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1 Introduction 
This manual describes in detail how to write optimized code, with particular focus on the 
Intel Pentium® family of microprocessors and the assembly language. 
 
Most of the information herein is based on my own research. Many people have sent me 
useful information and corrections for this manual, and I keep updating it whenever I have 
new important information. This manual is therefore more accurate, detailed, 
comprehensive and exact than other sources of information; and it contains many details 
not found anywhere else. This information will enable you in many cases to calculate 
exactly how many clock cycles a piece of code will take. I do not claim, though, that all 
information in this manual is exact. Some timings etc. can be difficult or impossible to 
measure exactly, and I do not have access to the inside information on technical 
implementations that the writers of Intel manuals have. Mechanistic explanations in this 
manual should be regarded as a model which is useful for predicting microprocessor 
behavior. I have no way of knowing whether it is in accordance with the actual physical 
structure of the microprocessors. The only purpose of providing this information here is to 
enable programmers to optimize their code. My findings are sometimes in disagreement 
with data published by Intel. Reasons for this discrepancy might be that Intel data are 
theoretical while my data are obtained experimentally under a particular set of testing 
conditions. It is possible that different testing conditions may lead to different results. Most 
tests are done in 32-bit protected mode without interrupts. Far jumps and calls are tested in 
16-bit mode. 
 
Some of the remarks in this manual may seem like a criticism of Intel. This should not be 
taken to mean that other brands are better. The Pentium family of microprocessors are 
better documented and have better testability features. For these reasons, no competing 
brand has been subjected to the same level of independent research by me or by anybody 
else. I am therefore not able to tell which brand is best. 
 



Programming in assembly language is much more difficult than high-level language. Making 
bugs is very easy, and finding them is very difficult. Now you have been warned! It is 
assumed that the reader is already experienced in assembly programming. If not, then 
please read some books on the subject and get some programming experience before you 
begin doing complicated optimizations. A good textbook on the subject is "Introduction to 
80x86 Assembly Language and Computer Architecture" by R. C. Detmer, 2004. 
 
Please don't send your programming questions to me, I am not gonna do your homework 
for you! There are various discussion forums on the Internet where you can get answers to 
your programming questions if you cannot find the answers in the relevant books and 
manuals. 
 
Good luck with your hunt for nanoseconds! 
 

1.1 Assembly language syntax 
The assembly language syntax used in this manual is MASM syntax. MASM - the Microsoft 
assembler - is now available for free. It is the most advanced and most used assembler 
available, and the MASM syntax has always been a de facto standard. Textbooks and 
manuals use this syntax, and most C++ compilers can translate C++ code to assembly code 
with MASM syntax. (Some versions of the Gnu C++ compiler can only produce AT&T syntax 
assembly code). 
 
There are two different versions of MASM syntax. MASM implementations up to version 
5.10 use a somewhat lax syntax with incomplete syntax checking. Most of the problems and 
ambiguities in the older syntax have been resolved in MASM version 6 and later, which 
uses a slightly different syntax. The old MASM 5.10 syntax is still supported in later versions 
of MASM when appropriate options are set. 
 
The Borland assembler, called TASM, supports MASM 5.10 syntax but not MASM 6.x 
syntax (TASM is no longer commercially available). Many other assemblers with non-
standardized syntaxes are listed at Programmer's heaven. An open source assembler that 
runs under several operating systems and supports MASM syntax stands high on my wish 
list. 
 
MASM 6.x is designed to run under 32-bit Windows. See page 22 for instructions on how to 
use MASM under Linux and similar operating systems. 
 
All examples in this manual work with MASM 5.x, MASM 6.x and TASM. Instructions not 
covered by older assemblers can be emulated with the macros available from 
www.agner.org/assem/macros.zip. 
 
MASM syntax manuals can be found at Microsoft's MSDN library and at Randal Hyde's 
assembly page. 
 

1.2 Microprocessor versions covered by this manual 
The following versions of Intel x86-family microprocessors are discussed in this manual: 
 

Name Abbreviation 
Pentium (without name suffix) P1 
Pentium MMX PMMX 
Pentium Pro PPro 
Pentium II P2 
Pentium III P3 
Pentium 4 P4 

 

http://www.programmersheaven.com/zone5/cat25/index.htm
http://www.agner.org/assem/macros.zip
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vcmasm/html/vcoriMicrosoftAssemblerMacroLanguage.asp
http://webster.cs.ucr.edu/Page_TechDocs/0_techdocs.html
http://webster.cs.ucr.edu/Page_TechDocs/0_techdocs.html


The name Celeron applies to Pentium II and later models with less cache than the standard 
versions. The name Xeon applies to Pentium II and later models with more cache than the 
standard versions. 
 
The P1 and PMMX processors represent the fifth generation in the Intel x86 series of 
microprocessors, and their processor kernels are very similar. PPro, P2 and P3 all have the 
sixth generation kernel. These three processors are almost identical except for the fact that 
new instructions are added to each new model. P4 is the first processor in the seventh 
generation which, for obscure reasons, is not called seventh generation in Intel documents. 
Quite unexpectedly, the generation number returned by the CPUID instruction in the P4 is 
not 7 but 15. The reader should be aware that the 5'th, 6'th and 7'th generation micro-
processors behave very differently. What is optimal for one generation may not be optimal 
for the others. 
 

2 Getting started with optimization  

2.1 Speed versus program clarity and security 
Current trends in software technology go in the direction of ever more abstract and high-
level programming techniques and languages. The motivations behind this trend are: faster 
development, easier maintenance, and safer code. A typical programmer spends more time 
finding errors and making additions and modifications than on writing new code. Therefore, 
most software is written in high-level languages that are easier to document and maintain. 
The backside of the coin is that the code gets slower and the demands on hardware 
performance gets bigger and bigger, as the ever more complex intermediate layers 
separate the programmer's code from the hardware. Large runtime modules, emulators and 
virtual machines consume large amounts of hard disk space and RAM memory. The result 
is that the programs take long time to install, long time to load, and long time to execute. 
 
At the opposite extreme, we have assembly language, which produces very compact and 
fast code, but is very difficult to debug and maintain and is very vulnerable to programming 
errors. 
 
A good compromise is provided by the C++ programming language. C++ has all the 
advanced features of a high-level language, but it has also inherited the low-level features 
of the old C language. You can use the most advanced high-level programming techniques 
in most of your software project for reasons of maintainability and security, and still have 
access to use low-level techniques in the innermost loop where speed is critical. 
 
The security problems of low-level programming should not be ignored, however. Many of 
the software crashes and security holes that plague contemporary software are due to the 
unsafe features that C++ has inherited from C, such as absence of array bounds checking, 
uninitialized pointers, pointer arithmetic, pointer type casting, and memory leaks. Some 
programmers prefer to use other programming languages to avoid these problems, but most 
of the security problems in C++ can be avoided by using safer programming techniques. 
Some good advices for safe C++ programming are: 

• use references rather than pointers 
• use string objects rather than character arrays 
• use container classes rather than arrays (useful container classes are provided in 

the standard template library) 
• avoid dynamic memory allocation (new, delete) except in well-tested container 

classes 
• avoid functions that write to parameters through void pointers or variable argument 

lists, such as memcpy and scanf. 
• encapsulate everything in classes with well-defined interfaces and responsibilities 
• use systematic testing methods 

 



You may deviate from these advices in critical parts of the code where speed is important, 
but make sure the unsafe code is limited to well-tested functions or modules with a well-
defined interface to the rest of the program. 
 
Assembly language is, of course, even more unsafe and difficult to maintain. Assembly 
language should therefore be used only in the most critical part of your program, and only if 
it provides a significant improvement in speed. The assembly code should be confined to a 
well-tested function, module or library with a well-defined interface to the calling program. 
 

2.2 Choice of programming language 
Before starting a new software project, you have to decide which programming language to 
use. Low-level languages are good for optimizing execution speed or program size, while 
high-level languages are good for making clear and well-structured code.   
 
Today, most universities teach Java as the first programming language for pedagogical 
reasons. The advantages of Java are that it is consistent, well structured, and portable. But 
it is not fast, because in most cases it runs on a virtual Java machine that interprets code 
rather than executing it. If execution speed is important, then the best choice will be C++. 
This language has the best of both worlds. The C++ language has more features and 
options than most other programming languages. Advanced features like inheritance, 
polymorphism, macros, template libraries and exception handling enable you to make well-
structured and reusable code at a high level of abstraction. On the other hand, the C++ 
language is a superset of the old C language, which gives you access to fiddle with every bit 
and byte and to use low-level programming techniques. 
 
C++ is definitely the language of choice if you want to make part of your project in assembly 
language. C++ has excellent features for integrating with assembly: 

• C++ links easily with assembly modules 
• C++ uses simple data structures that are also available in assembly 
• most C++ compilers can translate from C++ to assembly 
• most C++ compilers support inline assembly and direct access to registers and flags 
• some C++ compilers have "intrinsic functions" that translate directly to XMM 

instructions 
 
It is possible to call assembly language modules from other compiled languages such as 
Pascal, Fortran, Basic and C#, but this is usually more complicated than with C++. Strings 
and arrays may have to be translated to the appropriate format, and it may be necessary to 
encapsulate the assembly module into a dynamic link library (DLL). 
 
Combining assembly code with Java is even more difficult because Java is usually not 
compiled into executable code but to an intermediate code that runs on an emulated virtual 
Java machine. 
 
See page 23 for details on how to call assembly language modules from various high level 
languages. 
 

2.3 Choice of algorithm 
The first thing to do when you want to optimize a piece of software is to find the best 
algorithm. Optimizing a poor algorithm is a waste of time. So don't even think of converting 
your code to assembly before you have explored all possibilities for optimizing your 
algorithm and the implementation of your algorithm. 
 



2.4 Memory model 
The Pentiums are designed primarily for 32-bit code, and the performance is inferior on 16-
bit code. Segmenting your code and data also degrades performance significantly, so you 
should generally prefer 32-bit flat mode, and an operating system that supports this mode. 
The code examples shown in this manual assume a 32-bit flat memory model, unless 
otherwise specified.  
 

2.5 Finding the hot spots 
Before you try to optimize anything, you have to identify the critical parts of your program. 
Often, more than 99% of the CPU time is spent in the innermost loop of a program. If this is 
the case then you should isolate this hot spot in a separate subroutine that you can optimize 
for speed, while the rest of your program can be optimized for clarity and maintainability. 
 
You may translate the critical subroutine to assembly and leave everything else in high-level 
language. Many assembly programmers waste a lot of energy optimizing the wrong parts of 
their programs. There are even people who make entire Windows programs in assembly. 
Most of the code in a typical program goes to the user interface and to calling system 
routines. A user interface with menus and dialog boxes is certainly not something that is 
being executed a thousand times per second. People who try to optimize something like this 
in assembly may be spending hours - or more likely months - making the program respond 
ten nanoseconds faster to a mouse click on a system where the screen is refreshed 60 
times per second. There are certainly better ways of investing your programming skills! The 
same applies to program sections that consist mainly of calls to system routines. Such calls 
are usually well optimized by C++ compilers and there is no reason to use assembly 
language here. 
 
Assembly language should be used only for loops that are executed so many times that it 
really matters in terms of CPU time, and that is very many. A 2 GHz Pentium 4 can do 6· 109 
integer additions per second. So it is probably not worth the effort to optimize a loop that 
makes "only" one million integer operations. It will suffice to change from Java to C++. 
 
Typical applications where assembly language can be useful for optimizing speed include 
processing of sound and images, compression and encryption of large amounts of data, 
simulation of complex systems, and mathematical calculations that involve iteration. The 
speed of such applications can sometimes be increased manyfold by conversion to 
assembly. 
 
Assembly language is also useful when optimizing code for size. This is typically used in 
embedded systems where a piece of code has to fit into a ROM or flash RAM. Using 
assembly language for optimizing an application program for size is not worth the effort 
because data storage is so cheap. 
 
If it is not obvious where the critical parts of your program are then you may use a profiler to 
find them. If it turns out that the bottleneck is disk access, then you may modify your 
program to make disk access sequential in order to improve disk caching, rather than 
turning to assembly programming. If the bottleneck is graphics output then you may look for 
a way of reducing the number of calls to graphic procedures or a better graphics library. 
 
Some high level language compilers offer relatively good optimization for specific 
processors, but in most cases further optimization by hand can make it much better. When 
the possibilities for optimizing in C++ have been exhausted, then you can make your C++ 
compiler translate the critical subroutine to assembly, and do further optimizations by hand. 
 



2.6 Literature 
A lot of useful literature can be downloaded for free from Intel's web site or acquired in print 
or on CD-ROM. It is recommended that you study this literature in order to get acquainted 
with the microprocessor instruction set. However, the documents from Intel are not always 
accurate. Especially the first Pentium tutorials had many errors. 
 
The most important manuals are "Intel Pentium 4 and Intel Xeon Processor Optimization 
Reference Manual", and "IA-32 Intel Architecture Software Developer's Manual, Volume 2: 
Instruction Set Reference". I will not give the URL's here because the file locations change 
very often. You can find the documents you need by using the search facilities at: 
developer.intel.com or follow the links from www.agner.org/assem.  
 
VTUNE is a software tool from Intel for optimizing code. I have not tested it and can 
therefore not give any evaluation of it here.  
 
A lot of other sources than Intel also have useful information. These sources are listed in the 
FAQ for the newsgroup comp.lang.asm.x86. For other internet resources follow the links 
from www.agner.org/assem. 
 
Some useful textbooks are "Introduction to 80x86 Assembly Language and Computer 
Architecture" by R. C. Detmer, 2001; and "Computer Architecture: A Quantitative Approach" 
by J. L. Hennessy and D. A. Patterson, 3'rd ed. 2002. 
 

3 Optimizing in C++ 
Here, I will give you some general advices for improving the speed of C++ code. Most of 
these advices apply to other compiled programming languages as well. 
 

3.1 Use optimization options 
Study the optimization options provided by your compiler and use the ones that are 
applicable to your project. Turn off all debugging options when you are finished using them 
and want to make the final distributable code. 
 

3.2 Identify the most critical parts of your code 
In computation-intensive software programs, you will often find that 99% of the CPU time is 
used in the innermost loop. Identifying the most critical part of your software is therefore 
necessary if you want to improve the speed of computation. Optimizing less critical parts of 
your code will not only be a waste of time, it also makes your code less clear, and less easy 
to debug and maintain. If it is not obvious which part of your code is most critical, then you 
may use a profiler. If you don't have a profiler, then set up a number of counter variables 
that are incremented at different places in your code to see which part is executed most 
times. 
 
Study the algorithm used in the critical part of your code and see if it can be improved. Often 
you can gain more speed simply by optimizing the algorithm than by any other optimization 
method. 
 

3.3 Break dependence chains 
Modern microprocessors can do out-of-order execution. This means that if a piece of 
software specifies the calculation of A and then B, and the calculation of A is slow, then the 
microprocessor can begin the calculation of B before the calculation of A is finished. 
Obviously, this is only possible if the value of A is not needed for the calculation of B. 
 

http://developer.intel.com/
http://www.agner.org/assem
http://www.agner.org/assem


In order to take advantage of out-of-order execution, you have to avoid long dependence 
chains. A dependence chain is a series of calculations, where each calculation depends on 
the result of the preceding one. Consider the following example, which calculates the sum of 
100 numbers: 
 

double list[100], sum = 0.; 
for (int i = 0; i < 100; i++) sum += list[i]; 

 
This is a long dependence chain. If a floating-point addition takes 5 clock cycles, then this 
loop will take approximately 500 clock cycles. You can improve the performance 
dramatically by splitting the dependence chain in two: 
 

double list[100], sum1 = 0., sum2 = 0.; 
for (int i = 0; i < 100; i += 2) { 
   sum1 += list[i]; 
   sum2 += list[i+1];} 
sum1 += sum2; 

 
If the microprocessor is doing an addition to sum1 from time T to T+5, then it can do another 
addition to sum2 from time T+1 to T+6, and the whole loop will take only 256 clock cycles. 
 

3.4 Use local variables 
Variables and objects that are declared inside a function, and not static, will be stored on 
the stack. The same applies to function parameters. The memory space occupied by these 
variables is released when the function returns, and can be reused by the next function. 
Using the same memory space again and again makes the caching of memory more 
efficient. Unless you have very big arrays and objects on your stack, you can be almost 
certain that your local variables are in the level-1 cache inside the microprocessor, from 
where they can be accessed many times faster than other parts of the memory. Static and 
global variables and objects are stored at a fixed place in memory, and are less likely to be 
cached. 
 
If you need global variables then you may make these variables part of a class and access 
them through member functions. This may save space in the level-2 cache and the trace 
cache because addresses relative to the 'this' pointer can be expressed with an 8-bit or 
16-bit offset, while absolute addresses require 32 bits. The drawback is that extra code is 
required for transferring the 'this' pointer to the member functions and that the 'this' 
pointer uses one register which might otherwise be used for other purposes. 
 
Allocating objects with new or malloc is inefficient, and should be avoided where possible. 
For example, a first-in-first-out queue can be implemented in an array with wrap-around, 
rather than a linked list. If you are using container class templates, then make your own 
templates that do not use dynamic memory allocation. Dynamic arrays can be made more 
efficiently with alloca than with new or malloc. 
 

3.5 Use array of structures rather than structure of arrays 
Variables that are used together should preferably be stored near each other in order to 
improve caching. If you have two arrays, a and b, and the elements are accessed in the 
order a[0], b[0], a[1], b[1], ... then you may improve the performance by making an 
array of a structure which contains one a and one b. 
 

3.6 Alignment of data 
A variable is accessed most efficiently if it is stored at a memory address which is divisible 
by the size of the variable. For example, a double takes 8 bytes of storage space. It should 



therefore preferably be stored at an address divisible by 8. The size should always be a 
power of 2. Objects bigger than 16 bytes should be stored at an address divisible by 16. 
 
Not all compilers give you access to control data alignment. But you can control the 
alignment of structure and class members. Consider this structure: 
 

struct abc { 
   unsigned char a;    // takes 1 byte storage 
   int b;              // 4 bytes storage 
   double c;           // 8 bytes storage 
} x; 

 
Assume that x is stored at address N, which is divisible by 8. Then x.a will be at address N, 
x.b at address N+1, and x.c at address N+5. So x.b and x.c will not be properly aligned. 
You may change the structure definition to: 
 

struct abc { 
   double c;           // 8 bytes storage 
   int b;              // 4 bytes storage 
   unsigned char a;    // 1 byte storage 
   char unused[3];     // fill up to 16 bytes 
} x; 

 
Now all elements are properly aligned, provided that x is aligned by 8. The 3 extra unused 
characters make sure that if you have an array of structures, then all elements in the array 
will be properly aligned. 
 

3.7 Division 
Division takes much longer time than addition, subtraction and multiplication. You should 
therefore minimize the number of divisions. 
 
You can divide an integer by 2n by shifting the binary number n places to the right. All 
modern compilers will use this trick if the divisor is a power of 2 and known as a constant at 
compile time. Likewise, multiplication by a power of 2 will be done using a left shift. The 
method is simpler if the dividend is unsigned. Example: 
 

int n = 1000; 
int divisor = 8; 
int fraction = n / divisor; 

 
Change this to: 
 

int n = 1000; 
const int divisor = 8; 
int fraction = (unsigned)n / divisor;    // (will do n >> 3) 

 
Making divisor a const (or simply writing 8 instead of divisor) makes sure that the 
compiler can use this optimization. Making n unsigned improves the code even further 
(assuming that you are certain that n can never be negative). 
 
Floating-point division by a constant should be done by multiplying with the reciprocal: 
 

double n; 
double divisor = 1.2345; 
double fraction = n / divisor; 

 
Change this to: 
 

double n; 



const double factor = (1. / 1.2345); 
double fraction = n * factor; 

 
The compiler will calculate 1./1.2345 at compile time and insert the reciprocal in the code, 
so you will never spend time doing the division. In fact, any expression that contains only 
constants and does not involve function calls, will be evaluated by the compiler and 
replaced by the result. 
 
Divisions can sometimes be eliminated completely. For example: 
 

if (a > b / c) 
 
can often be replaced by 
 

if (a * c > b) 
 
Pitfalls: The inequality sign must be reversed if c < 0. The division is inexact if b and c are 
integers, while the multiplication is exact. The multiplication may cause overflow. 
 
Multiple divisions can be combined. For example,  a1/b1 + a2/b2  should be replaced by 
(a1*b2 + a2*b1) / (b1*b2)  which has one division instead of two. The trick of using 
a common denominator can even be used on completely independent divisions. Example: 
 

double a1, a2, b1, b2, y1, y2; 
y1 = a1 / b1; 
y2 = a2 / b2; 

 
This can be changed to: 
 

double a1, a2, b1, b2, y1, y2, reciprocal_divisor; 
reciprocal_divisor = 1. / (b1 * b2); 
y1 = a1 * b2 * reciprocal_divisor; 
y2 = a2 * b1 * reciprocal_divisor; 

 
You can even do four divisions in one: 
 

double a1, a2, a3, a4, b1, b2, b3, b4, y1, y2, y3, y4; 
y1 = a1 / b1; 
y2 = a2 / b2; 
y3 = a3 / b3; 
y4 = a4 / b4; 

 
can be replaced by: 
 

double a1, a2, a3, a4, b1, b2, b3, b4, y1, y2, y3, y4; 
double b12, b34, reciprocal_divisor; 
b12 = b1 * b2;  b34 = b3 * b4; 
reciprocal_divisor = 1. / (b12 * b34); 
y1 = a1 * b2 * b34 * reciprocal_divisor; 
y2 = a2 * b1 * b34 * reciprocal_divisor; 
y3 = a3 * b4 * b12 * reciprocal_divisor; 
y4 = a4 * b3 * b12 * reciprocal_divisor; 

 
It is not recommended to combine more than four divisions; because the time saved by 
having only one division will be spent on the increased number of multiplications. 
 

3.8 Function calls 
When a function with parameters is called, the parameters are stored on the stack by the 
caller and read again by the called function. This causes some delay if a parameter is part 



of a critical dependence chain, especially on the P4 processor. There are several alternative 
ways to avoid this: 
 

1. keep the most critical dependence chain entirely inside one function 
 

2. use inline functions. An inline function will be expanded like a macro without 
parameter transfer, if possible. 
 

3. use #define macros with parameters instead of functions.  
But beware that macro parameters are evaluated every time they are used. 
Example: 
  #define max(a,b) (a > b ? a : b) 
  y = max(sin(x),cos(x)); 
In this example, sin(x) and cos(x) are both calculated twice because the macro 
is referencing them twice. This is certainly not optimal. 
 

4. declare functions __fastcall. The first two or three (depending on compiler) 
integer parameters will be transferred in registers rather than on the stack when the 
function is declared __fastcall. Floating-point parameters are always stored on 
the stack. The implicit 'this' pointer in member functions (methods) is also treated 
like a parameter, so there may be only one free register left for transferring your 
parameters. Therefore, make sure that the most critical integer parameter comes 
first when you are using __fastcall. 
 

5. declare functions static. Static functions have no external linkage. This enables 
the compiler to optimize across function calls. 

 
Your compiler may ignore the optimization hints given by the inline and static 
modifiers, while __fastcall is certain to have an effect on the first one or two integer 
parameters. Using #define macros is likely to have an effect on floating-point parameters 
as well. 
 
If a large object is transferred to a function as a parameter, then the entire object is copied. 
The copy constructor is called if there is one. If copying the object is not necessary for the 
logic of your algorithm, then you can save time by transferring a pointer or reference to the 
object rather than a copy of the object, or by making the function a member of the object's 
class. Whether you choose to use a pointer, a reference, or a member function, is a matter 
of programming style. All three methods will produce the same compiled code, which will be 
more efficient than copying the object. In general, pointers, references, and member 
functions are quite efficient. Feel free to use them whenever it is useful for the logic 
structure of your program. Function pointers and virtual functions are somewhat less 
efficient. 
 

3.9 Conversion from floating-point numbers to integers 
According to the standards for the C++ language, all conversions from floating-point 
numbers to integers use truncation towards zero, rather than rounding. This is unfortunate 
because truncation takes much longer time than rounding on most microprocessors. It is 
beyond my comprehension why there is no round function in standard C++ libraries. If you 
cannot avoid conversions from float or double to int in the critical part of your code, 
then you may make your own round function using assembly language: 
 

inline int round (double x) { 
   int n; 
   __asm fld x; 
   __asm fistp n; 
   return n;} 
 



This code is not portable, and will work only on Intel-compatible microprocessors. The round 
function is also available in the function library at www.agner.org/assem/asmlib.zip. 
 
The P3 and P4 processors have fast truncation instructions, but these instructions are not 
compatible with previous microprocessors and can therefore only be used in code that is 
written exclusively for these microprocessors. 
 
Conversion of unsigned integers to floating-point numbers is also slow. Use signed integers 
for efficient conversion to float. 
 

3.10 Character arrays versus string objects 
Modern C++ libraries define a class named string or CString which facilitates the 
manipulation of text strings. These classes use dynamic memory allocation and are much 
less efficient than the old method of using character arrays for text strings. If you don't know 
how to do this, then find the explanation in an old C++ textbook, or study the documentation 
for the functions strcpy, strncpy, strcat, strlen, strcmp, sprintf. But character 
arrays are not protected against overflow. If security is important then use string objects. If 
speed is important then use character arrays and remember that it is your own responsibility 
that the length of a string never exceeds the length of the array minus 1. 
 

4 Combining assembly and high level language 
Before you start to code a function in assembly language, you should code it in C++, using 
the optimization guidelines given in the previous chapter (page 8). Only the most critical part 
of your program needs to be optimized using assembly language. 
 

4.1 Inline assembly 
The simplest way to combine C++ and assembly language is to inert inline assembly in the 
C++ code. See the compiler manual for syntax details.  
 
Note that not all registers can be used freely in inline assembly. To be safe, avoid modifying 
EBP, EBX and ESP. It is recommended to let the C++ compiler make an assembly file so you 
can check if the inline assembly code interfaces correctly with the surrounding C++ code 
and that no reserved register is modified without saving. See the chapters below on register 
usage. 
 
The C++ compiler may interpret the most common assembly instructions using a built-in 
assembler. But in many cases the compiler needs to translate all the surrounding C++ code 
to assembly and run everything through an assembler. It may be possible to specify which 
assembler to use for inline assembly, but the assembler must be compatible with the 
assembly generated by the compiler as well as with the inline assembly. 
 
If you are using the Gnu compiler, you have to use the primitive AT&T syntax for inline 
assembly or move the assembly code to a separate module. 
 
An alternative to inline assembly is to make entire functions in separate assembly language 
modules. This gives better control of register use and function prolog and epilog code. The 
following chapters give more details on how to make assembly language modules that can 
be linked into high level language programs. 
 

4.2 Calling conventions 
An application binary interface (ABI) is a set of standards for programs running under a 
particular system. When linking assembly language modules together with modules written 

http://www.agner.org/assem/asmlib.zip


in other programming languages, it is essential that your assembly code conform to all 
standards. It is possible to use your own standards for assembly procedures that are called 
only from other assembly procedures, but it is highly recommended to follow as many of the 
existing standards as possible. On the 32-bit Intel x86-compatible platform, there are 
several different conventions for transferring parameters to procedures: 
 
calling convention parameter order on stack parameters removed by 

__cdecl first par. at low address caller 
__stdcall first par. at low address subroutine 
__fastcall compiler specific subroutine 
_pascal first par. at high address subroutine 
member function compiler specific compiler specific 
 
The __cdecl calling convention is the default for C and C++ functions, while __stdcall is 
the default for system functions. Statically linked modules in .obj and .lib files should 
preferably use __cdecl, while dynamic link libraries in .dll files should use __stdcall. 
 
Remember that the stack pointer is decreased when a value is pushed on the stack. This 
means that the parameter pushed first will be at the highest address, in accordance with the 
_pascal convention. You must push parameters in reverse order to satisfy the __cdecl 
and __stdcall conventions. 
 
The __fastcall convention allows parameters to be transferred in registers. This is 
considerably faster, especially on the P4. Unfortunately, the __fastcall convention is 
different for different compilers. You may improve execution speed by using registers for 
parameter transfer on assembly procedures that are called only from other assembly 
language procedures. 
 

4.3 Data storage in C++ 
Variables and objects that are declared inside a function in C++ will be stored on the stack 
and addressed by ESP or EBP. This is the most efficient way of storing data, for two 
reasons. Firstly, the stack space used for local storage is released when the function returns 
and may be reused by the next function that is called. Using the same memory area 
repeatedly improves data caching. The second reason is that data stored on the stack can 
often be addressed with an 8-bit offset relative to a pointer rather than the 32 bits required 
for addressing data in the data segment. This makes the code more compact so that it takes 
less space in the code cache or trace cache. 
 
Global and static data in C++ are stored in the data segment and addressed with 32-bit 
absolute addresses. A third way of storing data in C++ is to allocate space with new or 
malloc. This method should be avoided if speed is critical. 
 
The following example shows a simple C++ function with local data stored on the stack, and 
the same function translated to assembly. (Calling details will be explained on page 17 
below). 
 

; Example 4.1 
extern "C" double SinPlusPow (double a, double b, double c) { 
  double x, y; 
  x = sin(a); 
  y = pow(b,c); 
  return x + y;} 
 

Same in assembly, with __cdecl calling convention: 
 

_SinPlusPow PROC NEAR 
SMAP        STRUC     ; make a map of data on stack 



CALLPARM1   DQ  ?     ; parameter 1 for call to sin and pow 
CALLPARM2   DQ  ?     ; parameter 2 for call to pow 
X           DQ  ?     ; local variable X 
Y           DQ  ?     ; local variable Y 
RETURNADDR  DD  ?     ; return address for _SinCosPlusOne 
A           DQ  ?     ; parameters for _SinCosPlusOne 
B           DQ  ? 
C_          DQ  ?     ; (C is a reserved word in MASM 6) 
SMAP        ENDS 
 
; compute space required for data not already on stack: 
LOCALDATASPACE = SMAP.RETURNADDR - SMAP.CALLPARM1 
 
        SUB    ESP, LOCALDATASPACE  ; make space for local data 
        FLD    [ESP].SMAP.A         ; load a 
        FSTP   [ESP].SMAP.CALLPARM1 ; store a on top of stack 
        CALL   _sin                 ; _sin reads parameter CALLPARM1   
        FSTP   [ESP].SMAP.X         ; store x 
        FLD    [ESP].SMAP.B         ; load b 
        FSTP   [ESP].SMAP.CALLPARM1 ; store b on top of stack 
        FLD    [ESP].SMAP.C_        ; load c 
        FSTP   [ESP].SMAP.CALLPARM2 ; store c next on stack 
        CALL   _pow                ;_pow reads CALLPARM1 and CALLPARM2 
        FST    [ESP].SMAP.Y         ; store y 
        FADD   [ESP].SMAP.X         ; x + y 
        ADD    ESP, LOCALDATASPACE  ; release local data space 
        RET                         ; return value in ST(0) 
_SinPlusPow ENDP 
 
PUBLIC  _SinPlusPow                 ; public function 
EXTRN   _sin:near, _pow:near        ; external functions 

 
In this function, we are allocating space for local data by subtracting the size of CALPARM1, 
CALLPARM2, X and Y from the stack pointer. The stack pointer must be restored to its 
original value before the RET. Before calling the functions _sin and _pow, we must place 
the function parameters for these calls at the right place relative to the current value of ESP. 
Therefore, we have placed CALLPARM1 and CALLPARM2 at the beginning of STACKMAP. It 
is more common to push the parameters before a function call and pop the stack after the 
call, but this method is faster. We are assuming here that the _sin and _pow functions use 
the __cdecl calling convention so that ESP still points to CALLPARM1 after the call. 
Therefore, we don't need to adjust the stack pointer between the two calls.  
 
Remember, when using ESP as a pointer, that the value of ESP is changed every time you 
have a PUSH or POP. If you are using simplified function directives (MASM 6.x syntax), such 
as: 

SinPlusPow PROC NEAR C, a:REAL8, b:REAL8, c:REAL8 

then you have an implicit PUSH EBP in the prolog code which you must include in your 
stack map. You may use .LISTALL to see the prolog code. Remember, also, that the size 
of the stack map must be a multiple of 4. 
 
This function could be further optimized. We might use integer registers for moving A, B and 
C; we don't need to store Y; and we might use the FSIN instruction rather than calling the 
external function _sin. The purpose of the above example is just to show how data are 
stored and transferred on the stack. 
 
If your assembly code contains many calls to high-level language functions or system 
functions, then you are in all likelihood optimizing the wrong part of your program. The 
critical innermost loop where most of the CPU time is used should be placed in a separate 
function that does not call any other functions. 
 



4.4 Register usage in 16 bit mode DOS or Windows 
Function parameters are passed on the stack according to the calling conventions listed on 
page 13. Parameters of 8 or 16 bits size use one word of stack space. Parameters bigger 
than 16 bits are stored in little-endian form, i.e. with the least significant word at the lowest 
address. 
 
Function return values are passed in registers in most cases. 8-bit integers are returned in 
AL, 16-bit integers and near pointers in AX, 32-bit integers and far pointers in DX:AX, 
Booleans in AX, and floating-point values in ST(0).  
 
Registers AX, BX, CX, DX, ES and arithmetic flags may be changed by the procedure. All 
other registers must be saved and restored. A procedure can rely on SI, DI, BP, DS and SS 
being unchanged across a call to another procedure. The high word of ESP cannot be used 
because it is modified by interrupts and task switches. 
 

4.5 Register usage in 32 bit Windows 
Function parameters are passed on the stack according to the calling conventions listed on 
page 13. Parameters of 32 bits size or less use one DWORD of stack space. Parameters 
bigger than 32 bits are stored in little-endian form, i.e. with the least significant DWORD at the 
lowest address, and DWORD aligned. 
 
Function return values are passed in registers in most cases. 8-bit integers are returned in 
AL, 16-bit integers in AX, 32-bit integers, pointers, and Booleans in EAX, 64-bit integers in 
EDX:EAX, and floating-point values in ST(0). Structures and class objects not exceeding 
64 bits size are returned in the same way as integers, even if the structure contains floating 
point values. Structures and class objects bigger than 64 bits are returned through a pointer 
passed to the function as the first parameter and returned in EAX. Compilers that don't 
support 64-bit integers may return structures bigger than 32 bits through a pointer. The 
Borland compiler also returns structures through a pointer if the size is not a power of 2.  
 
Registers EAX, ECX and EDX may be changed by a procedure. All other general-purpose 
registers (EBX, ESI, EDI, EBP) must be saved and restored if they are used. The value of 
ESP must be divisible by 4 at all times, so don't push 16-bit data on the stack. Segment 
registers cannot be changed, not even temporarily. CS, DS, ES, and SS all point to the flat 
segment group. FS is used for a thread environment block. GS is unused, but reserved. 
Flags may be changed by a procedure with the following restrictions: The direction flag is 0 
by default. The direction flag may be set temporarily, but must be cleared before any call or 
return. The interrupt flag cannot be cleared. The floating-point register stack is empty at the 
entry of a procedure and must be empty at return, except for ST(0) if it is used for return 
value. MMX registers may be changed by the procedure and if so cleared by EMMS before 
returning and before calling any other procedure that may use floating-point registers. All 
XMM registers can be modified by procedures. Rules for passing parameters and return 
values in XMM registers are described in Intel's application note AP 589 "Software 
Conventions for Streaming SIMD Extensions". A procedure can rely on EBX, ESI, EDI, EBP 
and all segment registers being unchanged across a call to another procedure. 
 

4.6 Register usage in Linux  
The rules for register usage in Linux appear to be almost the same as for 32-bit windows. 
Registers EAX, ECX, and EDX may be changed by a procedure. All other general-purpose 
registers must be saved. There appears to be no rule for the direction flag. Function return 
values are transferred in the same way as under Windows. Calling conventions are the 
same, except for the fact that no underscore is prefixed to public names. I have no 
information about the use of FS and GS in Linux. It is not difficult to make an assembly 



function that works under both Windows and Linux, if only you take these minor differences 
into account. 
 

4.7 Making compiler-independent code 

Functions 
By default, C++ compilers use a method called name mangling for distinguishing between 
different versions of overloaded functions. A code that defines the number and type of 
function parameters, and possibly the calling convention and return type, is appended to the 
function name. These name mangling codes are compiler-specific. It is therefore 
recommended to turn off name mangling when linking C++ and assembly code together. 
You can avoid the mangling of a function name by adding extern "C" to the function 
prototype in the C++ file. extern "C" indicates that the function should be linked 
according to the conventions of the C language, rather than C++. Therefore, extern "C" 
cannot be used for constructs that don't exist in the C language, such as member functions. 
You may also add __cdecl to the function prototype to make the calling convention 
explicit. 
 
The assembly code must have the function name prefixed by an underscore (_) if called 
under Windows or DOS. The underscore is not required in newer versions of other 
operating systems such as Linux. Your C++ compiler may have an option for adding or 
removing the underscore, but you have to recompile all function libraries if you change this 
option (and risk name clashes). 
 
Thus, the best way of linking C++ and assembly code together is to add extern "C" to 
the function prototype in C++, and prefix the function name with an underscore in the 
assembly file. You must assemble with case sensitivity on externals. Example: 
 

; Example 4.2 
; extern "C" int square (int x); 
  _square PROC NEAR             ; integer square function 
  PUBLIC  _square 
          MOV     EAX, [ESP+4]  ; read x from stack 
          IMUL    EAX           ; x * x 
          RET                   ; return value in EAX 
  _square ENDP  

Global objects 
Some C++ compilers also mangle the names of global objects. Add extern "C" to the 
declaration of global variables and objects if you want them to be accessible from assembly 
modules. Even better, avoid global objects if possible. 

Member functions 
Let's take as an example a simple C++ class containing a list of integers: 
 

// Example 4.3 
// define C++ class 
class MyList { 
  int length;               // number of items in list 
  int buffer[100];          // store items 
  public: 
  MyList();                 // constructor 
  void AddItem(int item);   // add item to list 
  int Sum();};              // compute sum of items 
 
MyList::MyList() {          // constructor in C++ 
  length = 0;} 
 



void MyList::AddItem(int item) { // member function AddItem in C++ 
  if (length < 100) buffer[length++] = item;} 
 
int MyList::Sum() {         // member function Sum in C++ 
  int i, s = 0; 
  for (i=0; i<length; i++) s += buffer[i]; 
  return s;} 
 

The implementation of this class is compiler-specific because different C++ compilers use 
different calling conventions and name mangling methods for member functions. If you want 
to place one or more of the member functions in an assembly module and you don't want to 
mess with compiler-specific intricacies, then you may replace the member function by a 
friend function. The 'this' pointer is not transferred automatically to a friend function 
so you have to make it an explicit parameter to the function. The C++ class definition is then 
changed as follows: 
 

// Example 4.3 with friend function 
// predefine class name: 
class MyList;  
 
// define external friend function: 
extern "C" void MyListAddItem(MyList * p_this, int item); 
 
// changed definition of class MyList: 
class MyList { 
  int length;               // number of items in list 
  int buffer[100];          // store items 
  public: 
  MyList();                 // constructor 
  // make external function a friend: 
  friend void MyListAddItem(MyList *, int); 
  void AddItem(int item) {  // wrap MyListAddItem in AddItem 
    MyListAddItem(this,item);} //tranfer 'this' explicitly to function 
  int Sum();};              // compute sum of items 

 
The friend function MyListAddItem can be coded in assembly without name mangling: 

 
; define data members of class MyList: 
MyList  STRUC 
LENGTH_  DD   ? 
BUFFER  DD   100 DUP (?) 
MyList  ENDS 
 
; define friend function MyListAddItem 
_MyListAddItem PROC NEAR 
PUBLIC _MyListAddItem 
        MOV     ECX, [ESP+4]                ; p_this 
        MOV     EAX, [ESP+8]                ; item 
        MOV     EDX, [ECX].MyList.LENGTH_   ; length 
        CMP     EDX, 100 
        JNB     ADDITEM9 
        MOV     [ECX+4*EDX].MyList.BUFFER, EAX 
        ADD     EDX, 1 
        MOV     [ECX].MyList.LENGTH_, EDX 
ADDITEM9: RET 
_MyListAddItem ENDP 

 
Wrapping MyListAddItem in AddItem does not slow down execution because it is 
inlined when called inside the class definition. An optimizing compiler will simply call 
MyListAddItem instead of AddItem. The extern "C" linking makes this solution 
compatible with all compilers. 



