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Abstract. This paper presents an analysis of the PES cipher in a similar
setting as done by Daemen et al. at Crypto’93 for IDEA. The following
results were obtained for 8.5 round PES: a linear weak-key class of size
248; two distinct differential weak-key classes of size 241; two differential-
linear weak-key classes of size 262. For 17-round PES (double-PES): a
linear weak-key class of size 27, and a differential weak-key class of size 27

were found. Daemen suggested a modified key schedule for IDEA in order
to avoid weak keys. We found a differential weak-key class of size 283 for
2.5-round IDEA under his redesigned key schedule, and differential-linear
relations for 3.5-round IDEA.

Keywords: IDEA and PES ciphers, differential, linear and differential-linear
weak-key classes, cryptanalysis.

1 Introduction

The Proposed Encryption Standard (PES) is an iterated block cipher designed
by Lai and Massey in 1990 [5]. PES is a 64-bit block cipher, using a 128-bit key.
PES iterates 8 similar rounds plus an output transformation (that is treated as
a half round). Fig. 1 depicts the cipher structure.

The International Data Encryption Algorithm (IDEA) is a 64-bit block ci-
pher, using a 128-bit key, designed by Lai, Massey and Murphy in 1991 (see [6]).
It is an evolution of PES. IDEA is a candidate block cipher [8] to the NESSIE
Project [9]. NESSIE is a project within the Information Societies Technology
(IST) Program of the European Commission.

The block ciphers IDEA and PES use three group operations: addition mod-
ulo 216, represented by ¢, bitwise exclusive-or, denoted ⊕, and multiplication
modulo 216 + 1, denoted ¯, with the exception that 216 is interpreted as 0. The
overall structure of IDEA is depicted in Fig. 2.

The key schedule of IDEA and PES are identical and processes the initial 128-
bit master key into fifty-two 16-bit subkeys. Each one of the eight rounds uses
? sponsored in part by GOA project Mefisto 2000/06 of the Flemish Government.



six subkeys, and the output transformation (OT) uses four subkeys. Initially,
the 128-bit key is partitioned into eight 16-bit words, which are used as the
first eight subkeys. Successive subkeys are generated by successively rotating
left by 25 bits, the 128-bit register consisting of the previous eight subkeys; and
partitioning the resulting register into eight 16-bit words, which represent the
next eight subkeys. Table 1 shows the dependency of subkey bits on the master
key bits, which is indexed from 0 (MSB: most significant bit) to 127 (LSB: least
significant bit). Bit 0 is assumed to be positioned to the right of bit 127, that is,
in a circular fashion, due to the rotation operation.
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Fig. 1. Computational graph of the PES block cipher.

Some block ciphers like DES [2] and LOKI89 [7] are designed for a fixed
number of rounds, which can be noticed in their key schedule algorithms: there is
a fixed number of distinct round subkeys that can be generated. PES and IDEA,
on the other hand, although defined with 8.5 rounds, can both be extended to
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Table 1. Dependency of subkey bits on the master key bits of IDEA and PES.

r-th round Z
(r)
1 Z

(r)
2 Z

(r)
3 Z

(r)
4 Z

(r)
5 Z

(r)
6

1 0–15 16–31 32–47 48–63 64–79 80–95
2 96–111 112–127 25–40 41–56 57–72 73–88
3 89–104 105–120 121–8 9–24 50–65 66–81
4 82–97 98–113 114–1 2–17 18–33 34–49
5 75–90 91–106 107–122 123–10 11–26 27–42
6 43–58 59–74 100–115 116–3 4–19 20–35
7 36–51 52–67 68–83 84–99 125–12 13–28
8 29–44 45–60 61–76 77–92 93–108 109–124

OT 22–37 38–53 54–69 70–85 — —
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Fig. 2. Computational graph of the IDEA block cipher.
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an arbitrarily large number of rounds, by simply allowing the key schedule to
keep on generating 16-bit subkey words in the same way. Some observations will
be made concerning these extended variants of PES and IDEA, denoted r-round
PES and r-round IDEA, where r denotes the number of full rounds. Versions
including the output transformation will be denoted with the prefix r.5-round.

