation that depend for their value on a small subset of bits in the user-
defined key. It is then assumed that only by making a correct guess for these
key bits will the anticipated bias in certain bits of the plaintext/ciphertext data
be detectable. Matsui showed how to use these key-bit guessing techniques in
what are sometimes referred to as the 1R- and 2R-methods. The block ciphers
we are concerned with are iterative and repeatedly use a round transformation
during encryption. With the 1R-method the cryptanalyst guesses the value of
part of the user-provided key in either the first or the last rounds, while in the
2R-method the guess is for part of the user-provided key from both the first and
the last rounds simultaneously.

3 Linear and Non-Linear Approximations

Linear approximations are built up by analyzing individual rounds of the block
cipher. For ease of exposition, we will consider a Feistel cipher [2] where at
round i of the cipher we denote the partially encrypted data input to the round



as Ci−1
h and Ci−1

l ; the high-order half of the data and the low-order half of the
data respectively. We shall denote the action of the round function with subkey
ki by f(·, ki) and the output from the ith round of the cipher will be written
as Ci

h = Ci−1
l and Ci

l = Ci−1
h ⊕ f(Ci−1

l , ki). Note that in this notation C0
h, C0

l

constitutes the plaintext and Cr
l , Cr

h constitutes the ciphertext produced by the
r-round cipher (since there is no swap in the last round).

3.1 Joining Approximations

The notation Ci−1
l [α] (and later β, γ and δ) is used to denote a general and

unspecified linear sum of bits of the data block Ci−1
l . An approximation to the

action of a single round of the cipher might be written as

Ci−1
h [α]⊕ Ci−1

l [β] = Ci
h[γ]⊕ Ci

l [α]⊕ ki[δ] (1)

where ki[δ] is a linear combination of subkey bits (the exact form of which will
depend on the block cipher in question). By writing the approximation in this
way, we are tacitly approximating the action of the round function by

Ci−1
l [β ⊕ γ]⊕ ki[δ] = Ci−1

h [α]⊕ Ci
l [α] (2)

= (Ci−1
h ⊕ Ci

l )[α].

Suppose now that we have some partially encrypted data Ci−1
h and Ci−1

l and
let us consider an approximation which involves a non-linear function of bits in
Ci−1

h . We shall use the notation Ci−1
h [p(α)] where α is used to identify some set

of bits and p(·) is, in this case, a non-linear polynomial involving these bits. Now
forming a one round approximation as we had in (1) is difficult because, as we
can see from (2), it requires that

(Ci−1
h ⊕ Ci

l )[p(α)] = Ci−1
h [p(α)]⊕ Ci

l [p(α)].

and for non-linear p(·) this will not, in general, hold. But while one-round ap-
proximations that are non-linear in the output bits from f(Ci−1

l , ki) cannot be
joined together (when bitwise exclusive-or is used to combine this output with
Ci−1

h ) non-linear approximations can still be used in a variety of ways.
First note that the input to an approximation to the first and last rounds of

some cipher need not be combined with any other approximations. Consequently
approximations to these rounds can equally be linear or non-linear expressions
in bits of the data input. Second, and more interestingly, we note that the 1R-
and 2R-methods of linear cryptanalysis make certain bits of the input to the
second (or penultimate) round available to the cryptanalysis. We can use this
to our advantage and non-linear approximations can potentially be used in the
second and the penultimate rounds of an attack on some block cipher. We will
demonstrate this practically with an improved attack on LOKI91.

There is however one major problem that we have yet to overcome, and that
is to identify and use non-linear approximations to a single round of a cipher.



3.2 Non-Linear Approximations to a Single Round

To illustrate our approach to using non-linear approximations in a single round
of a cipher, we shall use as our example the round function used in DES. Consider
the input to the ith round which we have denoted as Ci−1

h and Ci−1
l . The data

Ci−1
l used as input to the round function f(·, ki) is expanded from 32 to 48 bits

and combined using exclusive-or with the subkey ki for the round. The resultant
48 bits are then used as input to the non-linear transformation affected by eight
S-boxes. The 32 bits produced as output are permuted and the result is combined
using bitwise exclusive-or with Ci−1

h . The two data halves are then swapped.
Let us suppose that analysis of the S-boxes has revealed that an approxi-