Member function pointers 
The implementation of member function pointers is compiler-specific. If your assembly code 
needs a pointer to member functions then replace the member functions by friend functions 
as explained above, and replace the member function pointer by a friend function pointer. 

Data member pointers 
The implementation of data member pointers is compiler-specific. Some compilers add 1 to 
the offset in order to distinguish a pointer to the first data member from a null pointer. 
Furthermore, some compilers use 64 bits for the member pointer in order to handle more 
complicated constructs. 
 
If your assembly code needs a pointer to structure or class data members (corresponding to 
the C++ operators .* or ->*), then try if it can be replaced by a simple pointer or an array 
index. If this is not possible then replace the data member pointer by an integer which 
contains the offset of the member relative to the class object. You need to typecast 
addresses to integers in order to use such a member pointer in C++ code. 

Virtual functions and polymorphous classes 
Each object of a polymorphous class contains a pointer to a table of pointers to the virtual 
functions. Borland and Microsoft compilers place the pointer to this so-called virtual table at 
the beginning of the object, while the Gnu compiler places it at the end of the object. This 
makes the code compiler-specific, even if only non-virtual member functions are coded in 
assembly. If you want to make the code compiler-independent then you have to replace all 
virtual member functions by friend functions. Insert one or more friend function pointers as 
members of the class and initialize these pointers in the constructors to emulate the virtual 
tables. 

Long double 
A long double in C++ corresponds to a TBYTE in assembly, using 10 bytes. The 
Microsoft C++ compiler does not support this type, but replaces it with a double, using 8 
bytes. The Borland compiler allocates 10 bytes for a long double, while the Gnu compiler 
allocates 12 (or 16) bytes for the sake of alignment. If you want a structure or class 
containing long double members to be compiler-independent (and properly aligned) then 
use a union: 

union ld { 
  long double a; 
  char filler[16];}; 

The Microsoft compiler can still not access the long double without using assembly 
language. 

Thread local objects 
Thread-local data or objects should be defined or allocated in C++, but they can be 
accessed in assembly code through pointers. 
 
Assembly language functions can be made reentrant (thread safe) without the need for 
thread-local storage when all variables are stored on the stack. 
 

4.8 Adding support for multiple compilers in .asm modules 
An alternative to making compiler-independent code is to use the proper name mangling, 
calling conventions, etc. for the C++ compiler in question. To do this, you have to write the 
code in C++ first and make the compiler translate the C++ to assembly. Use the assembly 
code produced by the C++ compiler to get the right mangled names, calling conventions, 
data formats, etc. 



Functions 
In many cases, it is possible to make assembly libraries containing functions that are 
compatible with more than one C++ compiler by adding the proper mangled names for each 
compiler. 
 
For example, overloaded functions cannot be made without name mangling, but by adding 
several mangled names, the function can be made compatible with several different 
compilers. The following example shows a square function with two overloaded versions: 
 

; Example 4.4: Overloaded function 
; int square (int x);          // C++ prototype 
SQUARE_I PROC NEAR             ; integer square function 
@square$qi LABEL NEAR          ; link name for Borland compiler 
?square@@YAHH@Z LABEL NEAR     ; link name for Microsoft compiler 
_square__Fi LABEL NEAR         ; link name for Gnu compiler (Windows) 
square__Fi LABEL NEAR          ; link for Gnu (Redhat, Debian, BSD) 
_Z6squarei LABEL NEAR          ; link for Gnu (Mandrake, UNIX) 
PUBLIC @square$qi,?square@@YAHH@Z,_square__Fi,square__Fi,_Z6squarei 
        MOV     EAX, [ESP+4]   ; x 
        IMUL    EAX 
        RET 
SQUARE_I ENDP 

 
; double square (double x);    // C++ prototype 
SQUARE_D PROC NEAR             ; double precision float square funct. 
@square$qd LABEL NEAR          ; link name for Borland compiler 
?square@@YANN@Z LABEL NEAR     ; link name for Microsoft compiler 
_square__Fd LABEL NEAR         ; link name for Gnu compiler (Windows) 
square__Fd LABEL NEAR          ; link for Gnu (Redhat, Debian, BSD) 
_Z6squared LABEL NEAR          ; link for Gnu (Mandrake, UNIX) 
PUBLIC @square$qd,?square@@YANN@Z,_square__Fd,square__Fd,_Z6squared 
        FLD     QWORD PTR [ESP+4]  ; x 
        FMUL    ST(0), ST(0) 
        RET 
SQUARE_D ENDP 

Member functions 
The above method works because all the compilers use the __cdecl calling convention by 
default for overloaded functions. For member functions (methods) however, the compilers 
differ. Borland and most Gnu compilers use the __stdcall convention; Gnu for Mandrake 
uses __cdecl; and Microsoft compilers uses a hybrid of __stdcall and __fastcall, 
with the 'this' pointer in ECX. To obtain binary compatibility, we want to force the compilers 
to use the same calling convention. Most compilers allow you to explicitly specify the calling 
convention to member functions, but a few compilers (e.g. Gnu for Mandrake) do not allow 
this specification. However, you can force all compilers to use the __cdecl method for 
member functions by specifying a variable number of parameters. Returning to example 4.3 
page 17, we can provide support for almost all compilers in this way: 
 

// Example 4.3 with support for multiple compilers 
// define C++ class 
class MyList { 
  int length;                       // number of items in list 
  int buffer[100];                  // store items 
  public: 
  MyList();                         // constructor 
  void AddItem(int item, ...);      // add item to list 
  int Sum(...);};                   // compute sum of items 
 
 
; Assembly code for MyList::AddItem with mangled names for several 
; compilers: 



 
; define data members of class MyList: 
MyList  STRUC 
LENGTH_ DD   ? 
BUFFER  DD   100 DUP (?) 
MyList  ENDS 
 
; define member function MyListAddItem with __cdecl calling method: 
MyListAddItem PROC NEAR                 ; extern "C" friend (UNIX) 
_MyListAddItem LABEL NEAR               ; extern "C" friend (Windows) 
@MyList@AddItem$qie LABEL NEAR          ; Borland 
?AddItem@MyList@@QAAXHZZ LABEL NEAR     ; Microsoft 
_AddItem__6MyListie LABEL NEAR          ; Gnu (Windows) 
AddItem__6MyListie LABEL NEAR           ; Gnu (Redhat, Debian, BSD) 
_ZN6MyList7AddItemEiz LABEL NEAR        ; Gnu (Mandrake, UNIX) 
PUBLIC MyListAddItem, _MyListAddItem, @MyList@AddItem$qie  
PUBLIC ?AddItem@MyList@@QAAXHZZ, _AddItem__6MyListie 
PUBLIC AddItem__6MyListie, _ZN6MyList7AddItemEiz 
 
        MOV     ECX, [ESP+4]            ; 'this' 
        MOV     EAX, [ESP+8]            ; item 
        MOV     EDX, [ECX].MyList.LENGTH_   ; length 
        CMP     EDX, 100 
        JNB     ADDITEM9 
        MOV     [ECX+4*EDX].MyList.BUFFER, EAX 
        ADD     EDX, 1 
        MOV     [ECX].MyList.LENGTH_, EDX 
ADDITEM9: RET 
MyListAddItem ENDP 

 
This method works for member functions and constructors. Destructors and overloaded 
operators cannot have a variable number of parameters. It is possible to explicitly specify 
the calling convention for member functions and overloaded operators on most compilers. 
The only compiler I have come across that doesn't allow this specification is Gnu for 
Mandrake, which uses the __cdecl convention for member functions and overloaded 
operators. Thus, you can make assembly code for overloaded operators compatible by 
specifying the __cdecl convention on all other compilers. Note that the mangled names 
are changed if you change the specified calling convention, even if the generated code is 
identical. 
 
Member functions that return an object bigger than 8 bytes are not binary compatible for any 
calling method because the Microsoft compiler places the this pointer first, while other 
compilers place the return pointer first. In this case you may return the object through an 
explicit pointer parameter. 
 
You may want to use the friend function method described on page 18 or use inline 
assembly to avoid these problems and intricacies for both member functions, constructors, 
destructors, and overloaded operators. 
 

4.9 Further compiler incompatibilities 
There are still incompatibilities that cannot be handled with the methods described in the 
preceding chapters. Do not expect your assembly code to be compatible with multiple 
compilers if it contains __fastcall functions, new, delete, global objects with 
constructors or destructors, or exception handling. The ways of name-mangling standard 
library functions and system functions may also differ. 
 



4.10 Object file formats 
Another compatibility problem stems from differences in the formats of object files. Borland, 
Symantec and 16-bit Microsoft compilers use the OMF format for object files. Microsoft and 
Gnu compilers for 32-bit Windows use MS-COFF format, also called PE. The Gnu compiler 
under Linux, BSD, and similar systems prefers ELF format.  
 
The MASM assembler can produce both OMF and MS-COFF format object files, but not 
ELF format. It is often possible to translate object files from one format to another. The 
linker and library manager that come with Microsoft compilers can translate object files from 
OMF to MS-COFF format. A freeware utility called EMXAOUT1 can translate object files 
from OMF format to the old a.out format that many Gnu linkers accept. The Gnu objcopy 
utility is a more versatile tool for converting object formats. Which object formats it can 
handle depends on the build options. The version of objcopy that comes with the MingW32 
package can convert between MS-COFF format and ELF format (Download 
binutils.xxx.tar.gz from www.mingw.org). With this utility, it is possible to use the same 
assembly module with several different compilers under several different operating systems. 
 
More details about object file formats can be found in the book "Linkers and Loaders" by J. 
R. Levine (Morgan Kaufmann Publ. 2000). 
 

4.11 Using MASM under Linux 
The Gnu assembler that comes with Linux, BSD and similar operating systems uses the 
terrible AT&T syntax. As I am in favor of standardizing assembly syntax, I will recommend 
using the MASM assembler under Linux. 
 
Available tools for converting assembly files in MASM syntax to AT&T syntax are not 
reliable, but tools for converting object files seem to work well. You may assemble your 
code with MASM under Windows or under Linux using Wine, the Windows emulator. Let 
MASM generate object files in MS-COFF format and convert them to ELF format using the 
objcopy utility from MingW32 mentioned above. The object files in ELF format can then be 
linked into a C++ project using g++ or ld. Under Linux, the process goes like this: 
 

wine -- ml.exe /c /Cx /coff myfile.asm 
wine -- objcopy.exe -Oelf32-i386 myfile.obj myfile.o 
g++ somefile.cpp myfile.o 

 
You may include this sequence in a make script or shell script. It may seem awkward to use 
the MING version of objcopy which needs Wine to run under Linux. It is probably possible to 
rebuild the native objcopy utility to add support for the MS-COFF format (called pe-i386 in 
this context), but I haven't figured out how. 
 
If you have leading underscores on your function names then add the option --remove-
leading-char to the objcopy command line. 
 
If you want to build a function library that can be used under several different operating 
systems, then make a .lib file under Windows using the lib.exe utility that comes with 
Microsoft compilers and convert the .lib file to ELF format with the command 
 

objcopy -Oelf32-i386 --remove-leading-char myfile.lib myfile.a 
 
The library myfile.a can then be used under Linux, BSD, UNIX, etc. Make sure your library 
doesn't call any system functions. 
 

http://www.mingw.org/


4.12 Object oriented programming 
As explained on page 5, object oriented programming principles may be required for the 
sake of clarity and maintainability of a software project. Object oriented programming means 
classes containing member data (properties) and member functions (methods). You may 
expect this extra complexity to slow down program performance, but this is not necessarily 
the case. 
 
Well-designed C++ member functions are expected to access no other data than their 
member data and parameters. The function parameters are stored on the stack, and so are 
the member data if the object is declared locally (automatic) inside some other function. 
This means that all the data can be kept together within a small area of memory so that data 
caching will be very efficient. A further advantage is that you avoid using 32-bit addresses 
for global data. This makes the code more compact so that it takes less space in the code 
cache or trace cache. 
 
The disadvantage of using member functions, in terms of performance, is that the this 
pointer has to be transferred to the member function as an extra parameter. The register 
that is used for the this pointer might otherwise have been used for other purposes. These 
disadvantages may outweigh the advantages for small member functions, but not for bigger 
member functions.  
 
It is not necessary to translate all the member functions of a C++ class to assembly 
language. It is possible to make the most critical member function in assembly and leave 
the rest of the member functions, including constructor and destructor, in C++. 
 
Different compilers for the x86 platform are not compatible on object-oriented code. As 
explained on page 17ff, you have the choice between several different strategies for 
overcoming this problem: 
 

1. use inline assembly inside C++ code 
2. make assembly modules containing simple functions rather than member functions 
3. make compiler-independent code using friend functions, etc. 
4. make compiler-specific code and add support for several compilers in the assembly 

module if necessary 
5. make the entire program in assembly (not recommended except for extremely 

simple programs) 
 

4.13 Other high level languages 
If you are using other high-level languages than C++, and the compiler manual has no 
information on how to link with assembly, then see if the manual has any information on 
how to link with C or C++ modules. You can probably find out how to link with assembly 
from this information. 
 
In general, it is preferred to use simple functions without name mangling, compatible with 
the extern "C" and __cdecl or __stdcall conventions in C++. This will work with most 
compiled languages. Arrays and strings may be implemented differently in different 
languages. 
 
Many modern programming languages such as C# and Visual Basic.net cannot link to .obj 
and .lib files. You have to encapsulate your assembly code in a dynamic link library (DLL) in 
order to be able to call it from these languages. Instructions on how to make a DLL from 
assembly code can be found in Iczelion's tutorials. 
 
To call assembly code from Java, you have to compile the code to a DLL and use the Java 
Native Interface (JNI). 
 

http://win32asm.cjb.net/


An example of an assembly language function library that can be called from many different 
languages and platforms can be found in www.agner.org/random/randoma.zip. 
 

5 Debugging and verifying assembly code 
Debugging assembly code can be quite hard and frustrating, as you probably already have 
discovered. I would recommend that you start with writing the piece of code you want to 
optimize as a subroutine in C++. Next, write a test program that can test your subroutine 
thoroughly. Make sure the test program goes into all branches and boundary cases. 
 
When your C++ subroutine works with your test program then you are ready to translate the 
code to assembly language. Most C++ compilers can translate C++ to assembly. 
 
Now you can start to optimize. Each time you have made a modification, you should run it 
on the test program to see if it works correctly. Number all your versions and save them so 
that you can go back and test them again in case you discover an error that the test 
program didn't catch (such as writing to a wrong address). 
 
Test the speed of the most critical part of your program with the methods described in 
chapter 20 page 132. If the code is significantly slower than expected, then check the list of 
possible bottlenecks on page 75 for PPro, P2 and P3, and page 95 for P4. 
 
Highly optimized code tends to be very difficult to read and understand for others, and even 
for yourself when you get back to it after some time. In order to make it possible to maintain 
the code, it is important that you organize it into small logical units (procedures or macros) 
with a well-defined interface and appropriate comments. The more complicated the code is 
to read, the more important is a good documentation. 
 

6 Reducing code size  
As explained in chapter 9 page 29, the code cache is 8 or 16 kb on P1, PMMX, PPro, P2 
and P3. If you have problems keeping the critical parts of your code within the code cache, 
then you may consider reducing the size of your code. You may also want to reduce the 
size of your code if speed is not important. 
 
32-bit code is usually bigger than 16-bit code because addresses and data constants take 4 
bytes in 32-bit code and only 2 bytes in 16-bit code. However, 16-bit code has other 
penalties, especially because of segment prefixes. Some other methods for reducing the 
size or your code are discussed below. 
 
Both jump addresses, data addresses, and data constants take less space if they can be 
expressed as a sign-extended byte, i.e. if they are within the interval from -128 to +127. 
 
For jump addresses, this means that short jumps take two bytes of code, whereas jumps 
beyond 127 bytes take 5 bytes if unconditional and 6 bytes if conditional. 
 
Likewise, data addresses take less space if they can be expressed as a pointer and a 
displacement between -128 and +127. Example: 
 

MOV EBX,DS:[100000] / ADD EBX,DS:[100004] ; 12 bytes 
 
Reduce to: 
 

MOV EAX,100000 / MOV EBX,[EAX] / ADD EBX,[EAX+4] ; 10 bytes 
 
The advantage of using a pointer obviously increases if you use it many times. Storing data 
on the stack and using EBP or ESP as pointer will thus make your code smaller than if you 

http://www.agner.org/random/randoma.zip


use static memory locations and absolute addresses, provided of course that your data are 
within +/-127 bytes of the pointer. Using PUSH and POP to write and read temporary data is 
even shorter. 
 
Data constants may also take less space if they are between -128 and +127. Most 
instructions with immediate operands have a short form where the operand is a sign-
extended single byte. Examples: 
 

    PUSH 200      ; 5 bytes 
    PUSH 100      ; 2 bytes 
 
    ADD EBX,128   ; 6 bytes 
    SUB EBX,-128  ; 3 bytes 

 
The most important instruction with an immediate operand that does not have such a short 
form is MOV. Examples: 
 

    MOV EAX, 0              ; 5 bytes 
 
May be changed to: 
 

    SUB EAX,EAX             ; 2 bytes 
 
And 
 

    MOV EAX, 1              ; 5 bytes 
 
May be changed to: 
 

    SUB EAX,EAX / INC EAX   ; 3 bytes 
 
or: 
 

    PUSH 1 / POP EAX        ; 3 bytes 
 
And 
 

    MOV EAX, -1             ; 5 bytes 
 
May be changed to: 
 

    OR EAX, -1              ; 3 bytes 
 
If the same address or constant is used more than once then you may load it into a register. 
A MOV with a 4-byte immediate operand may sometimes be replaced by an arithmetic 
instruction if the value of the register before the MOV is known. Example: 
 

        MOV     [mem1],200             ; 10 bytes 
        MOV     [mem2],200             ; 10 bytes 
        MOV     [mem3],201             ; 10 bytes 
        MOV     EAX,100                ;  5 bytes 
        MOV     EBX,150                ;  5 bytes 

 
Assuming that mem1 and mem3 are both within -128/+127 bytes of mem2, this may be 
changed to: 
 

        MOV     EBX,OFFSET mem2        ;  5 bytes 
        MOV     EAX,200                ;  5 bytes 
        MOV     [EBX+mem1-mem2],EAX    ;  3 bytes 
        MOV     [EBX],EAX              ;  2 bytes 



        INC     EAX                    ;  1 byte 
        MOV     [EBX+mem3-mem2],EAX    ;  3 bytes 
        SUB     EAX,101                ;  3 bytes 
        LEA     EBX,[EAX+50]           ;  3 bytes 

 
You may also consider that different instructions have different lengths. The following 
instructions take only one byte and are therefore very attractive: PUSH reg, POP reg, 
INC reg32, DEC reg32. INC and DEC with 8 bit registers take 2 bytes, so INC EAX 
is shorter than INC AL. 
 
XCHG EAX,reg is also a single-byte instruction and thus takes less space than MOV 
EAX,reg, but it is slower. 
 
Some instructions take one byte less when they use the accumulator than when they use 
any other register. Examples: 
 

    MOV EAX,DS:[100000]  is smaller than  MOV EBX,DS:[100000] 
    ADD EAX,1000         is smaller than  ADD EBX,1000 

 
Instructions with pointers take one byte less when they have only a base pointer (not ESP) 
and a displacement than when they have a scaled index register, or both base pointer and 
index register, or ESP as base pointer. Examples: 
 

    MOV EAX,[array][EBX]  is smaller than  MOV EAX,[array][EBX*4] 
    MOV EAX,[EBP+12]      is smaller than  MOV EAX,[ESP+12] 

 
Instructions with EBP as base pointer and no displacement and no index take one byte more 
than with other registers: 
 

    MOV EAX,[EBX]    is smaller than    MOV EAX,[EBP],  but 
    MOV EAX,[EBX+4]  is same size as  MOV EAX,[EBP+4]. 

 
Instructions with a scaled index pointer and no base pointer must have a four bytes 
displacement, even when it is 0: 
 

    LEA EAX,[EBX+EBX]  is shorter than  LEA EAX,[2*EBX]. 
 

7 Detecting processor type  
What is optimal for one microprocessor may not be optimal for another. Therefore, you may 
make the most critical part of your program in different versions, each optimized for a 
specific microprocessor, and select the desired version at run time after detecting which 
microprocessor the program is running on. The CPUID instruction tells which instructions the 
microprocessor supports. If you are using instructions that are not supported by all 
microprocessors, then you must first check if the program is running on a microprocessor 
that supports these instructions. If your program can benefit significantly from using Single-
Instruction-Multiple-Data (SIMD) instructions, then you may make one version of a critical 
part of the program that uses these instructions, and another version which does not and 
which is compatible with old microprocessors.  
 
I have provided a library of subroutines that check the processor type and determine which 
instructions are supported. This can be downloaded from www.agner.org/assem/asmlib.zip. 
These subroutines can be called from assembly as well as from high-level language. 
Obviously, it is recommended to store the output from such a subroutine rather than calling 
it again each time the information is needed. 
 

http://www.agner.org/assem/asmlib.zip


For assemblers that don't support the newest instruction set, you may use the macros at 
www.agner.org/assem/macros.zip. 
 

7.1 Checking for operating system support for XMM registers 
Unfortunately, the information that can be obtained from the CPUID instruction is not 
sufficient for determining whether it is possible to use the SSE and SSE2 instructions, which 
use the 128-bit XMM registers. The operating system has to save these registers during a 
task switch and restore them when the task is resumed. The microprocessor can disable the 
use of the XMM registers in order to prevent their use under old operating systems that do 
not save these registers. Operating systems that support the use of XMM registers must set 
bit 9 of the control register CR4 to enable the use of XMM registers and indicate its ability to 
save and restore these registers during task switches. (Saving and restoring registers is 
actually faster when XMM registers are enabled). 
 
Unfortunately, the CR4 register can only be read in privileged mode. Application programs 
therefore have a serious problem determining whether they are allowed to use the XMM 
registers or not. According to official Intel documents, the only way for an application 
program to determine whether the operating system supports the use of XMM registers is to 
try to execute an XMM instruction and see if you get an invalid opcode exception. This is 
ridiculous, because not all operating systems, compilers and programming languages 
provide facilities for application programs to catch invalid opcode exceptions. The 
advantage of using the XMM registers evaporates completely if you have no way of knowing 
whether you can use these registers without crashing your software. 
 
These serious problems led me to search for an alternative way of checking if the operating 
system supports the use of XMM registers, and fortunately I have found a way that works 
reliably. If XMM registers are enabled, then the FXSAVE and FXRSTOR instructions can read 
and modify the XMM registers. If XMM registers are disabled, then FXSAVE and FXRSTOR 
cannot access these registers. It is therefore possible to check if XMM registers are 
enabled, by trying to read and write these registers with FXSAVE and FXRSTOR. The 
subroutines in www.agner.org/assem/asmlib.zip use this method. These subroutines can be 
called from assembly as well as from high-level languages, and provide an easy way of 
detecting whether XMM registers can be used. 
 
In order to verify that this detection method works correctly with all microprocessors, I first 
checked various manuals. The 1999 version of Intel's software developer's manual says 
about the FXRSTOR instruction: "The Streaming SIMD Extension fields in the save image 
(XMM0-XMM7 and MXCSR) will not be loaded into the processor if the CR4.OSFXSR bit is 
not set." AMD's Programmer’s Manual says effectively the same. However, the 2003 
version of Intel's manual says that this behavior is implementation dependent. In order to 
clarify this, I contacted Intel Technical Support and got the reply, "If the OSFXSR bit in CR4 
in not set, then XMMx registers are not restored when FXRSTOR is executed". They further 
confirmed that this is true for all versions of Intel microprocessors and all microcode 
updates. I regard this as a guarantee from Intel that my detection method will work on all 
Intel microprocessors. We can rely on the method working correctly on AMD processors as 
well since the AMD manual is unambiguous on this question. It appears to be safe to rely on 
this method working correctly on future microprocessors as well, because any 
microprocessor that deviates from the above specification would introduce a security 
problem as well as failing to run existing programs. Compatibility with existing programs is of 
great concern to microprocessor producers. 
 
The subroutines in www.agner.org/assem/asmlib.zip are constructed so that the detection 
will give a correct answer unless FXSAVE and FXRSTOR are both buggy. My detection 
method has been further verified by testing on many different versions of Intel and AMD 
processors and different operating systems (Test program available at 
www.agner.org/assem/xmmtest.zip). 

http://www.agner.org/assem/macros.zip
http://www.agner.org/assem/asmlib.zip
http://www.agner.org/assem/asmlib.zip
http://www.agner.org/assem/xmmtest.zip


 
The detection method recommended in Intel manuals has the drawback that it relies on the 
ability of the compiler and the operating system to catch invalid opcode exceptions. A 
Windows application, for example, using Intel's detection method would therefore have to be 
tested in all compatible operating systems, including various Windows emulators running 
under a number of other operating systems. My detection method does not have this 
problem because it is independent of compiler and operating system. My method has the 
further advantage that it makes modular programming easier, because a module, 
subroutine library, or DLL using XMM instructions can include the detection procedure so 
that the problem of XMM support is of no concern to the calling program, which may even 
be written in a different programming language. Some operating systems provide system 
functions that tell which instruction set is supported, but the method mentioned above is 
independent of the operating system. 
 
The above discussion has relied on the following documents: 
 
Intel application note AP-900: "Identifying support for Streaming SIMD Extensions in the 
Processor and Operating System". 1999. 
 
Intel application note AP-485: "Intel Processor Identification and the CPUID Instruction". 
2002. 
 
"Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference", 
1999. 
 
"IA-32 Intel Architecture Software Developer's Manual, Volume 2: Instruction Set 
Reference", 2003. 
 
"AMD64 Architecture Programmer’s Manual, Volume 4: 128-Bit Media Instructions", 2003. 
 

8 Alignment 
All data in RAM should be aligned at addresses divisible by 2, 4, 8, or 16 according to this 
scheme: 
                        

alignment operand size 
P1 and PMMX PPro, P2, P3, P4 

1  (byte) 1 1 
2  (word) 2 2 
4  (dword) 4 4 
6  (fword) 4 8 
8  (qword) 8 8 
10 (tbyte) 8 16 
16 (oword) n.a. 16 

    
; Example 8.1, alignment of static data 
_DATA SEGMENT PARA PUBLIC USE32 'DATA' ; must be paragraph aligned 
A     DQ  ?, ?         ; A is aligned by 16 
B     DB  32 DUP (?) 
C     DD  ? 
D     DW  ? 
ALIGN 16               ; E must be aligned by 16 
E     DQ  ?, ? 
_DATA ENDS 
_CODE SEGMENT BYTE PUBLIC 'CODE' 
      MOVDQA  XMM0, [A] 
      MOVDQA  [E], XMM0 

 



In the above example, A, B and C all start at addresses divisible by 16. D starts at an 
address divisible by 4, which is more than sufficient because it only needs to be aligned by 
2. An alignment directive must be inserted before E because the address after D is not 
divisible by 16 as required by the MOVDQA instruction. Alternatively, E could be placed after 
A or B to make it aligned. 
 
On P1 and PMMX, misaligned data will take at least 3 clock cycles extra to access if a 4-
byte boundary is crossed. The penalty is higher when a cache line boundary is crossed. On 
PPro, P2 and P3, misaligned data will cost 6-12 clocks extra when a cache line boundary is 
crossed. Misaligned operands smaller than 16 bytes that do not cross a 32-byte boundary 
give no penalty. On P4, there is little or no penalty for misaligned operands smaller than 16 
bytes if reads do not occur shortly after writes to the same address. Unaligned 128 bit (16 
bytes) operands can only be accessed with the MOVDQU instruction or with two separate 64-
bit operations. 
 
Aligning data by 8 or 16 on a DWORD size stack may be a problem. A useful method is to set 
up an aligned frame pointer. A function with aligned local data may look like this: 
 

; Example 8.2, alignment of data on stack 
_FuncWithAlign PROC NEAR 
        PUSH    EBP                ; Prolog code 
        MOV     EBP, ESP 
        SUB     ESP, LocalSpace    ; Allocate space for local data 
        AND     ESP, 0FFFFFFF0H    ; (= -16) Align ESP by 16 
        MOVDQU  XMM0,[EBP+8]       ; Unaligned function parameter 
        MOVDQA  [ESP],XMM0         ; Store something in aligned space 
        ... 
        MOV     ESP, EBP           ; Epilog code. Restore ESP 
        POP     EBP                ; Restore EBP 
        RET 
_FuncWithAlign ENDP 

 
This function uses EBP to address function parameters, and ESP to address aligned local 
data. 
 

9 Cache 
A cache is a temporary storage that is closer to the microprocessor than the main memory. 
Data and code that is used often, or that is expected to be used soon, is stored in a cache 
so that it is accessed faster. Different microprocessors have one, two or three levels of 
cache. The level-1 cache is close to the microprocessor kernel and is often accessed in a 
single clock cycle. A bigger level-2 cache is placed on the same chip or at least in the same 
housing. 
 
The level-1 data cache in the P4 processor, for example, can contain 8 kb of data. It is 
organized as 128 lines of 64 bytes each. The cache is 4-way set-associative. This means 
that the data from a particular memory address cannot be assigned to an arbitrary cache 
line, but only to one of four possible lines. The line length in this example is 26 = 64. So each 
line must be aligned to an address divisible by 64. The least significant 6 bits, i.e. bit 0 - 5, of 
the memory address are used for addressing a byte within the 64 bytes of the cache line. As 
each set comprises 4 lines, there will be 128 / 4 = 32 = 25 different sets. The next five bits, 
i.e. bits 6 - 10, of a memory address will therefore select between these 32 sets. The 
remaining bits can have any value. The conclusion of this mathematical exercise is that if 
bits 6 - 10 of two memory addresses are equal, then they will be cached in the same set of 
cache lines. The 64-byte memory blocks that contend for the same set of cache lines are 
spaced 211 = 2048 bytes apart. No more than 4 such addresses can be cached at the same 
time.  
 



Let me illustrate this by the following piece of code, where EDI holds an address divisible by 
64: 
 

; Example 9.1 
AGAIN:  MOV  EAX, [EDI] 
        MOV  EBX, [EDI + 0804H] 
        MOV  ECX, [EDI + 1000H] 
        MOV  EDX, [EDI + 5008H] 
        MOV  ESI, [EDI + 583CH] 
        SUB  EBP, 1 
        JNZ  AGAIN 

 
The five addresses used here all have the same set-value because the differences between 
the addresses with the lower 6 bits truncated are multiples of 2048 = 800H. This loop will 
perform poorly because at the time you read ESI, there is no free cache line with the proper 
set-value, so the processor takes the least recently used of the four possible cache lines, 
that is the one which was used for EAX, and fills it with the data from [EDI+5800H] to 
[EDI+583FH] and reads ESI. Next, when reading EAX, you find that the cache line that 
held the value for EAX has now been discarded, so you take the least recently used line, 
which is the one holding the EBX value, and so on. Here, you have nothing but cache 
misses, but if the 5'th line is changed to  MOV ESI,[EDI + 5840H]  then we have 
crossed a 64 byte boundary, so that we do not have the same set-value as in the first four 
lines, and there will be no problem assigning a cache line to each of the five addresses. 
 
The cache sizes, cache line sizes, and set associativity on different microprocessors are 
listed in the table on page 156. The performance penalty for cache line contention can be 
quite considerable on older microprocessors, but on the P4 you loose only a few clock 
cycles because the level-2 cache is accessed quite fast through a full-speed 256 bits data 
bus. The improved efficiency of the level-2 cache in the P4 compensates for the smaller 
level-1 data cache. 
 
The cache lines are always aligned to physical addresses divisible by the cache line size (in 
the above example 64). When you have read a byte at an address divisible by 64, then the 
next 63 bytes will be cached as well, and can be read or written to at almost no extra cost. 
You can take advantage of this by arranging data items that are used near each other 
together into aligned blocks of 64 bytes of memory. If, for example, you have a loop that 
accesses two arrays, then you may interleave the two arrays into one array of structures, so 
that data, which are used together, are also stored together.  
 
If the size of a big array or other data structure is a multiple of 64 bytes, then you should 
preferably align it by 64. The cache line size on older microprocessors is 32. 
 
The rules for the data cache also apply to the code cache for processors prior to the P4. 
The code cache in the P4 is a trace cache. This means that code instructions are translated 
into micro-operations (uops) before being cached. The trace cache has to be quite big, 
because the uops often take more space than the instruction codes before translation. The 
major reason for using a trace cache is that the decoding of instructions often is a 
bottleneck which limits the performance. The problem is that it is fairly complicated to 
determine the length of an instruction. While the microprocessor may execute several 
instructions in parallel if they are independent, it cannot decode them in parallel because it 
doesn't know where the second instruction begins before it has determined the length of the 
first instruction. The PPro, P2 and P3 can decode up to three instructions per clock cycle, 
which is quite impressive. But at higher clock frequencies, this may be more difficult. And 
one obvious solution is to decode instructions before caching them. Each entry in the P4 
trace cache is at least 36 bits wide, probably more. There are 12288 entries in the trace 
cache, so the size is more than 55 kb. 
 



It is important that the critical part of your code (the innermost loop) fits in the trace cache or 
code cache. Frequently used pieces of code, or routines which are used together, should 
preferably be stored near each other. Seldom used branches or procedures should be put 
away in the bottom of your code or somewhere else. 
 
It may be very difficult to determine if your data addresses or code addresses contend for 
the same cache sets, especially if they are scattered around in different segments. The best 
thing you can do to avoid problems of cache line contention is to keep all data used in the 
critical part or your program within one contiguous block not bigger than the cache, or up to 
four contiguous blocks no bigger than a fourth of that. This will make sure that your cache 
lines are used optimally.  
 
Since you need stack space anyway for subroutine parameters and return addresses, the 
best way of keeping data together is to copy all frequently used static data to dynamic 
variables on the stack before entering the most critical part of your program, and copy them 
back again outside the critical loop if they have been changed. 
 
The delay caused by a level-1 cache miss depends on how far away the needed data are. 
The level-2 cache can be accessed quite fast; the level-3 cache somewhat slower; and 
accesses to the main memory takes many clock cycles. The delay is even longer if a DRAM 
page boundary is crossed, and extremely long if the memory area has been swapped to 
disk. 
 
I am not giving any time estimates here because the timings depend very much on the 
hardware configuration; and the fast technological development make any figures obsolete 
in half a year. 
 
On PPro, P2, P3 and P4, a write miss will normally load a cache line, but it is possible to set 
up an area of memory to perform differently, for example video RAM (See "IA-32 Intel 
Architecture Software Developer's Manual, Volume 3: System Programming Guide").  
 
Other ways of speeding up memory reads and writes are discussed on page 131. 
 
The P1 and PPro have two write buffers, PMMX, P2 and P3 have four, and P4 has six. On 
the P4 you may have up to six unfinished writes to uncached memory without delaying the 
subsequent instructions. Each write buffer can handle operands up to 128 bits wide (64 bits 
on earlier processors). 
 
Temporary data may conveniently be stored on the stack because the stack area is very 
likely to be in the cache. However, you should be aware of the alignment problems if your 
data elements are bigger than the stack word size (see page 29). 
 
If the life ranges of two data structures do not overlap, then they may share the same RAM 
area to increase cache efficiency. This is consistent with the common practice of allocating 
space for temporary variables on the stack. 
 
Storing temporary data in registers is of course even more efficient. Since registers is a 
scarce resource you may want to use [ESP] rather than [EBP] for addressing data on the 
stack, in order to free EBP for other purposes. Just don't forget that the value of ESP 
changes every time you do a PUSH or POP. (You cannot use ESP in 16-bit mode because 
the timer interrupt will modify the high word of ESP at unpredictable times).  
 
For further advices on improving cache efficiency see the Intel Pentium 4 and Intel Xeon 
Processor Optimization Reference Manual. 
 



10 First time versus repeated execution  
A piece of code usually takes much more time the first time it is executed than when it is 
repeated. The reasons are the following: 
 
1. Loading the code from RAM into the cache takes longer time than executing it. 

 
2. Any data accessed by the code has to be loaded into the data cache, which may take 

much more time than executing the instructions. The data are more likely to be in the 
cache when the code is repeated. 
 

3. Jump instructions will not be in the branch target buffer the first time they execute, and 
therefore are less likely to be predicted correctly. See chapter 12 page 35. 
 

4. In many processors, decoding the length of each instruction is a bottleneck. The P1 
solves this problem by remembering the length of any instruction which has remained 
in the cache since last time it was executed. As a consequence of this, a set of 
instructions will not pair in the P1 the first time they are executed, unless the first of the 
two instructions is only one byte long. The PMMX, PPro, P2 and P3 have no penalty on 
first time decoding. On the P4, instructions go directly from the decoder to the 
execution unit the first time they are executed. On subsequent executions they are 
submitted from the trace cache at the rate of 3 uops per clock. 

 
For these four reasons, a piece of code inside a loop will generally take much more time the 
first time it executes than the subsequent times. 
 
If you have a big loop which doesn't fit into the trace cache or code cache then you will get 
penalties all the time because it doesn't run from the cache. You should therefore try to 
reorganize the loop to make it fit into the cache. 
 
If you have very many jumps, calls, and branches inside a loop, then you may get the 
penalty of branch target buffer misses repeatedly. 
 
Likewise, if a loop repeatedly accesses a data structure too big for the data cache, then you 
will get the penalty of data cache misses all the time. 
 

11 Out-of-order execution (PPro, P2, P3, P4)  
The most important improvement that came with the sixth generation of microprocessors is 
out-of-order execution. The idea is that if the execution of a particular instruction is delayed 
because the input data are not available yet, then the microprocessor will try to find later 
instructions that it can do first, if the input data for the latter instructions are ready. 
Obviously, the microprocessor has to check if the latter instructions need the output from 
the former instruction. If each instruction depends on the result of the preceding instruction, 
then we have no opportunities for out-of-order execution. The logic for determining input 
dependences and the mechanisms for doing instructions as soon as the necessary inputs 
are ready, gives us the further advantage that the microprocessor can do several things at 
the same time. If we need to do an addition and a multiplication, and neither instruction 
depends on the output of the other, then we can do both at the same time, because they are 
using two different execution units. But we cannot do two multiplications at the same time, 
because both will need to use the same execution unit. 
 
Typically, everything in these microprocessors is highly pipelined in order to improve the 
throughput. If, for example, a floating-point addition takes 5 clock cycles, and the execution 
unit is fully pipelined, then we can start one addition at time T, which will be finished at time 
T+5, and start another addition at time T+1, which will be finished at time T+6. The 
advantage of this technology is therefore highest if we can organize our code so that there 
are as few dependencies as possible between successive instructions. 



