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Abstract. Camellia is the final winner of 128-bit block cipher in NESSIE. In this
paper, we construct some efficient distinguishers between 4-round Camellia and a
random permutation of the blocks space. By using collision-searching techniques,
the distinguishers are used to attack on 6,7,8 and 9 rounds of Camellia with 128-
bit key and 8,9 and 10 rounds of Camellia with 192/256-bit key. The 128-bit
key of 6 rounds Camellia can be recovered with 210 chosen plaintexts and 215

encryptions. The 128-bit key of 7 rounds Camellia can be recovered with 212

chosen plaintexts and 254.5 encryptions. The 128-bit key of 8 rounds Camellia
can be recovered with 213 chosen plaintexts and 2112.1 encryptions. The 128-bit
key of 9 rounds Camellia can be recovered with 2113.6 chosen plaintexts and 2121

encryptions. The 192/256-bit key of 8 rounds Camellia can be recovered with
213 chosen plaintexts and 2111.1 encryptions. The 192/256-bit key of 9 rounds
Camellia can be recovered with 213 chosen plaintexts and 2175.6 encryptions.The
256-bit key of 10 rounds Camellia can be recovered with 214 chosen plaintexts
and 2239.9 encryptions.
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1 Introduction

Camellia[1] is a 128-bit block cipher which was published by NTT and Mitsubishi in 2000
and recently selected as the final selection of the NESSIE[2]project, and also suggested
as a candidate for the CRYPTREC project in Japan [3]. The security of Camellia has
been studied by many researchers [4 ∼ 11]. The security of Camellia against higher-order
differential cryptanalysis is discussed in [4] and [5]. A truncated differential attack on
8-round variant of Camellia without FL/FL−1 functions is presented in [6]requiring 255.6

encryptions and 283.6 chosen plaintexts. Truncated and impossible differential cryptanalysis
of Camellia without FL/FL−1 functions is described in [7]. A differential attack on 9 rounds
Camellia without FL/FL−1 functions is proposed in [8]requiring 2105 chosen plaintexts. The
security of Camellia against Square attack is discussed in [9] and [10]. Furthermore, Yeom
et.al. have studied integral properties and apply them to Camellia.

∗This work was supported by Chinese Natural Science Foundation (Grant No.60103023) and 973 Project
(Grant No. G1999035802)
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In this paper we present collision attacks on reduced-round variants of Camellia without
FL/FL−1 and whitening function layers as mentioned below. The attack on 6-round of
128-bit key Camellia is more efficient than known attacks. The complexities of the attack
on 7(8,9,10)-round Camellia without FL/FL−1 functions are less than that of previous
attacks.

Section 2 briefly describes the structures of Camellia, 4-round distinguishers and proper-
ties are explained in Section 3. In Section 4, we show how to use the 4-round distinguishers
to attack 6,7,8 and 9 rounds of Camellia with 128-bit key. In section 5, we describe attacks
on 8,9 and 10 rounds of Camellia with 192/256-bit key. Finally, in section 6 we conclude
this paper.

2 Description of the Camellia

Camellia has a 128 bit block size and supports 128,192 and 256 bit keys. The design of
Camellia is based on the Feistel structure and its number of rounds is 18(128 bit key) or
24(192/256 bit key). The FL/FL−1function layer is inserted at every 6 rounds. Before
the first round and after the last round, there are pre- and post-whitening layers which
use bitwise exclusive-or operations with 128 bit subkeys, respectively. But we will consider
camellia without FL/FL−1 function layer and whitening layers and call it modified camellia.

Let Lr−1 and Rr−1 be the left and the right halves of the rth round inputs, and kr be
the rth round subkey. Then the Feistel structure of Camellia can be written as

Lr = Rr−1 ⊕ F (Lr−1, kr),

Rr = Lr−1,

here F is the round function defined below:

F : F 64
2 × F 64

2 −→ F 64
2 ,

(X64, k64) −→ Y(64) = P (S(X(64) ⊕ k(64))).

where S and P are defined as follows:

S : F 64
2 −→ F 64

2 ,

l1(8)||l2(8)||l3(8)||l4(8)||l5(8)||l6(8)||l7(8)||l8(8) −→ l∗1(8)||l∗2(8)||l∗3(8)||l∗4(8)||l∗5(8)||l∗6(8)||l∗7(8)||l∗8(8)
l∗1(8) = s1(l1(8)), l∗5(8) = s2(l5(8)),

l∗2(8) = s2(l2(8)), l∗6(8) = s3(l6(8)),

l∗3(8) = s3(l3(8)), l∗7(8) = s4(l7(8)),

l∗4(8) = s4(l4(8)), l∗8(8) = s1(l8(8)).

