
Attacks on the Transposition Ciphers Using
Optimization Heuristics

A.Dimovski1, D.Gligoroski2,

Abstract: In this paper three optimization heuristics are
presented which can be utilized in attacks on the transposition
cipher. These heuristics are simulated annealing, genetic
algorithm and tabu search. We will show that each of these
heuristics provides effective automated techniques for the
cryptanalysis of the ciphertext. The property which make this
cipher vulnerable, is that it is not sophisticated enough to hide
the inherent properties or statistics of the language of the
plaintext.

Keywords: Transposition substitution cipher, Cryptanalysis,
genetic algorithm, simulated annealing, tabu search

I. TRANSPOSITION CIPHERS

First, we will describe a simple transposition cipher. A
transposition or permutation cipher works by breaking a
message into fixed size blocks, and then permuting the
characters within each block according to a fixed
permutation, say P. The key to the transposition cipher is
simply the permutation P. So, the transposition cipher has the
property that the encrypted message i.e. the ciphertext
contains all the characters that were in the plaintext message.
In other words, the unigram statistics for the message are
unchanged by the encryption process.

The size of the permutation is known as the period. Let's
consider an example of a transposition cipher with a period of
six 6, and a key P={4,2,1,5,6,3}. In this case, the message is
broken into blocks of six characters, and after encryption the
fourth character in the block will be moved to position 1, the
second remains in position 2, the first is moved to position 3,
the fifth to position 4, the sixth to position 5 and the third to
position 6.

1Faculty of Natural Sciences and Mathematics, Ss. Cyril and
Methodius University

Arhimedova b.b., PO Box 162, 1000 Skopje, Macedonia
adimovski@ii.edu.mk

2Faculty of Natural Sciences and Mathematics, Ss. Cyril and
Methodius University

Arhimedova b.b., PO Box 162, 1000 Skopje, Macedonia
gligoroski@yahoo.com

In Table 1 is shown the key and the encryption process of
the previously described transposition cipher. It can be
noticed that the random string "X" was appended to the end
of the message to enforce a message length, which is a
multiple of the block size. It is also clear that the decryption
can be achieved by following the same process as encryption
using the "inverse" of the encryption permutation. In this case
the decryption key, P-1 is equal to {3,2,6,1,4,5}.

KEY:
Plaintext: 123456
Ciphertext: 421563

ENCRYPTION:
Position: 123456123456
Plaintext: HOW_ARE_YOUX
Ciphertext _OHARWO_RUXY

Table 1: Example of the transposition cipher key and encryption
process

II. ATTACKS ON THE TRANSPOSITION CIPHER

In this section, we will describe three optimization
heuristics for attacks on the transposition cipher. Also, a
method of assessing intermediate solutions, in the search for
the optimum, is discussed.

A. Suitability Assessment

The technique used to compare candidate keys is to
compare n-gram statistics of the decrypted message with
those of the language (which are assumed known). Equation
1 is a general formula used to determine the suitability of a
proposed key (k). Here, A denotes the language alphabet (i.e.,
for English, [A, . . . , Z,], where represents the space
symbol), K and D denote known language statistics and
decrypted message statistics, respectively, and the indices b
and t denote the bigram and trigram statistics, respectively.
The values of _ and allow assigning of different weights to
each of the two n-gram types.

∑

∑

∈

∈

−⋅+

−⋅=

Akji

t
kji

t
kji

Aji

b
ji

b
jik

DK

DKC

,,
),,(),,(

,
),(),(

γ

β
 (1)

in Proceedings of ICEST 2003, October 2003, Sofia, Bulgaria

1 of 4

mailto:adimovski@ii.edu.mk
mailto:gligoroski@yahoo.com

As I said above, the unigram frequencies for a message are
unchanged during the encryption process of a transposition
cipher and so, they are ignored when evaluating a key i.e. in
Equation 1.

In attacks, which are proposed here, we will use
assessment function based on bigram statistics only. The
basic reason for this, it is an expensive task to calculate the
trigram statistics. The complexity of determining the fitness
is O(N3) (where N is the alphabet size) when trigram statistics
are being determined, compared with O(N2) when bigrams
are the largest statistics being used.

B. A Simulated Annealing Attack

In this section an attack on the transposition cipher using
simulated annealing is presented.

Simulated annealing is based on the concept of annealing.
In physics, the term annealing describes the process of slowly
cooling a heated metal in order to attain a minimum energy
state.