 

11.1 Instructions are split into uops 
The microprocessors with out-of-order execution are translating all instructions into micro-
operations - abbreviated uops. A simple instruction such as ADD EAX,EBX generates only 
one uop, while an instruction like ADD EAX,[MEM1] generates two: one for reading from 
memory into a temporary (unnamed) register, and one for adding the contents of the 
temporary register to EAX. The instruction ADD [MEM1],EAX generates three uops: one for 
reading from memory, one for adding, and one for writing the result back to memory. The 
advantage of this is that the uops can be executed out of order. Example: 
 

MOV EAX, [MEM1] 
IMUL EAX, 5 
ADD EAX, [MEM2] 
MOV [MEM3], EAX 

 
Here, the ADD EAX,[MEM2] instruction is split into two uops. The advantage of this is that 
the microprocessor can fetch the value of [MEM2] at the same time as it is doing the 
multiplication. If none of the data are in the cache, then the microprocessor will start to fetch 
[MEM2] immediately after starting to fetch [MEM1], and long before the multiplication can 
start. This principle also makes the stack work more efficiently. Consider the example: 
 

PUSH EAX 
CALL FUNC 

 
The PUSH EAX instruction is split into two uops which can be represented as SUB ESP,4 
and MOV [ESP],EAX. The advantage of this is that the SUB ESP,4 uop can be executed 
even if the value of EAX is not ready yet. The CALL operation needs the new value of ESP, 
so the CALL would have to wait for the value of EAX if the PUSH instruction was not split into 
uops. Thanks to the use of uops, the value of the stack pointer almost never causes delays 
in normal programs. 
½½ 
 

11.2 Register renaming 
Consider the example: 
 

MOV EAX, [MEM1] 
IMUL EAX, 6 
MOV [MEM2], EAX 
MOV EAX, [MEM3] 
ADD EAX, 2 
MOV [MEM4], EAX 

 
This piece of code is doing two things that have nothing to do with each other: multiplying 
[MEM1] by 6 and adding 2 to [MEM3]. If we were using a different register in the last three 
instructions, then the independence would be obvious. And, in fact, the microprocessor is 
actually smart enough to do just that. It is using a different temporary register in the last 
three instructions so that it can do the multiplication and the addition in parallel. The 
instruction set gives us only seven general-purpose 32-bit registers, and often we are using 
them all. So we cannot afford the luxury of using a new register for every calculation. But 
the microprocessor has more temporal registers to use. The PPro, P2 and P3 have 40 
universal temporary registers, and the P4 has 128. The microprocessor can rename any of 
these temporary registers to represent the logical register EAX. 
 
Register renaming works fully automatically and in a very simple way. Every time an 
instruction writes to or modifies a logical register, the microprocessor assigns a new 
temporary register to that logical register. The first instruction in the above example will 



assign one temporary register to EAX. The second instruction is putting a new value into 
EAX, so a new temporary register will be assigned here. In other words, the multiplication 
instruction will use two different registers, one for input and another one for output. The next 
example illustrates the advantage of this: 
 

MOV EAX, [MEM1] 
MOV EBX, [MEM2] 
ADD EBX, EAX 
IMUL EAX, 6 
MOV [MEM3], EAX 
MOV [MEM4], EBX 

 
Assume, now, that [MEM1] is in the cache, while [MEM2] is not. This means that the 
multiplication can start before the addition. The advantage of using a new temporary 
register for the result of the multiplication is that we still have the old value of EAX, which 
has to be kept until EBX is ready for the addition. If we had used the same register for the 
input and output of the multiplication, then the multiplication would have to wait until the 
loading of EBX and the addition was finished. 
 
After all the operations are finished, the value in the temporary register that represents the 
last value of EAX in the code sequence is written to a permanent EAX register. This process 
is called retirement (see page 71 and 88). 
 
All general purpose registers, stack pointer, flags, floating-point registers, MMX registers, 
XMM registers and segment registers can be renamed. Control words, and the floating-point 
status word cannot be renamed, and this is the reason why the use of these registers is 
slow. 
 

11.3 Dependence chains 
A series of instructions where each instruction depends on the result of the preceding one is 
called a dependence chain. Long dependence chains should be avoided, if possible, 
because they prevent out-of-order and parallel execution. Example: 
 

MOV  EAX, [MEM1] 
IMUL EAX, [MEM2] 
IMUL EAX, [MEM3] 
IMUL EAX, [MEM4] 
MOV  [MEM5], EAX 

 
In this example, the IMUL instructions generate several uops each, one for reading from 
memory, and one or more for multiplying. The read uops can execute out or order, while the 
multiplication uops must wait for the previous uops to finish. This dependence chain takes 
quite a long time, because multiplication is slow. You can improve this code by breaking up 
the dependence chain. The trick is to use multiple accumulators:  
 

MOV  EAX, [MEM1]        ; start first chain 
MOV  EBX, [MEM2]        ; start other chain in different accumulator 
IMUL EAX, [MEM3] 
IMUL EBX, [MEM4] 
IMUL EAX, EBX           ; join chains in the end 
MOV [MEM5], EAX 

 
Here, the second IMUL instruction can start before the first one is finished.  
 
Floating-point instructions often have a longer latency than integer instructions, so you 
should definitely break up long dependence chains with floating-point instructions: 
 

   FLD  [MEM1]        ; start first chain 



   FLD  [MEM2]        ; start second chain in different accumulator 
   FADD [MEM3] 
   FXCH 
   FADD [MEM4] 
   FXCH 
   FADD [MEM5] 
   FADD               ; join chains in the end 
   FSTP [MEM6] 

 
You need a lot of FXCH instructions for this, but don't worry, they are cheap. FXCH 
instructions are resolved by register renaming so they hardly put any load on the execution 
units. If the dependence chain is long and the latencies of the instructions are long 
compared to the throughputs, then you may use more than two accumulators. 
 
Avoid storing intermediate data in memory and read them immediately afterwards: 
 

MOV [TEMP], EAX 
MOV EBX, [TEMP] 

 
There is a penalty for attempting to read from a memory address before a previous write to 
this address is finished. This penalty is particularly high in the P4. In the example above, 
change the last instruction to MOV EBX,EAX or put some other instructions in between. 
 
There is one situation where you cannot avoid storing intermediate data in memory, and this 
is when transferring data from an integer register to a floating-point register, or vice versa. 
For example: 
 

MOV EAX, [MEM1] 
ADD EAX, [MEM2] 
MOV [TEMP], EAX 
FILD [TEMP] 

 
If you don't have anything to put in between the write to [TEMP] and the read from [TEMP], 
then you may consider using a floating-point register instead of EAX: 
 

FILD [MEM1] 
FIADD [MEM2] 

 
Consecutive jumps, calls, or returns may also be considered dependence chains. The 
throughput for these instructions is one jump per one or two clock cycles. It is therefore 
recommended that you give the microprocessor something else to do between jumps. 
 

12 Branch prediction (all processors)  
The pipeline in a modern microprocessor contains many stages, including instruction fetch, 
decoding, register allocation and renaming, uop reordering, execution, and retirement. 
Handling instructions in a pipelined manner allows the microprocessor to do many things at 
the same time. While one instruction is being executed, the next instructions are being 
fetched and decoded. The biggest problem with pipelining is branches in the code. For 
example, a conditional jump allows the instruction flow to go in any of two directions. If there 
is only one pipeline, then the microprocessor doesn't know which of the two branches to 
feed into the pipeline until the branch instruction has been executed. The longer the 
pipeline, the more time does the microprocessor waste if it has fed the wrong branch into 
the pipeline. 
 
As the pipelines become longer and longer in every new microprocessor generation, the 
problem of branch misprediction becomes so big that the microprocessor designers go to 
great lengths to reduce it. The designers are inventing more and more sophisticated 
mechanisms for predicting which way a branch will go, in order to minimize the frequency of 



branch mispredictions. The history of branch behavior is stored in order to use past history 
for predicting future behavior. This prediction has two aspects: predicting whether a 
conditional jump will be taken or not, and predicting the target address that it jumps to. A 
cache called Branch Target Buffer (BTB) stores the target address of all jumps. The first 
time an unconditional jump is executed, the target address is stored in the BTB. The second 
time the same jump is executed, the target address in the BTB is used for fetching the 
predicted target into the pipeline, even though the true target is not calculated until the jump 
reaches the execution stage. The predicted target is very likely to be correct, but not certain, 
because the BTB may not be big enough to contain all jumps in a program, so different 
jumps may replace each other's entries in the BTB. 
 

12.1 Prediction methods for conditional jumps 
When a conditional jump is encountered, the microprocessor has to predict not only the 
target address, but also whether the conditional jump is taken or not taken. If the guess is 
right and the right target is loaded, then the pipeline goes smoothly and fast. But if the 
prediction is wrong and the microprocessor has loaded the wrong target into the pipeline, 
then the pipeline has to be flushed, and the time that has been spent on fetching, decoding 
and perhaps speculatively executing instructions in the wrong branch is wasted. 

Saturating counter 
A relatively simple method is to store information in the BTB about what the branch has 
done most in the past. This can be done with a saturating counter, as shown in figure 12.1. 
 

 
Figure 12.1. Saturating 2-bit counter 
 
This counter has four states. Every time the branch is taken, the counter goes up to the next 
state, unless it already is in the highest state. Every time the branch is not taken, the 
counter goes down one step, unless it already is in the lowest state. When the counter is in 
one of the highest two states, it predicts that the branch will be taken the next time. When 
the counter is in one of the lowest two states, it predicts that the branch will not be taken the 
next time. If the branch has been not taken several times in a row, the counter will be in the 
lowest state, called "strongly not taken". The branch then has to be taken twice for the 
prediction to change to taken. Likewise, if the branch has been taken several times in a row, 
it will be in state "Strongly taken". It has to be not taken twice before the prediction changes 
to not taken. In other words, the branch has to deviate twice from what it has done most in 
the past before the prediction changes.  
 
This method is good for a branch that does the same most of the time, but not good for a 
branch that changes often. The P1 uses this method, though with a flaw, as explained on 
page 40. 

Two-level adaptive predictor 
Consider the behavior of the counter in figure 12.1 for a branch that is taken every second 
time. If it starts in state "strongly not taken", then the counter will alternate between state 
"strongly not taken" and "weakly not taken". The prediction will always be "not taken", which 
will be right only 50% of the time. Likewise, if it starts in state "strongly taken" then it will 



predict "taken" all the time. The worst case is if it happens to start in state "weakly taken" 
and alternates between "weakly not taken" and "weakly taken". In this case, the branch will 
be mispredicted all the time. 
 
A method of improving the prediction rate for branches with such a regularly recurring 
pattern is to remember the history of the last n occurrences of the branch and use one 
saturating counter for each of the possible 2n history patterns. This method, which was 
invented by T.-Y. Yeh and Y. N. Patt, is illustrated in figure 12.2. 
 

 
Figure 12.2. Adaptive two-level predictor 

 
Consider the example of n = 2. This means that the last two occurrences of the branch are 
stored in a 2-bit shift register. This branch history register can have 4 different values: 00, 
01, 10, and 11; where 0 means "not taken" and 1 means "taken". Now, we make a pattern 
history table with four entries, one for each of the possible branch histories. Each entry in 
the pattern history table contains a 2-bit saturating counter of the same type as in figure 
12.1. The branch history register is used for choosing which of the four saturating counters 
to use. If the history is 00 then the first counter is used. If the history is 11 then the last of 
the four counters is used. 
 
In the case of a branch that is alternatingly taken and not taken, the branch history register 
will always contain either 01 or 10. When the history is 01 we will use the counter with the 
binary number 01B in the pattern history table. This counter will soon learn that after 01 
comes a 0. Likewise, counter number 10B will learn that after 10 comes a 1. After a short 
learning period, the predictor will make 100% correct predictions. Counters number 00B and 
11B will not be used in this case. 
 
A branch that is alternatingly taken twice and not taken twice will also be predicted 100% by 
this predictor. The repetitive pattern is 0011-0011-0011. Counter number 00B in the pattern 
history table will learn that after 00 comes a 1. Counter number 01B will learn that after a 01 
comes a 1. Counter number 10B will learn that after 10 comes a 0. And counter number 
11B will learn that after 11 comes a 0. But the repetitive pattern 0001-0001-0001 will not be 
predicted correctly all the time because 00 can be followed by either a 0 or a 1. 
 
The mechanism in figure 12.2 is called a two-level adaptive predictor. The general rule for a 
two-level adaptive predictor with an n-bit branch history register is as follows: 
 

Any repetitive pattern with a period of n+1 or less can be predicted perfectly 
after a warm-up time no longer than three periods. A repetitive pattern with a 
period p higher than n+1 and less than or equal to 2n can be predicted perfectly 
if all the p n-bit subsequences are different. 

 
To illustrate this rule, consider the repetitive pattern 0011-0011-0011 in the above example. 
The 2-bit subsequences are 00, 01, 11, 10. Since these are all different, they will use 
different counters in the pattern history table of a two-level predictor with n = 2. With n = 4, 
we can predict the repetitive pattern 000011-000011-000011 with period 6, because the six 



4-bit subsequences: 0000, 0001, 0011, 0110, 1100, 1000, are all different. But the pattern 
000001-000001-000001, which also has period 6, cannot be predicted perfectly, because 
the subsequence 0000 can be followed by either a 0 or a 1. 
 
The PMMX, PPro, P2 and P3 all use a two-level adaptive predictor with n = 4. This requires 
36 bits of storage for each branch: two bits for each of the 16 counters in the pattern history 
table, and 4 bits for the branch history register. 

The agree predictor 
Since the storage requirement for the two-level predictor grows exponentially with the 
number of history bits n, there is a practical limit to how big we can make n. One way of 
overcoming this limitation is to share the branch history buffer and the pattern history table 
among all the branches rather than having one set for each branch. 
 
Imagine a two-level predictor with a global branch history register, storing the history of the 
last n branches, and a shared pattern history table. The prediction of a branch is made on 
the basis of the last n branch events. Some or all of these events may be occurrences of the 
same branch. If the innermost loop contains m conditional jumps, then the prediction of a 
branch within this loop can rely on  floor(n/m)  occurrences of the same branch in the 
branch history register, while the rest of the entries come from other branches. If this is 
enough for defining the pattern of this branch, or if it is highly correlated with the other 
branches, then we can expect the prediction rate to be good.  
 
The disadvantage of this method is that branches that behave differently may share the 
same entry in the pattern history table. This problem can be reduced by storing a biasing bit 
for each branch. The biasing bit indicates whether the branch is mostly taken or not taken. 
The predictors in the pattern history table now no longer indicate whether the branch is 
predicted to be taken or not, but whether it is predicted to go the same way or the opposite 
way of the biasing bit. Since the prediction is more likely to agree than to disagree with the 
biasing bit, the probability of negative interference between branches that happen to use the 
same entry in the pattern history table is reduced, but not eliminated. My research indicates 
that the P4 is using one version of this method, as shown in figure 12.3. 
 

 
Figure 12.3. Agree predictor 
 
Each branch has a local predictor, which is simply a saturating counter of the same type as 
shown in figure 12.1. The global pattern history table, which is indexed by the global branch 
history register, indicates whether the branch is predicted to agree or disagree with the 
output of the local predictor. 
 
The global branch history register has 16 bits in the P4. Since, obviously, some of the 216 
different history patterns are more common than others, we have the problem that some 
entries in the pattern history table will be used by several branches, while many other 



entries will never be used at all, if the pattern history table is indexed by the branch history 
alone. In order to make the use of these entries more evenly distributed, and thus reduce 
the probability that two branches use the same entry, the pattern history table may be 
indexed by a combination of the global history and the branch address. The literature 
recommends that the index into the pattern history table is generated by an XOR 
combination of the history bits and the branch address (E. Sprangle, et. al.: The Agree 
Predictor: A Mechanism for Reducing Negative Branch History Interference. Proceedings of 
the 24th International Symposium on Computer Architecture, Denver, June 1997). However, 
my experimental results do not confirm such a design. The indexing function in figure 12.3 
may be a more complex hashing function of the history and the branch address, or it may 
involve the branch target address, BTB entry address or trace cache address. 
 
Since the indexing function is not known, it is impossible to predict whether two branches 
will use the same entry in the pattern history table. For the same reason, I have not been 
able to calculate the size of the pattern history table. The most logical value is 216, but in 
theory it may possibly be both bigger and smaller. 

Future branch prediction methods 
It is likely that branch prediction methods will be further improved in the future. According to 
the technical literature and the patent literature, the following developments are likely: 
 

• alloyed predictor. The two-level predictor can be improved by using a combination of 
local and global history bits as index into the pattern history table. This eliminates the 
need for the agree predictor and improves the prediction of branches that are not 
correlated with any preceding branch. 
 

• hybrid predictor. There may be two or more different predictors, for example one 
based on local history and one based on global history. A local selector keeps track 
of which of the two predictors has been most successful in the past and selects the 
output of the best predictor for a particular branch. 
 

• switch counter. A local counter keeps track of how many consecutive "taken" and 
how many consecutive "not taken" each branch makes. This is useful for predicting 
loops that always repeat the same number of times. The switch counter may be part 
of a hybrid predictor. 
 

• keeping unimportant branches out of global history register. In typical programs, a 
large proportion of the branches always go the same way. Such branches may be 
kept out of the global history register in order to increase its information contents. 
 

• decoding both branches. Part or all of the pipeline may be duplicated so that both 
branches can be decoded and speculatively executed simultaneously. It may 
decode both branches whenever possible, or only if the prediction is uncertain. 
 

• neural networks. The storage requirement for the two-level predictor grows 
exponentially with n, and the warm-up time may also grow exponentially with n. This 
limits the performance that can be achieved with the two-level predictor. Other 
methods with less storage requirements are likely to be implemented. Such new 
methods may use the principles of neural networks. 
 

• reducing the effect of context switches. The information that the predictors have 
collected is often lost due to task switches and other context switches. As more 
advanced prediction methods require longer warm-up time, it is likely that new 
methods will be implemented to reduce the loss during context switches. 

 



12.2 Branch prediction in P1  
The branch prediction mechanism for the P1 is very different from the other processors. 
Information found in Intel documents and elsewhere on this subject is misleading, and 
following the advices given is such documents is likely to lead to sub-optimal code. 
 
The P1 has a branch target buffer (BTB), which can hold information for up to 256 jump 
instructions. The BTB is organized as a 4-way set-associative cache with 64 entries per 
way. This means that the BTB can hold no more than 4 entries with the same set value. 
Unlike the data cache, the BTB uses a pseudo random replacement algorithm, which 
means that a new entry will not necessarily displace the least recently used entry of the 
same set-value.  
 
Each entry contains a saturation counter of the type shown in figure 12.1. Apparently, the 
designers couldn't afford to use an extra bit for indicating whether the BTB entry is used or 
not. Instead, they have equated state "strongly not taken" with "entry unused". This makes 
sense because a branch with no BTB entry is predicted to be not taken anyway, in the P1. A 
branch doesn't get a BTB entry until the first time it is taken. Unfortunately, the designers 
have decided that a branch that is taken the first time it is seen should go to state "strongly 
taken". This makes the state diagram for the predictor look like this: 
 

 
Figure 12.4. Branch predictor in P1 
 
This is of course a sub-optimal design, and I have strong indications that it is a design flaw. 
In a tight loop with no more than four instruction pairs, where the loop control branch is seen 
again before the BTB has had the time to update, the output of the saturation counter is 
forwarded directly to the prefetcher. In this case the state can go from "strongly not taken" to 
"weakly not taken". This indicates that the originally intended behavior is as in figure 12.1. 
Intel engineers have been unaware of this flaw until I published my findings in an earlier 
version of this manual. 
 
The consequence of this flaw is that a branch instruction which falls through most of the 
time will have up to three times as many mispredictions as a branch instruction which is 
taken most of the time. You may take this asymmetry into account by organizing your 
branches so that they are taken more often than not. 

BTB is looking ahead (P1) 
 
The BTB mechanism in the P1 is counting instruction pairs, rather than single instructions, 
so you have to know how instructions are pairing (see page 52) in order to analyze where a 
BTB entry is stored. The BTB entry for any control transfer instruction is attached to the 
address of the U-pipe instruction in the preceding instruction pair. (An unpaired instruction 
counts as one pair). Example: 
 

    SHR EAX,1 
    MOV EBX,[ESI] 



    CMP EAX,EBX 
    JB  L 

 
Here SHR pairs with MOV, and CMP pairs with JB. The BTB entry for JB L is thus attached to 
the address of the SHR EAX,1 instruction. When this BTB entry is met, and if it predicts the 
branch to be taken, then the P1 will read the target address from the BTB entry, and load 
the instructions following L into the pipeline. This happens before the branch instruction has 
been decoded, so the Pentium relies solely on the information in the BTB when doing this.  
 
Instructions are seldom pairing the first time they are executed (see page 52). If the 
instructions above are not pairing, then the BTB entry should be attached to the address of 
the CMP instruction, and this entry would be wrong on the next execution, when instructions 
are pairing. However, in most cases the P1 is smart enough to not make a BTB entry when 
there is an unused pairing opportunity, so you don't get a BTB entry until the second 
execution, and hence you won't get a prediction until the third execution. (In the rare case, 
where every second instruction is a single-byte instruction, you may get a BTB entry on the 
first execution which becomes invalid in the second execution, but since the instruction it is 
attached to will then go to the V-pipe, it is ignored and gives no penalty. A BTB entry is only 
read if it is attached to the address of a U-pipe instruction).  
 
A BTB entry is identified by its set-value which is equal to bits 0-5 of the address it is 
attached to. Bits 6-31 are then stored in the BTB as a tag. Addresses which are spaced a 
multiple of 64 bytes apart will have the same set-value. You can have no more than four 
BTB entries with the same set-value. 

Consecutive branches 
When a jump is mispredicted, then the pipeline gets flushed. If the next instruction pair 
executed also contains a control transfer instruction, then the P1 will not load its target 
because it cannot load a new target while the pipeline is being flushed. The result is that the 
second jump instruction is predicted to fall through regardless of the state of its BTB entry. 
Therefore, if the second jump is also taken, then you will get another penalty. The state of 
the BTB entry for the second jump instruction does get correctly updated, though. If you 
have a long chain of control transfer instructions, and the first jump in the chain is 
mispredicted, then the pipeline will get flushed all the time, and you will get nothing but 
mispredictions until you meet an instruction pair which does not jump. The most extreme 
case of this is a loop which jumps to itself: It will get a misprediction penalty for each 
iteration.  
 
This is not the only problem with consecutive control transfer instructions. Another problem 
is that you can have another branch instruction between a BTB entry and the control 
transfer instruction it belongs to. If the first branch instruction jumps to somewhere else, 
then strange things may happen. Consider this example:  
 

        SHR EAX,1 
        MOV EBX,[ESI] 
        CMP EAX,EBX 
        JB  L1 
        JMP L2 
 
L1:     MOV EAX,EBX 
        INC EBX 

 
When JB L1 falls through, then we will get a BTB entry for JMP L2 attached to the address 
of CMP EAX,EBX. But what will happen when JB L1 later is taken? At the time when the 
BTB entry for JMP L2 is read, the processor doesn't know that the next instruction pair does 
not contain a jump instruction, so it will actually predict the instruction pair MOV EAX,EBX / 
INC EBX to jump to L2. The penalty for predicting non-jump instructions to jump is 3 clock 
cycles. The BTB entry for JMP L2 will get its state decremented, because it is applied to 



something that doesn't jump. If we keep going to L1, then the BTB entry for JMP L2 will be 
decremented to state 1 and 0, so that the problem will disappear until next time JMP L2 is 
executed. 
 
The penalty for predicting the non-jumping instructions to jump only occurs when the jump 
to L1 is predicted. In the case that JB L1 is mispredictedly jumping, then the pipeline gets 
flushed and we won't get the false L2 target loaded, so in this case we will not see the 
penalty of predicting the non-jumping instructions to jump, but we do get the BTB entry for 
JMP L2 decremented.  
 
Suppose, now, that we replace the INC EBX instruction above with another jump 
instruction. This third jump instruction will then use the same BTB entry as JMP L2 with the 
possible penalty of predicting a wrong target.  
 
To summarize, consecutive jumps can lead to the following problems in the P1: 
 

• failure to load a jump target when the pipeline is being flushed by a preceding 
mispredicted jump. 

 
• a BTB entry being misapplied to non-jumping instructions and predicting them to 

jump. 
 

• a second consequence of the above is that a misapplied BTB entry will get its state 
decremented, possibly leading to a later misprediction of the jump it belongs to. 
Even unconditional jumps can be predicted to fall through for this reason. 

 
• two jump instructions may share the same BTB entry, leading to the prediction of a 

wrong target. 
 
All this mess may give you a lot of penalties, so you should definitely avoid having an 
instruction pair containing a jump immediately after another poorly predictable control 
transfer instruction or its target in the P1. It is time for another illustrative example: 
 

        CALL P 
        TEST EAX,EAX 
        JZ   L2 
L1:     MOV  [EDI],EBX 
        ADD  EDI,4 
        DEC  EAX 
        JNZ  L1 
L2:     CALL P 

 
First, we may note that the function P is called alternatingly from two different locations. This 
means that the target for the return from P will be changing all the time. Consequently, the 
return from P will always be mispredicted. 
 
Assume, now, that EAX is zero. The jump to L2 will not have its target loaded because the 
mispredicted return caused a pipeline flush. Next, the second CALL P will also fail to have 
its target loaded because JZ L2 caused a pipeline flush. Here we have the situation where 
a chain of consecutive jumps makes the pipeline flush repeatedly because the first jump 
was mispredicted. The BTB entry for JZ L2 is stored at the address of P's return 
instruction. This BTB entry will now be misapplied to whatever comes after the second CALL 
P, but that doesn't give a penalty because the pipeline is flushed by the mispredicted 
second return.  
 
Now, let's see what happens if EAX has a nonzero value the next time: JZ L2 is always 
predicted to fall through because of the flush. The second CALL P has a BTB entry at the 



address of TEST EAX,EAX. This entry will be misapplied to the MOV/ADD pair, predicting it 
to jump to P. This causes a flush which prevents JNZ L1 from loading its target. If we have 
been here before, then the second CALL P will have another BTB entry at the address of 
DEC EAX. On the second and third iteration of the loop, this entry will also be misapplied to 
the MOV/ADD pair, until it has had its state decremented to 1 or 0. This will not cause a 
penalty on the second iteration because the flush from JNZ L1 prevents it from loading its 
false target, but on the third iteration it will. The subsequent iterations of the loop have no 
penalties, but when it exits, JNZ L1 is mispredicted. The flush would now prevent CALL P 
from loading its target, were it not for the fact that the BTB entry for CALL P has already 
been destroyed by being misapplied several times. We can improve this code by putting in 
some NOP's to separate all consecutive jumps: 
 

        CALL P 
        TEST EAX,EAX 
        NOP 
        JZ   L2 
L1:     MOV  [EDI],EBX 
        ADD  EDI,4 
        DEC  EAX 
        JNZ  L1 
L2:     NOP 
        NOP 
        CALL P 

 
The extra NOP's cost 2 clock cycles, but they save much more. Furthermore, JZ L2 is now 
moved to the U-pipe which reduces its penalty from 4 to 3 when mispredicted. The only 
problem that remains is that the returns from P are always mispredicted. This problem can 
only be solved by replacing the call to P by an inline macro.  
 

12.3 Branch prediction in PMMX, PPro, P2, and P3 

BTB organization 
The branch target buffer (BTB) of the PMMX has 256 entries organized as 16 ways * 16 
sets. Each entry is identified by bits 2-31 of the address of the last byte of the control 
transfer instruction it belongs to. Bits 2-5 define the set, and bits 6-31 are stored in the BTB 
as a tag. Control transfer instructions which are spaced 64 bytes apart have the same set-
value and may therefore occasionally push each other out of the BTB. Since there are 16 
ways per set, this won't happen too often.  
 
The branch target buffer (BTB) of the PPro, P2 and P3 has 512 entries organized as 16 
ways * 32 sets. Each entry is identified by bits 4-31 of the address of the last byte of the 
control transfer instruction it belongs to. Bits 4-8 define the set, and all bits are stored in the 
BTB as a tag. Control transfer instructions which are spaced 512 bytes apart have the same 
set-value and may therefore occasionally push each other out of the BTB. Since there are 
16 ways per set, this won't happen too often. 
 
The PPro, P2 and P3 allocate a BTB entry to any control transfer instruction the first time it 
is executed. The PMMX allocates it the first time it jumps. A branch instruction that never 
jumps will stay out of the BTB on the PMMX. As soon as it has jumped once, it will stay in 
the BTB, even if it never jumps again. An entry may be pushed out of the BTB when another 
control transfer instruction with the same set-value needs a BTB entry. 

Misprediction penalty 
In the PMMX, the penalty for misprediction of a conditional jump is 4 clocks in the U-pipe, 
and 5 clocks if it is executed in the V-pipe. For all other control transfer instructions it is 4 
clocks. 
 



In the PPro, P2 and P3, the misprediction penalty is higher due to the long pipeline. A 
misprediction usually costs between 10 and 20 clock cycles. It is therefore very important to 
be aware of poorly predictable branches when running on PPro, P2 and P3. 

Pattern recognition for conditional jumps 
The PMMX, PPro, P2 and P3 all use a two-level adaptive branch predictor with a local 4-bit 
history, as explained on page 36. Simple repetitive patterns are predicted well by this 
mechanism. For example, a branch which is alternatingly taken twice and not taken twice, 
will be predicted all the time after a short learning period. The rule on page 37 tells which 
repetitive branch patterns can be predicted perfectly. All patterns with a period of five or less 
are predicted perfectly. This means that a loop which always repeats five times will have no 
mispredictions, but a loop that repeats six or more times will not be predicted. Repetitive 
patterns with a longer period can also be predicted if all 4-bit subsequences are different. 
For example, a branch which is alternatingly taken four times and not taken four times, will 
be predicted perfectly. 
 
The branch prediction mechanism is also good at handling 'almost regular' patterns, or 
deviations from the regular pattern. Not only does it learn what the regular pattern looks like. 
It also learns what deviations from the regular pattern look like. If deviations are always of 
the same type, then it will remember what comes after the irregular event, and the deviation 
will cost only one misprediction. Likewise, a branch which switches back and forth between 
two different regular patterns is predicted well. 

Completely random patterns 
The powerful capability of pattern recognition has a minor drawback in the case of 
completely random sequences with no regularities. The following table lists the experimental 
fraction of mispredictions for a completely random sequence of taken and not taken: 
 

fraction of taken/not taken fraction of mispredictions 
0.001/0.999 0.001001 
0.01/0.99 0.0101 
0.05/0.95 0.0525 
0.10/0.90 0.110 
0.15/0.85 0.171 
0.20/0.80 0.235 
0.25/0.75 0.300 
0.30/0.70 0.362 
0.35/0.65 0.417 
0.40/0.60 0.462 
0.45/0.55 0.490 
0.50/0.50 0.500 

 
The fraction of mispredictions is slightly higher than it would be without pattern recognition 
because the processor keeps trying to find repeated patterns in a sequence that has no 
regularities. 

Tight loops (PMMX) 
Branch prediction in the PMMX is not reliable in tiny loops where the pattern recognition 
mechanism doesn't have time to update its data before the next branch is met. This means 
that simple patterns, which would normally be predicted perfectly, are not recognized. 
Incidentally, some patterns which normally would not be recognized, are predicted perfectly 
in tight loops. For example, a loop which always repeats 6 times would have the branch 
pattern 111110 for the branch instruction at the bottom of the loop. This pattern would 
normally have one or two mispredictions per iteration, but in a tight loop it has none. The 
same applies to a loop which repeats 7 times. Most other repeat counts are predicted 
poorer in tight loops than normally. 



 
To find out whether a loop will behave as 'tight' on the PMMX you may follow the following 
rule of thumb: Count the number of instructions in the loop. If the number is 6 or less, then 
the loop will behave as tight. If you have more than 7 instructions, then you can be 
reasonably sure that the pattern recognition functions normally. Strangely enough, it doesn't 
matter how many clock cycles each instruction takes, whether it has stalls, or whether it is 
paired or not. Complex integer instructions do not count. A loop can have lots of complex 
integer instructions and still behave as a tight loop. A complex integer instruction is a non-
pairable integer instruction that always takes more than one clock cycle. Complex floating-
point instructions and MMX instructions still count as one. Note, that this rule of thumb is 
heuristic and not completely reliable. 
 
Tight loops on PPro, P2 and P3 are predicted normally, and take minimum two clock cycles 
per iteration. 

Indirect jumps and calls (PMMX, PPro, P2 and P3) 
There is no pattern recognition for indirect jumps and calls, and the BTB can remember no 
more than one target for an indirect jump. It is simply predicted to go to the same target as it 
did last time. 

JECXZ and LOOP (PMMX) 
There is no pattern recognition for these two instructions in the PMMX. They are simply 
predicted to go the same way as last time they were executed. These two instructions 
should be avoided in time-critical code for PMMX. In PPro, P2 and P3 they are predicted 
using pattern recognition, but the LOOP instruction is still inferior to DEC ECX / JNZ. 
 

12.4 Branch prediction in P4 
The organization of the branch target buffer (BTB) in the P4 is not known in detail. It has 
4096 entries, probably organized as 8 ways * 512 sets. Apparently, control transfer 
instructions that are spaced 4096 bytes apart have the same set-value and may therefore 
occasionally push each other out of the BTB. Far jumps, calls and returns are not predicted 
in the P4. 
 
The P4 allocates a BTB entry to any near control transfer instruction the first time it jumps. A 
branch instruction which never jumps will stay out of the BTB on the P4, but not out of the 
branch history buffer. As soon as it has jumped once, it will stay in the BTB, even if it never 
jumps again. An entry may be pushed out of the BTB when another control transfer 
instruction with the same set-value needs a BTB entry. All conditional jumps, including 
JECXZ and LOOP, contribute to the branch history buffer. Unconditional and indirect jumps, 
calls and returns do not contribute to the branch history. 
 
Branch mispredictions are much more expensive on the P4 than on previous generations of 
microprocessors. The time it takes to recover from a misprediction is rarely less than 24 
clock cycles, and typically 45 uops. Apparently, the microprocessor cannot cancel a bogus 
uop before it has reached the retirement stage. This means that if you have a lot of uops 
with long latency or poor throughput, then the penalty for a misprediction may be as high as 
100 clock cycles or more. It is therefore very important to organize code so that the number 
of mispredictions is minimized. 

Pattern recognition for conditional jumps 
The P4 uses an "agree" predictor with a 16-bit global history, as explained on page 38. 
According to the prediction rule on page 37, the P4 can predict any repetitive pattern with a 
period of 17 or less, as well as some patterns with higher history. However, this applies to 
the global history, not the local history. You therefore have to look at the preceding 
branches in order to determine whether a branch is likely to be well predicted. I will explain 
this with the following example: 



 
    MOV  EAX, 100 
A:  ... 
    ... 
    MOV  EBX, 16 
B:  ... 
    SUB  EBX, 1 
    JNZ  B 
    TEST EAX, 1 
    JNZ  X1 
    CALL EAX_IS_EVEN 
    JMP  X2 
X1: CALL EAX_IS_ODD 
X2: ... 
    MOV  ECX, 0 
C1: CMP  ECX, 10 
    JNB  C2 
    ... 
    ADD  ECX, 1 
    JMP  C1 
C2: ... 
    SUB  EAX, 1 
    JNZ  A 

 
The A loop repeats 100 times. The JNZ A instruction is taken 99 times and falls through 1 
time. It will be mispredicted when it falls through. The B and C loops are inside the A loop. 
The B loop repeats 16 times, so without considering the prehistory, we would expect it to be 
predictable. But we have to consider the prehistory. With the exception of the first time, the 
prehistory for JNZ B will look like this: JNB C2: not taken 10 times, taken 1 time (JMP C1 
does not count because it is unconditional); JNZ A taken; JNZ B taken 15 times, not taken 
1 time. This totals 17 consecutive taken branches in the global history before JNZ B is not 
taken. It will therefore be mispredicted once or twice for each cycle. There is a way to avoid 
this misprediction. If you insert a dummy branch that always falls through anywhere 
between the A: and B: labels, then JNZ B is likely to be predicted perfectly, because the 
prehistory now has a not taken before the 15 times taken. The time saved by predicting JNZ 
B well is far more than the cost of an extra dummy branch. The dummy branch may, for 
example, be TEST ESP,ESP / JC B. 
 
JNZ X1 is taken every second time and is not correlated with any of the preceding 16 
conditional jump events, so it will not be predicted well. 
 
Assuming that the called procedures do not contain any conditional jumps, the prehistory for 
JNB C2 is the following: JNZ B taken 15 times, not taken 1 time; JNZ X1 taken or not 
taken; JNB C2: not taken 10 times, taken 1 time. The prehistory of JNB C2 is thus always 
unique. In fact, it has 22 different and unique prehistories, and it will be predicted well. If 
there was another conditional jump inside the C loop, for example if the JMP C1 instruction 
was conditional, then the JNB C2 loop would not be predicted well, because there would 
be 20 instances between each time JNB C2 is taken.  
 
In general, a loop cannot be predicted well on the P4 if the repeat count multiplied by the 
number of conditional jumps inside the loop exceeds 17. 

Alternating branches 
While the C loop in the above example is predictable, and the B loop can be made 
predictable by inserting a dummy branch, we still have a big problem with the JNZ X1 
branch. This branch is alternatingly taken and not taken, and it is not correlated with any of 
the preceding 16 branch events. Let's study the behavior of the predictors in this case. If the 
local predictor starts in state "weakly not taken", then it will alternate between "weakly not 
taken" and "strongly not taken" (see figure 12.1). If the entry in the global pattern history 



table starts in an agree state, then the branch will be predicted to fall through every time, 
and we will have 50% mispredictions (see figure 12.3). If the global predictor happens to 
start in state "strongly disagree", then it will be predicted to be taken every time, and we still 
have 50% mispredictions. The worst case is if the global predictor starts in state "weakly 
disagree". It will then alternate between "weakly agree" and "weakly disagree", and we will 
have 100% mispredictions. There is no way to control the starting state of the global 
predictor, but we can control the starting state of the local predictor. The local predictor 
starts in state "weakly not taken" or "weakly taken", according to the rules of static 
prediction, explained on page 48 below. If we swap the two branches and replace JNZ with 
JZ, so that the branch is taken the first time, then the local predictor will alternate between 
state "weakly not taken" and "weakly taken". The global predictor will soon go to state 
"strongly disagree", and the branch will be predicted correctly all the time. A backward 
branch that alternates would have to be organized so that it is not taken the first time, to 
obtain the same effect. Instead of swapping the two branches, we may insert a 3EH 
prediction hint prefix immediately before the JNZ X1 to change the static prediction to 
"taken" (see p. 48). This will have the same effect. 
 
While this method of controlling the initial state of the local predictor solves the problem in 
most cases, it is not completely reliable. It may not work if the first time the branch is seen is 
after a mispredicted preceding branch. Furthermore, the sequence may be broken by a task 
switch or other event that pushes the branch out of the BTB. We have no way of predicting 
whether the branch will be taken or not taken the first time it is seen after such an event. 
Fortunately, it appears that the designers have been aware of this problem and 
implemented a way to solve it, though the method is undocumented. While researching 
these mechanisms, I discovered an undocumented prefix, 64H, which does the trick on the 
P4. This prefix doesn't change the static prediction, but it controls the state of the local 
predictor after the first event so that it will toggle between state "weakly not taken" and 
"weakly taken", regardless of whether the branch is taken or not taken the first time. This 
trick can be summarized in the following rule: 
 
A branch which is taken exactly every second time, and which doesn't correlate with any of 
the preceding 16 branch events, can be predicted well on the P4 if it is preceded by a 64H 
prefix. This prefix is coded in the following way: 
 

DB   64H         ; hint prefix for alternating branch 
JNZ  X1          ; branch instruction 

 
No prefix is needed if the branch can see a previous instance of itself in the 16-bit 
prehistory. 
 
The 64H prefix has no effect and causes no harm on any other microprocessor. It is an FS 
segment prefix. The x86 family microprocessors are designed to ignore redundant and 
meaningless prefixes. The 64H prefix cannot be used together with the 2EH and 3EH static 
prediction prefixes. 

Completely random branch patterns 
The powerful capability of branch pattern recognition has a minor drawback in the case of 
completely random sequences with no regularities. The fraction of mispredictions is slightly 
higher than it would be without pattern recognition because the processor keeps trying to 
find repeated patterns in a sequence which has no regularities. The list of misprediction 
rates for random branches on page 44 also applies to the P4. 
 

12.5 Indirect jumps (all processors) 
While an unconditional jump always goes to the same target, indirect jumps, indirect calls, 
and returns may go to a different address each time. The prediction method for an indirect 
jump or indirect call is, in all processors, simply to predict that it will go to the same target as 



last time it was executed. The first time an indirect jump or indirect call is seen, it is 
predicted to go to the immediately following instruction. Therefore, an indirect jump or call 
should always be followed by valid code. Don't place a list of jump addresses immediately 
after an indirect jump or call. Such a list should preferably be placed in the data segment, 
rather than the code segment. 
 
Multiway branches (switch/case statements) are implemented either as an indirect jump 
using a list of jump addresses, or as a tree of branch instructions. Since indirect jumps are 
poorly predicted, the latter method may be preferred if easily predicted patterns can be 
expected and you have enough BTB entries. 
 