P : F 64
2 −→ F 64

2 ,

Z1(8)||Z2(8)||Z3(8)||Z4(8)||Z5(8)||Z6(8)||Z7(8)||Z8(8)

−→ Z∗1(8)||Z∗2(8)||z∗3(8)||Z∗4(8)||Z∗5(8)||Z∗6(8)||Z∗7(8)||Z∗8(8)

2



Z∗1 = Z1 ⊕ Z3 ⊕ Z4 ⊕ Z6 ⊕ Z7 ⊕ Z8, Z∗5 = Z1 ⊕ Z2 ⊕ Z6 ⊕ Z7 ⊕ Z8,

Z∗2 = Z1 ⊕ Z2 ⊕ Z4 ⊕ Z5 ⊕ Z7 ⊕ Z8, Z∗6 = Z2 ⊕ Z3 ⊕ Z5 ⊕ Z7 ⊕ Z8,

Z∗3 = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z5 ⊕ Z6 ⊕ Z8, Z∗7 = Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z8,

Z∗4 = Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7, Z∗8 = Z1 ⊕ Z4 ⊕ Z5 ⊕ Z6 ⊕ Z7.

Below briefly describes the key schedule of Camellia. First two 128-bit variables KL and
KR are generated from the user key. Then two 128-bit variables KA andKB are generated
from KL and KR. Note that KB is used only when the user key is of 192 or 256 bits. The
round subkeys are generated by rotating KL,KR,KAand KB. Details are shown in [1].

3 4-Round Distinguishers

Choose
L0 = (α1, α2, · · · , α8), R0 = (x, β2, · · · , β8).

where x take values in F 8
2 , αi and βj are constants in F 8

2 . Thus, the input of 2nd round
can be written as follows:

L1 = (x⊕ γ1, γ2, · · · , γ8), R1 = (α1, α2, · · · , α8),

where γi are entirely determined by αi(1 ≤ i ≤ 8), βj(2 ≤ j ≤ 8) and k1, so γi are constants
when the user key is fixed. In the 2nd round a transformation on L1 using F (•, k2) is as
follows:

L1 = (x⊕ γ1, γ2, · · · , γ8)
F (•, k2)−−−−−−→ (y ⊕ θ1, y ⊕ θ2, y ⊕ θ3, θ4, y ⊕ θ5, θ6, θ7, y ⊕ θ8)

where y = s1(x ⊕ γ1 ⊕ k2,1), k2,1 is the first byte of k2, θi are entirely determined by
γi(1 ≤ i ≤ 8) and k2, thus θi are constants when the user key is fixed. Therefore, the output
of 2nd round is

L2 = (y ⊕$1, y ⊕$2, y ⊕$3, $4, y ⊕$5, $6, $7, y ⊕$8),

R2 = L1 = (x⊕ γ1, γ2, · · · , γ8),

where $i = θi⊕αi are constants. In the 3rd round a transformation on L2 using F (•, k3)is
as follows:

L2 = (y ⊕$1, y ⊕$2, y ⊕$3, $4, y ⊕$5, $6, $7, y ⊕$8)
F (•, k3)−−−−−−→ (z1, z2, · · · , z8).

Thus,we have the left half of output for the 3rd round:

L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

So the right half of output for the 4th round is as follows:

R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).
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Now we analyze the relations among bytes of R4. By observing the equation(z1, z2, · · · , z8) =
F (L2, k3), we get the following equations

z3 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4($7 ⊕ k3,7)⊕ σ1 (1)

z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕ z7 ⊕ z8 = s1(y ⊕$1 ⊕ k3,1)⊕ σ2 (2)

z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 = s3($6 ⊕ k3,6)⊕ σ3 (3)

z1 ⊕ z7 ⊕ z8 = s4($7 ⊕ k3,4)⊕ s3($6 ⊕ k3,6)⊕ σ4 (4)

z3 ⊕ z4 ⊕ z5 = s4($4 ⊕ k3,4)⊕ s2(y ⊕$2 ⊕ k3,2)⊕ s3($6 ⊕ k3,6)⊕ σ5 (5)

z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7 = s4($4 ⊕ k3,4)⊕ s3(y ⊕$3 ⊕ k3,3)⊕ s3($6 ⊕ k3,6)⊕ σ6 (6)

z2 ⊕ z5 = s4($4 ⊕ k3,4)⊕ s2(y ⊕$5 ⊕ k3,5)⊕ s3($6 ⊕ k3,6)⊕ σ7 (7)

z4 ⊕ z6 = s4($4 ⊕ k3,4)⊕ s1(y ⊕$8 ⊕ k3,8)⊕ s3($6 ⊕ k3,6)⊕ σ8 (8)