In [1], Daemen et al. described a class of 223 keys (out of a key space of size
2128) for IDEA, that exhibits a linear relation with probability one. These linear
relations1 assume that the multiplicative round subkeys Z

(r)
i , i ∈ {1, 4, 5, 6} are

either2 0 or 1. This is called the weak-key assumption. These keys are called weak,
because their values make the non-linear modular multiplication become a linear
operation.

Table 2 contains a summary of one-round linear relations and one-round
characteristics for PES, under the weak-key assumption. The same notation as
in [1] is used: α(r) → α(r+1) denotes that the input bit mask α(r) causes the
output bit mask α(r+1) after one round with (maximum) bias 1/2. Similarly,
δ(r) → δ(r+1) denotes that the input exclusive-or difference δ(r) causes the output
exclusive-or difference δ(r+1) after one round, with probability one, where ν =
215 = 8000x. Each 4-tuple corresponds to a bit mask or input difference for the
four 16-bit words in a block.

Table 2. One-round linear relations and characteristics for PES.

Linear Relation Differential Conditions on the subkeys
Characteristic

α(r) → α(r+1) δ(r) → δ(r+1) Z
(r)
1 Z

(r)
2 Z

(r)
5 Z

(r)
6

(0, 0, 0, 1) → (0, 0, 0, 1) (0, 0, 0, ν) → (ν, 0, ν, ν) - - - {0, 1}
(0, 0, 1, 0) → (0, 1, 1, 1) (0, 0, ν, 0) → (0, 0, ν, 0) - - {0, 1} {0, 1}
(0, 0, 1, 1) → (0, 1, 1, 0) (0, 0, ν, ν) → (ν, 0, 0, ν) - - {0, 1} -
(0, 1, 0, 0) → (0, 1, 0, 0) (0, ν, 0, 0) → (ν, ν, ν, 0) - {0, 1} - {0, 1}
(0, 1, 0, 1) → (0, 1, 0, 1) (0, ν, 0, ν) → (0, ν, 0, ν) - {0, 1} - -
(0, 1, 1, 0) → (0, 0, 1, 1) (0, ν, ν, 0) → (ν, ν, 0, 0) - {0, 1} {0, 1} -
(0, 1, 1, 1) → (0, 0, 1, 0) (0, ν, ν, ν) → (0, ν, ν, ν) - {0, 1} {0, 1} {0, 1}
(1, 0, 0, 0) → (1, 1, 0, 1) (ν, 0, 0, 0) → (ν, 0, 0, 0) {0, 1} - {0, 1} {0, 1}
(1, 0, 0, 1) → (1, 1, 0, 0) (ν, 0, 0, ν) → (0, 0, ν, ν) {0, 1} - {0, 1} -
(1, 0, 1, 0) → (1, 0, 1, 0) (ν, 0, ν, 0) → (ν, 0, ν, 0) {0, 1} - - -
(1, 0, 1, 1) → (1, 0, 1, 1) (ν, 0, ν, ν) → (0, 0, 0, ν) {0, 1} - - {0, 1}
(1, 1, 0, 0) → (1, 0, 0, 1) (ν, ν, 0, 0) → (0, ν, ν, 0) {0, 1} {0, 1} {0, 1} -
(1, 1, 0, 1) → (1, 0, 0, 0) (ν, ν, 0, ν) → (ν, ν, 0, ν) {0, 1} {0, 1} {0, 1} {0, 1}
(1, 1, 1, 0) → (1, 1, 1, 0) (ν, ν, ν, 0) → (0, ν, 0, 0) {0, 1} {0, 1} - {0, 1}
(1, 1, 1, 1) → (1, 1, 1, 1) (ν, ν, ν, ν) → (ν, ν, ν, ν) {0, 1} {0, 1} - -