12.6 Returns (all processors except P1) 
A better method is used for returns. A Last-In-First-Out buffer, called the return stack buffer, 
remembers the return address every time a call instruction is executed, and uses this for 
predicting where the corresponding return will go. This mechanism makes sure that return 
instructions are correctly predicted when the same subroutine is called from several 
different locations. 
 
The P1 has no return stack buffer, but uses the same method for returns as for indirect 
jumps. Later processors have a return stack buffer. The size of this buffer is 4 in the PMMX, 
and 16 in PPro, P2, P3, and P4. This size may seem rather small, but it is sufficient in most 
cases because only the innermost subroutines matter in terms of execution time. The return 
stack buffer may be insufficient, though, in the case of a deeply nesting recursive function. 
 
In order to make this mechanism work, you must make sure that all calls are matched with 
returns. Never jump out of a subroutine without a return and never use a return as an 
indirect jump. It is OK, however, to replace a CALL MYPROC / RET sequence with JMP 
MYPROC.  
 
On the P4, you also must make sure that far calls are matched with far returns and near 
calls with near returns. This may be problematic because the assembler will replace a far 
call to a procedure in the same segment with PUSH CS followed by a near call. Even if you 
prevent the assembler from doing this by hard-coding the far call, the linker is likely to 
translate the far call to PUSH CS and a near call. Use the NOFARCALLTRANSLATION 
option in the linker to prevent this. It is recommended to use a small or flat memory model 
so that you don't need far calls, because far calls and returns are expensive anyway. 
 

12.7 Static prediction 
The first time a branch instruction is seen, a prediction is made according to the principles of 
static prediction. 

Static prediction in P1 and PMMX 
A control transfer instruction which has not been seen before or which is not in the branch 
target buffer (BTB) is always predicted to fall through on the P1 and PMMX. 
 
A branch instruction will not get a BTB entry if it always falls through. As soon as it is taken 
once, it will get into the BTB. On the PMMX, it will stay in the BTB no matter how many 
times it falls through. Any control transfer instruction which jumps to the address 
immediately following itself will not get a BTB entry and will therefore always have a 
misprediction penalty. 

Static prediction in PPro, P2, P3 and P4 
On PPro, P2, P3 and P4, a control transfer instruction which has not been seen before, or 
which is not in the BTB, is predicted to fall through if it goes forwards, and to be taken if it 



goes backwards (e.g. a loop). Static prediction takes longer time than dynamic prediction on 
these processors. 
 
On the P4, you can change the static prediction by adding prediction hint prefixes. The 
prefix 3EH will make the branch predicted taken the first time, and prefix 2EH will make it 
predicted not taken the first time. These prefixes can be coded in this way: 
 

DB  3EH    ; prediction hint prefix 
JBE LL     ; predicted taken first time 

 
The prediction hint prefixes are in fact segment prefixes, which have no effect and cause no 
harm on previous processors. 
 
It is rarely worth the effort to take static prediction into account. Almost any branch that is 
executed sufficiently often for its timing to have any significant effect is likely to stay in the 
BTB so that only the dynamic prediction counts. Static prediction only has a significant 
effect if context switches or task switches occur very often.  
 
Normally you don't have to care about the penalty of static mispredictions. It is more 
important to organize branches so that the most common path is not taken, because this 
improves code prefetching, trace cache use, and retirement.  
 
Static prediction does have an influence on the way traces are organized in the trace cache, 
but this is not a lasting effect because traces may be reorganized after several iterations. 
 

12.8 Close jumps 

Close jumps on PMMX 
On the PMMX, there is a risk that two control transfer instructions will share the same BTB 
entry if they are too close to each other. The obvious result is that they will always be 
mispredicted. The BTB entry for a control transfer instruction is identified by bits 2-31 of the 
address of the last byte in the instruction. If two control transfer instructions are so close 
together that they differ only in bits 0-1 of the address, then we have the problem of a 
shared BTB entry. The RET instruction is particularly prone to this problem because it is only 
one byte long. There are various ways to solve this problem: 
1. Move the code sequence a little up or down in memory so that you get a DWORD 

boundary between the two addresses. 
2. Change a short jump to a near jump (with 4 bytes displacement) so that the end of the 

instruction is moved further down. There is no way you can force the assembler to use 
anything but the shortest form of an instruction so you have to hard-code the near jump 
if you choose this solution. 

3. Put in some instruction between the two control transfer instructions. This is the easiest 
method, and the only method if you don't know where DWORD boundaries are because 
your segment is not DWORD aligned or because the code keeps moving up and down 
as you make changes in the preceding code. 

 
There is a penalty when the first instruction pair following the target label of a call contains 
another call instruction or if a return follows immediately after another return.  
 
The penalty for chained calls only occurs when the same subroutines are called from more 
than one location. Chained returns always have a penalty. There is sometimes a small stall 
for a jump after a call, but no penalty for return after call; call after return; jump, call, or 
return after jump; or jump after return.  



Chained jumps on PPro, P2 and P3 
A jump, call, or return cannot be executed in the first clock cycle after a previous jump, call, 
or return on the PPro, P2 and P3. Therefore, chained jumps will take two clock cycles for 
each jump, and you may want to make sure that the processor has something else to do in 
parallel. For the same reason, a loop will take at least two clock cycles per iteration on these 
processors. 

Chained jumps on P4 
The retirement station can handle only one taken jump, call or return per clock cycle, and 
only in the first of the three retirement slots. Therefore, preferably, no more than every third 
uop should be a jump. 
 

12.9 Avoiding jumps (all processors) 
There can be many reasons why you may want to reduce the number of branches, jumps, 
calls and returns: 
 
• jump mispredictions are very expensive. 
 
• jump instructions may push one another out of the branch target buffer. 

 
• on the P4, branches may interfere with each other in the global pattern history table. 

 
• on the P4, branches fill up the global branch history register. This may reduce the 

predictability of subsequent branches. 
 
• there are various penalties for consecutive or chained jumps, depending on the 

processor. 
 
• a return takes 2 clocks on P1 and PMMX, calls and returns generate 3 - 4 uops on PPro, 

P2, P3 and P4. 
 
• on PPro, P2 and P3, instruction fetch may be delayed after a jump. 

 
• on PPro, P2, P3 and P4, retirement is less effective for taken jumps then for other uops. 

 
• on P4, the utilization of the trace cache and the delivery from the trace cache is less 

effective if the code contains many branches. 

Eliminating unconditional jumps and calls 
Calls and returns can be avoided by replacing small procedures with inline macros. And in 
many cases it is possible to reduce the number of jumps by restructuring the code. For 
example, a jump to a jump should be replaced by a jump to the final target. In some cases 
this is even possible with conditional jumps if the condition is the same or is known. A jump 
to a return can be replaced by a return. If you want to eliminate a return to a return, then you 
should not manipulate the stack pointer because this would interfere with the prediction 
mechanism of the return stack buffer. Instead, you can replace the preceding call with a 
jump. For example CALL MYPROC / RET can be replaced by JMP MYPROC if MYPROC ends 
with the same kind of RET.  
 
You may also eliminate a jump by duplicating the code jumped to. This can be useful if you 
have a two-way branch inside a loop or before a return. Example: 
 

A:      CMP     [EAX+4*EDX],ECX 
        JE      B 
        CALL    X 
        JMP     C 



B:      CALL    Y 
C:      ADD     EDX, 1 
        JNZ     A 
        MOV     ESP, EBP 
        POP     EBP 
        RET 

 
The jump to C may be eliminated by duplicating the loop epilog: 
 

A:      CMP     [EAX+4*EDX],ECX 
        JE      B 
        CALL    X 
        ADD     EDX, 1 
        JNZ     A 
        JMP     D 
B:      CALL    Y 
C:      ADD     EDX, 1 
        JNZ     A 
D:      MOV     ESP, EBP 
        POP     EBP 
        RET 

 
The most often executed branch should come first here. The jump to D is outside the loop 
and therefore less critical. If this jump is executed so often that it needs optimizing too, then 
replace it with the three instructions following D. 

Tricks to avoid conditional jumps (all processors) 
The most important jumps to eliminate are conditional jumps, especially if they are poorly 
predictable. Sometimes it is possible to obtain the same effect as a branch by ingenious 
manipulation of bits and flags. For example you may calculate the absolute value of a 
signed integer without branching: 
 

CDQ              ; copy sign of EAX to all bits of EDX 
XOR EAX,EDX      ; toggle all bits if negative 
SUB EAX,EDX      ; add 1 if negative 

 
The carry flag is particularly useful for this kind of tricks: 
Setting carry if a value is zero: CMP [VALUE],1 
Setting carry if a value is not zero: SUB EAX,EAX / CMP EAX,[VALUE] 
Incrementing a counter if carry: ADC EAX,0 
Setting a bit for each time the carry is set: RCL EAX,1 
Generating a bit mask if carry is set: SBB EAX,EAX 
Setting a bit on an arbitrary condition: SETcond AL 
Setting all bits on an arbitrary condition: SUB EAX,EAX / SETcond AL / NEG EAX 
 
The following example finds the minimum of two unsigned numbers: if (b > a) b = a; 
 

SUB EAX,EBX 
SBB EDX,EDX 
AND EDX,EAX 
ADD EBX,EDX 

 
Or, for signed numbers: 
 

SUB EAX,EBX 
CDQ 
AND EDX,EAX 
ADD EBX,EDX 

 
The next example chooses between two numbers: if (a < 0) d = b; else d = c; 



 
CDQ 
XOR EBX,ECX  
AND EDX,EBX 
XOR EDX,ECX 

 
Whether or not such tricks are worth the extra code depends on how predictable a 
conditional jump would be, and the latency of the extra code. The examples that use CDQ 
are faster than conditional moves on the P4. 
 
Another way of avoiding branches in newer processors is to use the MAX.., MIN.., 
PMAX.. and PMIN.. instructions and the saturating PADD.. and PSUB.. instructions. 
 
You can conditionally move data in memory by using REP MOVS with ECX = 0 when you 
don't want to move. 

Replacing conditional jumps by conditional moves  (PPro, P2, P3, P4) 
The PPro, P2, P3 and P4 processors have conditional move instructions intended 
specifically for avoiding branches, because branch misprediction is very time-consuming on 
these processors. There are conditional move instructions for both integer and floating-point 
registers (See page 110 for how to make conditional moves in MMX and XMM registers). 
For code that will not run on old processors you may replace poorly predictable branches 
with conditional moves. 
 
This example again finds the minimum of two unsigned numbers: if (b < a) a = b; 
 

CMP    EAX,EBX 
CMOVNB EAX,EBX 

 
The misprediction penalty for a branch may be so high that it is advantageous to replace it 
with conditional moves even when it costs several extra instructions. But conditional move 
instructions have two important disadvantages:  
 

1. they make dependence chains longer 
 

2. they introduce an unnecessary dependence on the operand not chosen 
 
A conditional move is waiting for three operands to be ready before it can be executed: the 
condition flag and the two move operands. You have to consider if any of these three 
operands are likely to be delayed by dependence chains or cache misses. If the condition 
flag is available long before the move operands then you may as well use a branch, 
because a possible branch misprediction could be resolved while waiting for the move 
operands. In situations where you have to wait long for a move operand that may not be 
needed after all, the branch may be faster than the conditional move despite a possible 
misprediction penalty. The opposite situation is when the condition flag is delayed while 
both move operands are available early. In this situation the conditional move is preferred 
over the branch if misprediction is likely. 
 

13 Optimizing for P1 and PMMX 

13.1 Pairing integer instructions  

Perfect pairing  
The P1 and PMMX have two pipelines for executing instructions, called the U-pipe and the 
V-pipe. Under certain conditions it is possible to execute two instructions simultaneously, 



one in the U-pipe and one in the V-pipe. This can almost double the speed. It is therefore 
advantageous to reorder the instructions to make them pair.  
 
The following instructions are pairable in either pipe: 

• MOV register, memory, or immediate into register or memory 
• PUSH register or immediate, POP register 
• LEA, NOP 
• INC, DEC, ADD, SUB, CMP, AND, OR, XOR, 
• and some forms of TEST (see page 135). 

The following instructions are pairable in the U-pipe only: 
• ADC, SBB 
• SHR, SAR, SHL, SAL with immediate count 
• ROR, ROL, RCR, RCL with an immediate count of 1 

The following instructions can execute in either pipe but are only pairable when in the V-
pipe: 

• near call 
• short and near jump 
• short and near conditional jump. 

All other integer instructions can execute in the U-pipe only, and are not pairable. 
 
Two consecutive instructions will pair when the following conditions are met: 
 
1.  The first instruction is pairable in the U-pipe and the second instruction is pairable in the 
V-pipe. 
 
2.  The second instruction does not read or write a register which the first instruction writes 
to. 
 
Examples: 

MOV EAX, EBX / MOV ECX, EAX     ; read after write, do not pair 
MOV EAX, 1   / MOV EAX, 2       ; write after write, do not pair 
MOV EBX, EAX / MOV EAX, 2       ; write after read, pair OK 
MOV EBX, EAX / MOV ECX, EAX     ; read after read, pair OK 
MOV EBX, EAX / INC EAX          ; read and write after read, pair OK 

 
3.  In rule 2, partial registers are treated as full registers. Example: 

MOV AL, BL  /  MOV AH, 0 
writes to different parts of the same register, do not pair. 
 
4.  Two instructions which both write to parts of the flags register can pair despite rule 2  
and 3. Example: 

    SHR EAX, 4 / INC EBX            ; pair OK 
 
5. An instruction that writes to the flags can pair with a conditional jump despite rule 2. 
Example: 

    CMP EAX, 2 / JA LabelBigger     ; pair OK 
 
6. The following instruction combinations can pair despite the fact that they both modify the 
stack pointer: 
    PUSH + PUSH,  PUSH + CALL,  POP + POP 
 
7. There are restrictions on the pairing of instructions with prefix. There are several types of 
prefixes: 
 

• instructions addressing a non-default segment have a segment prefix. 
• instructions using 16 bit data in 32 bit mode, or 32 bit data in 16 bit mode have an 

operand size prefix. 



• instructions using 32 bit pointer registers in 16 bit mode or 16 bit pointer registers in 32 
bit mode have an address size prefix. 

• repeated string instructions have a repeat prefix. 
• locked instructions have a LOCK prefix. 
• many instructions which were not implemented on the 8086 processor have a two byte 

opcode where the first byte is 0FH. The 0FH byte behaves as a prefix on the P1, but 
not on the other versions. The most common instructions with 0FH prefix are: MOVZX, 
MOVSX, PUSH FS, POP FS, PUSH GS, POP GS, LFS, LGS, LSS, SETcc, BT, BTC, BTR, 
BTS, BSF, BSR, SHLD, SHRD, and IMUL with two operands and no immediate operand. 

 
On the P1, a prefixed instruction can only execute in the U-pipe, except for conditional near 
jumps. 
 
On the PMMX, instructions with operand size, address size, or 0FH prefix can execute in 
either pipe, whereas instructions with segment, repeat, or lock prefix can only execute in the 
U-pipe. 
 
8.  An instruction which has both a displacement and immediate data is not pairable on the 
P1 and only pairable in the U-pipe on the PMMX: 
 

    MOV DWORD PTR DS:[1000], 0    ; not pairable or only in U-pipe 
    CMP BYTE PTR [EBX+8], 1       ; not pairable or only in U-pipe 
    CMP BYTE PTR [EBX], 1         ; pairable 
    CMP BYTE PTR [EBX+8], AL      ; pairable 

 
Another problem with instructions which have both a displacement and immediate data on 
the PMMX is that such instructions may be longer than 7 bytes, which means that only one 
instruction can be decoded per clock cycle.  
 
9.  Both instructions must be preloaded and decoded. This is explained in chapter 10 page 
32. 
 
10. There are special pairing rules for MMX instructions on the PMMX: 
 

• MMX shift, pack or unpack instructions can execute in either pipe but cannot pair with 
other MMX shift, pack or unpack instructions. 

• MMX multiply instructions can execute in either pipe but cannot pair with other MMX 
multiply instructions. They take 3 clock cycles and the last 2 clock cycles can overlap 
with subsequent instructions in the same way as floating-point instructions can (see 
page 58). 

• an MMX instruction which accesses memory or integer registers can execute only in 
the U-pipe and cannot pair with a non-MMX instruction. 

Imperfect pairing  
There are situations where the two instructions in a pair will not execute simultaneously, or 
only partially overlap in time. They should still be considered a pair, though, because the 
first instruction executes in the U-pipe, and the second in the V-pipe. No subsequent 
instruction can start to execute before both instructions in the imperfect pair have finished.  
 
Imperfect pairing will happen in the following cases: 
 
1.  If the second instruction suffers an AGI stall (see page 56). 
 
2. Two instructions cannot access the same DWORD of memory simultaneously. 
The following examples assume that ESI is divisible by 4: 

MOV AL, [ESI] / MOV BL, [ESI+1] 
 



The two operands are within the same DWORD, so they cannot execute simultaneously. 
The pair takes 2 clock cycles. 

MOV AL, [ESI+3] / MOV BL, [ESI+4] 
Here the two operands are on each side of a DWORD boundary, so they pair perfectly, and 
take only one clock cycle. 
 
3. The preceding rule is extended to the case where bits 2 - 4 are the same in the two 
addresses (cache line conflict). For DWORD addresses this means that the difference 
between the two addresses should not be divisible by 32. 
 
Pairable integer instructions, which do not access memory, take one clock cycle to execute, 
except for mispredicted jumps. MOV instructions to or from memory also take only one clock 
cycle if the data area is in the cache and properly aligned. There is no speed penalty for 
using complex addressing modes such as scaled index registers. 
 
A pairable integer instruction that reads from memory, does some calculation, and stores 
the result in a register or flags, takes 2 clock cycles. (read/modify instructions). 
 
A pairable integer instruction that reads from memory, does some calculation, and writes 
the result back to the memory, takes 3 clock cycles. (read/modify/write instructions). 
 
4. If a read/modify/write instruction is paired with a read/modify or read/modify/write 
instruction, then they will pair imperfectly. 
 
The number of clock cycles used is given in the following table: 
 
First instruction Second instruction 
 MOV or register only read/modify read/modify/write 
MOV or register only 1 2 3 
read/modify 2 2 3 
read/modify/write 3 4 5 
 
Example: 

ADD [mem1], EAX / ADD EBX, [mem2] ; 4 clock cycles 
ADD EBX, [mem2] / ADD [mem1], EAX ; 3 clock cycles 

 
5. When two paired instructions both take extra time due to cache misses, misalignment, or 
jump misprediction, then the pair will take more time than each instruction, but less than the 
sum of the two. 
 
6. A pairable floating-point instruction followed by FXCH will make imperfect pairing if the 
next instruction is not a floating-point instruction. 
 
In order to avoid imperfect pairing you have to know which instructions go into the U-pipe, 
and which to the V-pipe. You can find out this by looking backwards in your code and 
search for instructions which are unpairable, pairable only in one of the pipes, or cannot pair 
due to one of the rules above. 
 
Imperfect pairing can often be avoided by reordering your instructions. Example: 
 

L1:     MOV     EAX,[ESI] 
        MOV     EBX,[ESI] 
        INC     ECX 

 
Here the two MOV instructions form an imperfect pair because they both access the same 
memory location, and the sequence takes 3 clock cycles. You can improve the code by 
reordering the instructions so that INC ECX pairs with one of the MOV instructions. 
 



L2:     MOV     EAX,OFFSET A 
        XOR     EBX,EBX 
        INC     EBX 
        MOV     ECX,[EAX] 
        JMP     L1 

 
The pair INC EBX / MOV ECX,[EAX] is imperfect because the latter instruction has an AGI 
stall. The sequence takes 4 clocks. If you insert a NOP or any other instruction so that MOV 
ECX,[EAX] pairs with JMP L1 instead, then the sequence takes only 3 clocks. 
 
The next example is in 16-bit mode, assuming that SP is divisible by 4: 
 

L3:     PUSH    AX 
        PUSH    BX 
        PUSH    CX 
        PUSH    DX 
        CALL    FUNC 

 
Here the PUSH instructions form two imperfect pairs, because both operands in each pair go 
into the same DWORD of memory. PUSH BX could possibly pair perfectly with PUSH CX 
(because they go on each side of a DWORD boundary) but it doesn't because it has already 
been paired with PUSH AX. The sequence therefore takes 5 clocks. If you insert a NOP or 
any other instruction so that PUSH BX pairs with PUSH CX, and PUSH DX with CALL FUNC, 
then the sequence will take only 3 clocks. Another way to solve the problem is to make sure 
that SP is not divisible by 4. Knowing whether SP is divisible by 4 or not in 16-bit mode can 
be difficult, so the best way to avoid this problem is to use 32-bit mode. 
 

13.2 Address generation interlock 
It takes one clock cycle to calculate the address needed by an instruction that accesses 
memory. Normally, this calculation is done at a separate stage in the pipeline while the 
preceding instruction or instruction pair is executing. But if the address depends on the 
result of an instruction executing in the preceding clock cycle, then we have to wait an extra 
clock cycle for the address to be calculated. This is called an AGI stall.  
 

; Example 13.1 
ADD EBX,4 
MOV EAX,[EBX] ; AGI stall 

 
The stall in this example can be removed by putting some other instructions in between 
these two, or by rewriting the code to:  
 

; Example 13.2 
MOV EAX,[EBX+4] 
ADD EBX,4 

 
You can also get an AGI stall with instructions that use ESP implicitly for addressing, such 
as PUSH, POP, CALL, and RET, if ESP has been changed in the preceding clock cycle by 
instructions such as MOV, ADD, or SUB. The P1 and PMMX have special circuitry to predict 
the value of ESP after a stack operation so that you do not get an AGI delay after changing 
ESP with PUSH, POP, or CALL. You can get an AGI stall after RET only if it has an immediate 
operand to add to ESP. Examples: 
 

ADD ESP,4 / POP ESI            ; AGI stall 
POP EAX   / POP ESI            ; no stall, pair 
MOV ESP,EBP / RET              ; AGI stall 
CALL L1 / L1: MOV EAX,[ESP+8]  ; no stall 
RET / POP EAX                  ; no stall 
RET 8 / POP EAX                ; AGI stall 



 
The LEA instruction is also subject to an AGI stall if it uses a base or index register that has 
been changed in the preceding clock cycle. Example: 
 

INC ESI / LEA EAX,[EBX+4*ESI]  ; AGI stall 
 
PPro, P2 and P3 have no AGI stalls for memory reads and LEA, but they do have AGI stalls 
for memory writes. This is not very significant unless the subsequent code has to wait for 
the write to finish. 
 

13.3 Splitting complex instructions into simpler ones 
You may split up read/modify and read/modify/write instructions to improve pairing. 
Example: 

ADD [mem1],EAX / ADD [mem2],EBX ; 5 clock cycles 
 
This code may be split up into a sequence that takes only 3 clock cycles: 

    MOV ECX,[mem1] / MOV EDX,[mem2] / ADD ECX,EAX / ADD EDX,EBX 
    MOV [mem1],ECX / MOV [mem2],EDX 

 
Likewise you may split up non-pairable instructions into pairable instructions: 

    PUSH [mem1] 
    PUSH [mem2]  ; non-pairable 

Split up into: 
    MOV EAX,[mem1] 
    MOV EBX,[mem2] 
    PUSH EAX 
    PUSH EBX     ; everything pairs 

 
Other examples of non-pairable instructions that may be split up into simpler pairable 
instructions: 
 
CDQ split into: MOV EDX,EAX / SAR EDX,31 
NOT EAX change to XOR EAX,-1 
NEG EAX split into XOR EAX,-1 / INC EAX 
MOVZX EAX,BYTE PTR [mem] split into XOR EAX,EAX / MOV AL,BYTE PTR [mem] 
JECXZ split into TEST ECX,ECX / JZ 
LOOP split into DEC ECX / JNZ 
XLAT change to MOV AL,[EBX+EAX] 
 
If splitting instructions does not improve speed, then you may keep the complex or 
nonpairable instructions in order to reduce code size. Splitting instructions is not needed on 
the PPro, P2 and P3, except when the split instructions generate fewer uops. 
 

13.4 Prefixes  
An instruction with one or more prefixes may not be able to execute in the V-pipe (see page 
54), and it may take more than one clock cycle to decode. 
 
On the P1, the decoding delay is one clock cycle for each prefix except for the 0FH prefix of 
conditional near jumps. 
 
The PMMX has no decoding delay for 0FH prefix. Segment and repeat prefixes take one 
clock extra to decode. Address and operand size prefixes take two clocks extra to decode. 
The PMMX can decode two instructions per clock cycle if the first instruction has a segment 
or repeat prefix or no prefix, and the second instruction has no prefix. Instructions with 
address or operand size prefixes can only decode alone on the PMMX. Instructions with 
more than one prefix take one clock extra for each prefix.  



 
Address size prefixes can be avoided by using 32-bit mode. Segment prefixes can be 
avoided in 32-bit mode by using a flat memory model. Operand size prefixes can be 
avoided in 32-bit mode by using only 8 bit and 32 bit integers.  
 
Where prefixes are unavoidable, the decoding delay may be masked if a preceding 
instruction takes more than one clock cycle to execute. The rule for the P1 is that any 
instruction that takes N clock cycles to execute (not to decode) can 'overshadow' the 
decoding delay of N-1 prefixes in the next two (sometimes three) instructions or instruction 
pairs. In other words, each extra clock cycle that an instruction takes to execute can be 
used to decode one prefix in a later instruction. This shadowing effect even extends across 
a predicted branch. Any instruction that takes more than one clock cycle to execute, and 
any instruction that is delayed because of an AGI stall, cache miss, misalignment, or any 
other reason except decoding delay and branch misprediction, has a shadowing effect.  
 
The PMMX has a similar shadowing effect, but the mechanism is different. Decoded 
instructions are stored in a transparent first-in-first-out (FIFO) buffer, which can hold up to 
four instructions. As long as there are instructions in the FIFO buffer you get no delay. 
When the buffer is empty then instructions are executed as soon as they are decoded. The 
buffer is filled when instructions are decoded faster than they are executed, i.e. when you 
have unpaired or multi-cycle instructions. The FIFO buffer is emptied when instructions 
execute faster than they are decoded, i.e. when you have decoding delays due to prefixes. 
The FIFO buffer is empty after a mispredicted branch. The FIFO buffer can receive two 
instructions per clock cycle provided that the second instruction is without prefixes and none 
of the instructions are longer than 7 bytes. The two execution pipelines (U and V) can each 
receive one instruction per clock cycle from the FIFO buffer. Examples: 
 

CLD / REP MOVSD 
 
The CLD instruction takes two clock cycles and can therefore overshadow the decoding 
delay of the REP prefix. The code would take one clock cycle more if the CLD instruction 
were placed far from the REP MOVSD. 
 

CMP DWORD PTR [EBX],0 / MOV EAX,0 / SETNZ AL  
 
The CMP instruction takes two clock cycles here because it is a read/modify instruction. The 
0FH prefix of the SETNZ instruction is decoded during the second clock cycle of the CMP 
instruction, so that the decoding delay is hidden on the P1 (The PMMX has no decoding 
delay for the 0FH).  
 

13.5 Scheduling floating-point code  
Floating-point instructions cannot pair the way integer instructions can, except for one 
special case, defined by the following rules: 
 

• the first instruction (executing in the U-pipe) must be FLD, FADD, FSUB, FMUL, FDIV, 
FCOM, FCHS, or FABS. 

• the second instruction (in V-pipe) must be FXCH 
• the instruction following the FXCH must be a floating-point instruction, otherwise the 

FXCH will pair imperfectly and take an extra clock cycle. 
 
This special pairing is important, as will be explained shortly. 
 
While floating-point instructions in general cannot be paired, many can be pipelined, i.e. one 
instruction can begin before the previous instruction has finished. Example: 
 

    FADD ST(1),ST(0)   ; clock cycle 1-3 



    FADD ST(2),ST(0)   ; clock cycle 2-4 
    FADD ST(3),ST(0)   ; clock cycle 3-5 
    FADD ST(4),ST(0)   ; clock cycle 4-6 

 
Obviously, two instructions cannot overlap if the second instruction needs the result of the 
first one. Since almost all floating-point instructions involve the top of stack register, ST(0), 
there are seemingly not very many possibilities for making an instruction independent of the 
result of previous instructions. The solution to this problem is register renaming. The FXCH 
instruction does not in reality swap the contents of two registers; it only swaps their names. 
Instructions that push or pop the register stack also work by renaming. Floating-point 
register renaming has been highly optimized on the Pentiums so that a register may be 
renamed while in use. Register renaming never causes stalls - it is even possible to rename 
a register more than once in the same clock cycle, as for example when FLD or FCOMPP is 
paired with FXCH.  
 
By the proper use of FXCH instructions you may obtain a lot of overlapping in your floating-
point code. All versions of the instructions FADD, FSUB, FMUL, and FILD take 3 clock cycles 
and are able to overlap, so that these instructions may be scheduled. Using a memory 
operand does not take more time than a register operand if the memory operand is in the 
level 1 cache and properly aligned.  
 
By now you must be used to rules having exceptions, and the overlapping rule is no 
exception: You cannot start an FMUL instruction one clock cycle after another FMUL 
instruction, because the FMUL circuitry is not perfectly pipelined. It is recommended that you 
put another instruction in between two FMUL's. Example: 
 

    FLD     [a1]    ; clock cycle 1 
    FLD     [b1]    ; clock cycle 2 
    FLD     [c1]    ; clock cycle 3 
    FXCH    ST(2)   ; clock cycle 3 
    FMUL    [a2]    ; clock cycle 4-6 
    FXCH    ST(1)   ; clock cycle 4 
    FMUL    [b2]    ; clock cycle 5-7    (stall) 
    FXCH    ST(2)   ; clock cycle 5 
    FMUL    [c2]    ; clock cycle 7-9    (stall) 
    FXCH    ST(1)   ; clock cycle 7 
    FSTP    [a3]    ; clock cycle 8-9 
    FXCH    ST(1)   ; clock cycle 10     (unpaired) 
    FSTP    [b3]    ; clock cycle 11-12 
    FSTP    [c3]    ; clock cycle 13-14 

 
Here you have a stall before FMUL [b2] and before FMUL [c2] because another FMUL 
started in the preceding clock cycle. You can improve this code by putting FLD instructions 
in between the FMUL's: 
 

    FLD     [a1]    ; clock cycle 1 
    FMUL    [a2]    ; clock cycle 2-4 
    FLD     [b1]    ; clock cycle 3 
    FMUL    [b2]    ; clock cycle 4-6 
    FLD     [c1]    ; clock cycle 5 
    FMUL    [c2]    ; clock cycle 6-8 
    FXCH    ST(2)   ; clock cycle 6 
    FSTP    [a3]    ; clock cycle 7-8 
    FSTP    [b3]    ; clock cycle 9-10 
    FSTP    [c3]    ; clock cycle 11-12 

 
In other cases you may put FADD, FSUB, or anything else in between FMUL's to avoid the 
stalls. 
 



Not all floating-point instructions can overlap. And some floating-point instructions can 
overlap more subsequent integer instructions than subsequent floating-point instructions. 
The FDIV instruction, for example, takes 39 clock cycles. All but the first clock cycle can 
overlap with integer instructions, but only the last two clock cycles can overlap with floating-
point instructions. A complete listing of floating-point instructions, and what they can pair or 
overlap with, is given on page 137. 
 
There is no penalty for using a memory operand on floating-point instructions because the 
arithmetic unit is one step later in the pipeline than the read unit. The tradeoff of this comes 
when a floating-point value is stored to memory. The FST or FSTP instruction with a memory 
operand takes two clock cycles in the execution stage, but it needs the data one clock 
earlier so you will get a one-clock stall if the value to store is not ready one clock cycle in 
advance. This is analogous to an AGI stall. In many cases you cannot hide this type of stall 
without scheduling the floating-point code into four threads or putting some integer 
instructions in between. The two clock cycles in the execution stage of the FST(P) 
instruction cannot pair or overlap with any subsequent instructions.  
 
Instructions with integer operands such as FIADD, FISUB, FIMUL, FIDIV, FICOM may be 
split up into simpler operations in order to improve overlapping. Example: 

    FILD [a] / FIMUL [b] 
Split up into: 

    FILD [a] / FILD [b] / FMUL 

In this example, we save two clocks by overlapping the two FILD instructions. 
 

14 Optimizing for PPro, P2, and P3   

14.1 The pipeline in PPro, P2 and P3 
 
The 10-stage pipeline of the PPro, P2 and P3 microprocessors is well explained and 
illustrated in various manuals and tutorials from Intel. It is recommended that you study this 
material in order to get an understanding of how these microprocessors work. I will describe 
the structure briefly here with particular focus on those elements that are important for 
optimizing code.  
 
Instruction codes are fetched from the code cache in aligned 16-byte chunks into a double 
buffer that can hold two 16-byte chunks. The code is passed on from the double buffer to 
the decoders in blocks which I will call IFETCH blocks (instruction fetch blocks). The 
IFETCH blocks are usually 16 bytes long, but not aligned. The purpose of the double buffer 
is to make it possible to decode an instruction that crosses a 16-byte boundary (i.e. an 
address divisible by 16). 
 
The IFETCH block goes to the instruction length decoder, which determines where each 
instruction begins and ends. Next, it goes to the instruction decoders. There are three 
decoders so that up to three instructions can be decoded in each clock cycle. A group of up 
to three instructions that are decoded in the same clock cycle is called a decode group.  
 
The decoders translate instructions into uops. Simple instructions generate only one uop, 
while more complex instructions may generate several uops. The three decoders are called 
D0, D1, and D2. D0 can handle all instructions, while D1 and D2 can handle only simple 
instructions that generate one uop. 
 
The uops from the decoders go via a short queue to the register allocation table (RAT). The 
execution of uops works on temporary registers, which are later written to the permanent 
registers EAX, EBX, etc, as explained on page 33. The purpose of the RAT is to allow 
register renaming and to tell the uops which temporary registers to use. 
 



After the RAT, the uops go to the reorder buffer (ROB). The purpose of the ROB is to 
enable out-of-order execution. A uop stays in the reservation station until the operands it 
needs are available.  
 
The uops that are ready for execution are sent to the execution units, which are clustered 
around five ports: Port 0 and 1 can handle arithmetic operations, jumps, etc. Port 2 takes 
care of all reads from memory, port 3 calculates addresses for memory writes, and port 4 
does memory writes.  
 
When an instruction has been executed, it is marked in the ROB as ready to retire. It then 
goes to the retirement station. Here the contents of the temporary registers used by the 
uops are written to the permanent registers. While uops can be executed out of order, they 
must be retired in order. 
 
In the following sections, I will describe in detail how to optimize the throughput of each step 
in the pipeline. 

Instruction decoding 
I am describing instruction decoding before instruction fetching here because you need to 
know how the decoders work in order to understand the possible delays in instruction 
fetching. 
 
The decoders can handle three instructions per clock cycle, but only when certain 
conditions are met. Decoder D0 can handle any instruction that generates up to 4 uops in a 
single clock cycle. Decoders D1 and D2 can handle only instructions that generate 1 uop, 
and these instructions can be no more than 8 bytes long.  
 
To summarize the rules for decoding two or three instructions in the same clock cycle: 
 

• The first instruction (D0) generates no more than 4 uops 
 

• The second and third instructions generate no more than 1 uop each 
 

• The second and third instructions are no more than 8 bytes long each 
 

• The instructions must be contained within the same 16 bytes IFETCH block (see 
below) 

 
There is no limit to the length of the instruction in D0 (despite Intel manuals saying 
something else), as long as the three instructions fit into one 16 bytes IFETCH block. 
 
An instruction that generates more than 4 uops, takes two or more clock cycles to decode, 
and no other instructions can decode in parallel. 
 
It follows from the rules above that the decoders can produce a maximum of 6 uops per 
clock cycle if the first instruction in each decode group generates 4 uops and the next two 
generate 1 uop each. The minimum production is 2 uops per clock cycle, which you get 
when all instructions generate 2 uops each, so that D1 and D2 are never used.  
 
For maximum throughput, it is recommended that you order your instructions according to 
the 4-1-1 pattern: Instructions that generate 2 to 4 uops can be interspersed with two simple 
1-uop instructions for free, in the sense that they do not add to the decoding time. Example:  
 

MOV     EBX, [MEM1]     ; 1 uop  (D0) 
INC     EBX             ; 1 uop  (D1) 
ADD     EAX, [MEM2]     ; 2 uops (D0) 
ADD     [MEM3], EAX     ; 4 uops (D0) 

 



This takes 3 clock cycles to decode. You can save one clock cycle by reordering the 
instructions into two decode groups: 
 

ADD     EAX, [MEM2]     ; 2 uops (D0) 
MOV     EBX, [MEM1]     ; 1 uop  (D1) 
INC     EBX             ; 1 uop  (D2) 
ADD     [MEM3], EAX     ; 4 uops (D0) 

 
The decoders now generate 8 uops in two clock cycles, which is probably satisfactory. Later 
stages in the pipeline can handle only 3 uops per clock cycle so with a decoding rate higher 
than this you can assume that decoding is not a bottleneck. However, complications in the 
fetch mechanism can delay decoding as described in the next section, so to be safe you 
may want to aim at a decoding rate higher than 3 uops per clock cycle.  
 
You can see how many uops each instruction generates in the tables starting on page 140. 
 
Instruction prefixes can also incur penalties in the decoders. Instructions can have several 
kinds of prefixes: 
 
1.  An operand size prefix is needed when you have a 16-bit operand in a 32-bit 
environment or vice versa. (Except for instructions that can only have one operand size, 
such as FNSTSW AX). An operand size prefix gives a penalty of a few clocks if the 
instruction has an immediate operand of 16 or 32 bits because the length of the operand is 
changed by the prefix. Examples: 
 

ADD BX, 9      ; no penalty because immediate operand is 8 bits 
MOV WORD PTR [MEM16], 9  ; penalty because operand is 16 bits 

 
The last instruction should be changed to: 
 

MOV EAX, 9 
MOV WORD PTR [MEM16], AX  ; no penalty because no immediate 

 
2.  An address size prefix is used when you use 32-bit addressing in 16-bit mode or vice 
versa. This is seldom needed and should generally be avoided. The address size prefix 
gives a penalty whenever you have an explicit memory operand (even when there is no 
displacement) because the interpretation of the r/m bits in the instruction code is changed 
by the prefix. Instructions with only implicit memory operands, such as string instructions, 
have no penalty with address size prefix. 
 
3.  Segment prefixes are used when you address data in a non-default data segment. 
Segment prefixes give no penalty on the PPro, P2 and P3. 
 
4.  Repeat prefixes and lock prefixes give no penalty in the decoders. 
 
5.  There is always a penalty if you have more than one prefix. This penalty is usually one 
clock per prefix. 

Instruction fetch 
The code is fetched in aligned 16-bytes chunks from the code cache and placed in the 
double buffer. The code is then taken from the double buffer and fed to the decoders in 
IFETCH blocks, which are usually 16 bytes long, but not necessarily aligned by 16. The 
purpose of the double buffer is to allow instruction fetching across 16 byte boundaries.  
 
The double buffer can fetch one 16-byte chunk per clock cycle and can generate one 
IFETCH block per clock cycle. The IFETCH blocks are usually 16 bytes long, but can be 
shorter if there is a predicted jump in the block. (See page 43 about jump prediction).  
 