σi(1 ≤ i ≤ 8) in above equations are entirely determined by $i(1 ≤ i ≤ 8) and k3, so σi are
constants when the user key is fixed. Because s1 is a permutation, y = s1(x ⊕ γ1 ⊕ k2,1)
differs when x takes different values. As a consequence, s1(y⊕$1⊕ k3,1) will have different
values. Similarly,s2(y⊕$2⊕ k3,2), s3(y⊕$3⊕ k3,3), s2(y⊕$5⊕ k3,5) and s1(y⊕$8⊕ k3,8)
have the same property as s1(y ⊕ $1 ⊕ k3,1). Obviously, s4($4 ⊕ k3,4), s3($6 ⊕ k3,6) and
s4($7 ⊕ k3,7) are constants, Thus, from the above discussion we know that z3 ⊕ z4 ⊕ z5 ⊕
z6 ⊕ z7, z2 ⊕ z3 ⊕ z5 ⊕ z6 ⊕ z8 and z1 ⊕ z7 ⊕ z8 are constants, and z2 ⊕ z3 ⊕ z4 ⊕ z6 ⊕
z7 ⊕ z8, z3 ⊕ z4 ⊕ z5, z2 ⊕ z4 ⊕ z5 ⊕ z6 ⊕ z7, z2 ⊕ z5 and z4 ⊕ z6 each will have different
values when x takes different values. Therefore we get the following lemma by considering
R4 = L3 = (z1 ⊕ x⊕ γ1, z2 ⊕ γ2, z3 ⊕ γ3, · · · , z8 ⊕ γ8).

Lemma: Let P = (L0, R0) and P ∗
0 = (L∗0, R

∗
0) be two plaintexts of 4-round Camellia,

C = (L4, R4) and C∗
4 = (L∗4, R

∗
4) be the corresponding ciphertexts, R0,i denote the ith byte

of R0. If L0 = L∗0, R0,1 6= R∗
0,1, R0,j = R∗

0,j(2 ≤ j ≤ 8), then R4 and R∗
4 satisfy:

R4,3 ⊕R4,4 ⊕R4,5 ⊕R4,6 ⊕R4,7 = R∗
4,3 ⊕R∗

4,4 ⊕R∗
4,5 ⊕R∗

4,6 ⊕R∗
4,7 (1)

R4,2 ⊕R4,3 ⊕R4,5 ⊕R4,6 ⊕R4,8 = R∗
4,2 ⊕R∗

4,3 ⊕R∗
4,5 ⊕R∗

4,6 ⊕R∗
4,8 (2)

R4,2 ⊕R4,3 ⊕R4,4 ⊕R4,6 ⊕R4,7 ⊕R4,8 = R∗
4,2 ⊕R∗

4,3 ⊕R∗
4,4 ⊕R∗

4,6 ⊕R∗
4,7 ⊕R∗

4,8 (3)

R4,1 ⊕R4,7 ⊕R4,8 = R∗
4,1 ⊕R∗

4,7 ⊕R∗
4,8 (4)

R4,3 ⊕R4,4 ⊕R4,5 = R∗
4,3 ⊕R∗

4,4 ⊕R∗
4,5 (5)

R4,2 ⊕R4,4 ⊕R4,5 ⊕R4,6 ⊕R4,7 = R∗
4,2 ⊕R∗

4,4 ⊕R∗
4,5 ⊕R∗

4,6 ⊕R∗
4,7 (6)

R4,2 ⊕R4,5 = R∗
4,2 ⊕R∗

4,5 (7)

R4,4 ⊕R4,6 = R∗
4,4 ⊕R∗

4,6 (8)

The above properties in the lemma provide some efficient 4-round distinguishers. They will
be used to attack reduced-round Camellia.
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4 Attacks on Reduced-Round Camellia with 128 bit key

4.1 Attacking 6-round Camellia with 128 bit key
This section explains the attack on 6-round Camellia with 128-bit key in some detail.

