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Abstract: In this paper three optimization heuristics are 
presented which can be utilized in attacks on the transposition 
cipher. These heuristics are simulated annealing, genetic 
algorithm and tabu search. We will show that each of these 
heuristics provides effective automated techniques for the 
cryptanalysis of the ciphertext. The property which make this 
cipher vulnerable, is that it is not sophisticated enough to hide 
the inherent properties or statistics of the language of the 
plaintext. 
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I. TRANSPOSITION CIPHERS 
 

First, we will describe a simple transposition  cipher. A 
transposition or permutation cipher works by breaking a 
message into fixed size blocks, and then permuting the 
characters within each block according to a fixed 
permutation, say  P. The key to the transposition cipher is 
simply the permutation P. So, the transposition cipher has the 
property that the encrypted message i.e. the ciphertext 
contains all the characters that were in the plaintext message. 
In other words, the unigram statistics for the message are 
unchanged by the encryption process. 

The size of the permutation is known as the period. Let's 
consider an example of a transposition cipher with a period of 
six 6, and a key P={4,2,1,5,6,3}. In this case, the message is 
broken into blocks of six characters, and after encryption the 
fourth character in the block will be moved to position 1, the 
second remains in position 2, the first is moved to position 3, 
the fifth to position 4, the sixth to position 5 and the third to 
position 6. 
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In Table 1 is shown the key and the encryption process of 
the previously described transposition cipher. It can be 
noticed that the random string "X" was appended to the end 
of the message to enforce a message length, which is a 
multiple of the block size. It is also clear that the decryption 
can be achieved by following the same process as encryption 
using the "inverse" of the encryption permutation. In this case 
the decryption key, P-1 is equal to {3,2,6,1,4,5}. 

 
KEY: 
Plaintext:  123456 
Ciphertext: 421563 
 
ENCRYPTION: 
Position:       123456123456 
Plaintext:      HOW_ARE_YOUX 
Ciphertext      _OHARWO_RUXY 

Table 1: Example of the transposition cipher key and encryption 
process 

 
II. ATTACKS ON THE TRANSPOSITION CIPHER 
 

In this section, we will describe three optimization 
heuristics for attacks on the transposition cipher. Also, a 
method of assessing intermediate solutions, in the search for 
the optimum, is discussed.  
 
A. Suitability Assessment 
 

The technique used to compare candidate keys is to 
compare n-gram statistics of the decrypted message with 
those of the language (which are assumed known). Equation 
1 is a general formula used to determine the suitability of a 
proposed key (k). Here, A denotes the language alphabet (i.e., 
for English, [A, . . . , Z, ], where represents the space 
symbol), K and D denote known language statistics and 
decrypted message statistics, respectively, and the indices b 
and t denote the bigram and trigram statistics, respectively. 
The values of _ and allow assigning of different weights to 
each of the two n-gram types. 
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As I said above, the unigram frequencies for a message are 
unchanged during the encryption process of a transposition 
cipher and so, they are ignored when evaluating a key i.e. in 
Equation 1. 

In attacks, which are proposed here, we will use 
assessment function based on bigram statistics only. The 
basic reason for this, it is an expensive task to calculate the 
trigram statistics. The complexity of determining the fitness 
is O(N3) (where N is the alphabet size) when trigram statistics 
are being determined, compared with O(N2) when bigrams 
are the largest statistics being used. 
 

B. A Simulated Annealing Attack 
 

In this section an attack on the transposition cipher using 
simulated annealing is presented. 

Simulated annealing is based on the concept of annealing. 
In physics, the term annealing describes the process of slowly 
cooling a heated metal in order to attain a minimum energy 
state. 

The idea of mimicking the annealing process to solve 
combinatorial optimization problems is attributed to 
Kirkpatrick et al [4]. The algorithm is (usually) initialized 
with a random solution to the problem being solved and a 
starting temperature. The choice of the initial temperature, T0 
is such that T >> ∆E. At each temperature a number of 
attempts are made to perturb the current solution. For each 
proposed perturbation is determined the change in the cost 
∆E. And then, if ∆E < 0 then the proposed perturbation is 
accepted, otherwise it is accepted with the probability 
indicated by Metropolis Equation 2 which makes a decision 
based on this cost difference and the current temperature. 
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If the proposed change is accepted (∆E<0 or Probability 

(E1⇒E2)>0.5) then the current solution is updated. 
Generally, the temperature is reduced when either there a 
predefined limit in the number of updates to the current 
solution has been reached or after a fixed number of attempts 
have been made to update the current solution. The algorithm 
finishes either when no new solutions were accepted for a 
given temperature, or when the temperature has dropped 
below some predefined limit. 