mation consisting of a non-linear combination of some input bits to an S-box
and a linear combination of the output bits is strongly biased. To exploit this in
an attack, we need to transform the approximation across a DES S-box into an
approximation across the entire round function. The output of the S-boxes can
be easily related via the bit-wise permutation into an expression in the data bits
output from the round function. For the non-linear combination of bits that are
used as input to the S-boxes, it is harder to get an expression in terms of the bits
that are used as input to the round function. This is because the key ki is com-
bined with the expanded Ci−1

l using bitwise exclusive-or. Denote the expansion
of the data block Ci−1

l by z47 . . . z0. Combined with the key k47 . . . k0 this forms
the input to the S-boxes x47 . . . x0 where xi = zi⊕ ki for 0 ≤ i ≤ 47. Let us sup-
pose, by way of illustration, that a non-linear approximation to the eighth S-box
S8 involves x0x1. Then depending on the actual values of k0 and k1 we can ex-
press x0x1 in terms of z0 and z1. More explicitly, when (k0, k1) = (0, 0) it is clear
that x0x1 = z0z1 and when (k0, k1) = (1, 1) we have x0x1 = z0z1 ⊕ z0 ⊕ z1 ⊕ 1.
For (k0, k1) = (0, 1) we have that x0x1 = z0z1 ⊕ z0 and when (k0, k1) = (1, 0)
it follows that x0x1 = z0z1 ⊕ z1. Note that the key is fixed for all the data we
collect. When a non-linear approximation is used in the first and/or last round
of the cipher, the input to the round function can be directly observed in the
plaintext or the ciphertext respectively. We might then assume that the value of
the key bits involved in the non-linear terms of the approximation are fixed to
some value and with a certain proportion of the keys, we will be correct in our
analysis. We illustrate this phenomenon with a simple example using DES.

Example with DES. The following approximations to S-boxes S5 and S1
(A, C and D appear in [7, 8]) will be useful in attacking five-round DES. The
input to an S-box will be denoted x5 . . . x0 and the output y3 . . . y0.

box input output |bias|
A S5 x4 y0 ⊕ y1 ⊕ y2 ⊕ y3 20/64
D S5 x4 y1 ⊕ y2 ⊕ y3 10/64
C S1 x2 y2 2/64
A’ S5 x1 ⊕ x0x1 ⊕ x0x4 ⊕ x1x5⊕ y0 ⊕ y1 ⊕ y2 ⊕ y3 24/64

x4x5 ⊕ x0x1x5 ⊕ x0x4x5

D’ S5 x1 ⊕ x3 ⊕ x0x3 ⊕ x0x5 ⊕ x1x3⊕ y1 ⊕ y2 ⊕ y3 18/64
x1x5 ⊕ x0x1x3 ⊕ x0x1x5



Using the five-round linear approximation DCA-A, which holds with proba-
bility p where (p − 1/2)−2 = 68, 720, we can recover one bit of key information
with the following success rates over 50 trials:

plaintexts 17, 180 34, 360 68, 720
success rate 74% 88% 98%

Alternatively, one bit of key information can be recovered using the non-linear
approximation D’CA-A’ which holds with probability p′ where (p′ − 1/2)−2 =
14, 728. Note the reduced data requirements. Again, success rates are quoted for
50 trials.

plaintexts 3, 682 7, 364 14, 728
success rate 86% 92% 100%

For this experiment, the key bits directly involved in the non-linear approxima-
tion in the outer rounds were fixed and known.

3.3 Recovering More Key Bits

In certain circumstances non-linear approximations can be used to give a mech-
anism which allows the recovery of more bits of key information with less plain-
text. As might already be apparent, specific instances of our general approach
are equivalent to Matsui’s 1R- and 2R-methods.

So far we have dealt with the non-linearity in the input bits to some S-box
by assuming that the key bits involved have a certain value and that for some
proportion of the user-defined keys we are correct. There is however another ap-
proach. Whenever a product appears in a nonlinear approximation, the possible
values for the key bits involved force us to consider alternative approximations.
For instance, let us suppose that the product of the two least significant input
bits x0 and x1 to S-box S8 in DES is equal to the linear sum of all the output
bits from S-box S8 with some probability p. Define the absolute value of the
bias of this approximation to be ε where ε = |p − 1/2|. Suppose in our attack,
that we know the corresponding bits z0 and z1 before transformation with the
user-defined key k0 and k1 which gives x0 = z0 ⊕ k0 and x1 = z1 ⊕ k1. Since
k0 and k1 are fixed, we can try each guess for k0 and k1 in turn with the data
we have. When we make the correct key guess, we correctly reconstruct x0 and
x1 the actual inputs to the S-box and hence the correct product x0x1. Suppose
we guess incorrectly and choose k0 ⊕ 1 and k1. Then we erroneously construct
the values x0 ⊕ 1 and x1 instead of x0 and x1. Now (x0 ⊕ 1)x1 = x0x1 ⊕ x1