First we recover the first byte k1,1 of k1 and the seventh byte k6,7 of k6 . From the key
schedule for 128-bit key, we know that k6,7[2 ∼ 8] = k1,1[1 ∼ 7], so we only need to guess 9
bits. Using the Property1, we construct the following algorithm to recover(k1,1, k6,7) :

Algorithm 1
Step1, For each possible value t of k1,1, choose two plaintexts P0t = (L0t

0, R0t
0) and

P1t = (L1t
0, R1t

0) as follows:

L0t
0 = (i0, α2, · · · , α8),

R0t
0 = (s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), s1(i0 ⊕ k1,1), β4, s1(i0 ⊕ k1,1), β6, β7, s1(i0 ⊕ k1,1)),

L1t
0 = (i1, α2, · · · , α8),

R1t
0 = (s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), s1(i1 ⊕ k1,1), β4, s1(i1 ⊕ k1,1), β6, β7, s1(i1 ⊕ k1,1)).

where αi and βj are constants, 0 ≤ i0 < i1 ≤ 255. The corresponding ciphertexts are
C0t = (L0t

6, R0t
6) and C1t = (L1t

6, R1t
6).

Step2, For each possible value of (t, k6,7), compute

40 = s4(R0t
6,7 ⊕ k6,7)⊕ (L0t

6,3 ⊕ L0t
6,4 ⊕ L0t

6,5 ⊕ L0t
6,6 ⊕ L0t

6,7,

41 = s4(R1t
6,7 ⊕ k6,7)⊕ (L1t

6,3 ⊕ L1t
6,4 ⊕ L1t

6,5 ⊕ L1t
6,6 ⊕ L1t

6,7.

Check if 40 equals 41. If so, record the corresponding value of (t, k6,7). Otherwise, move
to next value of (t, k6,7).

Step3, For the recorded value of (t, k6,7) in Step2, choose some other plaintexts P2t(6=
P0t, P1t), compute 42, and check if 42 equals 40, if so, record the corresponding value of
(t, k6,7), otherwise, discard the value of (t, k6,7). If there are more than one recorded value,
then repeat Step 3 on the newly recorded values.

Take q values at random over F 8
2 , the probability of that they are the same is 2−8(q−1) .

So invalid subkey will pass step2 with a probability 2−8 , and there are about 29 × 2−8 = 2
remaining values after step2. So the attack requires less than 3× 28chosen plaintexts. The
main time complexity of attack is from step2, where the time complexity of computing each
4 is about the same as the 1-round encryption, so the time complexity of attack is less than
29 encryptions.

Knowing k1,1, we can choose plaintexts such that the outputs of the first round meet
the requirement of distinguishers in section 3. Thus, R5 satisfies Property3, and from
R5 = L6 ⊕ F (R6, k6) and that s1(R6,1 ⊕ k6,1) is the result of XOR of the 2nd ,3rd ,4th
,6th,7th and 8th byte of F (R6, k6), we have

R5,2⊕R5,3⊕R5,4⊕R5,6⊕R5,7⊕R5,8 = L6,2⊕L6,3⊕L6,4⊕L6,6⊕L6,7⊕L6,8⊕s1(R6,1⊕k6,1).
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Using this equation and property (3), we can construct the following algorithm to recover
k6,1 :

Algorithm 2
Step1. Choose 64 plaintexts P i = (Li

0, R
i
0)(0 ≤ i ≤ 63) as follows:

Li
0 = (i, α2, · · · , α8),

Rt
0 = (s1(i⊕ k1,1), s1(i⊕ k1,1), s1(i⊕ k1,1), β4, s1(i⊕ k1,1), β6, β7, s1(i⊕ k1,1)).

where αi and βj are constants. Denote by Ci = (Li
6, R

i
6) the corresponding ciphertexts

of the above plaintexts.
Step2, For each possible value of k6,1, compute

4i = s1(Ri
6,1 ⊕ k6,1)⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,4 ⊕ L0i
6,6 ⊕ L0i

6,7 ⊕ L0i
6,8).

Check if there are collisions among 4i. If so, discard the value of k6,1. Otherwise, output
k6,1.

Step3, From the output values of k6,1 in Step2, choose some other plaintexts, and repeat
Step2.