Unfortunately, the double buffer is not big enough for handling fetches around jumps without 
delay. If the IFETCH block that contains the jump instruction crosses a 16-byte boundary, 
then the double buffer needs to keep two consecutive aligned 16-bytes chunks of code in 
order to generate it. If the first instruction after the jump crosses a 16-byte boundary, then 
the double buffer needs to load two new 16-bytes chunks of code before a valid IFETCH 
block can be generated. This means that, in the worst case, the decoding of the first 
instruction after a jump can be delayed for two clock cycles. You get one penalty for a 16-
byte boundary in the IFETCH block containing the jump instruction, and one penalty for a 
16-byte boundary in the first instruction after the jump. You can get bonus if you have more 
than one decode group in the IFETCH block that contains the jump because this gives the 
double buffer extra time to fetch one or two 16-byte chunks of code in advance for the 
instructions after the jump. The bonuses can compensate for the penalties according to the 
table below. If the double buffer has fetched only one 16-byte chunk of code after the jump, 
then the first IFETCH block after the jump will be identical to this chunk, that is, aligned to a 
16-byte boundary. In other words, the first IFETCH block after the jump will not begin at the 
first instruction, but at the nearest preceding address divisible by 16. If the double buffer has 
had time to load two 16-byte chunks, then the new IFETCH block can cross a 16-byte 
boundary and begin at the first instruction after the jump. These rules are summarized in the 
following table: 
   

Number of decode 
groups in IFETCH 
block containing 

jump 

16-byte boundary 
in this IFETCH 

block 

16-byte boundary in 
first instruction after 

jump decoder delay 

alignment of first 
IFETCH after 

jump 
1 0 0 0 by 16 
1 0 1 1 to instruction 
1 1 0 1 by 16 
1 1 1 2 to instruction 
2 0 0 0 to instruction 
2 0 1 0 to instruction 
2 1 0 0 by 16 
2 1 1 1 to instruction 

3 or more 0 0 0 to instruction 
3 or more 0 1 0 to instruction 
3 or more 1 0 0 to instruction 
3 or more 1 1 0 to instruction 

 
Jumps delay the fetching so that a loop always takes at least two clock cycles more per 
iteration than the number of 16 byte boundaries in the loop. 
 
A further problem with the instruction fetch mechanism is that a new IFETCH block is not 
generated until the previous one is exhausted. Each IFETCH block can contain several 
decode groups. If a 16 bytes long IFETCH block ends with an unfinished instruction, then 
the next IFETCH block will begin at the beginning of this instruction. The first instruction in 
an IFETCH block always goes to decoder D0, and the next two instructions go to D1 and 
D2, if possible. The consequence of this is that D1 and D2 are used less than optimally. If 
the code is structured according to the recommended 4-1-1 pattern, and an instruction 
intended to go into D1 or D2 happens to be the first instruction in an IFETCH block, then 
that instruction has to go into D0 with the result that one clock cycle is wasted. This is 
probably a hardware design flaw. At least it is suboptimal design. The consequence of this 
problem is that the time it takes to decode a piece of code can vary considerably depending 
on where the first IFETCH block begins.  
 
If decoding speed is critical, and you want to avoid these problems, then you have to know 
where each IFETCH block begins. This is quite a tedious job. First you need to make your 
code segment paragraph-aligned in order to know where the 16-byte boundaries are. Then 



you have to look at the output listing from your assembler to see how long each instruction 
is. If you know where one IFETCH block begins then you can find where the next IFETCH 
block begins in the following way: Make the block 16 bytes long. If it ends at an instruction 
boundary then the next block will begin there. If it ends with an unfinished instruction then 
the next block will begin at the beginning of this instruction. Only the lengths of the 
instructions count here, it doesn't matter how many uops they generate or what they do. 
This way you can work your way all through the code and mark where each IFETCH block 
begins. The biggest problem is to know where to start. If you know where one IFETCH block 
is then you can find all the subsequent ones, but you have to know where the first one 
begins. Here are some guidelines:  
 

• The first IFETCH block after a jump, call, or return can begin either at the first 
instruction or at the nearest preceding 16-bytes boundary, according to the table 
above. If you align the first instruction to begin at a 16-byte boundary then you can be 
sure that the first IFETCH block begins here. You may want to align important 
subroutine entries and loop entries by 16 for this purpose. 
 

• If the combined length of two consecutive instructions is more than 16 bytes then you 
can be certain that the second one doesn't fit into the same IFETCH block as the first 
one, and consequently you will always have an IFETCH block beginning at the second 
instruction. You can use this as a starting point for finding where subsequent IFETCH 
blocks begin. 
 

• The first IFETCH block after a branch misprediction begins at a 16-byte boundary. As 
explained on page 43, a loop that repeats more than 5 times will always have a 
misprediction when it exits. The first IFETCH block after such a loop will therefore 
begin at the nearest preceding 16-byte boundary. 

 
• Other serializing events also cause the next IFETCH block to start at a 16-byte 

boundary. Such events include interrupts, exceptions, self-modifying code, and 
partially serializing instructions such as IN, and OUT. 

 
I am sure you want an example now: 
 

address      instruction             length    uops  expected decoder 
--------------------------------------------------------------------- 
1000h        MOV ECX, 1000             5         1       D0 
1005h   LL:  MOV [ESI], EAX            2         2       D0 
1007h        MOV [MEM], 0             10         2       D0 
1011h        LEA EBX, [EAX+200]        6         1       D1 
1017h        MOV BYTE PTR [ESI], 0     3         2       D0 
101Ah        BSR EDX, EAX              3         2       D0 
101Dh        MOV BYTE PTR [ESI+1],0    4         2       D0 
1021h        DEC ECX                   1         1       D1 
1022h        JNZ LL                    2         1       D2 

 
Let's assume that the first IFETCH block begins at address 1000h and ends at 1010h. This 
is before the end of the MOV [MEM],0 instruction so the next IFETCH block will begin at 
1007h and end at 1017h. This is at an instruction boundary so the third IFETCH block will 
begin at 1017h and cover the rest of the loop. The number of clock cycles it takes to decode 
this is the number of D0 instructions, which is 5 per iteration of the LL loop. The last 
IFETCH block contained three decode blocks covering the last five instructions, and it has 
one 16-byte boundary (1020h). Looking at the table above we find that the first IFETCH 
block after the jump will begin at the first instruction after the jump, that is the LL label at 
1005h, and end at 1015h. This is before the end of the LEA instruction, so the next IFETCH 
block will go from 1011h to 1021h, and the last one from 1021h covering the rest. Now the 
LEA instruction and the DEC instruction both fall at the beginning of an IFETCH block which 
forces them to go into D0. We now have 7 instructions in D0 and the loop takes 7 clocks to 
decode in the second iteration. The last IFETCH block contains only one decode group 



(DEC ECX / JNZ LL) and has no 16-byte boundary. According to the table, the next 
IFETCH block after the jump will begin at a 16-byte boundary, which is 1000h. This will give 
us the same situation as in the first iteration, and you will see that the loop takes 
alternatingly 5 and 7 clock cycles to decode. Since there are no other bottlenecks, the 
complete loop will take 6000 clocks to run 1000 iterations. If the starting address had been 
different so that you had a 16-byte boundary in the first or the last instruction of the loop, 
then it would take 8000 clocks. If you reorder the loop so that no D1 or D2 instructions fall at 
the beginning of an IFETCH block then you can make it take only 5000 clocks. 
 
The example above was deliberately constructed so that fetch and decoding is the only 
bottleneck. The easiest way to avoid this problem is to structure your code to generate 
much more than 3 uops per clock cycle so that decoding will not be a bottleneck despite the 
penalties described here. In small loops this may not be possible and then you have to find 
out how to optimize the instruction fetch and decoding.  
 
One thing you can do is to change the starting address of your procedure in order to avoid 
16-byte boundaries where you don't want them. Remember to make your code segment 
paragraph aligned so that you know where the boundaries are.  
 
If you insert an ALIGN 16 directive before the loop entry then the assembler will put in 
NOP's and other filler instructions up to the nearest 16-byte boundary. Some assemblers use 
the instruction XCHG EBX,EBX as a 2-byte filler (the so called 2-byte NOP). Whoever got this 
idea, it's a bad one because this instruction takes more time than two NOP's on most 
processors. If the loop executes many times, then whatever is outside the loop is 
unimportant in terms of speed and you don't have to care about the suboptimal filler 
instructions. But if the time taken by the fillers is important, then you may select the filler 
instructions manually. You may as well use filler instructions that do something useful, such 
as refreshing a register in order to avoid register read stalls (see page 66). For example, if 
you are using register EBP for addressing, but seldom write to it, then you may use MOV 
EBP,EBP or ADD EBP, 0 as filler in order to reduce the possibilities of register read stalls. 
If you have nothing useful to do, you may use FXCH ST(0) as a good filler because it 
doesn't put any load on the execution ports, provided that ST(0) contains a valid floating-
point value. 
 
Another possible remedy is to reorder your instructions in order to get the IFETCH 
boundaries where they don't hurt. This can be quite a difficult puzzle and it is not always 
possible to find a satisfactory solution. 
 
Yet another possibility is to manipulate instruction lengths. Sometimes you can substitute 
one instruction with another one with a different length. Many instructions can be coded in 
different versions with different lengths. The assembler always chooses the shortest 
possible version of an instruction, but it is often possible to hard-code a longer version. For 
example, DEC ECX is one byte long in its shortest form. There is also a 2-byte version (DB 
0FFH, 0C9H), and SUB ECX,1 is 3 bytes. You can even code a 6 bytes long version with a 
long immediate operand using this trick:  

SUB ECX, 99999 
ORG $-4 
DD 1 

 
Instructions with a memory operand can be made one byte longer with a SIB byte, but the 
easiest way of making an instruction one byte longer is to add a DS: segment prefix (DB 
3Eh). The microprocessors generally accept redundant and meaningless prefixes (except 
LOCK) as long as the instruction length does not exceed 15 bytes. Even instructions without 
a memory operand can have a segment prefix. There is no guarantee, however, that 
meaningless prefixes will have no effect on future processors. In fact, many of the new 
instructions that have been added to the P3 and P4 processors are coded by adding repeat 



or operand size prefixes to existing opcodes. It is quite safe, however, to add a DS: 
segment prefix to any instruction that has a memory operand, including LEA. 
 
With these methods it will usually be possible to put the IFETCH boundaries where you 
want them, although it can be a very tedious puzzle.  
 

14.2 Register renaming  
Register renaming is controlled by the register alias table (RAT) and the reorder buffer 
(ROB). The uops from the decoders go to the RAT via a queue, and then to the ROB and 
the reservation station. The RAT can handle only 3 uops per clock cycle. This means that 
the overall throughput of the microprocessor can never exceed 3 uops per clock cycle on 
average. 
 
There is no practical limit to the number of renamings. The RAT can rename three registers 
per clock cycle, and it can even rename the same register three times in one clock cycle. 
 

14.3 Register read stalls 
A possible limitation, which applies only to the PPro, P2 and P3 processors, is that the ROB 
can only read two different permanent registers per clock cycle. This limitation applies to all 
registers used by an instruction except those registers that the instruction writes to only. 
Example:  
 

MOV [EDI + ESI], EAX 
MOV EBX, [ESP + EBP] 

 
The first instruction generates two uops: one that reads EAX and one that reads EDI and 
ESI. The second instruction generates one uop that reads ESP and EBP. EBX does not 
count as a read because it is only written to by the instruction. Let's assume that these three 
uops go through the RAT together. I will use the word triplet for a group of three consecutive 
uops that go through the RAT together. Since the ROB can handle only two permanent 
register reads per clock cycle and we need five register reads, our triplet will be delayed for 
two extra clock cycles before it comes to the reservation station. With 3 or 4 register reads 
in the triplet it would be delayed by one clock cycle. The same register can be read more 
than once in the same triplet without adding to the count. If the instructions above are 
changed to: 
 

MOV [EDI + ESI], EDI 
MOV EBX, [EDI + EDI] 

 
then you will need only two register reads (EDI and ESI) and the triplet will not be delayed. 
 
A register that is going to be written to by a pending uop is stored in the ROB so that it can 
be read for free until it is written back, which takes at least 3 clock cycles, and usually more. 
Write-back is the end of the execution stage where the value becomes available. In other 
words, you can read any number of registers in the RAT without stall if their values are not 
yet available from the execution units. The reason for this is that when a value becomes 
available, it is immediately written directly to any subsequent ROB entries that need it. But if 
the value has already been written back to a temporary or permanent register when a 
subsequent uop that needs it goes into the RAT, then the value has to be read from the 
register file, which has only two read ports. There are three pipeline stages from the RAT to 
the execution unit so you can be certain that a register written to in one uop-triplet can be 
read for free in at least the next three triplets. If the writeback is delayed by reordering, slow 
instructions, dependence chains, cache misses, or by any other kind of stall, then the 
register can be read for free further down the instruction stream.  
 

; Example: 



MOV EAX, EBX 
SUB ECX, EAX 
INC EBX 
MOV EDX, [EAX] 
ADD ESI, EBX 
ADD EDI, ECX 

 
These 6 instructions generate 1 uop each. Let's assume that the first 3 uops go through the 
RAT together. These 3 uops read register EBX, ECX, and EAX. But since we are writing to 
EAX before reading it, the read is free and we get no stall. The next three uops read EAX, 
ESI, EBX, EDI, and ECX. Since both EAX, EBX and ECX have been modified in the 
preceding triplet and not yet written back then they can be read for free, so that only ESI 
and EDI count, and we get no stall in the second triplet either. If the SUB ECX,EAX 
instruction in the first triplet is changed to CMP ECX,EAX then ECX is not written to, and we 
will get a stall in the second triplet for reading ESI, EDI and ECX. Similarly, if the INC EBX 
instruction in the first triplet is changed to NOP or something else then we will get a stall in 
the second triplet for reading ESI, EBX and EDI.  
 
No uop can read more than two registers. Therefore, all instructions that need to read more 
than two registers are split up into two or more uops. 
 
To count the number of register reads, you have to include all registers that are read by the 
instruction. This includes integer registers, the flags register, the stack pointer, floating-point 
registers and MMX registers. An XMM register counts as two registers, except when only 
part of it is used, as e.g. in ADDSS and MOVHLPS. Segment registers and the instruction 
pointer do not count. For example, in SETZ AL you count the flags register but not AL. ADD 
EBX,ECX counts both EBX and ECX, but not the flags because they are written to only. PUSH 
EAX reads EAX and the stack pointer and then writes to the stack pointer.  
 
The FXCH instruction is a special case. It works by renaming, but doesn't read any values so 
that it doesn't count in the rules for register read stalls. An FXCH instruction behaves like 1 
uop that neither reads nor writes any registers with regard to the rules for register read 
stalls. 
 
Don't confuse uop triplets with decode groups. A decode group can generate from 1 to 6 
uops, and even if the decode group has three instructions and generates three uops there is 
no guarantee that the three uops will go into the RAT together. 
 
The queue between the decoders and the RAT is so short (10 uops) that you cannot 
assume that register read stalls do not stall the decoders or that fluctuations in decoder 
throughput do not stall the RAT.  
 
It is very difficult to predict which uops go through the RAT together unless the queue is 
empty, and for optimized code the queue should be empty only after mispredicted branches. 
Several uops generated by the same instruction do not necessarily go through the RAT 
together; the uops are simply taken consecutively from the queue, three at a time. The 
sequence is not broken by a predicted jump: uops before and after the jump can go through 
the RAT together. Only a mispredicted jump will discard the queue and start over again so 
that the next three uops are sure to go into the RAT together.  
 
If three consecutive uops read more than two different registers then you would of course 
prefer that they do not go through the RAT together. The probability that they do is one 
third. The penalty of reading three or four written-back registers in one triplet of uops is one 
clock cycle. You can think of the one clock delay as equivalent to the load of three more 
uops through the RAT. With the probability of 1/3 of the three uops going into the RAT 
together, the average penalty will be the equivalent of 3/3 = 1 uop. To calculate the average 
time it will take for a piece of code to go through the RAT, add the number of potential 
register read stalls to the number of uops and divide by three. You can see that it doesn't 



pay to remove the stall by putting in an extra instruction unless you know for sure which 
uops go into the RAT together or you can prevent more than one potential register read stall 
by one extra instruction.  
 
In situations where you aim at a throughput of 3 uops per clock, the limit of two permanent 
register reads per clock cycle may be a problematic bottleneck to handle. Possible ways to 
remove register read stalls are: 
 

• keep uops that read the same register close together so that they are likely to go into 
the same triplet. 

 
• keep uops that read different registers spaced so that they cannot go into the same 

triplet. 
 

• place uops that read a register no more than 3 - 4 triplets after an instruction that 
writes to or modifies this register to make sure it hasn't been written back before it is 
read (it doesn't matter if you have a jump between as long as it is predicted). If you 
have reason to expect the register write to be delayed for whatever reason then you 
can safely read the register somewhat further down the instruction stream. 

 
• use absolute addresses instead of pointers in order to reduce the number of register 

reads. 
 

• you may rename a register in a triplet where it doesn't cause a stall in order to 
prevent a read stall for this register in one or more later triplets. Example: MOV 
ESP,ESP / ... / MOV EAX,[ESP+8]. This method costs an extra uop and therefore 
doesn't pay unless the expected average number of read stalls prevented is more 
than 1/3. 

 
For instructions that generate more than one uop, you may want to know the order of the 
uops generated by the instruction in order to make a precise analysis of the possibility of 
register read stalls. I have therefore listed the most common cases below.  
 
Writes to memory: 
A memory write generates two uops. The first one (to port 4) is a store operation, reading 
the register to store. The second uop (port 3) calculates the memory address, reading any 
pointer registers. Example: 
 

FSTP QWORD PTR [EBX+8*ECX] 
 
The first uop reads ST(0), the second uop reads EBX and ECX. 
 
Read and modify 
An instruction that reads a memory operand and modifies a register by some arithmetic or 
logic operation generates two uops. The first one (port 2) is a memory load instruction 
reading any pointer registers, the second uop is an arithmetic instruction (port 0 or 1) 
reading and writing to the destination register and possibly writing to the flags. Example: 
 

ADD EAX, [ESI+20] 
 
The first uop reads ESI, the second uop reads EAX and writes EAX and flags. 
 
Read / modify / write 
A read / modify / write instruction generates four uops. The first uop (port 2) reads any 
pointer registers, the second uop (port 0 or 1) reads and writes to any source register and 
possibly writes to the flags, the third uop (port 4) reads only the temporary result that doesn't 
count here, the fourth uop (port 3) reads any pointer registers again. Since the first and the 



fourth uop cannot go into the RAT together, you cannot take advantage of the fact that they 
read the same pointer registers. Example: 
 

OR [ESI+EDI], EAX 
 
The first uop reads ESI and EDI, the second uop reads EAX and writes EAX and the flags, 
the third uop reads only the temporary result, the fourth uop reads ESI and EDI again. No 
matter how these uops go into the RAT you can be sure that the uop that reads EAX goes 
together with one of the uops that read ESI and EDI. A register read stall is therefore 
inevitable for this instruction unless one of the registers has been modified recently.  
 
Push register 
A push register instruction generates 3 uops. The first one (port 4) is a store instruction, 
reading the register. The second uop (port 3) generates the address, reading the stack 
pointer. The third uop (port 0 or 1) subtracts the word size from the stack pointer, reading 
and modifying the stack pointer.  
 
Pop register 
A pop register instruction generates 2 uops. The first uop (port 2) loads the value, reading 
the stack pointer and writing to the register. The second uop (port 0 or 1) adjusts the stack 
pointer, reading and modifying the stack pointer.  
 
Call 
A near call generates 4 uops (port 1, 4, 3, 01). The first two uops read only the instruction 
pointer which doesn't count because it cannot be renamed. The third uop reads the stack 
pointer. The last uop reads and modifies the stack pointer.  
 
Return 
A near return generates 4 uops (port 2, 01, 01, 1). The first uop reads the stack pointer. The 
third uop reads and modifies the stack pointer. 
 

14.4 Out of order execution  
The reorder buffer (ROB) can hold 40 uops. Each uop waits in the ROB until all its operands 
are ready and there is a vacant execution unit for it. This makes out-of-order execution 
possible.  
 
Writes to memory cannot execute out of order relative to other writes in the PPro, P2 and 
P3. There are four write buffers, so if you expect many cache misses on writes or you are 
writing to uncached memory then it is recommended that you schedule four writes at a time 
and make sure the processor has something else to do before you give it the next four 
writes. Memory reads and other instructions can execute out of order, except IN, OUT and 
serializing instructions.  
 
If your code writes to a memory address and soon after reads from the same address, then 
the read may by mistake be executed before the write because the ROB doesn't know the 
memory addresses at the time of reordering. This error is detected when the write address 
is calculated, and then the read operation (which was executed speculatively) has to be re-
done. The penalty for this is approximately 3 clocks. The best way to avoid this penalty is to 
make sure the execution unit has other things to do between a write and a subsequent read 
from the same memory address.  
 
There are several execution units clustered around five ports. Port 0 and 1 are for arithmetic 
operations etc. Simple move, arithmetic and logic operations can go to either port 0 or 1, 
whichever is vacant first. Port 0 also handles multiplication, division, integer shifts and 
rotates, and floating-point operations. Port 1 also handles jumps and some MMX and XMM 
operations. Port 2 handles all reads from memory and a few string and XMM operations, 
port 3 calculates addresses for memory write, and port 4 executes all memory write 



operations. On page 140 you'll find a complete list of the uops generated by code 
instructions with an indication of which ports they go to. Note that all memory write 
operations require two uops, one for port 3 and one for port 4, while memory read 
operations use only one uop (port 2).  
 
In most cases, each port can receive one new uop per clock cycle. This means that you can 
execute up to 5 uops in the same clock cycle if they go to five different ports, but since there 
is a limit of 3 uops per clock earlier in the pipeline you will never execute more than 3 uops 
per clock on average.  
 
You must make sure that no execution port receives more than one third of the uops if you 
want to maintain a throughput of 3 uops per clock. Use the table of uops on page 140 and 
count how many uops go to each port. If port 0 and 1 are saturated while port 2 is free then 
you can improve your code by replacing some MOV register,register or MOV 
register,immediate instructions with MOV register,memory in order to move 
some of the load from port 0 and 1 to port 2.  
 
Most uops take only one clock cycle to execute, but multiplications, divisions, and many 
floating-point operations take more. Floating-point addition and subtraction takes 3 clocks, 
but the execution unit is fully pipelined so that it can receive a new FADD or FSUB in every 
clock cycle before the preceding ones are finished (provided, of course, that they are 
independent).  
 
Integer multiplication takes 4 clocks, floating-point multiplication 5, and MMX multiplication 3 
clocks. Integer and MMX multiplication is pipelined so that it can receive a new instruction 
every clock cycle. Floating-point multiplication is partially pipelined: The execution unit can 
receive a new FMUL instruction two clocks after the preceding one, so that the maximum 
throughput is one FMUL per two clock cycles. The holes between the FMUL's cannot be filled 
by integer multiplications because they use the same execution unit. XMM additions and 
multiplications take 3 and 4 clocks respectively, and are fully pipelined. But since each 
logical XMM register is implemented as two physical 64-bit registers, you need two uops for 
a packed XMM operation, and the throughput will then be one arithmetic XMM instruction 
every two clock cycles. XMM add and multiply instructions can execute in parallel because 
they don't use the same execution port. 
 
Integer and floating-point division takes up to 39 clocks and is not pipelined. This means 
that the execution unit cannot begin a new division until the previous division is finished. 
The same applies to square root and transcendental functions.  
 
Also jump instructions, calls, and returns are not fully pipelined. You cannot execute a new 
jump in the first clock cycle after a preceding jump. So the maximum throughput for jumps, 
calls, and returns is one every two clocks.  
 
You should, of course, avoid instructions that generate many uops. The LOOP XX 
instruction, for example, should be replaced by DEC ECX / JNZ XX. 
 
If you have consecutive POP instructions then you may break them up to reduce the number 
of uops: 
 

POP ECX / POP EBX / POP EAX     ; can be changed to: 
MOV ECX,[ESP] / MOV EBX,[ESP+4] / MOV EAX,[ESP+8] / ADD ESP,12 

 
The former code generates 6 uops, the latter generates only 4 and decodes faster. Doing 
the same with PUSH instructions is less advantageous because the split-up code is likely to 
generate register read stalls unless you have other instructions to put in between or the 
registers have been renamed recently. Doing it with CALL and RET instructions will interfere 



with prediction in the return stack buffer. Note also that the ADD ESP instruction can cause 
an AGI stall in earlier processors. 
 

14.5 Retirement  
Retirement is a process where the temporary registers used by the uops are copied into the 
permanent registers EAX, EBX, etc. When a uop has been executed, it is marked in the ROB 
as ready to retire. 
 
The retirement station can handle three uops per clock cycle. This may not seem like a 
problem because the throughput is already limited to 3 uops per clock in the RAT. But 
retirement may still be a bottleneck for two reasons. Firstly, instructions must retire in order. 
If a uop is executed out of order then it cannot retire before all preceding uops in the order 
have retired. And the second limitation is that taken jumps must retire in the first of the three 
slots in the retirement station. Just like decoder D1 and D2 can be idle if the next instruction 
only fits into D0, the last two slots in the retirement station can be idle if the next uop to 
retire is a taken jump. This is significant if you have a small loop where the number of uops 
in the loop is not divisible by three.  
 
All uops stay in the reorder buffer (ROB) until they retire. The ROB can hold 40 uops. This 
sets a limit to the number of instructions that can execute during the long delay of a division 
or other slow operation. Before the division is finished the ROB will be filled up with 
executed uops waiting to retire. Only when the division is finished and retired can the 
subsequent uops begin to retire, because retirement takes place in order.  
 
In case of speculative execution of predicted branches (see page 43) the speculatively 
executed uops cannot retire until it is certain that the prediction was correct. If the prediction 
turns out to be wrong then the speculatively executed uops are discarded without 
retirement. 
 
The following instructions cannot execute speculatively: memory writes, IN, OUT, and 
serializing instructions. 
 

14.6 Partial register stalls 
Partial register stall is a problem that occurs in PPro, P2 and P3 when you write to part of a 
32-bit register and later read from the whole register or a bigger part of it. Example: 
 

MOV AL, BYTE PTR [M8] 
MOV EBX, EAX            ; partial register stall 

 
This gives a delay of 5 - 6 clocks. The reason is that a temporary register has been 
assigned to AL (to make it independent of AH). The execution unit has to wait until the write 
to AL has retired before it is possible to combine the value from AL with the value of the rest 
of EAX. The stall can be avoided by changing to code to:  
 

MOVZX EBX, BYTE PTR [MEM8] 
AND EAX, 0FFFFFF00h 
OR EBX, EAX 

 
Of course you can also avoid the partial stalls by putting in other instructions after the write 
to the partial register so that it has time to retire before you read from the full register. 
 
You should be aware of partial stalls whenever you mix different data sizes (8, 16, and 32 
bits): 
 

MOV BH, 0 
ADD BX, AX              ; stall 



INC EBX                 ; stall 
 
You don't get a stall when reading a partial register after writing to the full register, or a 
bigger part of it: 
 

MOV EAX, [MEM32] 
ADD BL, AL              ; no stall 
ADD BH, AH              ; no stall 
MOV CX, AX              ; no stall 
MOV DX, BX              ; stall 

 
The easiest way to avoid partial register stalls is to always use full registers and use MOVZX 
or MOVSX when reading from smaller memory operands. These instructions are fast on the 
PPro, P2 and P3, but slow on earlier processors. Therefore, a compromise is offered when 
you want your code to perform reasonably well on all processors. The replacement for 
MOVZX EAX,BYTE PTR [M8] looks like this:  
 

XOR EAX, EAX 
MOV AL, BYTE PTR [M8] 

 
The PPro, P2 and P3 processors make a special case out of this combination to avoid a 
partial register stall when later reading from EAX. The trick is that a register is tagged as 
empty when it is XOR'ed with itself. The processor remembers that the upper 24 bits of EAX 
are zero, so that a partial stall can be avoided. This mechanism works only on certain 
combinations:  
 

XOR EAX, EAX 
MOV AL, 3 
MOV EBX, EAX            ; no stall 
 
XOR AH, AH 
MOV AL, 3 
MOV BX, AX              ; no stall 
 
XOR EAX, EAX 
MOV AH, 3 
MOV EBX, EAX            ; stall 
 
SUB EBX, EBX 
MOV BL, DL 
MOV ECX, EBX            ; no stall 
 
MOV EBX, 0 
MOV BL, DL 
MOV ECX, EBX            ; stall 
 
MOV BL, DL 
XOR EBX, EBX            ; no stall 

 
Setting a register to zero by subtracting it from itself works the same as the XOR, but setting 
it to zero with the MOV instruction doesn't prevent the stall. 
 
You can set the XOR outside a loop: 
 

      XOR EAX, EAX 
      MOV ECX, 100 
LL:   MOV AL, [ESI] 
      MOV [EDI], EAX          ; no stall 
      INC ESI 
      ADD EDI, 4 
      DEC ECX 



      JNZ LL 
 
The processor remembers that the upper 24 bits of EAX are zero as long as you don't get an 
interrupt, misprediction, or other serializing event. 
 
You should remember to neutralize any partial register you have used before calling a 
subroutine that might push the full register: 
 

ADD BL, AL 
MOV [MEM8], BL 
XOR EBX, EBX            ; neutralize BL 
CALL _HighLevelFunction 

 
Most high-level language procedures push EBX at the start of the procedure, and this would 
generate a partial register stall in the example above if you hadn't neutralized BL. 
 
Setting a register to zero with the XOR method doesn't break its dependence on earlier 
instructions on PPro, P2 and P3 (but it does on P4). Example: 
 

DIV EBX 
MOV [MEM], EAX 
MOV EAX, 0              ; break dependence 
XOR EAX, EAX            ; prevent partial register stall 
MOV AL, CL 
ADD EBX, EAX 

 
Setting EAX to zero twice here seems redundant, but without the MOV EAX,0 the last 
instructions would have to wait for the slow DIV to finish, and without XOR EAX,EAX you 
would have a partial register stall. 
 
The FNSTSW AX instruction is special: in 32-bit mode it behaves as if writing to the entire 
EAX. In fact, it does something like this in 32-bit mode: 
 

AND EAX,0FFFF0000h / FNSTSW TEMP / OR EAX,TEMP 
 
hence, you don't get a partial register stall when reading EAX after this instruction in 32 bit 
mode: 
 

FNSTSW AX / MOV EBX,EAX         ; stall only if 16 bit mode 
MOV AX,0  / FNSTSW AX           ; stall only if 32 bit mode 

Partial flags stalls  
The flags register can also cause partial register stalls: 
 

CMP EAX, EBX 
INC ECX 
JBE XX          ; partial flags stall 

 
The JBE instruction reads both the carry flag and the zero flag. Since the INC instruction 
changes the zero flag, but not the carry flag, the JBE instruction has to wait for the two 
preceding instructions to retire before it can combine the carry flag from the CMP instruction 
and the zero flag from the INC instruction. This situation is likely to be a bug in the assembly 
code rather than an intended combination of flags. To correct it, change INC ECX to ADD 
ECX,1. A similar bug that causes a partial flags stall is SAHF / JL XX. The JL instruction 
tests the sign flag and the overflow flag, but SAHF doesn't change the overflow flag. To 
correct it, change JL XX to JS XX.  
 



Unexpectedly (and contrary to what Intel manuals say) you also get a partial flags stall after 
an instruction that modifies some of the flag bits when reading only unmodified flag bits: 
 

CMP EAX, EBX 
INC ECX 
JC  XX          ; partial flags stall 

 
but not when reading only modified bits: 
 

CMP EAX, EBX 
INC ECX 
JZ  XX          ; no stall 

 
Partial flags stalls are likely to occur on instructions that read many or all flags bits, i.e. 
LAHF, PUSHF, PUSHFD. The following instructions cause partial flags stalls when followed by 
LAHF or PUSHF(D): INC, DEC, TEST, bit tests, bit scan, CLC, STC, CMC, CLD, STD, CLI, 
STI, MUL, IMUL, and all shifts and rotates. The following instructions do not cause partial 
flags stalls: AND, OR, XOR, ADD, ADC, SUB, SBB, CMP, NEG. It is strange that TEST and AND 
behave differently while, by definition, they do exactly the same thing to the flags. You may 
use a SETcc instruction instead of LAHF or PUSHF(D) for storing the value of a flag in order 
to avoid a stall.  
 
Examples: 
 

INC EAX   / PUSHFD      ; stall 
ADD EAX,1 / PUSHFD      ; no stall 
 
SHR EAX,1 / PUSHFD      ; stall 
SHR EAX,1 / OR EAX,EAX / PUSHFD   ; no stall 
 
TEST EBX,EBX / LAHF     ; stall 
AND  EBX,EBX / LAHF     ; no stall 
TEST EBX,EBX / SETZ AL  ; no stall 
 
CLC / SETZ AL           ; stall 
CLD / SETZ AL           ; no stall 

 
The penalty for partial flags stalls is approximately 4 clocks. 

Flags stalls after shifts and rotates  
You can get a stall resembling the partial flags stall when reading any flag bit after a shift or 
rotate, except for shifts and rotates by one (short form): 
 

SHR EAX,1 / JZ XX                ; no stall 
SHR EAX,2 / JZ XX                ; stall 
SHR EAX,2 / OR EAX,EAX / JZ XX   ; no stall 
 
SHR EAX,5 / JC XX                ; stall 
SHR EAX,4 / SHR EAX,1 / JC XX    ; no stall 
 
SHR EAX,CL / JZ XX               ; stall, even if CL = 1 
SHRD EAX,EBX,1 / JZ XX           ; stall 
ROL EBX,8 / JC XX                ; stall 

 
The penalty for these stalls is approximately 4 clocks. 
 

14.7 Partial memory stalls  
A partial memory stall is somewhat analogous to a partial register stall. It occurs when you 
mix data sizes for the same memory address: 



 
MOV BYTE PTR [ESI], AL 
MOV EBX, DWORD PTR [ESI]        ; partial memory stall 

 
Here you get a stall because the processor has to combine the byte written from AL with the 
next three bytes, which were in memory before, to get the four bytes needed for reading into 
EBX. The penalty is approximately 7 - 8 clocks. 
 
Unlike the partial register stalls, you also get a partial memory stall when you write a bigger 
operand to memory and then read part of it, if the smaller part doesn't start at the same 
address: 
 

MOV DWORD PTR [ESI], EAX 
MOV BL, BYTE PTR [ESI]          ; no stall 
MOV BH, BYTE PTR [ESI+1]        ; stall 

 
You can avoid this stall by changing the last line to MOV BH,AH, but such a solution is not 
possible in a situation like this: 
 

FISTP QWORD PTR [EDI] 
MOV EAX, DWORD PTR [EDI] 
MOV EDX, DWORD PTR [EDI+4]      ; stall 

 
Interestingly, you can also get a partial memory stall when writing and reading completely 
different addresses if they happen to have the same set-value in different cache banks: 
 

MOV BYTE PTR [ESI], AL 
MOV EBX, DWORD PTR [ESI+4092]   ; no stall 
MOV ECX, DWORD PTR [ESI+4096]   ; stall 

 

14.8 Bottlenecks in PPro, P2, P3 
When optimizing code for these processors, it is important to analyze where the bottlenecks 
are. Spending time on optimizing away one bottleneck doesn't make sense if another 
bottleneck is narrower. 
 
If you expect code cache misses, then you should restructure your code to keep the most 
used parts of code together. 
 
If you expect many data cache misses, then forget about everything else and concentrate 
on how to restructure your data to reduce the number of cache misses (page 29), and avoid 
long dependence chains after a data read cache miss. 
 
If you have many divisions, then try to reduce them (page 116) and make sure the 
processor has something else to do during the divisions. 
 
Dependence chains tend to hamper out-of-order execution (page 34). Try to break long 
dependence chains, especially if they contain slow instructions such as multiplication, 
division, and floating-point instructions. 
 
If you have many jumps, calls, or returns, and especially if the jumps are poorly predictable, 
then try if some of them can be avoided. Replace poorly predictable conditional jumps with 
conditional moves if possible, and replace small procedures with macros (page 50). 
 
If you are mixing different data sizes (8, 16, and 32 bit integers) then look out for partial 
stalls. If you use PUSHF or LAHF instructions then look out for partial flags stalls. Avoid 
testing flags after shifts or rotates by more than 1 (page 71). 
 



If you aim at a throughput of 3 uops per clock cycle then be aware of possible delays in 
instruction fetch and decoding (page 61), especially in small loops. Instruction decoding is 
often the narrowest bottleneck in these processors, and unfortunately this factor is quite 
complicated to optimize. 
 
The limit of two permanent register reads per clock cycle may reduce your throughput to 
less than 3 uops per clock cycle (page 66). This is likely to happen if you often read 
registers more than 4 clock cycles after they last were modified. This may, for example, 
happen if you often use pointers for addressing your data but seldom modify the pointers. 
 
A throughput of 3 uops per clock requires that no execution port gets more than one third of 
the uops (69). 
 
The retirement station can handle 3 uops per clock, but may be slightly less effective for 
taken jumps (page 71). 
 

15 Optimizing for P4 

15.1 Trace cache 
The pipeline of the 7'th generation microprocessor P4 has 20 stages, while the 6'th 
generation microprocessors have a 10-stage pipeline. The reorder buffer can contain 126 
uops in process. The most important difference is that on the P4, instructions are cached 
after being decoding into uops. Rather than storing instruction opcodes in the level-1 cache, 
it stores decoded uops. An important reason for this is that the decoding step was a 
bottleneck on earlier processors. An opcode can have any length from 1 to 15 bytes. It is 
quite complicated to determine the length of an instruction opcode; and you have to know 
the length of the first opcode in order to know where the second opcode begins. Therefore, 
it is difficult to determine opcode lengths in parallel. The 6'th generation microprocessors 
could decode three instructions per clock cycle. This may be more difficult at higher clock 
speeds (though I am convinced that it is possible). If uops all have the same size, then the 
processor can handle them in parallel, and the bottleneck disappears. This is the principle of 
RISC processors. Caching uops rather than opcodes enables the P4 to use RISC 
technology on a CISC instruction set. The cache that holds uops is called a trace cache. It 
stores traces of consecutive uops. A trace is a string of uops that are executed in sequence, 
even if they are not sequential in the original code. 
 
The uops take more space than opcodes on average. It can be calculated from the 
information contents that each uop requires at least 36 bits. We can therefore estimate that 
the size of each entry in the trace cache is at least 36 bits, probably more. 
 
The on-chip level-2 cache is used for both code and data. The size of the level-2 cache is 
256 kb or more. It runs at full speed with a 256 bits wide data bus to the central processor, 
and is quite efficient. 
 
The trace cache seems to be organized as 2048 lines of 6 entries each, 4-way set-associa-
tive. 16 of the bits in each entry are reserved for data. This means that a uop that requires 
more than 16 bits of data storage must use two entries. You can calculate whether a uop 
uses one or two trace cache entries by the following rules, which have been obtained 
experimentally. 
 

1. A uop with no immediate data and no memory operand uses only one trace cache 
entry. 
 

2. A uop with an 8-bit or 16-bit immediate operand uses one trace cache entry. 
 



3. A uop with a 32-bit immediate operand in the interval from -32768 to +32767 uses 
one trace cache entry. The immediate operand is stored as a 16-bit signed integer. If 
an opcode contains a 32-bit constant, then the decoder will investigate if this 
constant is within the interval that allows it to be represented as a 16-bit signed 
integer. If this is the case, then the uop can be contained in a single trace cache 
entry. 
 

4. If a uop has an immediate 32-bit operand outside the ±215 interval so that it cannot 
be represented as a 16-bit signed integer, then it will use two trace cache entries 
unless it can borrow storage space from a nearby uop. 
 

5. A uop in need of extra storage space can borrow 16 bits of extra storage space from 
a nearby uop that doesn't need its own data space. Almost any uop that has no 
immediate operand and no memory operand will have an empty 16-bit data space 
for other uops to borrow. A uop that requires extra storage space can borrow space 
from the next uop as well as from any of the preceding 3 - 5 uops (5 if it is not 
number 2 or 3 in a trace cache line), even if they are not in the same trace cache 
line. A uop cannot borrow space from a preceding uop if any uop between the two is 
double size or has borrowed space. Space is preferentially borrowed from preceding 
rather than subsequent uops. 
 

6. The displacement of a near jump, call or conditional jump is stored as a 16-bit signed 
integer, if possible. An extra trace cache entry is used if the displacement is outside 
the ±215 range and no extra storage space can be borrowed according to rule 5 
(Displacements outside this range are rare). 
 

7. A memory load or store uop will store the address or displacement as a 16-bit 
integer, if possible. This integer is signed if there is a base or index register, 
otherwise unsigned. Extra storage space is needed if a direct address is ≥ 216 or an 
indirect address (i.e. with one or two pointer registers) has a displacement outside 
the ±215 interval. 
 