1 It is called a linear factor in [1].
2 Or -1 and 1, respectively, in [1].
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Based on Table 2, the largest weak-key class for PES uses the one-round
iterative linear relation (0, 0, 0, 1) → (0, 0, 0, 1), which holds with probability
one. For the full 8.5-round PES, the weak-key assumption requires that bits
numbered 13–48, 66–94, and 109–123 be zero (according to the key schedule).
This leaves key bits 0–12, 49–65, 95–108, and 124–127 unrestricted resulting in
a weak-key class of size 248. The bit masks for each intermediate round of PES
are shown in Table 3, where msbn(Z) indicates that the n most significant bits
of subkey Z are zero.

Table 3. The largest linear weak-key class of PES.

Round r Linear Relation msb15(Z
(r)
6 ) Weak-key class size

1 (0, 0, 0, 1) → (0, 0, 0, 1) 80–94 2113

2 (0, 0, 0, 1) → (0, 0, 0, 1) 73–87 2106

3 (0, 0, 0, 1) → (0, 0, 0, 1) 66–80 299

4 (0, 0, 0, 1) → (0, 0, 0, 1) 34–48 284

5 (0, 0, 0, 1) → (0, 0, 0, 1) 27–41 277

6 (0, 0, 0, 1) → (0, 0, 0, 1) 20–34 270

7 (0, 0, 0, 1) → (0, 0, 0, 1) 13–27 263

8 (0, 0, 0, 1) → (0, 0, 0, 1) 109–123 248

OT (0, 0, 0, 1) → (0, 0, 0, 1) – 248

It can be observed that the linear weak-key class in Table 3 could be extended
beyond 8.5 rounds. For example the one-round linear relation (0, 0, 0, 1) →
(0, 0, 0, 1) iterated for 16 rounds of PES holds for a weak-key class of size 210; for
17-round PES this relation holds only for the all-zero key. The one-round linear
relation (0, 1, 0, 1) → (0, 1, 0, 1) holds for 17-round PES for a weak-key class of
size 27; for 17.5-round PES, this linear relation only holds for the all-zero key
(this all-zero key is actually the only key for which there is a linear relation
holding for r-round PES, for any r).

Concerning differential characteristics, and referring to the middle column
in Table 2, the largest differential weak-key class of PES uses the one-round
iterative characteristic (ν, 0, ν, 0) → (ν, 0, ν, 0) that holds with probability one.
The propagation of differences across PES and the restrictions on the subkey
words are detailed in Table 4.

The differential weak-key class in Table 4 assumes that the key bits 0–14,
22–57 and 75–110 are zero. Key bits 15–21, 58–74 and 111–127 can be arbitrary,
which implies a differential weak-key class of size 241. The characteristic in Ta-
ble 4 can also be iterated beyond 8.5 rounds. For example, when iterated to 17
rounds of PES, the one-round characteristic (ν, 0, ν, 0) → (ν, 0, ν, 0) holds for a
weak-key class of size 27. For 17.5-round PES, the characteristic holds only for
the all-zero key, (the all-zero key has the peculiarity that it is the only key for
which the characteristic in Table 4 can be iterated for r-round PES for any r).

Another weak-key class for PES is detailed in Table 5.
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Table 4. Differential weak-key class of PES.

Round r Differential msb15(Z
(r)
1 ) Weak-Key class size

1 (ν, 0, ν, 0) → (ν, 0, ν, 0) 0–14 2113

2 (ν, 0, ν, 0) → (ν, 0, ν, 0) 96–110 298

3 (ν, 0, ν, 0) → (ν, 0, ν, 0) 89–103 291

4 (ν, 0, ν, 0) → (ν, 0, ν, 0) 82–96 284

5 (ν, 0, ν, 0) → (ν, 0, ν, 0) 75–89 277

6 (ν, 0, ν, 0) → (ν, 0, ν, 0) 43–57 262

7 (ν, 0, ν, 0) → (ν, 0, ν, 0) 36–50 255

8 (ν, 0, ν, 0) → (ν, 0, ν, 0) 29–43 248

OT (ν, 0, ν, 0) → (ν, 0, ν, 0) 22–36 241

Table 5. Another differential weak-key class of PES.