Here, in this attack, the Equation 1 is utilized when 
determining the cost of the solutions, and candidate solutions 
are generated from the current solution by swapping two 
randomly chosen positions. Description of this algorithm is 
given in Figure 1. 

This simulated annealing was implemented and the 
experimental results are given below in Section 3, which 
compare this technique with the genetic algorithm attack 
described in Section 2.3 and the tabu search attack, which is 
described in Section 2.4. 

 

1. Inputs to the algorithm are the intercepted ciphertext, the 
key size (permutation size or period) P, and the bigram 
statistics of the plaintext language. 
2. Initialize the algorithm parameters: the maximum number 
of iterations MAX, the initial temperature T0, and the 
temperature reduction factor TFACT . 
3. Set T = T0 and generate a random initial solution KCURR 
and calculate the associated cost CCURR. 
4. For i = 1, . . . MAX, do: 

(a) Set NSUCC = 0. 
(b) Repeat 100 · P times: 

i. Generate a new candidate key KNEW: 
A. Choose n1,n2∈[1, P], n1≠ n2. 
B. Swap n1 and n2 in KCURR to create KNEW. 

ii. Calculate the cost CNEW of KNEW. Find the 
cost difference ∆E = CNEW - CCURR and consult 
the Metropolis criterion, Equation 2 to 
determine whether the proposed transition 
should be accepted.  

iii. If the transition is accepted set KCURR = 
KNEW and CCURR = CNEW and increment NSUCC.  

(c) If NSUCC > 10 · P go to step 4d. 
(d) If NSUCC = 0 go to Step 5. 
(e) Reduce T (T = T · TFACT ). 

5. Output the current solution KCURR. 
 
Figure 1: Simulated Annealing Attack on the Transposition Cipher 

 
C. A Genetic Algorithm Attack 
 

The genetic algorithm is more complicated than the 
simulated annealing attack. This is because a pool of 
solutions is being maintained, rather than a single solution. 
An extra level of complexity is also present because of the 
need for a mating function and for a mutation function. 

In this attack also, the Equation 1 is utilized when 
determining the cost of the solutions. The mating i.e. 
reproduction technique used here for creating the two 
children is now given: 
1. Notation: p1 and p2 are the parents, c1 and c2 are the 
children, pi(j) denotes the element j in parent i, ci(j) denotes 
element j in child i, {Ci 

j,k}  denotes the set of elements in 
child i from positions j to k with the limitation that if k = 0 or 
j = P + 1 then {Ci 

j,k} = {∅}, 
2. Child 1: 

(a) Choose a random number r ∈ [1, P] 
(b) c1(j) = p1(j) for j = 1, . . . , r 
(c) For i = 1, . . . , P - r and k = 1, . . . , P 

If p2(k) ∉{C1,i+r-1} 
then 
- c1(i + r) = p2(k) 
else k = k + 1 

3. Child 2: 
(a) Choose a random number r ∈ [1, P] 
(b) c2(j) = p1(j) for j = P, . . . , r 
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(c) For i = 1, . . . , r and k = P, . . . , 1 
If p2(k) ∉ {Cr-i+1,P} then 

- c2(r - i) = p2(k) 
else k = k - 1 

The mutation operation is identical to the solution 
perturbation technique used in the simulated annealing attack. 
That is, randomly select two elements in the child and swap 
those elements. 

In Figure 2 is an algorithmic description of the attack on a 
simple substitution cipher using a genetic algorithm. 

The results of the genetic algorithm attack are given in 
Section 3. 
1. Inputs to the algorithm are the intercepted ciphertext, the 
key size (permutation size or period) P, and the bigram 
statistics of the plaintext language. 
2. Initialize the algorithm parameters: the solution pool size 
M, and the maximum number of iterations MAX. 
3. Generate an initial pool of solutions (randomly) PCURR, and 
calculate the cost of each of the solutions in the pool using 
Equation 1. 
4. For i = 1, . . . ,MAX, do: 

(a) Select M/2 pairs of keys from PCURR to be the 
parents of the new generation. 