The probability of at least one collision occurs when we throw 64 balls into 256 buckets
at random is larger than 1 − e−64(64−1)/2×28 ≥ 1 − 2−11 . So the probability of wrong
output (invalid subkey) in Step2 is less than 2−11. For the 256 possible values of k6,1, at
most 64 more plaintexts are needed in Step3. Thus, the attack requires less than 27 chosen
plaintexts and 212 encryptions.

Similarly, using property (2) and the plaintexts chosen in algorithm 2, we can recover
k6,6 by computing

4i = s3(Ri
6,6 ⊕ k6,6)⊕ (Li

6,2 ⊕ Li
6,3 ⊕ Li

6,5 ⊕ L0i
6,6 ⊕ L0i

6,8).

Check if 4i is a constant. If so, output the value of k6,6 , otherwise, discard the value of
k6,6 . Here the attack requires 210 encryptions.

And using k6,6 , property (4) and the plaintexts chosen in algorithm 2, we can recover
k6,4 by computing

4i = s4(Ri
6,4 ⊕ k6,4)⊕ s3(Ri

6,6 ⊕ k6,6)⊕ (Li
6,1 ⊕ Li

6,7 ⊕ Li
6,8).

and the attack requires 212 encryptions.
And using property (5) and the plaintexts chosen in algorithm 2, we can recover k6,2 by

computing

4i = s4(Ri
6,4 ⊕ k6,4)⊕ s2(Ri

6,2 ⊕ k6,2)⊕ s3(Ri
6,6 ⊕ k6,6)⊕ (Li

6,3 ⊕ Li
6,4 ⊕ Li

6,5).

and the attack requires 212 encryptions.
And using property (6) and the plaintexts chosen in algorithm 2, we can recover k6,3 by

computing

4i = s4(Ri
6,4 ⊕ k6,4)⊕ s3(Ri

6,3 ⊕ k6,3)⊕ s3(Ri
6,6 ⊕ k6,6)⊕ (Li

6,2 ⊕ Li
6,4 ⊕ Li

6,5 ⊕ Li
6,6 ⊕ Li

6,7).
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and the attack requires 212 encryptions.
And using property (7) and the plaintexts chosen in algorithm 2, we can recover k6,5 by

computing

4i = s4(Ri
6,4 ⊕ k6,4)⊕ s2(Ri

6,5 ⊕ k6,5)⊕ s3(Ri
6,6 ⊕ k6,6)⊕ (Li

6,2 ⊕ Li
6,5).

and the attack requires 212 encryptions.
And using property (8) and the plaintexts chosen in algorithm 2, we can recover k6,8 by

computing

4i = s4(Ri
6,4 ⊕ k6,4)⊕ s1(Ri

6,8 ⊕ k6,8)⊕ s3(Ri
6,6 ⊕ k6,6)⊕ (Li

6,4 ⊕ Li
6,6).

and the attack requires 212 encryptions.
Now we have recovered k1,1 and k6, using less than 210 chosen plaintexts and 6×212+210+

29 encryptions. Similarly, by decrypting the 6th round, we can recover k5. Therefore, the
attack on the 6-round Camellia requires less than 210 chosen plaintexts and 215 encryptions.

4.2 Attacking 7-round Camellia with 128 bit key
From the structure of the round function, we have

R6,7 = L7,7⊕s3(R7,3⊕k7,3)⊕s4(R7,4⊕k7,4)⊕s2(R7,5⊕k7,5)⊕s3(R7,6⊕k7,6)⊕s1(R7,8⊕k7,8).

Similar to algorithm 1 we can construct the following algorithm to recover k1,1 and
(k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) :

Algorithm3
Step1, For each possible value t of k1,1, Choose 7 plaintexts Pjt = (Ljt

0, Rjt
0)(1 ≤ j ≤ 7)

as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 = (s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), β4, s1(ij ⊕ k1,1), β6, β7, s1(ij ⊕ k1,1)).

where αi and βj are constants,(0 ≤ ij ≤ 255),and the the corresponding ciphertexts are
Cjt = (Ljt

7, Rjt
7).

Step2, For each fixed t, and for each possible value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8), First
compute 41 and 42, where

4j = s4(Rjt
6,7 ⊕ k6,7)⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7),

Rjt
6,7 = Ljt

7,7⊕s3(Rjt
7,3⊕k7,3)⊕s4(Rjt

7,4⊕k7,4)⊕s2(Rjt
7,5⊕k7,5)⊕s3(Rjt

7,6⊕k7,6)⊕s1(Rjt
7,8⊕k7,8).