Round r Differential msb15(Z
(r)
2 ) Weak-Key Class Size

1 (0, ν, 0, ν) → (0, ν, 0, ν) 16–30 2113

2 (0, ν, 0, ν) → (0, ν, 0, ν) 112–126 298

3 (0, ν, 0, ν) → (0, ν, 0, ν) 105–119 291

4 (0, ν, 0, ν) → (0, ν, 0, ν) 98–112 284

5 (0, ν, 0, ν) → (0, ν, 0, ν) 91–105 277

6 (0, ν, 0, ν) → (0, ν, 0, ν) 59–73 262

7 (0, ν, 0, ν) → (0, ν, 0, ν) 52–66 255

8 (0, ν, 0, ν) → (0, ν, 0, ν) 45–59 248

OT (0, ν, 0, ν) → (0, ν, 0, ν) 38–52 241
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It can be observed that the differential weak-key class in Table 5 assumes
that the key bits numbered 16–30, 38–73, and 91–126 be all zero. This leaves the
key bits 0–15, 31–37, 74–90 and 127 to be arbitrary, which implies a weak-key
class of size 241, like in Table 4, but notice that both key classes are distinct, for
they do not share the same restriction on many key bits.

In [3], Hawkes describes a differential-linear distinguisher for IDEA, under
weak-key assumptions. The attack uses the characteristic depicted in Table 6,
where δ1 ⊕ δ2 = ν.

Table 6. Differential-linear relation of IDEA.

Round r Differential-Linear Relation msb15(Z
(r)
1 ) msb15(Z

(r)
4 ) msb15(Z

(r)
5 )

1 (0, ν, 0, ν) → (0, 0, ν, ν) – 48–62 –
2 (0, 0, ν, ν) → (0, ν, ν, 0) – 41–55 57–71
3 (0, ν, ν, 0) → (0, ν, 0, ν) – – 50–64
4 (0, ν, 0, ν) → (0, 0, ν, ν) – 2–16 –
5 (0, 0, ν, ν) → (δ1, δ2, δ3, δ4) – – –
6 (1, 1, 0, 0) → (0, 1, 1, 0) 43–57 – 4–18
7 (0, 1, 1, 0) → (1, 0, 1, 0) – – 125–11
8 (1, 0, 1, 0) → (1, 1, 0, 0) 29–43 – –

This characteristic holds with probability one, for a differential-linear weak-
key class of size 263 for which key bits 19–28, 72–124 are arbitrary.

For PES, one of the largest differential-linear distinguishers combines a 3-
round characteristic with a 5-round linear relation. It is described in Table 7,
where δ2 ⊕ δ4 = ν. This characteristic holds for a differential-linear weak-key
class of size 262, in which key bits 15–44, 74–90, and 113–127 can be arbitrary.

Table 7. Differential-linear relation of PES.

Round r Differential-Linear Relation msb15(Z
(r)
1 ) msb15(Z

(r)
2 )

1 (ν, 0, ν, 0) → (ν, 0, ν, 0) 0–14 –
2 (ν, 0, ν, 0) → (ν, 0, ν, 0) 96–110 –
3 (ν, 0, ν, 0) → (δ1, δ2, δ3, δ4) – –
4 (0, 1, 0, 1) → (0, 1, 0, 1) – 98–112
5 (0, 1, 0, 1) → (0, 1, 0, 1) – 91–105
6 (0, 1, 0, 1) → (0, 1, 0, 1) – 59–73
7 (0, 1, 0, 1) → (0, 1, 0, 1) – 52–66
8 (0, 1, 0, 1) → (0, 1, 0, 1) – 45–59

A second differential-linear characteristic for PES holds for a weak-key class
also of size 262. It is depicted in Table 8, and key bits 15–44, 74–88, and 111–127
can be arbitrary.
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Table 8. Another differential-linear relation of PES.