The idea of mimicking the annealing process to solve
combinatorial optimization problems is attributed to
Kirkpatrick et al [4]. The algorithm is (usually) initialized
with a random solution to the problem being solved and a
starting temperature. The choice of the initial temperature, T0
is such that T >> ∆E. At each temperature a number of
attempts are made to perturb the current solution. For each
proposed perturbation is determined the change in the cost
∆E. And then, if ∆E < 0 then the proposed perturbation is
accepted, otherwise it is accepted with the probability
indicated by Metropolis Equation 2 which makes a decision
based on this cost difference and the current temperature.

)(

21)(Pr T
E

eEEobability
∆

−
=⇒ (2)

If the proposed change is accepted (∆E<0 or Probability

(E1⇒E2)>0.5) then the current solution is updated.
Generally, the temperature is reduced when either there a
predefined limit in the number of updates to the current
solution has been reached or after a fixed number of attempts
have been made to update the current solution. The algorithm
finishes either when no new solutions were accepted for a
given temperature, or when the temperature has dropped
below some predefined limit.

Here, in this attack, the Equation 1 is utilized when
determining the cost of the solutions, and candidate solutions
are generated from the current solution by swapping two
randomly chosen positions. Description of this algorithm is
given in Figure 1.

This simulated annealing was implemented and the
experimental results are given below in Section 3, which
compare this technique with the genetic algorithm attack
described in Section 2.3 and the tabu search attack, which is
described in Section 2.4.

1. Inputs to the algorithm are the intercepted ciphertext, the
key size (permutation size or period) P, and the bigram
statistics of the plaintext language.
2. Initialize the algorithm parameters: the maximum number
of iterations MAX, the initial temperature T0, and the
temperature reduction factor TFACT .
3. Set T = T0 and generate a random initial solution KCURR
and calculate the associated cost CCURR.
4. For i = 1, . . . MAX, do:

(a) Set NSUCC = 0.
(b) Repeat 100 · P times:

i. Generate a new candidate key KNEW:
A. Choose n1,n2∈[1, P], n1≠ n2.
B. Swap n1 and n2 in KCURR to create KNEW.

ii. Calculate the cost CNEW of KNEW. Find the
cost difference ∆E = CNEW - CCURR and consult
the Metropolis criterion, Equation 2 to
determine whether the proposed transition
should be accepted.

iii. If the transition is accepted set KCURR =
KNEW and CCURR = CNEW and increment NSUCC.

(c) If NSUCC > 10 · P go to step 4d.
(d) If NSUCC = 0 go to Step 5.
(e) Reduce T (T = T · TFACT).

5. Output the current solution KCURR.

Figure 1: Simulated Annealing Attack on the Transposition Cipher

C. A Genetic Algorithm Attack

The genetic algorithm is more complicated than the
simulated annealing attack. This is because a pool of
solutions is being maintained, rather than a single solution.
An extra level of complexity is also present because of the
need for a mating function and for a mutation function.

In this attack also, the Equation 1 is utilized when
determining the cost of the solutions. The mating i.e.
reproduction technique used here for creating the two
children is now given:
1. Notation: p1 and p2 are the parents, c1 and c2 are the
children, pi(j) denotes the element j in parent i, ci(j) denotes
element j in child i, {Ci

j,k} denotes the set of elements in
child i from positions j to k with the limitation that if k = 0 or
j = P + 1 then {Ci

j,k} = {∅},
2. Child 1:

(a) Choose a random number r ∈ [1, P]
(b) c1(j) = p1(j) for j = 1, . . . , r
(c) For i = 1, . . . , P - r and k = 1, . . . , P

If p2(k) ∉{C1,i+r-1}
then
- c1(i + r) = p2(k)
else k = k + 1

3. Child 2:
(a) Choose a random number r ∈ [1, P]
(b) c2(j) = p1(j) for j = P, . . . , r

in Proceedings of ICEST 2003, October 2003, Sofia, Bulgaria

2 of 4

(c) For i = 1, . . . , r and k = P, . . . , 1
If p2(k) ∉ {Cr-i+1,P} then

- c2(r - i) = p2(k)
else k = k - 1

The mutation operation is identical to the solution
perturbation technique used in the simulated annealing attack.
That is, randomly select two elements in the child and swap
those elements.

In Figure 2 is an algorithmic description of the attack on a
simple substitution cipher using a genetic algorithm.

The results of the genetic algorithm attack are given in
Section 3.
1. Inputs to the algorithm are the intercepted ciphertext, the
key size (permutation size or period) P, and the bigram
statistics of the plaintext language.
2. Initialize the algorithm parameters: the solution pool size
M, and the maximum number of iterations MAX.
3. Generate an initial pool of solutions (randomly) PCURR, and
calculate the cost of each of the solutions in the pool using
Equation 1.
4. For i = 1, . . . ,MAX, do:

(a) Select M/2 pairs of keys from PCURR to be the
parents of the new generation.