8. Memory load uops can not borrow extra storage space from other uops. If 16 bits of 
storage is insufficient then an extra trace cache entry will be used, regardless of 
borrowing opportunities. 
 

9. Most memory store instructions generate two uops: The first uop, which goes to port 
3, calculates the memory address. The second uop, which goes to port 0, transfers 
the data from the source operand to the memory location calculated by the first uop. 
The first uop can always borrow storage space from the second uop. This space 
cannot be borrowed to any other uop, even if it is empty. 
 

10. Store operations with an 8, 16, or 32-bit register as source, and no SIB byte, can be 
contained in a single uop. These uops can borrow storage space from other uops, 
according to rule 5 above. 
 

11. Segment prefixes do not require extra storage space. 
 

12. A uop cannot have both a memory operand and an immediate operand. An 
instruction that contains both will be split into two or more uops. No uop can use 
more than two trace cache entries. 
 

13. A uop that requires two trace cache entries cannot cross a trace cache line 
boundary. If a double-space uop would cross a 6-entry boundary in the trace cache 
then an empty space will be inserted and the uop will use the first two entries of the 
next trace cache line. 

 



The difference between load and store operations needs an explanation. My theory is as 
follows: No uop can have more than two input dependencies (not including segment 
registers). Any instruction that has more than two input dependencies needs to be split up 
into two or more uops. Examples are ADC and CMOVcc. A store instruction like  MOV 
[ESI+EDI],EAX  also has three input dependencies. It is therefore split up into two uops. 
The first uop calculates the address [ESI+EDI], the second uop stores the value of EAX to 
the calculated address. In order to optimize the most common store instructions, a single-
uop version has been implemented to handle the situations where there is no more than 
one pointer register. The decoder makes the distinction by seeing if there is a SIB byte in 
the address field of the instruction. A SIB byte is needed if there is more than one pointer 
register, or a scaled index register, or ESP as base pointer. Load instructions, on the other 
hand, can never have more than two input dependencies. Therefore, load instructions are 
implemented as single-uop instructions in the most common cases. The load uops need to 
contain more information than the store uops. In addition to the type and number of the 
destination register, it needs to store any segment prefix, base pointer, index pointer, scale 
factor, and displacement. The size of the trace cache entries has probably been chosen to 
be exactly enough to contain this information. Allocating a few more bits for the load uop to 
indicate where it is borrowing storage space from would mean that all trace cache entries 
would have a bigger size. Given the physical constraints on the trace cache, this would 
mean fewer entries. This is probably the reason why memory load uops cannot borrow 
storage space. The store instructions do not have this problem because the necessary 
information is already split up between two uops unless there is no SIB byte, and hence less 
information to contain. 
 
The following examples will illustrate the rules for trace cache use: 
 

ADD EAX,10000   ; The constant 10000 uses 32 bits in the opcode, but 
                ; can be contained in 16 bits in uop. Uses 1 space. 
ADD EBX,40000   ; The constant is bigger than 215, but it can borrow 
                ; storage space from the next uop. 
ADD EBX,ECX     ; Uses 1 space. Gives storage space to preceding uop. 
MOV EAX,[MEM1]  ; Requires 2 spaces, assuming that address ≥ 216; 
                ; preceding borrowing space is already used. 
MOV EAX,[ESI+4] ; Requires 1 space. 
MOV [SI],AX     ; Requires 1 space. 
MOV AX,[SI]     ; Requires 2 uops taking one space each. 
MOVZX EAX,WORD PTR[SI]    ; Requires 1 space. 
MOVDQA XMM1,ES:[ESI+100H] ; Requires 1 space. 
FLD QWORD PTR ES:[EBP+8*edx+16] ; Requires 1 space. 
MOV [EBP+4], EBX ; Requires 1 space. 
MOV [ESP+4], EBX ; Requires 2 uops because SIB byte needed. 
FSTP DWORD PTR [MEM2] ; Requires 2 uops. The first uop borrows 
                      ; space from the second one. 

 
No further data compression is used in the trace cache besides the methods mentioned 
above. A program that has a lot of direct memory addresses will typically use two trace 
cache entries for each data access, even if all memory addresses are within the same 
narrow range. In a flat memory model, the address of a direct memory operand uses 32 bits 
in the opcode. Your assembler listing will typically show addresses lower than 216, but these 
addresses are relocated twice before the microprocessor sees them. The first relocation is 
done by the linker; the second relocation is done by the loader when the program is loaded 
into memory. When a flat memory model is used, the loader will typically place the entire 
program at a virtual address space beginning at a value > 216. In some systems it is 
possible to specify that the program should be loaded at a lower virtual address. This may 
save space in the trace cache if you have many direct memory references in the critical part 
of your code. However, a better solution might be to access data in the critical part of your 
program through pointers. In high-level languages like C++, local data are always saved on 
the stack and accessed through pointers. Direct addressing of global and static data can be 
avoided by using classes and member functions. Similar methods may be applied in 
assembly programs. 



 
Uops can be delivered from the trace cache to the next steps in the execution pipeline at a 
rate of one trace cache line every two clock cycles. This corresponds to a throughput of 3 
single-size uops per clock cycle for contiguous code. If there are no bottlenecks further 
down the pipeline, then you can get a throughput of 3 trace cache entries per clock cycle. 
 
You can therefore calculate with a time consumption of ⅓ clock cycle for each single-entry 
uop, and ⅔ clock cycles for a double-size uop. If a double-size uop happens to cross a trace 
cache line boundary, then you will get an extra empty entry at the cost of a further ⅓ clock 
cycle. The chance of this happening is 1/6. So the average time consumption for a double-
size uop is ⅔ + 1/6 * ⅓ = 0.72 clock cycles. 
 
You can prevent double-size uops from crossing 6-entry boundaries by scheduling them so 
that there is an even number (including 0) of single-size uops between any two double-size 
uops (A long, continuous 2-1-2-1 pattern will also do). Example: 
 

MOV EAX, [MEM1]   ; 1 uop, 2 TC entries 
ADD EAX, 1        ; 1 uop, 1 TC entry 
MOV EBX, [MEM2]   ; 1 uop, 2 TC entries 
MOV [MEM3], EAX   ; 1 uop, 2 TC entries 
ADD EBX, 1        ; 1 uop, 1 TC entry 
 

If we assume, for example, that the first uop here starts at 6-entry boundary, then the MOV 
[MEM3],EAX uop will cross the next 6-entry boundary at the cost of an empty entry. This 
can be prevented by re-arranging the code: 
 

MOV EAX, [MEM1]   ; 1 uop, 2 TC entries 
MOV EBX, [MEM2]   ; 1 uop, 2 TC entries 
ADD EAX, 1        ; 1 uop, 1 TC entry 
ADD EBX, 1        ; 1 uop, 1 TC entry 
MOV [MEM3], EAX   ; 1 uop, 2 TC entries 

 
We cannot know whether the first two uops are crossing any 6-entry boundary as long as 
we haven't looked at the preceding code, but we can be certain that the MOV [MEM3],EAX  
uop will not cross a boundary, because the second entry of the first uop cannot be the first 
entry in a trace cache line. If a long code sequence is arranged so that there is never an 
odd number of single-size uops between any two double-size uops then we will not waste 
any trace cache entries. The preceding two examples assume that direct memory operands 
are bigger than 216, which is usually the case. For the sake of simplicity, I have used only 
instructions that generate 1 uop each in these examples. For instructions that generate 
more than one uop, you have to consider each uop separately. 

Branches 
The uops in the trace cache are not stored in the same order as the original code. If a 
branching uop jumps most of the time, then the traces will usually be organized so that the 
jumping uop is followed by the uops jumped to, rather than the uops that follows it in the 
original code. This reduces the number of jumps between traces. The same sequence of 
uops can appear more than once in the trace cache if it is jumped to from different places. 
 
Sometimes it is possible to control which of the two branches are stored after a branching 
uop by using branch hint prefixes (see page 48), but my experiments have shown no 
consistent advantage of doing so. Even in the cases where there is an advantage by using 
branch hint prefixes, this effect does not last very long, because the traces are rearranged 
quite often to fit the behavior of the branch uops. You can therefore assume that traces are 
usually organized according to the way branches go most often. 
 
The throughput is typically less than 3 uops per clock cycle if the code contains many 
branches. If, for example, the first entry in a trace cache line is a uop that branches to 
another trace stored elsewhere in the trace cache, then the next 5 uops in the same trace 



cache line are lost. This worst-case loss is equivalent to 5/3 = 1.67 clock cycles. There is no 
loss if the branching uop is the last uop in a trace cache line. The average loss for jumping 
to a different trace is 5/6 = 0.833 clock. In theory, it might be possible to organize code so 
that branch uops appear in the end of trace cache lines in order to avoid losses. But 
attempts to do so are rarely successful because it is almost impossible to predict where 
each trace begins. Sometimes, a small loop containing branches can be improved by 
organizing it so that each branch contains a number of trace cache entries divisible by 6. A 
number of trace cache entries that is slightly less than a value divisible by 6 is better than a 
number slightly more than a value divisible by 6. 
 
Obviously, these considerations are only relevant if the throughput is not limited by any 
other bottleneck in the execution units, and the branches are predictable. 

Guidelines for improving trace cache performance 
The following guidelines can improve performance if the delivery of uops from the trace 
cache is a bottleneck: 
 

• Prefer instructions that generate few uops. A list of how many uops each instruction 
generates is given on page 147. 
 

• Keep immediate operands in the range between -215 and +215 if possible. If a uop 
has an immediate 32-bit operand outside this range, then you should preferably 
have a uop with no immediate operand and no memory operand before or 
immediately after the uop with the big operand. 
 

• Avoid direct memory addresses in 32-bit mode. The performance can be improved 
by using pointers if the same pointer can be used repeatedly and the addresses are 
within ±215 of the pointer register. 
 

• Avoid having an odd number of single-size uops between any two double-size uops. 
Instructions that generate double-size uops include memory loads with direct 
memory operands, and other uops with an unmet need for extra storage space. 
 

• Replace branch instructions by conditional moves if this does not imply large extra 
costs. 

 

15.2 Instruction decoding 
In most cases, the decoder generates 1 - 4 uops for each instruction. For complex 
instructions that require more than 4 uops, the uops are submitted from microcode ROM. 
The table on page 147 lists the number of decoder uops and microcode uops that each 
instruction generates. 
 
The decoder can handle instructions at a rate of one instruction per clock cycle. There are a 
few cases where the decoding of an instruction takes more than one clock cycle: 
 
An instruction that generates micro-code may take more than one clock cycle to decode, 
sometimes much more. The following instructions, which may (in some cases) generate 
micro-code, do not take significantly more time to decode: moves to and from segment 
registers, ADC, SBB, IMUL, MUL, MOVDQU, MOVUPS, MOVUPD. 
 
An instruction that has more than one prefix takes one clock cycle for each prefix to decode. 
Instruction prefixes are used in the following cases: 

• Instructions using XMM registers have a prefix specifying the size and precision of 
data, except for packed single precision float data. 

• Instructions using 16-bit registers in 32-bit mode or vice versa have an operand size 
prefix (except instructions that can only have one data size, such as FNSTSW AX). 



• Instructions using 16-bit addressing in 32-bit mode or vice versa have an address 
size prefix. 

• Instructions using a non-default data segment have a segment prefix. The default 
data segment for all explicit memory operands is DS, except when EBP or ESP is 
used as base pointer, using SS as segment. String instructions that use EDI as 
implicit memory pointer use ES in association with EDI, regardless of segment 
prefix. 

• Repeated string instructions have a repeat prefix. 
• Instructions that read, modify, and write a memory operand can have a LOCK prefix 

which prevents other microprocessors from accessing the same memory location 
until the operation is finished. 

• Branch instructions can have a prefix as a hint to aid prediction. 
• A few new instructions are formed by old instructions with a prefix added. 

Many newer instructions begin with a 0FH byte. This byte doesn't count as a prefix on this 
microprocessor. 
 
With a flat memory model, you will probably never need more than one instruction prefix. In 
a segmented memory model, you will need two prefixes when a segment prefix is used in 
addition to an operand size prefix or a prefix for an XMM instruction. The order of the 
prefixes is unimportant. 
 
Decoding time is not important for small loops that fit entirely into the trace cache. If the 
critical part of your code is too big for the trace cache, or scattered around in many small 
pieces, then the uops may go directly from the decoder to the execution pipeline, and the 
decoding speed may be a bottleneck. The level-2 cache is so efficient that you can safely 
assume that it delivers code to the decoder at a sufficient speed. 
 
If it takes longer time to execute a piece of code than to decode it, then the trace may not 
stay in the trace cache. This has no negative influence on the performance, because the 
code can run directly from the decoder again next time it is executed, without delay. This 
mechanism tends to reserve the trace cache for the pieces of code that execute faster than 
they decode. I have not found out which algorithm the microprocessor uses to decide 
whether a piece of code should stay in the trace cache or not, but the algorithm seems to be 
rather conservative, rejecting code from the trace cache only in extreme cases. 
 

15.3 Execution units 
Uops from the trace cache or from the decoder are queued when they are waiting to be 
executed. After register renaming and reordering, each uop goes through a port to an 
execution unit. Each execution unit has one or more subunits which are specialized for 
particular operations, such as addition or multiplication. The organization of ports, execution 
units, and subunits can be represented as follows: 
 



port execution unit subunit speed 
add, sub, mov 
logic 
store integer 

0 alu0 

branch 

double 

move and store fp, mmx, xmm 0 mov 
fxch 

single 

1 alu1 add, sub, mov double 
misc. 1 int 
borrows subunits from fp and mmx 

single 

fp add 
fp mul 
fp div 

1 fp 

fp misc. 

half 

mmx alu 
mmx shift 

1 mmx 

mmx misc. 

half 

2 load all loads single 
3 store store address single 

 
Further explanation can be found in "Intel Pentium 4 and Intel Xeon Processor Optimization 
Reference Manual". The table above deviates slightly from diagrams in the Intel manual in 
order to account for various delays. 
 
A uop can be executed when the following conditions are met: 

• all operands for the uop are ready 
• an appropriate execution port is ready 
• an appropriate execution unit is ready 
• an appropriate execution subunit is ready 

 
Two of the execution units run at double clock speed. This is alu0 and alu1, which are used 
for integer addition, subtraction and moves. Alu0 can also do logical instructions (and, or, 
xor), memory store, and branches. These units are highly optimized in order to execute the 
most common uops as fast as possible. The double clock speed enables these two units to 
receive a new uop every half-clock cycle. An instruction like ADD EAX,EBX can execute in 
either of these two units. This means that the execution core can handle four integer 
additions per clock cycle. 
 
Some of the execution units run at half speed. These units are doubled so that they can 
receive a new uop every clock cycle (see page 83). 
 
The trace cache can submit only three uops per clock cycle to the queue. This sets a limit to 
the execution speed if all uops are of the type that can execute in alu0 and alu1. The 
throughput of four uops per clock cycle can thus only be obtained if uops have been queued 
during a preceding period of lower throughput (due to slow instructions or cache misses). 
My measurements show that a throughput of four uops per clock cycle can be obtained for a 
maximum of 11 consecutive clock cycles if the queue has been filled during a preceding 
period of lower throughput. 
 
Each port can receive one uop for every whole clock tick. Port 0 and port 1 can each 
receive one additional uop at every half-clock tick, if the additional uop is destined for alu0 
or alu1. This means that if a code sequence consists of only uops that go to alu0 then the 
throughput is two uops per clock cycle. If the uops can go to either alu0 or alu1 then the 
throughput at this stage can be four uops per clock cycle. If all uops go to the single-speed 
and half-speed execution units under port 1 then the throughput is limited to one uop per 
clock cycle. If all ports and units are used evenly, then the throughput at this stage may be 
as high as six uops per clock cycle. 



 
The single-speed and half-speed execution units can each receive one uop per clock cycle. 
Some subunits have a lower throughput. For example, the fp-div subunit cannot start a new 
division before the preceding division is finished, which takes from 23 to 43 clock cycles. 
Other subunits are perfectly pipelined. For example, a floating-point addition takes 5 clock 
cycles, but the fp-add subunit can start a new FADD operation every clock cycle. In other 
words, if the first FADD operation goes from time T to T+5, then the second FADD can start 
at time T+1 and end at time T+6, and the third FADD goes from time T+2 to T+7, etc. 
Obviously, this is only possible if each FADD operation is independent of the results of the 
preceding ones. 
 
Details about uops, execution units, subunits, throughput and latencies are listed in the 
tables starting on page 147 for almost all P4 instructions. The following examples will 
illustrate how to use this table for making time calculations. 
 

FADD ST,ST(1)          ; 0 - 5 
FADD QWORD PTR [ESI]   ; 5 - 10 

  
The first FADD instruction has a latency of 5 clock cycles. If it starts at time T=0, it will be 
finished at time T=5. The second FADD depends on the result of the first one. Hence, the 
time is determined by the latency, not the throughput of the fp-add unit. The second addition 
will start at time T=5 and be finished at time T=10. The second FADD instruction generates 
an additional uop that loads the memory operand. Memory loads go to port 0, while floating-
point arithmetic operations go to port 1. The memory load uop can start at time T=0 
simultaneously with the first FADD or perhaps even earlier. If the operand is in the level-1 or 
level-2 data cache then we can expect it to be ready before it is needed. 
 
The second example shows how to calculate throughput: 
 

PMULLW XMM1,XMM0   ; 0 - 6 
PADDW XMM2,XMM0    ; 1 - 3 
PADDW MM1,MM0      ; 3 - 5 
PADDW XMM3,[ESI]   ; 4 - 6 

 
The 128-bit packed multiplication has a latency of 6 and a reciprocal throughput of 2. The 
subsequent addition uses a different execution unit. It can therefore start as soon as port 1 
is vacant. The 128-bit packed additions have a reciprocal throughput of 2, while the 64-bit 
versions have a reciprocal throughput of 1. Reciprocal throughput is also called issue 
latency. A reciprocal throughput of 2 means that the second PADD can start 2 clocks after 
the first one. The second PADD operates on 64-bit registers, but uses the same execution 
subunit. It has a throughput of 1, which means that the third PADD can start one clock later. 
As in the previous example, the last instruction generates an additional memory load uop. 
As the memory load uop goes to port 0, while the other uops go to port 1, the memory load 
does not affect the throughput. None of the instructions in this example depend on the 
results of the preceding ones. Consequently, only the throughput matters, not the latency. 
We cannot know if the four instructions are executed in program order or they are 
reordered. However, reordering will not affect the overall throughput of the code sequence. 
 

15.4 Do the floating-point and MMX units run at half speed? 
Looking at the table on page 153, we notice that almost all the latencies for 64-bit and 128-
bit integer and floating-point instructions are even numbers. This suggests that the MMX 
and FP execution units run at half clock speed. The first explanation that comes to mind is: 

Hypothesis 1 
We may assume that the P4 has two 64-bit MMX units working together at half speed. Each 
128-bit uop will use both units and take 2 clock cycles, as illustrated on fig 15.1. A 64-bit 



uop can use either of the two units so that independent 64-bit uops can execute at a 
throughput of one uop per clock cycle, assuming that the half-speed units can start at both 
odd and even clocks. Dependent 64-bit uops will have a latency of 2 clocks, as shown in fig 
15.1. 
 

 
Figure 15.1 
 
The measured latencies and throughputs are in accordance with this hypothesis. In order to 
test this hypothesis, I have made an experiment with a series of alternating 128-bit and 64-
bit uops. Under hypothesis 1, it will be impossible for a 64-bit uop to overlap with a 128-bit 
uop, because the 128-bit uop uses both 64-bit units. A long sequence of n 128-bit uops 
alternating with n 64-bit uops should take 4· n clocks, as shown in figure 15.2. 
 

 
Figure 15.2 
 
However, my experiment shows that this sequence takes only 3· n clocks. (I have made the 
64-bit uops interdependent, so that they cannot overlap with each other). We therefore have 
to reject hypothesis 1. 

Hypothesis 2 
We may modify hypothesis 1 with the assumption that the internal data bus is only 64 bits 
wide, so that a 128-bit operand is transferred to the execution units in two clock cycles. If we 
still assume that there are two 64-bit execution units running at half speed, then the first 64-
bit unit can start at time T = 0 when the first half of the 128-bit operand arrives, while the 
second 64-bit unit will start one clock later, when the second half of the operand arrives (see 
figure 15.3). The first 64-bit unit will then be able to accept a new 64-bit operand at time 
T=2, before the second 64-bit unit is finished with the second half of the 128-bit operand. If 
we have a sequence of alternating 128-bit and 64-bit uops, then the third uop, which is 128-
bit, can start with its first half operand at time T=3, using the second 64-bit execution unit, 
while the second operand starts at T=4 using the first 64-bit execution unit. As figure 15.3 
shows, this can explain the observation that a sequence of n 128-bit uops alternating with n 
64-bit uops takes 3· n clocks. 
 
 



 
Figure 15.3 
 
The measured latency of simple 128-bit uops is not 3 clocks, but 2. In order to explain this, 
we have to look at how a dependence chain of 128-bit uops is executed. Figure 15.4 shows 
the execution of a chain of interdependent 128-bit uops. 
 

 
Figure 15.4 
 
The first uop handles the first half of its operand from time T = 0 to 2, while the second half 
of the operand is handled from time T = 1 to time 3. The second uop can start to handle its 
first half operand already at time T = 2, even though the second half operand is not ready 
until time T = 3. A sequence of n interdependent 128-bit uops of this kind will thus take 
2· n+1 clocks. The extra 1 clock in the end will appear to be part of the latency of the final 
instruction in the chain, which stores the result to memory. Thus, for practical purposes, we 
can calculate with a latency of 2 clocks for simple 128-bit uops.  

Hypothesis 3 
The assumption is now that there is only one 64-bit arithmetic unit running at full speed. It 
has a latency of 2 clocks and is fully pipelined, so that it can accept a new 64-bit operand 
every clock cycle. Under this assumption, the sequence of alternating 128-bit and 64-bit 
uops will still be executed as shown in figure 15.3. 
 
There is no experimental way to distinguish between hypothesis 2 and 3 if the two units 
assumed under hypothesis 2 are identical, because all inputs and outputs to the execution 
units occur at the same time under both of these hypotheses. However, hypothesis 3 seems 
less likely than hypothesis 2 because we have no explanation of why the execution unit 
would require two pipeline stages. 
 
It would be possible to prove hypothesis 2 and reject hypothesis 3 if there were some 64-bit 
operations that could execute only in one of the two assumed 64-bit units, but I have not 
found any such operations. 

Hypothesis 4 
In the P3, simple 128-bit instructions are split into two 64-bit uops. If this is also the case in 
the P4, then the uops in figure 15.2 can be executed out of order to allow overlap with the 
64-bit instructions. However, this is not in accordance with the uop counts that can be 
measured with the performance monitor counters. 



 
Those 128-bit uops where the two 64-bit halves are not independent of each other all have 
a latency of 4 clocks. This is in accordance with hypothesis 2 and 3. 
 
We may thus conclude that hypothesis 2 is the most probable explanation. It is also a 
logical choice. Two 64-bit units running at half speed will give the same latency and 
throughput on 128-bit operands as a single 64-bit execution unit running at full speed with a 
latency of 1. If the former implementation is cheaper than the latter, reduces the power 
consumption, or allows a higher clock speed, then this will be a reasonable choice for a 
microprocessor designer. Hypothesis 2 is partly confirmed by the following sentence in Intel 
Pentium 4 and Intel Xeon Processor Optimization Reference Manual: "Intel NetBurst micro-
architecture [...] uses a deeply pipelined design to enable high clock rates with different 
parts of the chip running at different clock rates, some faster and some slower than the 
nominally-quoted clock frequency of the processor". Letting different units run at different 
speeds may actually be a better design decision than letting the slowest unit determine the 
overall clock frequency. A further reason for this choice may be to reduce power 
consumption and optimize the thermal design. 
 
Floating-point addition and multiplication uops operating on 80-bit registers have latencies 
that are one clock cycle more than the latencies of similar uops in 128-bit registers. The 
latencies of these instructions are thus odd values. Under hypothesis 2, the extra clock 
cycle can be explained as the extra time it takes to transfer an 80-bit operand over a 64-bit 
data bus. Under hypothesis 3, the extra clock cycle can be explained as the time needed to 
generate the extra 80-bit precision. 
 
Scalar floating-point operations in 80-bit registers have a throughput of 1 uop per clock 
cycle, while scalar floating-point operations in 128-bit registers have half throughput, even 
though they only use 32 or 64 of the 128 bits. This is probably because the remaining 96 or 
64 bits of the destination operand, which remain unchanged, are going through the 
execution unit to the new (renamed) destination register. 
 
Divisions behave differently. There is a separate division unit which uses iteration and is not 
pipelined. Divisions can have both odd and even latencies, so it is likely that at least part of 
the division unit runs at full speed, even though it uses the FP-mul unit. Square roots also 
use the division unit. 
 

15.5 Transfer of data between execution units 
The latency of an operation is in most cases longer if the next dependent operation is not 
executed in the same execution unit. Example: 
 

                    ; clock      ex.unit   subunit 
PADDW XMM0,XMM1     ;  0 -  2    mmx       alu 
PSLLW XMM0,4        ;  2 -  4    mmx       shift 
PMULLW XMM0,XMM2    ;  5 - 11    fp        mul 
PSUBW XMM0,XMM3     ; 12 - 14    mmx       alu 
POR XMM6,XMM7       ;  3 -  5    mmx       alu 
MOVDQA XMM1,XMM0    ; 15 - 21    mov 
PAND XMM1,XMM4      ; 21 - 23    mmx       alu 

 
The first instruction PADDW runs in the MMX unit under port 1, and has a latency of 2. The 
shift instruction PSLLW runs in the same execution unit, though in a different subunit. There 
is no extra delay, so it can start at time T=2. The multiplication instruction PMULLW runs in a 
different execution unit, the FP unit, because there is no multiplication subunit in the MMX 
execution unit. This gives an extra delay of one clock cycle. The multiplication cannot start 
until T=5, even though the shift operation finished at T=4. The next instruction, PSUBW, goes 
back to the MMX unit, so again we have a delay of one clock cycle from the multiplication is 
finished till the subtraction can begin. The POR does not depend on any of the preceding 



instructions, so it can start as soon as port 1 and the mmx-alu subunit are both vacant. The 
MOVDQA instruction goes to the mov unit under port 0, which gives us another delay of one 
clock cycle after the PSUBW has finished. The last instruction, PAND, goes back to the MMX 
unit under port 1. However, there is no additional delay after a move instruction. The whole 
sequence takes 23 clock cycles.  
 
There is no delay between the two double-speed units, alu0 and alu1, but there is an 
additional delay of ½ clock cycle from these units to any other (single-speed) execution unit. 
Example: 

                    ;   clock        ex.unit   subunit 
AND EAX,0FH         ;  0.0 -  0.5    alu0      logic 
XOR EBX,30H         ;  0.5 -  1.0    alu0      logic 
ADD EAX,1           ;  0.5 -  1.0    alu1      add 
SHL EAX,3           ;  2.0 -  6.0    int       mmx shift 
SUB EAX,ECX         ;  7.0 -  7.5    alu0/1    add 
MOV EDX,EAX         ;  7.5 -  8.0    alu0/1    mov 
IMUL EDX,100        ;  9.0 - 23.0    int       fp mul 
OR  EDX,EBX         ; 23.0 - 23.5    alu0/1    mov 
 

The first instruction, AND, starts at time T=0 in alu0. Running at double speed, it is finished 
at time 0.5. The XOR instruction starts as soon as alu0 is vacant, at time 0.5. The third 
instruction, ADD, needs the result of the first instruction, but not the second. Since alu0 is 
occupied by the XOR, the ADD has to go to alu1. There is no delay from alu0 to alu1, so the 
ADD can start at time T=0.5, simultaneously with the XOR, and finish at T=1.0. The SHL 
instruction runs in the single-speed int unit. There is a ½ clock delay from alu0 or alu1 to 
any other unit, so the int unit cannot receive the result of the ADD until time T=1.5. Running 
at single speed, the int unit cannot start at a half-clock tick so it will wait until time T=2.0 and 
finish at T=6.0. The next instruction, SUB, goes back to alu0 or alu1. There is a one-clock 
delay from the SHL instruction to any other execution unit, so the SUB instruction is delayed 
until time T=7.0. After the two double-speed instructions, SUB and MOV, we have a ½ clock 
delay again before the IMUL running in the int unit. The IMUL, running again at single 
speed, cannot start at time T=8.5 so it is delayed until T=9.0. There is no additional delay 
after IMUL, so the last instruction can start at T=23.0 and end at T=23.5. 
 
There are several ways to improve this code. The first improvement is to swap the order of 
ADD and SHL (then we have to add 1 SHL 3 = 8): 
 

AND EAX,00FH        ;  0.0 -  0.5    alu0      logic 
XOR EBX,0F0H        ;  0.5 -  1.0    alu0      logic 
SHL EAX,3           ;  1.0 -  5.0    int       mmx shift 
ADD EAX,8           ;  6.0 -  6.5    alu1      add 
SUB EAX,ECX         ;  6.5 -  7.0    alu0/1    add 
MOV EDX,EAX         ;  7.0 -  7.5    alu0/1    mov 
IMUL EDX,100        ;  8.0 - 22.0    int       fp mul 
OR  EDX,EBX         ; 22.0 - 22.5    alu0/1    mov 

 
Here we are saving ½ clock before the SHL and ½ clock before the IMUL by making the 
data for these instructions ready at a half-clock tick so that they are available to the single-
speed unit ½ clock later, at an integral time. The trick is to reorder your instructions so that 
you have an odd number of double-speed uops between any two single-speed or half-
speed uops in a chain of interdependent instructions. You can improve the code further by 
minimizing the number of transitions between execution units. Even better, of course, is to 
keep all operations in the same execution unit, and preferably the double-speed units. SHL 
EAX,3 can be replaced by 3 × (ADD EAX,EAX). See page 114 for how to replace integer 
multiplications by additions. 
 
If we want to know why there is an additional delay when going from one execution unit to 
another, there are three possible explanations: 



Explanation A 
The physical distance between the execution units on the silicon chip is quite large, and this 
may cause a propagation delay in the traveling of electrical signals from one unit to another 
because of the induction and capacity in the wires. 

Explanation B 
The "logical distance" between execution units means that the data have to travel through 
various buffers, ports, buses and multiplexers to get to the right destination. The designers 
have implemented various shortcuts to bypass these delaying elements when the output of 
an instruction is needed immediately afterwards in the same or a nearby execution unit. 
 
If we assume that on a less sophisticated design, a simple operation like integer addition 
uses half a clock cycle for doing the calculation and the rest of the clock cycle for directing 
the result to the right address. Then, bypassing the latter process may be the trick that 
enables the P4 to do some calculations at double speed when the result of the operation is 
needed only in the same execution unit. 

Explanation C 
If 128-bit operands are handled 64 bits at a time, as figure 15.4 suggests, then we will have 
a 1 clock delay at the end of a chain of 128-bit instructions when the two halves have to be 
united. Consider, for example, the addition of packed double precision floating-point 
numbers in 128-bit registers. If the addition of the lower 64-bit operand starts at time T=0, it 
will finish at T=4. The upper 64-bit operand can start at time T=1 and finish at T=5. If the 
next dependent operation is also a packed addition, then the second addition can start to 
work on the lower 64-bit operand at time T=4, before the upper operand is ready. 
 

 
Figure 15.5 
 
The latency for a chain of such instructions will appear to be 4 clock cycles per operation. If 
all operations on 128-bit registers can overlap in this way, then we will never see the 128-bit 
operations having higher latency than the corresponding 64-bit operations. But if the 
transport of the data to another execution unit requires that all 128 bits travel together, then 
we get an additional delay of 1 clock cycle for the synchronization of the upper and lower 
operands, as figure 15.5 shows. It is not known whether the data buses between execution 
units are 64 bits or 128 bits wide. 
 
Obviously, explanation C cannot explain additional delays in 32-bit operations, so we have 
to accept explanation A or B, at least for the double-speed units. Explanation C may still 
apply in some situations, such as memory loads and stores, as well as register-to-register 
moves that use the same execution unit as memory stores. 
 

15.6 Retirement 
The retirement of executed uops works in the same way in the P4 as in the 6'th generation 
processors. This process is explained on page 71. 
 



The retirement station can handle three uops per clock cycle. This may not seem like a 
problem because the throughput is already limited to 3 uops per clock in the trace cache. 
But the retirement station has the further limitation that taken jumps must retire in the first of 
the three slots in the retirement station. This sometimes limits the throughput of small loops. 
If the number of uops in the loop is not a multiple of 3, then the jump-back instruction in the 
bottom of the loop may go into the wrong retirement slot, at the penalty of one clock cycle 
per iteration. It is therefore recommended that the number of uops (not instructions) in small 
critical loops should be a multiple of 3. In some cases, you can actually save one clock 
cycle per iteration by adding one or two NOP's to the loop to make the number of uops 
divisible by 3. This applies only if a throughput of 3 uops per clock cycle is expected. 
 

15.7 Partial registers and partial flags 
Registers AL, AH, and AX are all parts of the EAX register. These are called partial registers. 
On 6'th generation microprocessors, the partial registers could be split into separate 
temporary registers, so that different parts could be handled independently of each other. 
This caused a serious delay whenever there was a need to join different parts of a register 
into a single full register. This problem is explained on page 71. 
 
To prevent this problem, the P4 always stores the whole register together. This solution has 
other drawbacks, however. The first drawback is that it introduces false dependences. Any 
read or write to AL will be delayed if a preceding write to AH is delayed. 
 
Another drawback is that access to a partial register sometimes requires an extra uop. 
Examples: 

MOV EAX,[MEM32]       ; 1 uop 
MOV AX,[MEM16]        ; 2 uops 
MOV AL,[MEM8]         ; 2 uops 
MOV AH,[MEM8]         ; 2 uops 
MOVZX EAX,[MEM8]      ; 1 uop 
MOVSX EAX,[MEM8]      ; 2 uops 
ADD AL,BL             ; 1 uop 
ADD AH,BH             ; 1 uop 
ADD AL,BH             ; 2 uops 
ADD AH,BL             ; 2 uops 
 

For optimal performance, you may follow the following guidelines when working with 8-bit 
and 16-bit operands: 

• Avoid using the high 8-bit registers AH, BH, CH, DH. 
• When reading from an 8-bit or 16-bit memory operand, use MOVZX to read the entire 

32-bit register, even in 16-bit mode. 
• Alternatively, use MMX or XMM registers to handle 8-bit and 16-bit integers, if they 

can be packed. 
 
The problems with partial access also apply to the flags register when an instruction 
modifies some of the flags but leaves other flags unchanged. 
 
For historical reasons, the INC and DEC instructions leave the carry flag unchanged, while 
the other arithmetic flags are written to. This causes a false dependence on the previous 
value of the flags and costs an extra uop. To avoid these problems, it is recommended that 
you always use ADD and SUB instead of INC and DEC. For example, INC EAX should be 
replaced by ADD EAX,1. 
 
SAHF leaves the overflow flag unchanged but changes the other arithmetic flags. This 
causes a false dependence on the previous value of the flags, but no extra uop. 
 
BSF and BSR change the zero flag but leave the other flags unchanged. This causes a false 
dependence on the previous value of the flags and costs an extra uop. 



 
BT, BTC, BTR, and BTS change the carry flag but leave the other flags unchanged. This 
causes a false dependence on the previous value of the flags and costs an extra uop. Use 
TEST, AND, OR or XOR instead of these instructions. 
 

15.8 Partial memory access 
The problems with accessing part of a memory operand are much bigger than when 
accessing part of a register. These problems are the same as for previous processors, see 
page 74. Example: 
 

MOV DWORD PTR  [MEM1], EAX 
MOV DWORD PTR  [MEM1+4], 0 
FILD QWORD PTR [MEM1]             ; large penalty 

 
You can save 10-20 clocks by changing this to: 
 

MOVD XMM0, EAX 
MOVQ QWORD PTR [MEM1], XMM0 
FILD QWORD PTR [MEM1]             ; no penalty 

 

15.9 Memory intermediates in dependencies 
The P4 has an unfortunate proclivity for trying to read a memory operand before it is ready. 
If you write 
 

IMUL EAX,5 
MOV [MEM1],EAX 
MOV EBX,[MEM1] 

 
Then the microprocessor may try to read the value of [MEM1] into EBX before the IMUL and 
the memory write have finished. It soon discovers that the value it has read is invalid, so it 
will discard EBX and try again. It will keep replaying the read instruction until the data in 
[MEM1] are ready. There seems to be no limit to how many times it can replay a memory 
read, and this process steals resources from other processes. In a long dependence chain, 
this may typically cost 10 - 20 clock cycles! Using the MFENCE instruction to serialize 
memory access does not solve the problem because this instruction is even more costly. On 
previous microprocessors, the penalty for reading a memory operand immediately after 
writing to the same memory position is only a few clock cycles.  
 
The best way to avoid this problem is, of course, to replace MOV EBX,[MEM1] with MOV 
EBX,EAX in the above example. Another possible solution is to give the processor plenty of 
work to do between the store and the load from the same address. 
 
However, there are two situations where it is not possible to keep data in registers. The first 
situation is the transfer of parameters in high-level language procedure calls; the second 
situation is transferring data between floating-point registers and other registers. 

Transferring parameters to procedures 
Calling a function with one integer parameter in C++ will typically look like this: 
 

PUSH EAX              ; save parameter on stack 
CALL _FF              ; call function _FF 
ADD ESP,4             ; clean up stack after call 
... 
_FF PROC NEAR         ; function entry 
PUSH EBP              ; save EBP 
MOV EBP,ESP           ; copy stack pointer 



MOV EAX,[EBP+8]       ; read parameter from stack 
... 
POP EBP               ; restore EBP 
RET                   ; return from function 
_FF ENDP 

 
As long as either the calling program or the called function is written in high-level language, 
you may have to stick to the convention of transferring parameters on the stack. Most C++ 
compilers can transfer 2 or 3 integer parameters in registers when the function is declared 
__fastcall. However, this method is not standardized. Different compilers use different 
registers for parameter transfer, so you may need one version of your procedure for each 
compiler. To avoid the problem, you may have to keep the entire dependence chain in 
assembly language. See also page 11 for a discussion of how to handle this problem in 
C++. 

Transferring data between floating-point and other registers 
There is no way to transfer data between floating-point registers and other registers, except 
through memory. Example: 
 

IMUL EAX,EBX 
MOV [TEMP],EAX      ; transfer data from integer register to f.p. 
FILD [TEMP] 
FSQRT 
FISTP [TEMP]        ; transfer data from f.p. register to integer 
MOV EAX,[TEMP] 

 
Here we have the problem of transferring data through memory twice. You may avoid the 
problem by keeping the entire dependence chain in floating-point registers, or by using 
XMM registers instead of floating-point registers. 
 
Another way to prevent premature reading of the memory operand is to make the read 
address depend on the data. The first transfer can be done like this: 
 

MOV [TEMP],EAX 
AND EAX,0         ; make EAX = 0, but keep dependence 
FILD [TEMP+EAX]   ; make read address depend on EAX 

 
The AND EAX,0 instruction sets EAX to zero but keeps a false dependence on the previous 
value. By putting EAX into the address of the FILD instruction, we prevent it from trying to 
read before EAX is ready. 
 