Round r Differential-Linear Relation msb15(Z
(r)
1 ) msb15(Z

(r)
2 )

1 (ν, 0, ν, 0) → (ν, 0, ν, 0) 0–14 –
2 (ν, 0, ν, 0) → (ν, 0, ν, 0) 96–110 –
3 (ν, 0, ν, 0) → (ν, 0, ν, 0) 89–103 –
4 (ν, 0, ν, 0) → (δ1, δ2, δ3, δ4) – –
5 (0, 1, 0, 1) → (0, 1, 0, 1) – 91–105
6 (0, 1, 0, 1) → (0, 1, 0, 1) – 59–73
7 (0, 1, 0, 1) → (0, 1, 0, 1) – 52–66
8 (0, 1, 0, 1) → (0, 1, 0, 1) – 45–59

In [1] Daemen et al. suggested a modified key schedule for IDEA in or-
der to avoid linear and differential attacks under weak-key assumptions. The
modification consisted in xoring each 16-bit key word with the constant value
0daex = 00001101101011102. This modified key schedule implies, under weak-
key assumptions, that some key bits be simultaneously ’0’ and ’1’, a contradic-
tion. This new key schedule avoids all differential, linear and differential-linear
attacks shown previously for PES and IDEA.

For Daemen’s redesigned IDEA key schedule the longest characteristic iden-
tified has 2.5 rounds, and is shown in Table 9 3. It requires that key bits 9–12,
15, 18, 20, 41–44, 47, 50, 52, 64–67, 70, 73, 75 be zero, and key bits 13, 14, 16,
17, 19, 21–23, 45, 46, 48, 49, 51, 53–55, 68, 69, 71, 72, 74, 76–78 be one. In total,
45 key bits are restricted which represents a class of 2128−45 = 283 differential
weak keys.

Table 9. 2.5-round differential for IDEA with Daemen’s new key schedule.

Round r Differential msb15(Z
(r)
1 ) msb15(Z

(r)
4 )

1 (0, ν, ν, 0) → (0, ν, 0, ν) 64–78 –
2 (0, ν, 0, ν) → (0, 0, ν, ν) – 41–55

2.5 (0, 0, ν, ν) → (0, 0, ν, ν) – 9–23

The longest linear relation found for IDEA with the modified key schedule
has 2.5 rounds. It requires that key bits 2–5, 8,11,13,34–37,40,43,45, 66–69,72,
75,77 be zero, and bits 6,7,9,10,12,14–16,38,39,41,42,44,46–48, 70, 71, 73, 74,
76, 78–80 be one. In total, 45 key bits are restricted which represent a class of
283 weak linear keys. The relation starts at the third rounds and is depicted in
Table 10).

The longest differential-linear relation found for IDEA with modified key
schedule has 3.5 rounds and requires that key bits 64–67, 70,73, 75, 41–44, 47,
3 We made a program to search exhaustively for the longest characteristic, and 2.5

rounds is the longest one found.
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Table 10. 2.5-round linear relation for IDEA with Daemen’s new key schedule.

Round r Linear Relation msb15(Z
(r)
4 ) msb15(Z

(r)
6 )

3 (0, 1, 0, 0) → (0, 0, 0, 1) – 66–80
4 (0, 0, 0, 1) → (0, 0, 1, 0) 2–16 34–48

4.5 (0, 0, 1, 0) → (0, 0, 1, 0) – –

50, 52, 9–12, 15, 18, 20, 82–85, 88, 91, 93 be zero, and key bits 68, 69, 71, 72,
74, 76–78, 45, 46, 48, 49, 51, 53–55, 13,14,16,17,19,21–23, 86,87,89,90,92,94–96
be one. These restrictions on 60 key bits result in a differential-linear weak-key
class of size 2128−60 = 268. Details are depicted in Table 11.