Check if 41 equals 42. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) . Otherwise,
discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) .

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8), comput 43, check if 43 equals
41. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) . Otherwise, discard the value
of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) . Similar process will go through 44 up to 47 .
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Step3, For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) in Step2, choose some
other plaintexts P8t(6= Pjt, 1 ≤ j ≤ 7), compute48, check if48 equals41. If so, output the
value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8). Otherwise, discard the value of (t, k6,7, k7,3, k7,4, k7,5,

k7,6, k7,8). If there are more than one output value, then repeat Step3.
Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8) that can pass Step2 will be successful

with probability 2−48 . Thus it is likely that there is only one output value for any fixed
t after Step2, so there are about 28 different values after step2. Thus, the attack requires
7×28+28+28 = 9×28 chosen plaintexts. The main time complexity of the attack is in Step2,
and the time of computing each 4 is about the same as 1-round encryption, so the time
complexity of an attack is less than that of (2×28×248+28×240+28×233)×1/7 < 254+252

encryptions.
Now we have recovered k1,1and (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8),we can recover the other

bytes of k7, k6 andk5, so we can get the user key of 7-round Camellia, the attack requires
less than 212 chosen plaintexts and 254.5 encryptions.

4.3 Attacking 8-round Camellia with 128 bit key
Similar to algorithm 3,we can recover k1,1 and (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8). Given

k1,1, we can get 7 bits of k6,7 from the key schedule. Thus,(k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8)
have 2105 possible values. Here the attack requires 14 chosen plaintexts at step1 . Invalid
values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8) that pass Step2 will be successful with probability
2−104. There are about 29 output values of step2. So, the attack requires 212 chosen plain-
texts. The main time complexity of the attack is in step2, where the time of computing
each 4 is about the 2-round encryption, so the time complexity of the attack is less than
that of (2× 28 × 2105 + 28 × 297 + 28 × 290)× 1/4 < 2112 + 2103 + 296 encryptions. Now we
have recovered k1,1 and (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8), we can decrypt the 8th round and
recover the other bytes of k7, so we can get the user key of 8-round Camellia, the attack
requires less than 213 chosen plaintexts and 2112.1 encryptions.

4.4 Attacking 9-round Camellia with 128 bit key
If we use the 4-round distinguisher from the 2nd to the 5th rounds of encryption as in the

case of 8-round, then the time complexity of recovering 9-round Camellia key is larger than
2128 which is apparently useless. So we will use the 4-round distinguisher only from the 4th to
the 7th round. First guess k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8, When
(k1, k2,1, k2,2, k2,3, k2,5, k2,8) is given, we only need to guess 3 bits of (k9,3, k9,4, k9,5, k9,6, k9,8).

Algorithm 4
Step1, For each possible value t of (k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1), Choose 3 plaintexts

Pjt = (Ljt
0, Rjt

0)(1 ≤ j ≤ 3) such that

Ljt
2 = (ij , α2, · · · , α8),

Rjt
2 = (s1(ij ⊕ k3,1), s1(ij ⊕ k3,1), s1(ij ⊕ k3,1), β4, s1(ij ⊕ k3,1), β6, β7, s1(ij ⊕ k3,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding ciphertexts are
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Cjt = (Ljt
9, Rjt

9).
Step2, For each fixed value of t, and for each possible value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8),

compute 41 and 42, where

4j = s4(Rjt
8,7 ⊕ k8,7)⊕ (Rjt

9,3 ⊕Rjt
9,4 ⊕Rjt

9,5 ⊕Rjt
9,6 ⊕Rjt

9,7),

Rjt
8,7 = Ljt

9,7⊕s3(Rjt
9,3⊕k9,3)⊕s4(Rjt

9,4⊕k9,4)⊕s2(Rjt
9,5⊕k9,5)⊕s3(Rjt

9,6⊕k9,6)⊕s1(Rjt
9,8⊕k9,8).

Check if 41 equals 42. If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise,
discard the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).

For the output values of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8), comput 43 , check if 43 equals
41 . If so, output the value of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8). Otherwise, discard the value
of (k8,7, k9,3, k9,4, k9,5, k9,6, k9,8).