and this expression in the input bits will equal the sum of the output bits with
probability p1 say. Define ε1 = |p1−1/2|. If ε1 < ε then by taking sufficient data
the correct guess k0, k1 can be distinguished from k0 ⊕ 1, k1. If ε1 > ε then the
incorrect key guess will dominate, though in a practical attack we would use the
approximation with the greater bias anyway (and in so doing we would recover
the correct key guess). If ε1 = ε then the two guesses cannot be distinguished.

Example with DES. We can use the approximation D’CA-A’ as defined
previously to recover key bits used in the non-linear approximation. Denote the



key bits used in S5 in round one as k1
5 . . . k

1
0 and the key bits used in S5 in round

five as k5
5 . . . k

5
0. Analysis of A’ and D’ reveals that with A’ we can reliably recover

k5
0, k5

1 ⊕ k5
4 and k5

5 and with D’ we can recover k1
0, k1

1 and k1
3 ⊕ k1

5. We obtained
the following success rate over 50 trials when using the non-linear approximation
D’CA-A’ (which holds with probability p where (p−1/2)−2 = 14, 728) to recover
six bits of key material:

plaintexts 14, 728 29, 456 58, 912 117, 824
success rate 18% 38% 60% 82%

A Special Case. The 1R- and 2R-methods of Matsui, and even the basic
technique of linear cryptanalysis which recovers one bit of key information, are
all special instances of this more general technique.

With DES we might imagine using non-linear expressions of an S-box using all
six input bits, see e.g. [15]. These ‘approximations’ would hold with probability
1 and we would expect to recover six bits of user-defined key. Of course, we could
simply represent the action of these polynomials by means of the look-up table
for the S-box. This gives us precisely the 1R- and 2R-methods. By choosing an
incorrect key guess we are in effect deriving a different approximation to the S-
box which holds with a reduced bias. With sufficient data the correct key guess
can be distinguished. Note that when we have the polynomial expressions at our
disposal we can actually evaluate which of the incorrect guesses are most likely
to occur. In this way we can improve our basic attacks by allowing for certain,
predicted incorrect answers and adjusting them accordingly. In experiments on
DES this gives us an improvement in our attacks, but not by a significant margin.

4 Implications

4.1 Greater Cryptanalytic Flexibility

In practice, we recover key bits using non-linear techniques by first counting
the number of plaintext/ciphertext pairs that fall into a variety of classes. These
classes are defined according to the text involved in the nonlinear approximation
(the effective text bits). We then process this data by guessing each possible value
for the key bits involved in the non-linear approximation (the effective key bits)
and combine this guess with the effective text. In this way scores can be kept for
the number of times the bit identified by the linear approximation to the rest of
the cipher is either 0 or 1. A guess can be made for the value of the effective key
bits depending on these final scores. Thus the basic work effort in processing the
data once it has been initially sorted is 2k+t where k is the number of effective
key bits and t is the number of effective text bits.

It is now clear that our more general approach to the use of non-linear approx-
imations has numerous practical implications beyond the use of approximations
with greater absolute biases. Using Matsui’s 1R- and 2R-methods, the crypt-
analyst is unnecessarily restricted to using a number of effective key and text
bits that is a multiple of the number of bits involved in the input to some S-
box. When larger S-boxes are used, and this is a common recommendation [13],



Matsui’s 2R- and even the 1R-methods can become impractical just because the
number of effective text and key bits becomes excessive. Existing examples of
ciphers where the 2R-method is impractical include FEAL [14] and LOKI91 [16].
When the S-boxes are so large that the 1R-method itself becomes impractical
then it might previously have been argued that the cryptanalyst would be re-
duced to recovering just a single bit of user-defined key. Instead the cryptanalyst
can use non-linear approximations, in the fashion we have described here, to re-
cover additional bits from the user-defined key. These techniques can be used
to supplement the 2R-method, they can be used to supplement the 1R-method
when the 2R-method is impractical and they can be used even if both the 2R-
and 1R-methods are infeasible.