Table 11. 3.5-round differential-linear relation for IDEA with Daemens’s new key
schedule.

Round r Differential or Lin. Relation msb15(Z
(r)
1 ) msb15(Z

(r)
4 ) msb15(Z

(r)
5 )

1 (0, ν, ν, 0) → (0, ν, 0, ν) – – 64–78
2 (0, ν, 0, ν) → (0, 0, ν, ν) – 41–55 –
3 (0, 0, ν, ν) → (δ1, δ2, δ3, δ4) – 9–23 –

3.5 (1, 0, 1, 0) → (1, 1, 0, 0) – – –
4 (1, 1, 0, 0) → (1, 1, 0, 0) 82–96 – –

For PES with modified key schedule, the longest differential found has 2.5
rounds. It requires that key bits 66–69, 72 75, 77, 82–85, 88, 91, 93, 34–37, 40,
43, 45 be zero, and key bits 70, 71, 73, 74, 76, 78–80, 86, 87, 89, 90, 92, 94–96,
38, 39, 41, 42, 44, 46–48 be one. These 45 restricted bits represent a class of 283

weak differential keys for PES. It is depicted in Table 12.

Table 12. 2.5-round differential for PES with Daemen’s new key schedule.

Round r Differential msb15(Z
(r)
1 ) msb15(Z

(r)
6 )

3 (0, 0, 0, ν) → (ν, 0, ν, ν) – 66–80
4 (ν, 0, ν, ν) → (0, 0, 0, ν) 82–96 34–48

4.5 (0, 0, 0, ν) → (0, 0, 0, ν) – –

The longest linear relation found for PES with Daemens’ new key schedule
has 2.5 rounds. It requires that key bits 66–69, 72, 75, 77,34–37,40,43,45 be zero,
and key bits 70,71,73,74, 76,78–80,38,39,41,42,44,46–48 be one. These restric-
tions on 30 key bits represent a weak linear key class of size 298, that is depicted
in Table 13.
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Table 13. 2.5-round linear relation for PES with Daemen’s new key schedule.

Round r Linear Relation msb15(Z
(r)
6 )

3 (0, 0, 0, 1) → (0, 0, 0, 1) 66–80
4 (0, 0, 0, 1) → (0, 0, 0, 1) 34–48

4.5 (0, 0, 0, 1) → (0, 0, 0, 1) –

2 Conclusions

One linear weak-key class of size 248, and at least two distict differential weak-
key classes, both of size 241, were identified for the PES block cipher, in a similar
setting as done by Daemen et al. for IDEA. It was observed that the weak keys
can be identified for linear as well as differential attacks for up to 17 rounds4 of
PES.

For IDEA, Daemen et al. described a linear weak-key class of size 223, and a
differential weak-key class of size 251.

At least two differential-linear weak-key classes for PES were identified. Each
has size 262 and have in commom 60 key bits. The largest differential-linear
characteristic described by Hawkes in [3] has size 263.

Finally, it was also noticed that linear weak-keys of size 210 exist for 17-round
PES, which is equivalent to double-PES. Besides a differential weak-key class of
size 27 was identified for 17-round PES.

The new key schedule of IDEA and PES suggested by Daemen is quite ef-
fective against all these attacks and our exhaustive search could find only a 2.5-
round differential and linear relation for them. Moreover, a 3.5-round differential-
linear relation for IDEA was also found. The reduced-round differential, linear
and differential-linear relations did not necessarily start from the first cipher
round, but depend on the key schedule algorithm in order to reduce the num-
ber of key bits restricted. The original key schedule of PES and IDEA implies
that different rounds of these ciphers have an asymmetric structure, and their
security analysis require more care than in Feistel ciphers such as DES, since
different sections of these ciphers do not have the same level of security.
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