(b) Perform the mating operation described above on
each of the pairs of parents to produce a new pool of
solutions PNEW.

(c) For each of the M children perform a mutation
operation described above.

(d) Calculate the cost associated with each of the keys
in the new solution pool PNEW.

(e) Merge the new pool PNEW with the current pool
PCURR, and choose the best M keys to become the
new current pool PCURR.

5. Output the best solution from the current key pool PCURR.

Figure 2: A Genetic Algorithm Attack on the Transposition Cipher

D. A Tabu Search Attack

The transposition cipher can also be attacked using a tabu
search. This attack is similar to the simulated annealing one
with the added constraints of the tabu list. The same
perturbation mechanism i.e. swapping two randomly chosen
key elements is used to generate candidate solutions. In each
iteration the best new key found replaces the worst existing
one in the tabu list. The overall algorithm is described in
Figure 3.

The experimental results obtained using all three attacks
are presented in the next Section.

1. Inputs to the algorithm are the intercepted ciphertext, the
key size (permutation size or period) P, and the bigram
statistics of the plaintext language.
2. Initialize the algorithm parameters: the size of the tabu list
S_TABU, the size of the list of possibilities considered in

each iteration S_POSS, and the maximum number of
iterations to perform MAX.
3. Initialize the tabu list with random and distinct keys and
calculate the cost associated with each of the keys in the tabu
list.
4. For i = 1, . . . ,MAX, do:

(a) Find the best key i.e. the one with the lowest cost in
the current tabu list, KBEST.

(b) For j = 1, . . . S_POSS do:
i. Apply the perturbation mechanism

described in the simulated annealing attack to
produce a new key KNEW.

ii. Check if KNEW is already in the list of
possibilities generated for this iteration or the
tabu list. If so, return to Step 3(b)i.

iii. Add KNEW to the list of possibilities for this
iteration.

(c) From the list of possibilities for this iteration find
the key with the lowest cost, PBEST.

(d) From the tabu list find the key with the highest cost,
TWORST.

(e) While the cost of PBEST is less than the cost of
TWORST:
i. Replace TWORST with PBEST.
ii. Find the new PBEST.
iii. Find the new TWORST.

5. Output the best solution from the tabu list KBEST.

Figure 3: A Tabu Search Attack on the Transposition Cipher

III. EXPERIMENTAL RESULTS

The three techniques were implemented in Java as
described above and a number of results were obtained.

The first comparison is made upon the amount of
ciphertext provided to the attack. These results are presented
in Table 2. Here each algorithm was run on differing amounts
of ciphertext - 50 times for each amount. The results in Table
2 represent the average number of key elements correctly
placed for a key size of 15 in this case. Note that because a
transposition cipher key, which is rotated by one place, will
still properly decrypt a large amount of the message, a key
element is said to be correctly placed if its neighbors are the
same as the neighbors for the correct key (except for end
positions). In that case, the message will almost certainly still
be readable, especially if the period of the transposition
cipher is large. It can be seen from the results that each of the
three algorithms performed roughly equally when the
comparison is made based upon the amount of known
ciphertext available to the attack.

Table 3 shows results for the transposition cipher based on
the period. It should be noted that for period less than fifteen,
with one thousand available ciphertext characters, each of the
algorithms could successfully recover the key all the time.
The table shows that the simulated annealing attack was the

in Proceedings of ICEST 2003, October 2003, Sofia, Bulgaria

3 of 4

most powerful. For a transposition cipher of period 30 the
simulated annealing attack was able to correctly place 25 of
the key elements, on the average.

Amount of
Ciphertext SA GA TS

200 5 7 4.75
400 10.75 11.5 9.25
600 11.25 12.5 11.5
800 12.5 13 12.25
1000 12.75 13.25 13
Table 2: The amount of key recovered versus available

ciphertext, transposition size 15

Transposition

size SA GA TS

15 12.75 13.25 13
20 16.5 17 16.75
25 20.15 21.5 21
30 25 25.25 25.5

Table 3: The amount of key recovered versus transposition
size, 1000 known ciphertext characters.

IV. REFERENCES

[1] Fred Glover, Eric Taillard, and Dominique de Werra. A
users guide to tabu search. Annals of Operations Research,
41:328, 1993.

[2] D.E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
Reading, Massechusetts, 1989.

[3] Robert A. J. Matthews. The use of genetic algorithms in
cryptanalysis. Cryptologia, 17(2):187201, April 1993.

[4] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671680, 1983.

in Proceedings of ICEST 2003, October 2003, Sofia, Bulgaria

4 of 4

	A. Suitability Assessment
	B. A Simulated Annealing Attack
	C. A Genetic Algorithm Attack

	D. A Tabu Search Attack