Example. In [12] “almost perfect non-linear functions” were studied. For
ciphers constructed using these functions, linear approximations will have low
absolute biases. Examples of such functions are f(x) = x2k+1 in GF (2n) for
odd n [12]. The output bits of f are quadratic in the input bits and any linear
approximation for f will have an absolute bias at most 2

n+s
2 −1/2n, where s =

gcd(k, n) [10]. For a Feistel cipher with round function F (x, k) = f(x⊕ k) with
n = 33, k = s = 1 (given as an example in [12]) this yields a maximum bias
for one round of 2−17. Clearly, the 2R-method is impossible for this cipher, and
the 1R-method requires many effective text and key bits. However the functions
f are only quadratic, so non-linear approximations which involve only a few
input bits might provide improved opportunities for attack. Experiments on the
functions f defined above for small values of n confirm this. For n = 7, k = s = 1,
the absolute value of the bias of a linear approximation is at most 8/128. With
just two input bits, there exist non-linear approximations with absolute biases
16/128. For n = 9 and k = s = 1, the bias of a linear approximation is at most
16/512 yet with three input bits there exist non-linear approximations with
biases 32/512. It is immediately clear that by using our non-linear techniques
in the outer rounds of the cipher, the basic linear cryptanalytic attack can be
readily improved.

4.2 The Non-Linear Approximation of Inner Rounds

While we might be familiar with the use of non-linear techniques in the outer
rounds of a cipher it is interesting to observe that non-linear approximations can
also be used in the second and penultimate round of a cipher. To illustrate this,
suppose for some cipher that n bits from an S-box in round one are mapped to the
same S-box in round two and that by using t effective text bits we can replicate
the output from the S-box in round one. When this output is correct, n input
bits to a single S-box in round two will be correct and we can use a non-linear
function of these input bits in an approximation of the second round instead
of the linear function that techniques currently demand. In practice we would
increase the number of effective text bits to t + n by additionally considering
certain bits of C0

h to be effective. There would also be an increase in the number
of effective key bits, to accommodate those used in the second round, but these



might well be recoverable during the attack anyway. We provide experimental
verification of this approach in our attack on LOKI91.

While it might appear that we are only able to improve attacks on a round
by round basis, such improvements should not be overlooked. The plaintext
requirements in a linear cryptanalytic attack are considered to be proportional
to ε−2 where ε is the bias of the approximation [8] and increases in the bias of
just two rounds of a cipher by a factor of

√
2 will give a reduction in plaintext

requirements by a factor of 4.

5 LOKI91

LOKI91 is a DES-like block cipher that operates on 64-bit blocks and uses
a 64-bit key [1]. The most interesting feature of LOKI91 for our purposes is
that the cipher uses four identical S-boxes which map 12 bits to 8. Evidence
for the resistance of LOKI91 to linear cryptanalysis was recently provided by
Tokita et al. [16]. In this section we provide experimental verification of our new
techniques. While we mounted our attacks on four-round LOKI91 (for reasons
of practicality) the approximation we chose matched the outer rounds of the
best linear approximation [16] that would be used to attack (4 + 3r)-round
LOKI91 for r > 0. Clearly the plaintext requirementsN for a linear cryptanalytic
attack increase substantially as we add more rounds and we note that 16-round
LOKI91 (when r = 4) remains immune to these attacks4. We will show that
it is straightforward to use non-linear approximations in the first two rounds
and in the last round of LOKI91 simultaneously, thereby improving the basic
linear cryptanalytic attack. The polynomials we will use in our attack are given
in Table 1, where we denote the input to the 12-bit S-box by x11 . . . x0 and the
output by y7 . . . y0.

Tokita et al. [16] point out that the S-boxes in LOKI91 are too large to
allow the cryptanalyst to use the 2R-method and they restrict themselves to
considering only the 1R-method as an alternative. This allows the recovery of
13 bits of user-defined key (with a work-effort proportional to 224 operations).
By reversing the role of the plaintext and ciphertext, potentially another 13 bits
can be recovered leaving 38 bits to be discovered by exhaustive search (with a
238 work effort).

With the non-linear approximations we have identified however, we can
mount a range of attacks that are quite different from the typical approach
of ?X-Y where we use ? to denote Matsui’s 1R-method in the first round. These
attacks have different work efforts and recover different numbers of key bits. By
allowing for more work during the analysis of the data, more key bits might be
recovered or alternatively less plaintext might be required for a successful attack.

The results of a series of experiments can be found in the attached Appendix.
While we have obtained direct empirical evidence for the effectiveness of some
4 For 4-, 7- and 10-round LOKI91 the known plaintext requirements are 223, 240 and

258 respectively. For 13- and 16-round LOKI91, linear cryptanalytic techniques are
infeasible.