Step3, For the output values of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8) in Step2, Choose some
other plaintexts P4t(6= Pjt, 1 ≤ j ≤ 3), compute 44, check if 44 equals 41 . If so, output
the value of (t, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8) . Otherwise, discard the value of (t, k8,7, k9,3, k9,4,

k9,5, k9,6, k9,8). If there are more than one output value, then repeat Step3.
Wrong values will pass step2 successfully with probability 2−16 . Thus there are about

2123 × 2−16 = 2107 output values in step2. So, the attack requires less than 3× 2112 + 2108

chosen plaintexts. The main time complexity of the attck is in Step2, the time of computing
each 4 is about the 1-round encryption, so the time complexity of the attck is less than
(2× 2112 × 211 + 2116)× 1/9 < 2120 + 2119 + 2118 + 2117 encryptions.

Now we know k1, k2,1, k2,2, k2,3, k2,5, k2,8, k3,1, k8,7, k9,3, k9,4, k9,5, k9,6, k9,8, we can recover
the other bytes of k9 and get the user key of 9-round Camellia. The attack requires less
than 2113.6 chosen plaintexts and 2121 encryptions.

5 Attacks Reduced-Round Camellia with 192/256 bit key

5.1 Attacking 8-round Camellia with 192/256 bit key
First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8. When k1,1 is given, we can get 8 bits of

k8 from the key schedule. So we need guess 120 bits subkey. Similar to section 4.3, we
can attack 8-round camellia with 192/256-bit key, requiring 213 chosen plaintexts and 2111.1

encryptions.

5.2 Attacking 9-round Camellia with 192/256 bit key
First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9. When k1,1 is given, we can get 8 bits

of k8 from the key schedule. So we need guess 176 bits subkey. Using property1we can
construct the following algorithm:

Algorithm 5
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Step1, For each possible value t of k1,1, Choose 22 plaintexts Pjt = (Ljt
0, Rjt

0)(1 ≤ j ≤
22) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 = (s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), β4, s1(ij ⊕ k1,1), β6, β7, s1(ij ⊕ k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding ciphertexts are
Cjt = (Ljt

9, Rjt
9).

Step2, For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9)
, First compute compute 41 and 42, where

4j = s4(Rjt
6,7 ⊕ k6,7)⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7),

and
Ljt

7 = Rjt
8, Rjt

7 = Ljt
8 ⊕ F (Rjt

8, k8), Ljt
8 = Rjt

9, Rjt
8 = Ljt

9 ⊕ F (Rjt
9, k9),

Rjt
6,7 = Ljt

7,7⊕s3(Rjt
7,3⊕k7,3)⊕s4(Rjt

7,4⊕k7,4)⊕s2(Rjt
7,5⊕k7,5)⊕s3(Rjt

7,6⊕k7,6)⊕s1(Rjt
7,8⊕k7,8).

Check if 41 equals 42. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) .
Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), comput 43 , check if 43

equals41 . If so, output the value of(k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). Otherwise, discard
the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). Similar process will go through 44 up to
422 .

Step3, For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) in Step2, choose
some other plaintexts P23t(6= Pjt, 1 ≤ j ≤ 22) , compute 423, check if 423 equals 41. If
so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). Otherwise, discard the value
of(t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9). If there are more than one output value, then repeat
Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9) that can pass Step2 will be success-
ful with probability 2−168 . Thus it is likely that there is only one output value for any fixed
t after Step2, so there are about 28 different values after step2. Thus, the attack requires
22× 28 + 28 + 28 = 3× 211 chosen plaintexts. The main time complexity of the attack is in
Step2, and the time of computing each 4 is about the same as 3-round encryption, so the
time complexity of an attack is less than that of (2×28×2168 +28×2160 +28×2153)×1/3 <

2175 + 2174 encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9), we can decrypt the ninth

and eighth round and recover the other bytes of k7 and get the user key of 9-round Camellia.
The attack requires less than 213 chosen plaintexts and 2175.6 encryptions.

5.3 Attacking 10-round Camellia with 192/256 bit key
First guess k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10. When k1,1is given, we can get 8

bits of k8 from the key schedule. So we need guess 240 bits subkey. Using property (1) we
construct the following algorithm:
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Algorithm 6
Step1, For each possible value t of k1,1, Choose 30 plaintexts Pjt = (Ljt

0, Rjt
0)(1 ≤ j ≤

30) as follows:

Ljt
0 = (ij , α2, · · · , α8),

Rjt
0 = (s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), s1(ij ⊕ k1,1), β4, s1(ij ⊕ k1,1), β6, β7, s1(ij ⊕ k1,1)).

where αi and βj are constants, 0 ≤ ij ≤ 255, and the the corresponding ciphertexts are
Cjt = (Ljt

10, Rjt
10).