(b) Perform the mating operation described above on 
each of the pairs of parents to produce a new pool of 
solutions PNEW. 

(c) For each of the M children perform a mutation 
operation described above. 

(d) Calculate the cost associated with each of the keys 
in the new solution pool PNEW. 

(e) Merge the new pool PNEW with the current pool 
PCURR, and choose the best M keys to become the 
new current pool PCURR. 

5. Output the best solution from the current key pool PCURR. 
 
Figure 2: A Genetic Algorithm Attack on the Transposition Cipher 

 
D. A Tabu Search Attack 
 

The transposition cipher can also be attacked using a tabu 
search. This attack is similar to the simulated annealing one 
with the added constraints of the tabu list. The same 
perturbation mechanism i.e. swapping two randomly chosen 
key elements is used to generate candidate solutions. In each 
iteration the best new key found replaces the worst existing 
one in the tabu list. The overall algorithm is described in 
Figure 3. 

The experimental results obtained using all three attacks 
are presented in the next Section. 
 
1. Inputs to the algorithm are the intercepted ciphertext, the 
key size (permutation size or period) P, and the bigram 
statistics of the plaintext language. 
2. Initialize the algorithm parameters: the size of the tabu list 
S_TABU, the size of the list of possibilities considered in 

each iteration S_POSS, and the maximum number of 
iterations to perform MAX. 
3. Initialize the tabu list with random and distinct keys and 
calculate the cost associated with each of the keys in the tabu 
list. 
4. For i = 1, . . . ,MAX, do: 

(a) Find the best key i.e. the one with the lowest cost in 
the current tabu list, KBEST. 

(b) For j = 1, . . . S_POSS do: 
i. Apply the perturbation mechanism 

described in the simulated annealing attack to 
produce a new key KNEW. 

ii. Check if KNEW is already in the list of 
possibilities generated for this iteration or the 
tabu list. If so, return to Step 3(b)i. 

iii. Add KNEW to the list of possibilities for this 
iteration. 

(c) From the list of possibilities for this iteration find 
the key with the lowest cost, PBEST. 

(d) From the tabu list find the key with the highest cost, 
TWORST. 

(e) While the cost of PBEST is less than the cost of 
TWORST: 
i. Replace TWORST with PBEST. 
ii. Find the new PBEST. 
iii. Find the new TWORST. 

5. Output the best solution from the tabu list KBEST. 
 

Figure 3: A Tabu Search Attack on the Transposition Cipher 
 
III. EXPERIMENTAL RESULTS 
 

The three techniques were implemented in Java as 
described above and a number of results were obtained.  

The first comparison is made upon the amount of 
ciphertext provided to the attack. These results are presented 
in Table 2. Here each algorithm was run on differing amounts 
of ciphertext - 50 times for each amount. The results in Table 
2 represent the average number of key elements correctly 
placed for a key size of 15 in this case. Note that because a 
transposition cipher key, which is rotated by one place, will 
still properly decrypt a large amount of the message, a key 
element is said to be correctly placed if its neighbors are the 
same as the neighbors for the correct key (except for end 
positions). In that case, the message will almost certainly still 
be readable, especially if the period of the transposition 
cipher is large. It can be seen from the results that each of the 
three algorithms performed roughly equally when the 
comparison is made based upon the amount of known 
ciphertext available to the attack.  

Table 3 shows results for the transposition cipher based on 
the period. It should be noted that for period less than fifteen, 
with one thousand available ciphertext characters, each of the 
algorithms could successfully recover the key all the time. 
The table shows that the simulated annealing attack was the 
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most powerful. For a transposition cipher of period 30 the 
simulated annealing attack was able to correctly place 25 of 
the key elements, on the average. 
 
Amount of 
Ciphertext SA GA TS 

200 5 7 4.75 
400 10.75 11.5 9.25 
600 11.25 12.5 11.5 
800 12.5 13 12.25 
1000 12.75 13.25 13 
Table 2: The amount of key recovered versus available 

ciphertext, transposition size 15 
 
Transposition 

size SA GA TS 

15 12.75 13.25 13 
20 16.5 17 16.75 
25 20.15 21.5 21 
30 25 25.25 25.5 

Table 3: The amount of key recovered versus transposition 
size, 1000 known ciphertext characters. 
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