Table 1. Some linear and non-linear approximations for LOKI91.

box input output |bias|
X S2 x2 ⊕ x6 ⊕ x10 y4 ⊕ y5 ⊕ y6 88/4096

Y S2 x2 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x8 y4 ⊕ y5 ⊕ y6 108/4096

X’ S2 x2 ⊕ x10 ⊕ x10x6 y4 ⊕ y5 ⊕ y6 116/4096

Y.1 S2 x2 ⊕ x3 ⊕ x5 ⊕ x5x7 ⊕ x3x8⊕ y4 ⊕ y5 ⊕ y6 136/4096
x5x8 ⊕ x3x5x8 ⊕ x3x7x8 ⊕ x3x5x7

Y.2 S2 x2 ⊕ x3 ⊕ x5 ⊕ x8 ⊕ x5x7 ⊕ x7x8⊕ y4 ⊕ y5 ⊕ y6 130/4096
x2x3x5 ⊕ x5x7x8 ⊕ x8x5x2

Y.3 S2 x2 ⊕ x3 ⊕ x5 ⊕ x7 ⊕ x3x8 ⊕ x3x7⊕ y8 ⊕ y5 ⊕ y6 110/4096
x3x5x7 ⊕ x5x7x8 ⊕ x3x5x8

Table 2. The complexity of conventional and various new linear cryptanalytic attacks
on LOKI91.

Attacks on (4 + 3r)-round LOKI91

approximation # plaintexts success # key bits work
rate recovered effort

?X-Y 6, 232, 416 (r = 0) 94% 13 224

current methods [16] N (r > 0)

?X’-Y 3, 586, 800 (r = 0) 90% 15 229

0.58×N (r > 0)

?X’-Y.1 2, 261, 912 (r = 0) 84%∗ 15 229

0.36×N (r > 0)

?X’-Y.1 2, 261, 912 (r = 0) 74%+ 18 237

0.36×N (r > 0)

?X’-Y.1 2, 261, 912 (r = 0) 68%+ 19 237

0.36×N (r > 0)

?X’-Y.2 and 1, 442, 632 (r = 0) 86%+ 20 238

?X’-Y.3 0.23×N (r > 0)
simultaneously

∗ this applies to 1/16 keys but is an empirical result
+ a prediction derived from results presented in the Appendix

of our attacks, we have used experimental evidence to predict the success rate
of others.

The results of our work have been summarized in Table 2. The number of key
bits recovered refers to this single phase of the attack alone and further gains by
reversing the role of plaintext and ciphertext have not been considered. When
considering the work effort involved, recall that current methods already require
a work effort proportional to 238 encryptions in exhaustive search for the key
bits not recovered via linear cryptanalysis.

We have also used multiple non-linear approximations in much the same
way we might use multiple linear approximations [5]. The use of multiple non-
linear approximations is much more complicated than the use of multiple linear



approximations and considerable care has to be taken in deciding which non-
linear approximations should be used together and exactly which bits of key
information can be reliably recovered. Results given in the Appendix and in Table
2 demonstrate that additional substantial savings in the plaintext requirements
can be expected in this way.

We see that numerous trade-offs are possible between the number of key bits
recovered, the amount of plaintext required and the work effort the cryptanalyst
might wish to invest in attacking some cipher. In short, the use of non-linear
approximations offers greatly improved flexibility to the cryptanalyst.

6 Conclusions

We have presented a general approach to linear cryptanalysis which allows us to
consider within the same framework all linear cryptanalytic techniques currently
used. While this has opened numerous avenues for research it is already evident
that there are several new developments.

When trying to accurately gauge the resistance of a block cipher to linear
cryptanalysis, it is no longer sufficient to restrict attention to Matsui’s 1R- and
2R-methods of linear cryptanalysis. There may well be circumstances where non-
linear approximations, involving far fewer text and key bits than are required to
describe an S-box, can be used to recover additional bits of the user-defined key
with less plaintext than current linear techniques might suggest. Consequently
our techniques offer the cryptanalyst much more flexibility in attacking a ci-
pher than was previously appreciated. By adjusting the various requirements in
an attack, the cryptanalyst can decide on the approach that is best suited to
the resources available be they the amount of available data or the amount of
computing power possessed by the cryptanalyst. These techniques will be a par-
ticular concern for ciphers that depend for their security on the fact that the 1R-
and/or the 2R-methods are impractical due to reasons of work-effort rather than
the amount of data required. We have also noted that some block cipher designs
allow the use of non-linear approximations in the second and penultimate rounds
of a cipher.