Step2, For each fixed value of t, for each possible value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9,

k10) , First compute 41 and 42, where

4j = s4(Rjt
6,7 ⊕ k6,7)⊕ (Rjt

7,3 ⊕Rjt
7,4 ⊕Rjt

7,5 ⊕Rjt
7,6 ⊕Rjt

7,7),

and
Ljt

7 = Rjt
8, Rjt

7 = Ljt
8 ⊕ F (Rjt

8, k8),

Ljt
8 = Rjt

9, Rjt
8 = Ljt

9 ⊕ F (Rjt
9, k9),

Ljt
9 = Rjt

10, Rjt
9 = Ljt

10 ⊕ F (Rjt
10, k10),

Rjt
6,7 = Ljt

7,7⊕s3(Rjt
7,3⊕k7,3)⊕s4(Rjt

7,4⊕k7,4)⊕s2(Rjt
7,5⊕k7,5)⊕s3(Rjt

7,6⊕k7,6)⊕s1(Rjt
7,8⊕k7,8).

Check if 41 equals 42. If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) .
Otherwise, discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10).

For the output values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10), compute 43 , check if
43 equals41 . If so, output the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10). Otherwise,
discard the value of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10). Similar process will go through
44 up to 430 .

Step3, For the output values of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) in Step2, choose
some other plaintexts P31t(6= Pjt, 1 ≤ j ≤ 30) , compute 431, check if 431 equals 41. If
so, output the value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10). Otherwise, discard the
value of (t, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10). If there are more than one output value,
then repeat Step3.

Invalid values of (k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10) that can pass Step2 will be suc-
cessful with probability 2−232 . Thus it is likely that there is only one output value for
any fixed t after Step2, so there are about 28 different values after step2. Thus, the attack
requires 30×28 +28 +28 = 213 chosen plaintexts. The main time complexity of the attack is
in Step2, and the time of computing each 4 is about the same as 4-round encryption, so the
time complexity of an attack is less than that of (2×28×2232+28×2224+28×2217)×4/10 <

2239 + 2238 + 2237 encryptions.
Now we have known (k1,1, k6,7, k7,3, k7,4, k7,5, k7,6, k7,8, k8, k9, k10),we can decrypt the

tenth,ninth and eighth round and recover the other bytes of k7 and get the user key of
10-round Camellia. The attack requires less than 214 chosen plaintexts and 2239.9 encryp-
tions.
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6 Concluding remarks

In this paper we have shown 4-round distinguishers of Camellia, and discussed the security
of Camellia by using the 4-round distinguishers and collision-searching techniques. The
following table compares the performance of some known attacks on Camellia.

Table 1. Comparison of attacks on reduced− round Camellia

Rounds FL/FL−1 Methods Plaintexts Time Notes

6 No Square attack 256 256 Ref[10]

6 No Higher Order DC 217 218 Ref[4]

6 No Collision attack 210 215 This paper(128-bit key)

7 No Truncated DC 282.6 192 Ref[6]

7 No Higher Order DC 219 257 Ref[5]

7 Yes Square attack 256.2 257.2 Ref[11]

7 No Collision attack 212 254.5 This paper(128-bit key)

8 No Truncated DC 283.6 255.6 Ref[6]

8 No Higher Order DC 220 2120 Ref[5]

8 Yes Square attack 259 2116 Ref[11]

8 No Collision attack 213 2112.1 This paper(128-bit key)

8 No Collision attack 213 2111.1 This paper(192/256-bit key)

9 Yes/No Higher Order DC 221 2188 Ref[5]

9 Yes Square attack 260 2181.4 Ref[11]

9 No Collision attack 2113.6 2121 This paper(128-bit key)

9 No Collision attack 213 2175.6 This paper(192/256-bit key)

10 No Higher Order DC 221 2252 Ref[5]

10 Yes Square attack 260.6 2246.3 Ref[11]

10 No Collision attack 214 2239.9 This paper(192/256-bit key)

11 Yes/No Higher Order DC 293 2255.6 Ref[5]
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