It is a little more complicated to make a similar dependence when transferring data from 
floating-point registers to integer registers. The simplest way to solve the problem is: 
 

FISTP [TEMP] 
FNSTSW AX            ; transfer status after FISTP to AX 
AND EAX,0            ; set to 0 
MOV EAX,[TEMP+EAX]   ; make dependent on EAX 

 
Two other methods are a little faster: 
 

FIST [TEMP]          ; store without popping 
FCOMIP ST,ST         ; compare and pop, make flags depend on ST 
SETC AL              ; make AL depend on flags 
AND EAX,0            ; set to 0 
MOV EAX,[TEMP+EAX]   ; make dependent on EAX 

 
and: 
 

FNSTSW AX            ; transfer status to AX before FISTP 



FISTP [TEMP] 
REPT 5               ; repeat 5 times 
   NEG EAX           ; exactly match latency of FISTP 
ENDM 
AND EAX,0            ; set to 0 
MOV EAX,[TEMP+EAX]   ; make dependent on EAX 

 

15.10 Breaking dependencies 
A common way of setting a register to zero is  XOR EAX,EAX  or  SUB EBX,EBX.  The P4 
processor recognizes that these instructions are independent of the prior value of the 
register. So any instruction that uses the new value of the register will not have to wait for 
the value prior to the XOR or SUB instruction to be ready. The same applies to the PXOR 
instruction with a 64-bit or 128-bit register, but not to any of the following instructions: XOR or 
SUB with an 8-bit or 16-bit register, SBB, PANDN, PSUB, XORPS, XORPD, SUBPS, SUBPD, 
FSUB. 
 
The instructions XOR, SUB and PXOR are useful for breaking an unnecessary dependence. 
On PPro, P2 and P3, you have to write  MOV EAX,0  to break the dependence. 
 
You may also use these instructions for breaking dependencies on the flags. For example, 
rotate instructions have a false dependence on the flags. This can be removed in the 
following way: 

ROR EAX,1 
SUB EDX,EDX   ; remove false dependence on the flags 
ROR EBX,1 

 
If you don't have a spare register for this purpose, then use an instruction which doesn't 
change the register, but only the flags, such as CMP or TEST. The stack pointer may be 
preferred for this purpose because it is the least likely register to be delayed by prior 
dependencies. So you may replace SUB EDX,EDX in the above example with CMP 
ESP,ESP. You cannot use CLC for breaking dependencies on the carry flag. 
 

15.11 Choosing the optimal instructions 
There are many possibilities for replacing less efficient instructions with more efficient ones. 
The most important cases are summarized below. 

INC and DEC 
These instructions have a problem with partial flag access, as explained on page 89. 
Always replace INC EAX with ADD EAX,1, etc. 

8-bit and 16-bit integers 
Replace MOV AL,BYTE PTR [MEM8] by  MOVZX EAX,BYTE PTR [MEM8] 
Replace MOV BX,WORD PTR [MEM16] by  MOVZX EBX,WORD PTR [MEM16] 
 
Avoid using the high 8-bit registers AH, BH, CH, DH. 
 
If 8-bit or 16-bit integers can be packed and handled in parallel, then use MMX or XMM 
registers. 
 
These rules apply even in 16-bit mode. 

Memory stores 
Most memory store instructions use 2 uops. Simple store instructions of the type MOV 
[MEM],EAX use only one uop if the memory operand has no SIB byte. A SIB byte is 



needed if there is more than one pointer register, if there is a scaled index register, or if ESP 
is used as base pointer. The short-form store instructions can use a 32-bit register, a 16-bit 
register, or a low 8-bit register (see page 78). Examples: 
 

MOV ARRAY[ECX], EAX     ; 1 uop 
MOV ARRAY[ECX*4], EAX   ; 2 uops because of scaled index 
MOV [ECX+EDI], EAX      ; 2 uops because of two index registers 
MOV [EBP+8], EBX        ; 1 uop 
MOV [ESP+8], EBX        ; 2 uops because ESP used 
MOV ES:[MEM8], CL       ; 1 uop 
MOV ES:[MEM8], CH       ; 2 uops because high 8-bit register used 
MOVQ [ESI], MM1         ; 2 uops because not a general purp.register 
FSTP [MEM32]            ; 2 uops because not a general purp.register 

 
The corresponding memory load instructions all use only 1 uop. A consequence of these 
rules is that a procedure which has many stores to local variables on the stack should use 
EBP as pointer, while a procedure which has many loads and few stores may use ESP as 
pointer, and save EBP for other purposes. 

Shifts and rotates 
Shifts and rotates on integer registers are quite slow on the P4 because the integer 
execution unit transfers the data to the MMX shift unit and back again. Shifts to the left may 
be replaced by additions. For example, SHL EAX,3 can be replaced by 3 times ADD 
EAX,EAX. 
 
Rotates through carry (RCL, RCR) by a value different from 1 or by CL should be avoided. 
 
If your code contains many integer shifts and multiplications, then it may be advantageous 
to execute it in MMX or XMM registers. 

Integer multiplication 
Integer multiplication is slow on the P4 because the integer execution unit transfers the data 
to the FP-MUL unit and back again. If your code has many integer multiplications then it 
may be advantageous to handle the data in MMX or XMM registers. 
 
Integer multiplication by a constant can be replaced by additions. See page 114 for a 
description of this method. Replacing a single multiply instruction by a long sequence of ADD 
instructions should, of course, only be done in critical dependence chains. 

LEA 
The LEA instruction is split into additions and shifts on the P4. LEA instructions with a scale 
factor may preferably be replaced by additions. This applies only to the LEA instruction, not 
to any other instructions with a memory operand containing a scale factor. 

Register-to-register moves bigger than 32 bits 
The following instructions, which copy one register into another, all have a latency of 6 
clocks: MOVQ R64,R64, MOVDQA R128,R128, MOVAPS R128,R128, MOVAPD 
R128,R128, FLD R80, FST R80, FSTP R80. These instructions have no additional 
latency. A possible reason for the long latency of these instructions is that they use the 
same execution unit as memory stores (port 0, mov). 
 
There are several ways to avoid this delay: 
 

• The need for copying a register can sometimes be eliminated by using the same 
register repeatedly as source, rather than destination, for other instructions. 
 



• With floating-point registers, the need for moving data from one register to another 
can often be eliminated by using FXCH. The FXCH instruction has no latency. 
 

• If the value of a register needs to be copied, then use the old copy in the most critical 
dependency path, and the new copy in a less critical path. The following example 
calculates Y = (a+b)2.5 : 
   FLD [A] 
   FADD [B]    ; a+b 
   FLD ST      ; copy a+b 
   FXCH        ; get old copy 
   FSQRT       ; (a+b)0.5 
   FXCH        ; get new (delayed) copy 
   FMUL ST,ST  ; (a+b)2 
   FMUL        ; (a+b)2.5 
   FSTP [Y] 
The old copy is used for the slow square root, while the new copy, which is available 
6 clocks later, is used for the multiplication. 

 
If none of these methods solve the problem, and latency is more important than 
throughput, then use faster alternatives: 
 
• For 80-bit floating-point registers: 

   FLD ST            ; copy register 
can be replaced by 
   FLDZ              ; make an empty register 
   SUB EAX,EAX       ; set zero flag 
   FCMOVZ ST,ST(1)   ; conditional move 
 

• For 64-bit MMX registers: 
   MOVQ MM1,MM0 
can be replaced by the shuffle instruction 
   PSHUFW MM1,MM0,11100100B 
 

• For 128-bit XMM registers containing integers: 
   MOVDQA XMM1,XMM0 
can be replaced by the shuffle instruction 
   PSHUFD XMM1,XMM0,11100100B 
or even faster: 
   PXOR XMM1,XMM1    ; set new register to 0 
   POR XMM1,XMM0     ; OR with desired value 
 

• For 128-bit XMM registers containing packed single precision floats: 
   MOVAPS XMM1,XMM0 
can be replaced by 
   PXOR XMM1,XMM1    ; set new register to 0 
   ORPS XMM1,XMM0    ; OR with desired value 
Here, I have used PXOR rather than the more correct XORPS because the former 
breaks any dependence on previous values, the latter does not. 
 

• For 128-bit XMM registers containing packed double precision floats: 
   MOVAPD XMM1,XMM0 
can be replaced by 
   PXOR XMM1,XMM1    ; set new register to 0 
   ORPD XMM1,XMM0    ; OR with desired value 
Again, I have used PXOR rather than the more correct XORPD because the former 
breaks any dependence on previous values, the latter does not. 
 



These methods all have lower latencies than the register-to-register moves. However, a 
drawback of these tricks is that they use port 1 which is also used for all calculations on 
these registers. If port 1 is saturated, then it may be better to use the slow moves, which 
go to port 0. 

 

15.12 Bottlenecks in P4 
It is important, when optimizing a piece of code, to find the limiting factor that controls 
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the 
following paragraphs, I will explain each of the possible limiting factors. You have to 
consider each factor in order to determine which one is the narrowest bottleneck, and then 
concentrate your optimization effort on that factor until it is no longer the narrowest 
bottleneck. As explained before, you have to concentrate on only the most critical part of 
your program - usually the innermost loop. 

Memory access 
If you are accessing large amounts of data, or if your data are scattered around everywhere 
in the memory, then you will have many data cache misses. Accessing uncached data is so 
time consuming that all other optimization considerations are unimportant. The caches are 
organized as aligned lines of 64 bytes each. If one byte within an aligned 64-bytes block has 
been accessed, then you can be certain that all 64 bytes will be loaded into the level-1 data 
cache and can be accessed at no extra cost. To improve caching, it is recommended that 
data that are used in the same part of the program be stored together. You may align large 
arrays and structures by 64. Store local variables on the stack if you don't have enough 
registers. 
 
The level-1 data cache is only 8 kb on the P4. This may not be enough to hold all your data, 
but the level-2 cache is more efficient on the P4 than on previous processors. Fetching data 
from the level-2 cache will cost you only a few clock cycles extra. 
 
Data that are unlikely to be cached may be prefetched before they are used. If memory 
addresses are accessed consecutively, then they will be prefetched automatically. You 
should therefore preferably organize your data in a linear fashion so that they can be 
accessed consecutively, and access no more than four large arrays, preferably less, in the 
critical part of your program. 
 
The PREFETCH instructions can improve performance in situations where you access 
uncached data and cannot rely on automatic prefetching. However, excessive use of the 
PREFETCH instructions can slow down program throughput. If you are in doubt whether a 
PREFETCH instruction will benefit your program, then you may simply load the data needed 
into a spare register rather than using a PREFETCH instruction. If you have no spare register 
then use an instruction which reads the memory operand without changing any register, 
such as CMP or TEST. As the stack pointer is unlikely to be part of a critical dependence 
chain, a useful way to prefetch data is CMP ESP,[MEM], which will change only the flags. 
 
When writing to a memory location that is unlikely to be accessed again soon, you may use 
the non-temporal write instructions MOVNTI, etc., but excessive use of non-temporal moves 
will slow down performance. 
 
Not only data, but also code, should be arranged for optimal caching. Subroutines that are 
used in the same part of the program should preferably be stored together in the same 
memory address range, rather than be scattered around at different addresses. Put seldom 
used branches away in the bottom of your code. Make sure the critical part of your program 
is not too big for the trace cache. 
 
Further guidelines regarding memory access can be found in "Intel Pentium 4 and Intel 
Xeon Processor Optimization Reference Manual". 



Execution latency 
The executing time for a dependence chain can be calculated from the latencies listed in the 
tables starting on page147. Most instructions have an additional latency of ½ or 1 clock 
cycle when the subsequent instruction goes to a different execution unit. See page 86 for 
further explanation. 
 
The longest dependence chains occur in loops where each iteration depends on the result 
of the preceding one. Such loops can often be improved by handling data in parallel. Use 
multiple accumulators or SIMD instructions to handle data in parallel (see page 34). 
 
If long dependence chains limit the performance of your program then you may improve 
performance by choosing instructions with low latency, minimizing the number of transitions 
between execution units, breaking up dependence chains, and utilizing all opportunities for 
calculating subexpressions in parallel. 
 
Always avoid memory intermediates in dependence chains, as explained on page 90. 

Execution unit throughput 
If your dependence chains are short, or if you are working on several dependence chains in 
parallel, then your program may be limited by throughput rather than latency. Different 
execution units have different throughputs. Alu0 and alu1, which handle simple integer 
instructions and other common uops, both have a throughput of 2 instructions per clock 
cycle. Most other execution units have a throughput of one instruction per clock cycle. When 
working with 128-bit registers, the throughput is usually one instruction per two clock cycles. 
Division and square roots have the lowest throughputs. The instruction list on page 147 
indicates reciprocal throughputs for all instructions on the P4 processor. Each throughput 
measure applies to all uops executing in the same execution subunit (see page 83). 
 
If execution throughput limits your code then try to move some calculations to other 
execution subunits. 

Port throughput 
Each of the execution ports can receive one uop per clock cycle. Port 0 and port 1 can 
receive an additional uop at each half-clock tick if these uops go to the double-speed units 
alu0 and alu1. If all uops in the critical part of your code go to the single-speed and half-
speed units under port 1, then the throughput will be limited to 1 uop per clock cycle. If the 
uops are optimally distributed between the four ports, then the throughput may be as high 
as 6 uops per clock cycle. Such a high throughput can only be achieved in short bursts, 
because the trace cache and the retirement station limit the average throughput to 3 uops 
per clock cycle. 
 
If port throughput limits your code then try to move some uops to other ports. 

Trace cache delivery 
The trace cache can deliver a maximum of 3 uops per clock cycle. Some uops require more 
than one trace cache entry, as explained on page 76. The delivery rate can be less than 3 
uops per clock cycle for code that contains many branches and for tiny loops with branches 
inside (see page 79). 
 
If none of the abovementioned factors limit program performance, then you may aim at a 
throughput of 3 uops per clock cycle. 
 
Choose the instructions that generate the smallest number of uops. Avoid uops that require 
more than one trace cache entry, and avoid having an odd number of single-size uops 
between any two double-size uops (see page 76). 



Uop retirement 
The retirement station can handle 3 uops per clock cycle. Taken branches can only be 
handled by the first of the three slots in the retirement station. 
 
If you aim at an average throughput of 3 uops per clock cycle then avoid an excessive 
number of jumps, calls and branches. Small critical loops should preferably have a number 
of uops divisible by 3 (see page 88). 

Instruction decoding 
If the critical part of your code doesn't fit into the trace cache, then the limiting stage may be 
instruction decoding. The decoder can handle one instruction per clock cycle, provided that 
the instruction generates no more than 4 uops and no microcode, and has no more than 
one prefix (see page 80). If decoding is a bottleneck, then you may try to minimize the 
number of instructions rather than the number of uops. 

Branch prediction 
The calculations of latencies and throughputs are only valid if all branches are predicted. 
Branch mispredictions can seriously slow down performance when latency or throughput is 
the limiting factor. 
 
Avoid poorly predictable branches in critical parts of your code unless the alternative (e.g. 
conditional moves) outweighs the advantage by adding costly extra dependencies and 
latency. See page 45 for details. 
 

16 Loop optimization (all processors)  
When analyzing a program, you often find that most of the time consumption lies in the 
innermost loop. The way to improve the speed is to carefully optimize the most time-
consuming loop using assembly language. The rest of the program may be left in high-level 
language. 
 
In all the following examples it is assumed that all data are likely to be in the cache most of 
the time. If the speed is limited by cache misses then there is no reason to optimize the 
instructions. Rather, you should concentrate on organizing your data in a way that 
minimizes cache misses (see page 29). 
 
A loop generally contains a counter controlling how many times to iterate, and often array 
access reading or writing one array element for each iteration. I have chosen as example a 
procedure that reads integers from an array, changes the sign of each integer, and stores 
the results in another array. A C++ language code for this procedure would be: 
 

void ChangeSign (int * A, int * B, int N) { 
  for (int i=0; i<N; i++) B[i] = -A[i];} 

 
Translating to assembly, we might write the procedure like this: 
 

; Example 16.1: 
_ChangeSign PROC NEAR 
        PUSH    ESI 
        PUSH    EDI 
A       EQU     DWORD PTR [ESP+12]  ; addresses of parameters on stack 
B       EQU     DWORD PTR [ESP+16] 
N       EQU     DWORD PTR [ESP+20] 
        MOV     ECX, [N] 
        JECXZ   L2                  ; skip if N = 0 
        MOV     ESI, [A]            ; pointer to source A 
        MOV     EDI, [B]            ; pointer to destination B 
        CLD 



L1:     LODSD                       ; read 
        NEG     EAX                 ; change sign 
        STOSD                       ; write 
        LOOP    L1                  ; repeat 
L2:     POP     EDI 
        POP     ESI 
        RET           ;(no extra pop if _cdecl calling convention) 
_ChangeSign     ENDP 

 
This looks like a nice solution, but it is not optimal because it uses the complex instructions 
JECXZ, CLD, LODSD, STOSD and LOOP, which are inefficient on most processors. It can be 
improved by avoiding these instructions: 
 

; Example 16.2: 
        MOV     ECX, [N]        ; ECX = counter 
        MOV     ESI, [A] 
        TEST    ECX, ECX 
        JZ      SHORT L2        ; skip if N = 0 
        MOV     EDI, [B] 
L1:     MOV     EAX, [ESI]      ; read 
        ADD     ESI, 4          ; increment source pointer 
        NEG     EAX             ; change sign 
        MOV     [EDI], EAX      ; write 
        ADD     EDI, 4          ; increment destination pointer 
        SUB     ECX, 1          ; decrement loop counter 
        JNZ     L1              ; loop 
L2: 

 
Here I am using SUB ECX,1 instead of DEC ECX because the latter instruction uses one 
extra uop in the P4. It is an advantage to have the loop control branch in the bottom of the 
loop because if the branch were at the top of the loop then we would need an extra jump in 
the bottom of the loop. 
 
Using the same register for counter and index reduces the number of instructions: 
 

; Example 16.3: 
        MOV     ESI, [A] 
        MOV     EDI, [B] 
        MOV     ECX, [N] 
        SUB     EDX, EDX              ; set counter EDX = 0 
        TEST    ECX, ECX 
        JZ      SHORT L2 
L1:     MOV     EAX, [ESI+4*EDX]      ; use base pointer and index 
        NEG     EAX              
        MOV     [EDI+4*EDX], EAX 
        ADD     EDX, 1                ; increment loop counter 
        CMP     EDX, ECX         
        JB      L1               
L2: 

 
We can get rid of the CMP instruction in example 16.3 by letting the loop counter end at zero 
and use the zero flag for detecting when the loop is finished as we did in example 16.2. One 
way of doing this would be to execute the loop backwards taking the last array elements 
first. However, data caches are optimized for accessing data forwards, not backwards, so if 
cache misses are likely then you should rather start the counter at -N and count through 
negative values up to zero. This is possible if you let the base registers point to the end of 
the arrays rather than the beginning:  
 

; Example 16.4: 
        MOV     ECX, [N] 
        MOV     ESI, [A] 
        MOV     EDI, [B] 



        LEA     ESI, [ESI+4*ECX]          ; point to end of array A 
        LEA     EDI, [EDI+4*ECX]          ; point to end of array B 
        NEG     ECX                       ; -N 
        JZ      SHORT L2                  ; skip if N = 0 
L1:     MOV     EAX, [ESI+4*ECX] 
        NEG     EAX              
        MOV     [EDI+4*ECX], EAX 
        ADD     ECX, 1 
        JNZ     L1               
L2: 

 
Now we are down to two simple instructions for loop overhead, which is as low as you can 
get.  
 
On processors with out-of-order execution, it is likely that the second calculation will start 
before the first calculation is finished. In some situations, the processor may start several 
iterations until the maximum throughput of the execution units is reached. 
 
The out-of-order capabilities cannot be utilized, however, in the case where each calculation 
depends on the result of the previous one. Such a continued dependence chain is the worst 
situation you can have, and you should definitely try to find a way to break down the 
dependence chain. Assume, for example, that we have to multiply a long series of integers. 
The C++ code looks like this: 
 

int MultiplyList (int * List, int N) { 
  int product = 1, i; 
  for (i=0; i<N; i++) product *= List[i]; 
  return product;} 

 
The best thing you can do here is to roll out the loop and use two accumulators: 
 

; Example 16.5: 
_MultiplyList PROC NEAR 
        PUSH    ESI 
        PUSH    EBX 
List    EQU     DWORD PTR [ESP+12]  ; addresses of parameters on stack 
N       EQU     DWORD PTR [ESP+16] 
        MOV     ESI, [List] 
        MOV     ECX, [N] 
        MOV     EAX, 1               ; accumulator one 
        MOV     EBX, EAX             ; accumulator two 
        SUB     EDX, EDX             ; counter starts at 0 
        SUB     ECX, 1               ; N-1 
        JS      SHORT L3             ; N-1 < 0 means N = 0 
        SHL     ECX, 2               ; 4*(N-1) 
L1:     IMUL    EAX, [ESI+EDX]       ; multiply first accumulator 
        IMUL    EBX, [ESI+EDX+4]     ; multiply second accumulator 
        ADD     EDX, 8               ; add 2*(data size) to counter 
        CMP     EDX, ECX             ; do we have at least 2 more? 
        JB      L1 
        JA      SHORT L2             ; finished if counter > N-1 
        IMUL    EAX, [ESI+EDX]       ; N is odd, do one more 
L2:     IMUL    EAX, EBX             ; combine the two accumulators 
L3:     POP     EBX 
        POP     ESI 
        RET 
_MultiplyList ENDP 
 

Now we are doing two operations in parallel and the long dependence chain is split into two 
parallel dependence chains of half the length. This will reduce the calculation time with 
almost 50% if the multiplication unit is pipelined. 
 



When we roll out the loop by two, we have to check if the number of factors in List is odd. 
If N is odd, then we have to do the odd multiplication outside the loop. We can do the odd 
one either before or after the main loop. It may be more efficient to do it after the loop if 
List is aligned by 8. 
 
In general, if you roll out a loop by R, i.e. if you do R calculations per loop iteration, then the 
number of extra calculations to do outside the loop is E = N modulo R. If you want to do the 
extra E calculations before the main loop, then you have to calculate E, which requires a 
division if R is not a power of 2. This can be avoided by doing the extra calculations after the 
main loop, as shown in example 16.5. Of course it is an advantage to choose R so that N is 
divisible by R, if possible. 
 
A suitable roll-out factor R can be found by dividing the latency of the most critical 
calculation instruction with the reciprocal throughput of the same instruction. Remember that 
it not necessary to roll out the loop if there is no continued dependence chain. Excessive 
loop unrolling will only fill up the code cache or trace cache without any significant speed 
advantage. However, you may choose to roll out a loop if this improves the prediction of the 
loop control branch. 
 
In example 16.5, we are using three instructions for counter and loop control. It is possible 
to reduce this to two instructions, as in example 16.4, but this will make the code quite 
awkward. In most cases, the loop control instructions can execute in parallel with the 
calculations so you don't have to care about minimizing the loop control overhead. 
 

16.1 Loops in P1 and PMMX  
The P1 and PMMX processors have no capabilities for out-of-order execution. Instead you 
have to care about pairing opportunities. The code in example 16.4 may be changed to: 
 

; Example 16.6: 
        MOV     ESI, [A] 
        MOV     EAX, [N] 
        MOV     EDI, [B] 
        XOR     ECX, ECX 
        LEA     ESI, [ESI+4*EAX]          ; point to end of array A 
        SUB     ECX, EAX                  ; -N 
        LEA     EDI, [EDI+4*EAX]          ; point to end of array B 
        JZ      SHORT L3 
        XOR     EBX, EBX                  ; start first calculation 
        MOV     EAX, [ESI+4*ECX] 
        INC     ECX 
        JZ      SHORT L2 
L1:     SUB     EBX, EAX                  ; u 
        MOV     EAX, [ESI+4*ECX]          ; v (pairs) 
        MOV     [EDI+4*ECX-4], EBX        ; u 
        INC     ECX                       ; v (pairs) 
        MOV     EBX, 0                    ; u 
        JNZ     L1                        ; v (pairs) 
L2:     SUB     EBX, EAX                  ; end last calculation 
        MOV     [EDI+4*ECX-4], EBX 
L3: 

 
Here the iterations are overlapped in order to improve pairing opportunities. We begin 
reading the second value before we have stored the first one. The MOV EBX,0 instruction 
has been put in between INC ECX and JNZ L1, not to improve pairing, but to avoid the AGI 
stall that would result from using ECX as address index in the first instruction pair after it has 
been incremented. 
 
Loops with floating-point operations are somewhat different because the floating-point 
instructions are overlapping rather than pairing. Consider the C++ language code: 



 
  int i, n;  double * X;  double * Y;  double DA; 
  for (i=0; i<n; i++)  Y[i] = Y[i] - DA * X[i]; 

 
This piece of code, called DAXPY, has been studied extensively because it is the key to 
solving linear equations. 
 

; Example 16.7: 
DSIZE   = 8                                      ; data size 
        MOV     EAX, [N]                         ; number of elements 
        MOV     ESI, [X]                         ; pointer to X 
        MOV     EDI, [Y]                         ; pointer to Y 
        XOR     ECX, ECX 
        LEA     ESI, [ESI+DSIZE*EAX]             ; point to end of X 
        SUB     ECX, EAX                         ; -N 
        LEA     EDI, [EDI+DSIZE*EAX]             ; point to end of Y 
        JZ      SHORT L3                         ; test for N = 0 
        FLD     DSIZE PTR [DA]                   ; start first calc. 
        FMUL    DSIZE PTR [ESI+DSIZE*ECX]        ; DA * X[0] 
        JMP     SHORT L2                         ; jump into loop 
L1:     FLD     DSIZE PTR [DA] 
        FMUL    DSIZE PTR [ESI+DSIZE*ECX]        ; DA * X[i] 
        FXCH                                     ; get old result 
        FSTP    DSIZE PTR [EDI+DSIZE*ECX-DSIZE]  ; store Y[i] 
L2:     FSUBR   DSIZE PTR [EDI+DSIZE*ECX]        ; subtract from Y[i] 
        INC     ECX                              ; increment index 
        JNZ     L1                               ; loop 
        FSTP    DSIZE PTR [EDI+DSIZE*ECX-DSIZE]  ; store last result 
L3: 

 
Here we are using the same methods as in the previous examples: using the loop counter 
as index register and counting through negative values up to zero. Each operation begins 
before the previous one is finished; in order to improve calculation overlaps. 
 
The interleaving of floating-point operations works perfectly here: The 2 clock stall between 
FMUL and FSUBR is filled with the FSTP of the previous result. The 3 clock stall between 
FSUBR and FSTP is filled with the loop overhead and the first two instructions of the next 
operation. An AGI stall has been avoided by reading the only parameter that doesn't depend 
on the index counter in the first clock cycle after the index has been incremented.  
 
This solution takes 6 clock cycles per iteration, which is better than the unrolled solution 
published by Intel. 
 

16.2 Loops in PPro, P2, and P3 
There are six important things that you have to analyze when optimizing a loop for the 6'th 
generation Intel processors: Instruction fetch, instruction decoding, register reads, execution 
ports, retirement, and branch mispredictions (see page 75). After a slight modification, 
example 16.4 now looks like this: 
 

; Example 16.8: 
        MOV     ECX, [N] 
        MOV     ESI, [A] 
        MOV     EDI, [B] 
        LEA     ESI, [ESI+4*ECX]          ; point to end of array A 
        LEA     EDI, [EDI+4*ECX]          ; point to end of array B 
        NEG     ECX                       ; -N 
        JZ      SHORT L2                  ; skip if N = 0 
ALIGN   16 
L1:     MOV     EAX, [ESI+4*ECX]          ; len=3, p2rESIrECXwEAX 
        NEG     EAX                       ; len=2, p01rwEAXwFlags 



        MOV     [EDI+4*ECX], EAX          ; len=3, p4 rEAX, p3rEDIrECX 
        INC     ECX                       ; len=1, p01rwECXwFlags 
        JNZ     L1                        ; len=2, p1rFlags 
L2: 

 
The comments are interpreted as follows: The MOV EAX,[ESI+4*ECX] instruction is 3 
bytes long, it generates one uop for port 2 that reads ESI and ECX, and writes to (renames) 
EAX. This information is needed for analyzing the possible bottlenecks. 
 
First, we have to analyze the instruction decoding (page 61): One of the instructions 
generates 2 uops (MOV [EDI+4*ECX],EAX). This instruction must go into decoder D0. 
There are two decode groups in the loop so it can decode in 2 clock cycles. 
 
Next, we have to analyze the instruction fetch (page 62): A loop always takes at least one 
clock cycle more than the number of 16 byte blocks. Since there are only 11 bytes of code 
in the loop it is possible to have it all in one IFETCH block. By aligning the loop entry by 16 
we can make sure that we don't get more than one 16-byte block so that it is possible to 
fetch in 2 clocks. If ESI and EDI are replaced by absolute addresses, then the loop will take 
3 clocks because it cannot be contained in a single 16-byte block. 
 
The third thing we have to analyze is register read stalls (page 66): The ESI and EDI 
registers are read, but not modified inside the loop. They will therefore be counted as 
permanent register reads, but not in the same triplet. Register EAX, ECX, and flags are 
modified inside the loop and read before they are written back so they will cause no 
permanent register reads. The conclusion is that there are no register read stalls. 
 
The fourth analysis concerns the distribution of uops to the execution ports: 
port 0 or 1: 2 uops 
port 1: 1 uop 
port 2: 1 uop 
port 3: 1 uop 
port 4: 1 uop 
If both port 0 and 1 are fully used then the execution of two iterations will take 3 clock 
cycles. This gives an average execution time of 1.5 clocks per iteration. 
 
The next analysis concerns retirement. The retirement station can handle 3 uops per clock 
cycle. The taken branch uop must go to the first slot of the retirement station. This means 
that the number of uops in the loop should preferably be divisible by 3. There are 6 uops 
and the retirement will take 2 clock cycles per iteration. 
 
The JNZ L1 branch in the end of the loop will be predicted correctly if N is no more than 5, 
and always the same value. Higher values can be made predictable by making nested 
loops. For example, if N is always equal to 20, then make one loop that repeats 5 times 
inside another loop that repeats 4 times. Further nesting is not worth the effort. 
 

16.3 Loops in P4 
To optimize a loop for the P4 processor, you have to analyze each of the possible 
bottlenecks mentioned on page 95 to determine which one is the limiting factor. 
 
Let's first look at example 16.3 on page 98, and see how it performs on each of the possible 
bottlenecks: 
 
1. memory access:  The loop accesses two arrays. If these arrays are unlikely to be cached 
then forget about the rest, the performance is limited by memory access. 
 
2. trace cache delivery: The loop contains 7 uops; and none of these require more than one 
entry in the trace cache. A delivery rate of 3 uops per clock from the trace cache means that 



the loop requires 2.33 clock cycle at the trace cache delivery stage. In general, there is no 
need to unroll the loop to avoid jumps in the trace cache, because this will be done 
automatically. The trace cache is likely to store two or more copies of small loop bodies 
consecutively to reduce the number of trace cache jumps. 
 
3. retirement: The retirement station can handle 3 uops per clock cycle, but the taken 
branch at the bottom of the loop must go to the first slot in the retirement station. The 
retirement is therefore likely to take 3 clock cycles per iteration. The performance would be 
better if the number of uops were divisible by 3. 
 
4. execution latency: There are no long or continued dependence chains in this loop. Each 
operation can be overlapped with the preceding ones, thanks to out-of-order execution. The 
only continued dependence chain is ADD EDX,1 which requires ½ clock per iteration. This 
loop is therefore not limited by latency. 
 
5. execution unit throughput: The 7 uops are well distributed between different execution 
units and subunits. The NEG and JNZ uops go to alu0. The ADD and CMP instructions can go 
to either alu0 or alu1. The memory load and store uops all go to different units. The memory 
store has the lowest throughput and requires 2 clock cycles per iteration. 
 
6. port throughput: The 7 uops are well distributed between the execution ports: Port 0: 3 
uops, Port 1: 2 uops, Port 2: 1 uop, Port 3: 1 uop. Most of the uops to port 0 and 1 can be 
accepted at half-clock ticks, so the time required for port throughput is 1.5 clock per 
iteration. 
 
7. branch prediction: The loop control is likely to be predicted if the iteration count is no 
more than 17 and always the same, provided that there is a not-taken branch no more than 
16 steps back in the prehistory before the last execution of the loop control branch (see 
page 45). If you are not certain that there is a not-taken branch before the loop, then insert a 
dummy branch instruction that is never taken, as explained on page 46. If the repetition 
count is between 17 and 32, and always the same, then unroll the loop by 2.  
 
On previous processors, you can improve loop prediction by making nested loops, as 
explained on page 102. This method does not work on the P4 because the branch 
prediction in this processor relies on global branch history rather than local branch history 
(page 45). The only loop nesting scheme that improves prediction on the P4 is when all but 
the innermost loop have a repeat count of 2 and a 64H branch prefix, as explained on page 
47, and the innermost loop has a repeat count not exceeding 17 and a dummy never-taken 
branch before the loop entry. This solution becomes too clumsy if the repeat count is high. If 
the repeat count is high, then you can accept a single misprediction in the end. 

8. conclusion 
The conclusion of this analysis is that retirement is the limiting factor for the loop in example 
16.3 if the loop branch is predicted or the repeat count is high. The execution will take 
approximately 3 clocks per iteration. The execution time can be reduced to 2 clocks by 
replacing the code with example 16.4 on page 98, which has 6 uops in the loop. Retirement 
is optimized when the number of uops is divisible by 3. 
 
An alternative way of reducing the uop count of example 16.3 is to replace the MOV 
[EDI+4*EDX],EAX, which uses 2 uops, with a version without scaled index, which uses 
only 1 uop: 
 

; Example 16.9: 
      MOV     ESI, [A] 
      MOV     EDI, [B] 
      MOV     ECX, [N] 
      TEST    ECX, ECX 
      JZ      SHORT L2 



      LEA     ECX, [EDI+4*ECX]     ; point to end of destination 
      SUB     ESI, EDI             ; difference between the two arrays 
L1:   MOV     EAX, [EDI+ESI]       ; compute source from destination 
      NEG     EAX              
      MOV     [EDI], EAX           ; destination 
      ADD     EDI, 4               ; increment destination pointer 
      CMP     EDI, ECX             ; compare with end address 
      JB      L1               
L2: 

 
Example 16.9 has 6 uops in the loop body, which gives the same performance as example 
16.4. Remember to use the simple addressing mode for the destination, not the source.  
 
When counting uops, you should remember that ADD and SUB use 1 uop, while INC and 
DEC use 2 uops on the P4. 

Analyzing dependences 
The next example is a Taylor expansion. As you probably know, many functions can be 
approximated by a polynomial of the form 

∑
=

≈
n

i

i
i xcxf

0

)(  

Each power xi is conveniently calculated by multiplying the preceding power xi-1 with x. The 
coefficients ci are stored in a table: 
 

;   Example 16.10 
DATA SEGMENT PARA PUBLIC 'DATA' 
x            dq   ?                 ; x 
one          dq   1.0               ; 1.0 
coeff        dq   c0, c1, c2, ...   ; Taylor coefficients 
coeff_end    label qword            ; end of coeff. list 
DATA ENDS 
CODE SEGMENT BYTE PUBLIC 'CODE' 
    MOVSD  XMM2, [X]                ; XMM2 = x 
    MOVSD  XMM1, [ONE]              ; XMM1 = x^i 
    PXOR   XMM0, XMM0               ; XMM0 = sum. Init. to 0 
    MOV    EAX,  OFFSET DS:coeff    ; point to c[i] 
A:  MOVSD  XMM3, [EAX]              ; c[i] 
    MULSD  XMM3, XMM1               ; c[i] * x^i 
    MULSD  XMM1, XMM2               ; x^(i+1) 
    ADDSD  XMM0, XMM3               ; sum += c[i] * x^i 
    ADD    EAX,  8                  ; point to c[i+1] 
    CMP    EAX, OFFSET DS:coeff_end ; stop at end of list 
    JB     A 

 

(If your assembler confuses the MOVSD instruction with the string instruction of the same 
name, then code it as  DB 0F2H / MOVUPS). 
 
And now to the analysis. The list of coefficients is so short that we can expect it to stay 
cached. Trace cache and retirement are obviously not limiting factors in this example. 
 
In order to check whether latencies are important, we have to look at the dependences in 
this code. The dependences are shown in figure 16.1. 
 



 
 

Figure 16.1: Dependences in example 16.10. 
 
There are two continued dependence chains, one for calculating xi and one for calculating 
the sum. The MULSD instruction has a latency of 6, while the ADDSD has a latency of 4. The 
vertical multiplication chain is therefore more critical than the addition chain. The additions 
have to wait for cix

i, which come 6 clocks after xi, and later than the preceding additions. If 
nothing else limits the performance, then we can expect this code to take 6 clocks per 
iteration. 
 
Throughput appears not to be a limiting factor because the multiplication unit can start 3 
multiplications in the 6 clock cycles, and we need only 2. There are 3 uops to port 1, so port 
throughput is not a limiting factor either. 
 
However, this loop does not take 6 clock cycles per iteration as expected, but 8. The 
explanation is as follows: Both multiplications have to wait for the value of xi-1 in XMM1 from 
the preceding iteration. Thus, both multiplications are ready to start at the same time. We 
would like the vertical multiplication in the ladder of figure 16.1 to start first, because it is 
part of the most critical dependence chain. But the microprocessor sees no reason to swap 
the order of the two multiplications, so the horizontal multiplication on figure 16.1 starts first. 
The vertical multiplication is delayed for 2 clock cycles, which is the reciprocal throughput of 
the floating-point multiplication unit. This explains the extra delay of 2 clocks per iteration. 
 
The problem can be solved by delaying the horizontal multiplication: 
 

; Example 16.11 (example 16.10 improved): 
    MOVSD  XMM2, [X]                ; XMM2 = x 
    MOVSD  XMM1, [ONE]              ; XMM1 = x^i 
    PXOR   XMM0, XMM0               ; XMM0 = sum. Initialize to 0 
    MOV    EAX,  OFFSET DS:coeff    ; point to c[i] 



A:  MOVSD  XMM3, [ZERO]             ; set to 0 
    ORPD   XMM3, XMM1               ; set to XMM1 = x^i     
    MULSD  XMM1, XMM2               ; x^(i+1)   (vertical multipl.) 
    MULSD  XMM3, [EAX]              ; c[i]*x^i  (horizontal multipl.) 
    ADD    EAX,  8                  ; point to c[i+1] 
    CMP    EAX, OFFSET DS:coeff_end ; stop at end of list 
    ADDSD  XMM0, XMM3               ; sum += c[i] * x^i 
    JB     A 

 

XMM1 is now copied to XMM3 by setting XMM3 = 0 OR XMM1. This delays the horizontal 
multiplication by 4 clocks, so that the vertical multiplication can start first.  ORPD uses a 
different execution unit so that it suffers an additional latency of 1 clock for transferring data 
to the other unit. Therefore, the ORPD does not use port 1 when the vertical multiplication 
needs it. The loop can now be executed in 6 clocks per iteration. The price we have to pay 
for this is that the last addition is delayed by an extra 4 clocks. (The 4 clocks are calculated 
as 1 clock additional latency before and after the ORPD for going to a different execution unit 
and back again + 2 clock latency for the ORPD). We might use MOVAPD XMM3,XMM1 instead 
of this weird way of copying XMM1 to XMM3, but MOVAPD has a longer latency so that we run 
the risk that the horizontal multiplication uses the multiplication unit when the vertical 
multiplication in the next iteration needs it. 
 
You may set XMM3 to zero in the above code by copying 0 from a memory location using 
MOVSD or from a register that has been set to zero outside the loop using MOVAPD. But don't 
use PXOR XMM3,XMM3 inside the loop for setting XMM3 to 0. This would put an extra load on 
port 1 and thereby increase the risk that port 1 is occupied when the critical vertical 
multiplication needs it. 
 
In situations like this, it is difficult to predict whether a port will be vacant when a critical uop 
needs it. This can only be determined by experimental testing, including the preceding code. 
 
I have used XMM registers rather than floating-point registers in this example because of 
the shorter latency. The upper half of the XMM registers are not used in my example, but 
the upper half of the registers could be used at no extra cost for another Taylor expansion 
or for calculating every second term in the sum. 
 
It is common to stop a Taylor expansion when the terms become negligible. However, it 
may be wise to always include the maximum number of terms in order to keep the repetition 
count constant so that the loop control branch is not mispredicted. The misprediction 
penalty is far more than the price of a few extra iterations. Set the MXCSR register to "Flush 
to zero" mode in order to avoid the possible penalty of underflows. 