We have confirmed our techniques with attacks on reduced-round LOKI91
and we expect that seven additional bits of key information can be recovered
with less than 1/4 of the plaintext than current techniques require. Further
improvement may well be possible. In short, the additional flexibility available
to a cryptanalyst has been demonstrated and linear cryptanalytic attacks on
a wide variety of block ciphers may well be much improved with these new
methods.
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Appendix

Experimental verification of the attack by Tokita et al. [16] on LOKI91 is pro-
vided in the following table with our experiments being carried out on a four-
round version of the cipher. The results were obtained after 50 trials using Mat-
sui’s 1R-method and the approximation ?X-Y as described previously. The ap-
proximation holds with probability p where (p − 1/2)−2 = 779, 052 and 13 bits
of key information can be recovered.

plaintexts 1, 558, 104 3, 116, 208 6, 232, 416
success rate 20% 64% 94%

By substituting the non-linear approximation X’ for the linear approximation
X used in round two of the approximation, we can obtain improved attacks. First
we provide the success rate over 50 trials in recovering 15 bits of key information;
we use Matsui’s 1R-method and the approximation ?X’-Y which holds with
probability p where (p− 1/2)−2 = 448, 350.

plaintexts 896, 700 1, 793, 400 3, 586, 800
success rate 6% 38% 90%

To help in our later analysis, we will compare these success rates with those
obtained over 50 trials when using the same approximation to recover just three
bits of key information. Here we assume that the 12 bits of effective key used in
S-box S2 in the first round remain fixed and known. This allows us to estimate
how the success rate might degrade when we have to recover these additional 12
bits of key.

plaintexts 896, 700 1, 793, 400 3, 586, 800
success rate 76% 92% 100%

Now consider using non-linear approximations in the last round by replacing
Y with a non-linear approximation Y.1 described previously. For one in 16 keys
we obtain the following success rates over 50 trials when using Matsui’s 1R-
method and the approximation ?X’-Y.1 which holds with probability p where
(p − 1/2)−2 = 282, 739. For one in 16 keys, 15 bits of key information can be
recovered with the following success rates:

plaintexts 565, 478 1, 130, 956 2, 261, 912
success rate 8% 22% 84%

Instead of assuming the value of four key bits in the last round and being
correct some proportion of the time we can recover these four key bits. To esti-
mate the success rate of this approach, we will use Matsui’s 1R-method with the
correct guess to S2 in round one and the approximation ?X’-Y.1 (which holds
with probability p where (p − 1/2)−2 = 282, 739). In this way seven bits of key
information can be recovered with the following success rates (over 50 trials):

plaintexts 565, 478 1, 130, 956 2, 261, 912
success rate 40% 50% 76%



Alternatively, since recovery of one of the seven bits is somewhat unreliable we
might recover just six bits. Then the success rates over 50 trials become:

plaintexts 565, 478 1, 130, 956 2, 261, 912
success rate 55% 62% 82%

Using this information, we can now make predictions for the expected success
rate in attacking LOKI91. We saw earlier that by deriving the 12 key bits of S-
box 2 in the first round instead of fixing them as correct, our success rate with
3, 586, 800 plaintexts fell from 100% to 90%. From this we might estimate that
by using ?X’-Y.1 we can recover 19 bits of key information (instead of 13)
with a little more than one third the plaintext (2, 261, 912 instead of 6, 232, 416
plaintexts) with a slightly reduced success rate of 68% = 76%× 90% (from 94%
previously). We could of course, suffice with recovering 18 bits of key information,
in which case we might expect a success rate of 74%.

We might also consider the use of multiple non-linear approximations. De-
spite the additional complications of using multiple non-linear approximations,
we note that more bits of user-defined key might be recovered with less plaintext.
In the following table we give the success rates achieved in 50 trials with two
non-linear approximations ?X’-Y.2 and ?X’-Y.3 defined previously. In these ex-
periments we assume the correct key bits used in S2 in round one and we recover
eight bits of key information.

plaintexts 360, 658 721, 316 1, 442, 632
success rate 26% 66% 96%

Using these results we might predict that we can use the two approximations
?X’-Y.1 and ?X’-Y.2 to recover 20 bits of key information instead of ?X-Y to
recover 13 bits of key information with essentially the same success rate (86%
instead of 94%) but with much less than one quarter the plaintext (1, 442, 632
plaintexts instead of 6, 232, 416).

This article was processed using the LATEX macro package with LLNCS style