Loops with branches inside 
The next example calculates xn, where x is a floating-point number and n is a positive 
integer. This is done most efficiently by repeatedly squaring x and multiplying together the 
factors that correspond to the binary digits in n. The algorithm can be expressed by the C++ 
code: 
 

// calculate power = pow(x,n) where n is a positive integer: 
double x, xp, power; 
unsigned int n, i; 
xp = x;  power = 1.0; 
for (i = n; i != 0; i >>= 1) { 
   if (i & 1) power *= xp; 
   xp *= xp;} 

 
The corresponding assembly code is: 
 

;   Example 16.12 
.DATA 



X     DQ    ? 
POWER DQ    ? 
ONE   DD    1.0 
N     DD    ? 
 
.CODE 
      FLD   [ONE]         ; power init. = 1.0 
      FLD   [X]           ; ST(0) = xp, ST(1) = power 
      MOV   EAX, [N]      ; EAX = i 
A:    SHR   EAX, 1        ; shift right i 
      JNC   B             ; test the shifted-out bit 
      FMUL  ST(1),ST(0)   ; power *= xp 
B:    FMUL  ST(0),ST(0)   ; xp *= xp 
      JNZ   A             ; stop when i = 0 
      FSTP  ST(0)         ; discard xp 
      FSTP  [POWER]       ; store result 
 

This loop has two continued dependence chains, xp and power. Both have a latency of 7 
for the FMUL instruction. The first multiplication is sometimes skipped, so the second 
multiplication is the limiting factor. We have the same problem as in the previous example 
that the two multiplications are ready to start simultaneously, and the least critical 
multiplication comes first. The reciprocal throughput for FMUL is 2, so the loop will take 7+2 
= 9 clocks per iteration if both branches are predicted perfectly. 
 
Branches inside small loops should generally be avoided on the P4 for three reasons: 

1. branches reduce the uop delivery rate from the trace cache (see page 79). 
2. branch mispredictions are expensive, especially in long dependence chains. A 

misprediction typically costs 45 uops on the P4. 
3. branches inside a loop may hamper the prediction of the loop control branch. 

 
Trace cache delivery is not a limiting factor in example 16.12. The JNC B branch follows a 
pattern defined by the binary bits of n. The branch predictor is generally good at predicting 
such patterns, so we may have perfect prediction if n is constant. The JNZ A branch is 
correlated with the preceding branch and will stop the loop after a distinct history pattern of 
the JNC B. It may therefore, for certain values of n, be predicted even when the loop count 
exceeds 17. 
 
However, this applies only as long as n is constant. Any change in n may lead to several 
mispredictions and the performance will be extremely poor. We may therefore replace the 
inner branch by conditional moves: 
 

;   Example 16.13 
      FLD     [ONE]          ; temporary 1.0 
      FLD     [ONE]          ; power init. = 1.0 
      FLD     [X]            ; ST(0) = xp, ST(1) = power 
      MOV     EAX, [N]       ; EAX = i 
A:    FLD     ST(0)          ; load a temporary copy of xp 
      SHR     EAX, 1         ; shift right i 
      FCMOVNC ST(0),ST(3)    ; replace xp by 1.0 if bit = 0 
      FMULP   ST(2),ST(0)    ; power *= (i & 1) ? xp : 1.0 
      FMUL    ST(0),ST(0)    ; xp *= xp 
      JNZ     A              ; stop when i = 0 
      FSTP    ST(0)          ; discard xp 
      FSTP    [POWER]        ; store result 
      FSTP    ST(0)          ; discard temporary 1.0 

 
Here, we are keeping the conditional move out of the critical dependence chain by choosing 
between xp and 1.0, rather than between power and power*xp. Otherwise, we would add 
the latency of the conditional move to the clock count per iteration. Furthermore, we have 
reduced the execution time to 7 clocks per iteration by using the same method as in 



example 16.11. FLD ST(0) plays the same role in example 16.13 as ORPD XMM3,XMM1 
in example 16.11. 
 
The repetition count for this loop is the number of significant bits in n. If this value often 
changes, then you may repeat the loop the maximum number of times in order to make the 
loop control branch predictable. This requires, of course, that there is no risk of overflow in 
the multiplications. 
 
Changing the code of example 16.13 to use XMM registers is no advantage, unless you can 
handle data in parallel, because conditional moves in XMM registers are complicated to 
implement (see page 110). 
 

16.4 Macro loops (all processors) 
If the repetition count for a loop is small and constant, then it is possible to unroll the loop 
completely. The advantage of this is that calculations that depend only on the loop counter 
can be done at assembly time rather than at execution time. The disadvantage is, of course, 
that it takes up more space in the trace cache or code cache. 
 
The MASM language includes a powerful macro language that is useful for this purpose. If, 
for example, we need a list of square numbers, then the C++ code may look like this: 
 

int squares[10]; 
for (int i=0; i<10; i++) squares[i] = i*i; 

 
The same list can be generated by a macro loop in MASM language: 
 

; Example 16.14 
.DATA 
squares LABEL DWORD    ; label at start of array 
I = 0                  ; temporary counter 
REPT 10                ; repeat 10 times 
   DD  I * I           ; define one array element 
   I = I + 1           ; increment counter 
ENDM                   ; end of REPT loop 

 
Here, I is a preprocessing variable. The I loop is run at assembly time, not at execution 
time. The variable I and the statement I = I + 1 never make it into the final code, and 
hence take no time to execute. In fact, example 16.14 generates no executable code, only 
data.  The macro preprocessor will translate the above code to: 
 

squares LABEL DWORD    ; label at start of array 
   DD  0 
   DD  1 
   DD  4 
   DD  9 
   DD  16 
   DD  25 
   DD  36 
   DD  49 
   DD  64 
   DD  81 

 
Now, let's return to the power example (example 16.12). If n is known at assembly time, 
then the power function can be implemented using the following macro: 
 

; This macro will raise two packed double-precision floats in X 
; to the power of N, where N is a positive integer constant.  
; The result is returned in Y. X and Y must be two different  
; XMM registers. X is not preserved. 



; (Only for processors with SSE2) 
INTPOWER MACRO X, Y, N 
   LOCAL I, YUSED            ; define local identifiers 
   I = N                     ; I used for shifting N 
   YUSED = 0                 ; remember if Y contains valid data 
   REPT 32                   ; maximum repeat count is 32 
      IF I AND 1             ; test bit 0 
         IF YUSED            ; If Y already contains data 
            MULPD Y, X       ; multiply Y with a power of X 
         ELSE                ; If this is first time Y is used: 
            MOVAPD Y, X      ; copy data to Y 
            YUSED = 1        ; remember that Y now contains data 
         ENDIF               ; end of IF YUSED 
      ENDIF                  ; end of IF I AND 1 
      I = I SHR 1            ; shift right I one place 
      IF I EQ 0              ; stop when I = 0 
         EXITM               ; exit REPT 32 loop prematurely 
      ENDIF                  ; end of IF I EQ 0 
      MULPD X, X             ; square X 
   ENDM                      ; end of REPT 32 loop 
ENDM                         ; end of INTPOWER macro definition 

 
This macro generates the minimum number of instructions needed to do the job. There is no 
loop overhead, prolog or epilog in the final code. And, most importantly, no branches. All 
branches have been resolved by the macro preprocessor. To calculate XMM0 to the power 
of 12, you write: 
 

INTPOWER XMM0, XMM1, 12 
 
This will be resolved to: 
 

MULPD   XMM0, XMM0        ; x^2 
MULPD   XMM0, XMM0        ; x^4 
MOVAPD  XMM1, XMM0        ; save x^4 
MULPD   XMM0, XMM0        ; x^8 
MULPD   XMM1, XMM0        ; x^4 * x^8 = x^12 

 
This even has fewer instructions than the optimized loop (example 16.13). The expanded 
macro takes 25 clock cycles in this example. 
 

17 Single-Instruction-Multiple-Data programming 
Since there are technological limits to the maximum clock frequency of microprocessors, the 
trend goes towards increasing processor throughput by handling multiple data in parallel. 
 
When optimizing code, it is important to consider if there are data that can be handled in 
parallel. The principle of Single-Instruction-Multiple-Data (SIMD) programming is that a 
vector or set of data are packed together in one large register and handled together in one 
operation. 
 
Multiple data can be packed into 64-bit or 128-bit registers in the following ways: 
 



data type data per pack register size instruction set microprocessor 
8-bit integer 8 64 bit (MMX) MMX PMMX and later 

16-bit integer 4 64 bit (MMX) MMX PMMX and later 
32-bit integer 2 64 bit (MMX) MMX PMMX and later 
64-bit integer 1 64 bit (MMX) SSE2 P4 and later 

32-bit float 2 64 bit (MMX) 3DNow AMD only 
8-bit integer 16 128 bit (XMM) SSE2 P4 and later 

16-bit integer 8 128 bit (XMM) SSE2 P4 and later 
32-bit integer 4 128 bit (XMM) SSE2 P4 and later 
64-bit integer 2 128 bit (XMM) SSE2 P4 and later 

32-bit float 4 128 bit (XMM) SSE P3 and later 
64-bit float 2 128 bit (XMM) SSE2 P4 and later 

 
All these packing modes are available on the latest microprocessors from Intel and AMD, 
except for the 3DNow mode, which is available only on AMD processors. Whether the 
different instruction sets are supported on a particular microprocessor can be determined 
with the CPUID instruction, as explained on page 26. The 64-bit MMX registers cannot be 
used together with the floating-point registers. The 128-bit XMM registers can only be used 
if supported by the operating system. See page 27 for how to check if the use of XMM 
registers is enabled. 
 
You may make two or more versions of the critical part of your code: one that will run on old 
microprocessors, and one that uses the most advantageous packing mode and instruction 
set. The program should automatically select the version of the code that is appropriate for 
the system on which it is running. 
 
Choose the smallest data size that fits your purpose in order to pack as many data as 
possible into one register. Mathematical computations may require double precision (64-bit) 
floats in order to avoid loss of precision in the intermediate calculations, even if single 
precision is sufficient for the final result. 
 
Before you choose to use SIMD instructions for integer operations, you have to consider 
whether the resulting code will be faster than the simple integer instructions in 32-bit 
registers. Simple operations such as integer additions take four times as long in SIMD 
registers as in 32-bit registers on the P4. The SIMD instructions are therefore only 
advantageous for integer additions if they can handle at least four data in parallel. Loading 
and storing memory operands take no longer for 64-bit and 128-bit registers than for 32-bit 
registers. Integer shift and multiplication is faster in 64-bit and 128-bit registers than in 32-bit 
registers on the P4. With SIMD code, you may spend more instructions on trivial things such 
as moving data into the right positions in the registers and emulating conditional moves, 
than on the actual calculations. Example 17.1 below is an example of this. 
 
For floating-point calculations on the P4, it is often advantageous to use XMM registers, 
even if there are no opportunities for handling data in parallel. The latency of floating-point 
operations is shorter in XMM registers than in floating-point registers, and you can make 
conversions between integers and floating-point numbers without using a memory 
intermediate. Furthermore, you get rid of the annoying floating-point register stack. 
 
Memory operands for SIMD instructions have to be properly aligned. See page 28 for how 
to align data in memory. The alignment requirement makes it complicated to pass 64-bit and 
128-bit function parameters on the stack (see Intel's optimization reference manual). It is 
therefore recommended to pass 64-bit and 128-bit parameters in registers or through a 
pointer, rather than on the stack. 

Conditional moves in SIMD registers 
Let's repeat example 16.13 page 107 with two double-precision floats in XMM registers. 
This enables us to compute x0

n0 and x1
n1 in parallel: 



 
; Example 17.1 (P4) 
DATA SEGMENT PARA PUBLIC 'DATA' 
ONE  DQ  1.0, 1.0 
X    DQ  ?, ?                ; X0, X1 
N    DD  ?, ?                ; N0, N1 
DATA ENDS 
CODE SEGMENT BYTE PUBLIC 'CODE' 
; register use: 
; XMM0 = xp 
; XMM1 = power 
; XMM2 = i  (i0 and i1 each stored twice as DWORD integers) 
; XMM3 = 1.0 if not(i & 1) 
; XMM4 = xp if (i & 1) 
 
    MOVQ      XMM2, [N]      ; load N0, N1 
    PUNPCKLDQ XMM2, XMM2     ; copy to get N0, N0, N1, N1 
    MOVAPD    XMM0, [X]      ; load X0, X1 
    MOVAPD    XMM1, [ONE]    ; power init. = 1.0 
    MOV       EAX, [N]       ; N0 
    OR        EAX, [N+4]     ; N0 OR N1 to get highest significant bit 
    XOR       ECX, ECX       ; 0 if N0 and N1 both zero 
    BSR       ECX, EAX       ; compute repeat count for max(N0,N1) 
 
A:  MOVDQA    XMM3, XMM2     ; copy i 
    PSLLD     XMM3, 31       ; get least significant bit of i 
    PSRAD     XMM3, 31       ; copy to all bit positions 
    PSRLD     XMM2, 1        ; i >>= 1 
    MOVAPD    XMM4, XMM0     ; copy of xp  
    ANDPD     XMM4, XMM3     ; xp if bit = 1 
    ANDNPD    XMM3, [ONE]    ; 1.0 if bit = 0 
    ORPD      XMM3, XMM4     ; (i & 1) ? xp : 1.0 
    MULPD     XMM1, XMM3     ; power *= (i & 1) ? xp : 1.0 
    MULPD     XMM0, XMM0     ; xp *= xp 
    SUB       ECX, 1 
    JNS       A              ; repeat ECX+1 times 

 
Conditional moves in SIMD registers are implemented by generating a mask of all 1's 
representing the condition; AND'ing the first operand with the mask; AND'ing the second 
operand with the inverted mask; and OR'ing the two together. The mask can be generated 
by a compare instruction or, as here, by shifting a bit into the most significant position and 
then shifting it arithmetically to copy it into all positions. The arithmetic shift does not exist in 
a 64-bit version, so we have to use the 32-bit version with two identical copies of the 
condition operand. 
 
The repeat count of the loop is calculated separately outside the loop in order to reduce the 
number of instructions inside the loop. 
 
Timing analysis for example 17.1 in P4: There are four continued dependence chains: 
XMM0: 6 clocks, XMM1: 6 clocks, XMM2: 2 clocks, ECX: ½ clock. Throughput for the different 
execution units: MMX-SHIFT: 3 uops, 6 clocks. MMX-ALU: 3 uops, 6 clocks. FP-MUL: 2 
uops, 4 clocks. Throughput for port 1: 8 uops, 8 clocks. Thus, the loop appears to be limited 
by port 1 throughput. The best timing we can hope for is 8 clocks per iteration which is the 
number of uops that must go to port 1. However, three of the continued dependence chains 
are interconnected by two broken, but quite long, dependence chains involving XMM3 and 
XMM4, which take 22 and 18 clocks, respectively. This tends to hinder the optimal reordering 
of uops. The measured time is approximately 10 uops per iteration. This timing actually 
requires a quite impressive reordering capability, considering that several iterations must be 
overlapped and several dependence chains interwoven in order to satisfy the restrictions on 
all ports and execution units. 
 



In situations like this where it is difficult to obtain the optimal reordering of uops, it may 
require some experimentation to find the optimal solution. By experimentation I found that 
the code in example 17.1 can be made approximately 16 clocks faster in total by modifying 
it to the following: 
 

    ; Example 17.2 (P4) 
    MOVQ      XMM2, [N]      ; load N0, N1 
    PUNPCKLDQ XMM2, XMM2     ; copy to get N0, N0, N1, N1 
    MOVAPD    XMM1, [ONE]    ; power init. = 1.0 
    MOVAPD    XMM0, [X]      ; load X0, X1 
    MOV       EAX, [N]       ; N0 
    OR        EAX, [N+4]     ; N0 OR N1 to get highest significant bit 
    XOR       ECX, ECX       ; 0 if N0 and N1 both zero 
    BSR       ECX, EAX       ; compute repeat count for max(N0,N1) 
 
A:  MOVDQA    XMM3, XMM2     ; copy i 
    MOVDQA    XMM4, [ONE]    ; temporary 1.0 
    PSLLD     XMM3, 31       ; get least significant bit of i 
    PSRAD     XMM3, 31       ; copy to all bit positions 
    PSRLD     XMM2, 1        ; i >>= 1 
    PXOR      XMM4, XMM0     ; get bits that differ between xp and 1.0 
    PANDN     XMM3, XMM4     ; mask out if (i & 1) 
    XORPD     XMM3, XMM0     ; (i & 1) ? xp : 1.0 
    MULPD     XMM0, XMM0     ; xp *= xp 
    MULPD     XMM1, XMM3     ; power *= (i & 1) ? xp : 1.0 
    SUB       ECX, 1 
    JNS       A              ; repeat ECX+1 times 

 
Here I have used PXOR and PANDN, rather than XORPD and ANDNPD, where the result of the 
operation may not be a valid floating-point number. 
 
These examples shows that conditional moves in SIMD registers are quite complicated and 
involve considerable dependence chains. However, conditional moves are unavoidable in 
SIMD programming if the conditions are not the same for all operands in a pack. In the 
above example, the conditional moves can only be replaced by branches if n0 and n1 have 
the same value. 
 
Conditional moves in 32-bit registers are no faster than in SIMD registers. The reason why 
conditional moves are so complex and inefficient is that they have three dependencies, 
while the hardware design does not allow any uop to have more than two dependencies. 

Packing operands in 32-bit registers 
Sometimes it is possible to handle packed data in 32-bit registers. You may use this method 
to take advantage of the fact that 32-bit operations are fast, or to make the code compatible 
with old microprocessors. 
 
A 32-bit register can hold two 16-bit integers, four 8-bit integers, or 32 Booleans. When 
doing calculations on packed integers in 32-bit registers, you have to take special care to 
avoid carries from one operand going into the next operand if overflow is possible. The 
following example adds 2 to all four bytes in EAX: 
 

     ; Example 17.3 
     MOV     EAX, [ESI]       ; read 4-bytes operand 
     MOV     EBX, EAX         ; copy into EBX 
     AND     EAX, 7F7F7F7FH   ; get lower 7 bits of each byte in EAX 
     XOR     EBX, EAX         ; get the highest bit of each byte 
     ADD     EAX, 02020202H   ; add desired value to all four bytes 
     XOR     EAX, EBX         ; combine bits again 
     MOV     [EDI], EAX       ; store result 

 



Here the highest bit of each byte is masked out to avoid a possible carry from each byte into 
the next one when adding. The code is using XOR rather than ADD to put back the high bit 
again, in order to avoid carry. If the second addend may have the high bit set as well, it 
must be masked too. No masking is needed if none of the two addends have the high bit 
set. 
 
The next example finds the length of a zero-terminated string by searching for the first byte 
of zero. It is faster than using REPNE SCASB if the string is long or the branch mis-
prediction penalty is not severe: 
 

       ; Example 17.4 
_strlen PROC    NEAR 
        PUSH    EBX 
        MOV     EAX,[ESP+8]          ; get pointer to string 
        LEA     EDX,[EAX+3]          ; pointer+3 used in the end 
L1:     MOV     EBX,[EAX]            ; read first 4 bytes 
        ADD     EAX,4                ; increment pointer 
        LEA     ECX,[EBX-01010101H]  ; subtract 1 from each byte 
        NOT     EBX                  ; invert all bytes 
        AND     ECX,EBX              ; and these two 
        AND     ECX,80808080H        ; test all sign bits 
        JZ      L1                   ; no zero bytes, continue loop 
        MOV     EBX,ECX 
        SHR     EBX,16 
        TEST    ECX,00008080H        ; test first two bytes 
        CMOVZ   ECX,EBX              ; shift if not in first 2 bytes 
        LEA     EBX,[EAX+2] 
        CMOVZ   EAX,EBX 
        SHL     CL,1                 ; use carry flag to avoid branch 
        SBB     EAX,EDX              ; compute length 
        POP     EBX 
        RET 
_strlen ENDP 

 
The string should of course be aligned by 4. The code may read past the end of the string, 
so the string should not be placed at the end of a segment. Handling 4 bytes simultaneously 
can be quite difficult. The code in example 17.4 uses a formula which generates a nonzero 
value for a byte if, and only if, the byte is zero. This makes it possible to test all four bytes in 
one operation. This algorithm involves the subtraction of 1 from all bytes (in the LEA 
instruction). I have not masked out the highest bit of each byte before subtracting, as I did in 
example 17.3, so the subtraction may generate a borrow to the next byte, but only if it is 
zero, and this is exactly the situation where we don't care what the next byte is, because we 
are searching forwards for the first zero. If you want to search for a byte value other than 
zero, then you may XOR all four bytes with the value you are searching for, and then use 
the method above to search for zero. 
 

18 Problematic Instructions  

18.1 XCHG (all processors)  
The XCHG register,[memory] instruction is dangerous. This instruction always has an 
implicit LOCK prefix which prevents it from using the cache. This instruction is therefore very 
time consuming, and should always be avoided. 
 

18.2 Shifts and rotates (P4) 
Shifts and rotates on general purpose registers are slow on the P4. You may consider using 
MMX or XMM registers instead or replacing left shifts by additions. 
 



18.3 Rotates through carry (all processors)  
RCR and RCL with CL or with a count different from one are slow and should be avoided. 
 

18.4 String instructions (all processors)  
String instructions without a repeat prefix are too slow and should be replaced by simpler 
instructions. The same applies to LOOP on all processors and to JECXZ on some 
processors. 
 
REP MOVSD and REP STOSD are quite fast if the repeat count is not too small. Always use 
the DWORD version if possible, and make sure that both source and destination are aligned 
by 8. 
 
Moving data in XMM registers is generally faster than REP MOVSD and REP STOSD. See 
page 131 for details. 
 
Note that while the REP MOVS instruction writes a word to the destination, it reads the next 
word from the source in the same clock cycle. You can have a cache bank conflict if bit 2-4 
are the same in these two addresses on P2 and P3. In other words, you will get a penalty of 
one clock extra per iteration if ESI+(WORDSIZE)-EDI is divisible by 32. The easiest way to 
avoid cache bank conflicts is to use the DWORD version and align both source and 
destination by 8. Never use MOVSB or MOVSW in optimized code, not even in 16-bit mode.  
 
On PPro, P2 and P3, REP MOVS and REP STOS can perform fast by moving an entire 
cache line at a time. This happens only when the following conditions are met: 

• both source and destination must be aligned by 8 
• direction must be forward (direction flag cleared) 
• the count (ECX) must be greater than or equal to 64 
• the difference between EDI and ESI must be numerically greater than or equal to 32 
• the memory type for both source and destination must be either write-back or write-

combining (you can normally assume this). 
Under these conditions, the number of uops issued is approximately 215+2*ECX for REP 
MOVSD and 185+1.5*ECX for REP STOSD, giving a speed of approximately 5 bytes per clock 
cycle for both instructions, which is almost 3 times as fast as when the above conditions are 
not met. 
 
On P4, the number of clock cycles for REP MOVSD is difficult to predict, but it is always 
faster to use MOVDQA for moving data, except possibly for small repeat counts if a loop 
would suffer a branch misprediction penalty. 
 
REP LOADS, REP SCAS, and REP CMPS take more time per iteration than simple loops. 
 
See page 113 for alternatives to REPNE SCASB. REP CMPS may suffer cache bank 
conflicts on PPro, P2 and P3 if bit 2-4 are the same in ESI and EDI. 
 

18.5 Bit test (all processors)  
BT, BTC, BTR, and BTS instructions should preferably be replaced by instructions like TEST, 
AND, OR, XOR, or shifts on P1, PMMX and P4. On PPro, P2 and P3, bit tests with a memory 
operand should be avoided. 
 

18.6 Integer multiplication (all processors)  
An integer multiplication takes approximately 9 clock cycles on P1 and PMMX; 4 on PPro, 
P2 and P3; and 14 on P4. It is therefore often advantageous to replace a multiplication by a 



constant with a combination of other instructions such as SHL, ADD, SUB, and LEA. For 
example IMUL EAX,5 can be replaced by LEA EAX,[EAX+4*EAX]. On the P4, SHL and 
LEA with a scale factor are also relatively slow, so the fastest way on this processor is to 
use additions. 
 
Multiplying a register with a constant can be done with the following macro, which uses only 
additions: 
 

; This macro multiplies an integer by a constant, using only 
; additions. Parameters: 
; REG1: an 8-bit, 16-bit or 32-bit register containing the number 
;       to multiply. The result will be returned in REG1. 
; REG2: a spare register of the same size. (will not be used if 
;       FACTOR is a power of 2). 
; FACTOR: a positive integer constant to multiply by. 
MULTIPLY MACRO REG1, REG2, FACTOR 
LOCAL N, REG2USED 
  N = FACTOR           ; N will be shifted to get the bits of FACTOR 
  REG2USED = 0         ; remember when REG2 is used 
  REPT 32              ; loop through all bits of FACTOR 
    IF N EQ 1          ; finished when N = 1 
      IF REG2USED 
        add REG1, REG2 ; add the two registers 
      ENDIF 
      EXITM            ; REPT loop always exits here 
    ENDIF 
    IF N AND 1         ; add value of REG1 if N odd 
      IF REG2USED 
        add REG2, REG1 ; REG2 already contains data, add more data 
      ELSE 
        mov REG2, REG1 ; copy data to REG2 
        REG2USED = 1   ; remember that REG2 contains data 
      ENDIF 
    ENDIF 
    add REG1, REG1     ; multiply by 2 
    N = N SHR 1        ; shift right N one place 
  ENDM                 ; end of REPT loop 
ENDM                   ; end of MULTIPLY macro 

 
For example, IMUL EAX,100 can be replaced by 

MULTIPLY EAX, EBX, 100 
which will be expanded to: 

ADD EAX,EAX   ; 2*a 
ADD EAX,EAX   ; 4*a 
MOV EBX,EAX   ; copy 4*a 
ADD EAX,EAX   ; 8*a 
ADD EAX,EAX   ; 16*a 
ADD EAX,EAX   ; 32*a 
ADD EBX,EAX   ; (32+4)*a 
ADD EAX,EAX   ; 64*a 
ADD EAX,EBX   ; (64+32+4)*a 

 
This method is considerably faster than using MUL or IMUL on the P4, unless the factor is 
very big. However, since this method uses many instructions, it should only be used if 
latency is critical and throughput is not critical. If you have opportunities for handling data in 
parallel, or if your code contains many integer multiply and shift operations, then it may be 
faster to use MMX or XMM registers. 
 



18.7 Division (all processors)  
Both integer division and floating-point division are quite time consuming on all processors. 
Various methods for reducing the number of divisions are explained on page 10. Several 
methods to improve code that contains division are discussed below. 

Integer division by a power of 2 (all processors) 
Integer division by a power of two can be done by shifting right. Dividing an unsigned 
integer by 2N: 
 

        SHR     EAX, N 
 
Dividing a signed integer by 2N: 
 

        CDQ 
        AND     EDX, (1 SHL N) - 1    ; (or  SHR EDX,32-N) 
        ADD     EAX, EDX 
        SAR     EAX, N 

 
Obviously, you should prefer the unsigned version if the dividend is certain to be non-
negative. 

Integer division by a constant (all processors) 
Dividing by a constant can be done by multiplying with the reciprocal. A useful algorithm for 
integer division by a constant is as follows: 
 
To calculate the unsigned integer division q = x / d, you first calculate the reciprocal of the 
divisor, f = 2r / d, where r defines the position of the binary decimal point (radix point). Then 
multiply x with f and shift right r positions. The maximum value of r is 32+b, where b is the 
number of binary digits in d minus 1. (b is the highest integer for which 2b ≤ d). Use r = 32+b 
to cover the maximum range for the value of the dividend x.  
 
This method needs some refinement in order to compensate for rounding errors. The 
following algorithm will give you the correct result for unsigned integer division with 
truncation, i.e. the same result as the DIV instruction gives (Thanks to Terje Mathisen who 
invented this method): 
 

b = (the number of significant bits in d) - 1 
r = 32 + b 
f = 2r / d 
If f is an integer then d is a power of 2: goto case A. 
If f is not an integer, then check if the fractional part of f is < 0.5 
If the fractional part of f < 0.5: goto case B. 
If the fractional part of f > 0.5: goto case C. 
 
case A  (d = 2b): 
result = x SHR b 
 
case B  (fractional part of f < 0.5): 
round f down to nearest integer 
result = ((x+1) * f) SHR r 
 
case C  (fractional part of f > 0.5): 
round f up to nearest integer 
result = (x * f) SHR r 

 
 
Example: 
Assume that you want to divide by 5. 



5 = 101B. 
b = (number of significant binary digits) - 1 = 2 
r = 32+2 = 34 
f = 234 / 5 = 3435973836.8 = 0CCCCCCCC.CCC...(hexadecimal) 
 
The fractional part is greater than a half: use case C. 
Round f up to 0CCCCCCCDH. 
 
The following code divides EAX by 5 and returns the result in EDX: 
 

MOV     EDX, 0CCCCCCCDh 
MUL     EDX 
SHR     EDX,2  

 
After the multiplication, EDX contains the product shifted right 32 places. Since r = 34 you 
have to shift 2 more places to get the result. To divide by 10, just change the last line to SHR 
EDX,3. 
 
In case B we would have: 
 

ADD     EAX, 1 
MOV     EDX, f 
MUL     EDX 
SHR     EDX, b 

 
This code works for all values of x except 0FFFFFFFFH which gives zero because of 
overflow in the ADD EAX,1 instruction. If x = 0FFFFFFFFH is possible, then change the 
code to: 
 

         MOV     EDX,f 
         ADD     EAX,1 
         JC      DOVERFL 
         MUL     EDX 
DOVERFL: SHR     EDX,b 

 
If the value of x is limited, then you may use a lower value of r, i.e. fewer digits. There can 
be several reasons for using a lower value of r: 
 

• you may set r = 32 to avoid the SHR EDX,b in the end. 
 

• you may set r = 16+b and use a multiplication instruction that gives a 32-bit result 
rather than 64 bits. This will free the EDX register: 

 
IMUL EAX,0CCCDh / SHR EAX,18 

 
• you may choose a value of r that gives case C rather than case B in order to avoid 

the ADD EAX,1 instruction 
 
The maximum value for x in these cases is at least 2r-b, sometimes higher. You have to do 
a systematic test if you want to know the exact maximum value of x for which the code 
works correctly. 
 
You may want to replace the slow multiplication instruction with faster instructions as 
explained on page 114. 
 
The following example divides EAX by 10 and returns the result in EAX. I have chosen r=17 
rather than 19 because it happens to give a code that is easier to optimize, and covers the 
same range for x. f = 217 / 10 = 3333h, case B: q = (x+1)*3333h: 
 



        LEA     EBX,[EAX+2*EAX+3] 
        LEA     ECX,[EAX+2*EAX+3] 
        SHL     EBX,4 
        MOV     EAX,ECX 
        SHL     ECX,8 
        ADD     EAX,EBX 
        SHL     EBX,8 
        ADD     EAX,ECX 
        ADD     EAX,EBX 
        SHR     EAX,17 

 
A systematic test shows that this code works correctly for all x < 10004H. 

Repeated integer division by the same value (all processors) 
If the divisor is not known at assembly time, but you are dividing repeatedly with the same 
divisor, then you may use the same method as above. The code has to distinguish between 
case A, B and C and calculate f before doing the divisions. 
 
The code that follows shows how to do multiple divisions with the same divisor (unsigned 
division with truncation). First call SET_DIVISOR to specify the divisor and calculate the 
reciprocal, then call DIVIDE_FIXED for each value to divide by the same divisor. 
 

Example 18.1, repeated integer division with same divisor 
.DATA 
RECIPROCAL_DIVISOR DD ?            ; rounded reciprocal divisor 
CORRECTION         DD ?            ; case A: -1, case B: 1, case C: 0 
BSHIFT             DD ?            ; number of bits in divisor - 1 
 
.CODE 
SET_DIVISOR PROC NEAR              ; divisor in EAX 
        PUSH    EBX 
        MOV     EBX,EAX 
        BSR     ECX,EAX            ; b = number of bits in divisor - 1 
        MOV     EDX,1 
        JZ      ERROR              ; error: divisor is zero 
        SHL     EDX,CL             ; 2^b 
        MOV     [BSHIFT],ECX       ; save b 
        CMP     EAX,EDX 
        MOV     EAX,0 
        JE      SHORT CASE_A       ; divisor is a power of 2 
        DIV     EBX                ; 2^(32+b) / d 
        SHR     EBX,1              ; divisor / 2 
        XOR     ECX,ECX 
        CMP     EDX,EBX            ; compare remainder with divisor/2 
        SETBE   CL                 ; 1 if case B 
        MOV     [CORRECTION],ECX   ; correction for rounding errors 
        XOR     ECX,1 
        ADD     EAX,ECX            ; add 1 if case C 
        MOV     [RECIPROCAL_DIVISOR],EAX ; rounded reciprocal divisor 
        POP     EBX 
        RET 
CASE_A: MOV     [CORRECTION],-1    ; remember that we have case A 
        POP     EBX 
        RET 
SET_DIVISOR     ENDP 
 
DIVIDE_FIXED PROC NEAR                ; dividend in EAX, result in EAX 
        MOV     EDX,[CORRECTION] 
        MOV     ECX,[BSHIFT] 
        TEST    EDX,EDX 
        JS      SHORT DSHIFT          ; divisor is power of 2 
        ADD     EAX,EDX               ; correct for rounding error 
        JC      SHORT DOVERFL         ; correct for overflow 



        MUL     [RECIPROCAL_DIVISOR]  ; multiply w. reciprocal divisor 
        MOV     EAX,EDX 
DSHIFT: SHR     EAX,CL                ; adjust for number of bits 
        RET 
DOVERFL:MOV     EAX,[RECIPROCAL_DIVISOR] ; dividend = 0FFFFFFFFH 
        SHR     EAX,CL                ; do division by shifting 
        RET 
DIVIDE_FIXED    ENDP 

 
This code gives the same result as the DIV instruction for 0 ≤ x < 232, 0 < d < 232. 
 
The line JC DOVERFL and its target are not needed if you are certain that x < 
0FFFFFFFFH. 
 
If powers of 2 occur so seldom that it is not worth optimizing for them, then you may leave 
out the jump to DSHIFT and instead do a multiplication with CORRECTION = 0 for case A. 

Floating-point division (all processors) 
The time it takes to make a floating-point division depends on the precision. When floating-
point registers are used, you can make division faster by specifying a lower precision in the 
floating-point control word. This also speeds up the FSQRT instruction (except on P1 and 
PMMX), but not any other instructions. When XMM registers are used, you don't have to 
change any control word. Just use single-precision instructions if your application allows 
this. 
 
It is not possible to do a floating-point division and an integer division at the same time 
because they are using the same execution unit, except on P1 and PMMX. 

Using reciprocal instruction for fast division (P3 and P4) 
On P3 and P4, you can use the fast reciprocal instruction RCPSS or RCPPS on the divisor 
and then multiply with the dividend. However, the precision is only 12 bits. You can increase 
the precision to 23 bits by using the Newton-Raphson method described in Intel's 
application note AP-803: 
 

x0 = RCPSS(d) 
x1 = x0 * (2 - d * x0) = 2 * x0 - d * x0 * x0 

 
where x0 is the first approximation to the reciprocal of the divisor d, and x1 is a better 
approximation. You must use this formula before multiplying with the dividend. 
 

; Example 18.2, fast division, single precision (P3, P4) 
MOVAPS  XMM1, [DIVISORS]         ; load divisors 
RCPPS   XMM0, XMM1               ; approximate reciprocal 
MULPS   XMM1, XMM0               ; Newton-Raphson formula 
MULPS   XMM1, XMM0 
ADDPS   XMM0, XMM0 
SUBPS   XMM0, XMM1 
MULPS   XMM0, [DIVIDENDS]        ; results in XMM0 

 
This makes four divisions in approximately 26 clock cycles (P4) with a precision of 23 bits. 
Increasing the precision further by repeating the Newton-Raphson formula with double 
precision is possible, but not very advantageous. 
 
If you want to use this method for integer divisions then you have to check for rounding 
errors. The following code makes four integer divisions with truncation on packed word size 
integers in approximately 45 clock cycles on the P4. It gives exactly the same results as the 
DIV instruction for 0 ≤ dividend ≤ 7FFFFH and 0 < divisor ≤ 7FFFFH: 
 

; Example 18.3, integer division with packed 16-bit words (P4): 



; compute QUOTIENTS = DIVIDENDS / DIVISORS 
MOVQ      XMM1, [DIVISORS]   ; load four divisors 
MOVQ      XMM2, [DIVIDENDS]  ; load four dividends 
PXOR      XMM0, XMM0         ; temporary 0 
PUNPCKLWD XMM1, XMM0         ; convert divisors to DWORDs 
PUNPCKLWD XMM2, XMM0         ; convert dividends to DWORDs 
CVTDQ2PS  XMM1, XMM1         ; convert divisors to floats 
CVTDQ2PS  XMM2, XMM2         ; convert dividends to floats 
RCPPS     XMM0, XMM1         ; approximate reciprocal of divisors 
MULPS     XMM1, XMM0         ; improve precision with.. 
MULPS     XMM1, XMM0         ; Newton-Raphson method 
ADDPS     XMM0, XMM0 
SUBPS     XMM0, XMM1         ; reciprocal divisors (23 bit precision) 
MULPS     XMM0, XMM2         ; multiply with dividends 
CVTTPS2DQ XMM0, XMM0         ; truncate result of division 
PACKSSDW  XMM0, XMM0         ; convert quotients to WORD size 
MOVQ      XMM1, [DIVISORS]   ; load divisors again 
MOVQ      XMM2, [DIVIDENDS]  ; load dividends again 
PSUBW     XMM2, XMM1         ; dividends - divisors 
PMULLW    XMM1, XMM0         ; divisors * quotients 
PCMPGTW   XMM1, XMM2         ; -1 if quotient not too small 
PCMPEQW   XMM2, XMM2         ; make integer -1's 
PXOR      XMM1, XMM2         ; -1 if quotient too small 
PSUBW     XMM0, XMM1         ; correct quotient 
MOVQ      [QUOTIENTS], XMM0  ; save the four corrected quotients 
 

This code checks if the result is too small and makes the appropriate correction. It is not 
necessary to check if the result is too big. 
 

18.8 LEA instruction (all processors)  
The LEA instruction is useful for many purposes because it can do a shift, two additions, 
and a move in just one instruction. Example: 
 

LEA EAX,[EBX+8*ECX-1000] 
 
is much faster than 
 

MOV EAX,ECX / SHL EAX,3 / ADD EAX,EBX / SUB EAX,1000 
 
The LEA instruction can also be used to do an addition or shift without changing the flags. 
The source and destination need not have the same word size, so LEA EAX,[BX] is a 
possible replacement for MOVZX EAX,BX, although suboptimal on most processors. 
 
The 32 bit processors have no documented addressing mode with a scaled index register 
and nothing else, so an instruction like LEA EAX,[EAX*2] is actually coded as LEA 
EAX,[EAX*2+00000000H] with an immediate displacement of 4 bytes. You may reduce 
the instruction size by instead writing LEA EAX,[EAX+EAX] or even better ADD 
EAX,EAX. If you happen to have a register that is zero (like a loop counter after a loop), 
then you may use it as a base register to reduce the code size:  
 

LEA EAX,[EBX*4]     ; 7 bytes 
LEA EAX,[ECX+EBX*4] ; 3 bytes 

 
LEA with a scale factor is slow on the P4, and may be replaced by additions. This applies 
only to the LEA instruction, not to instructions accessing memory. 
 



18.9 WAIT instruction (all processors)  
You can often increase speed by omitting the WAIT instruction. The WAIT instruction has 
three functions: 
 
A. The old 8087 processor requires a WAIT before every floating-point instruction to make 
sure the coprocessor is ready to receive it. 
 
B. WAIT is used for coordinating memory access between the floating-point unit and the 
integer unit. Examples: 
 

B1:   FISTP [mem32] 
      WAIT             ; wait for FPU to write before.. 
      MOV EAX,[mem32]  ; reading the result with the integer unit 
 
B2:   FILD [mem32] 
      WAIT             ; wait for FPU to read value.. 
      MOV [mem32],EAX  ; before overwriting it with integer unit 
 
B3:   FLD QWORD PTR [ESP] 
      WAIT             ; prevent an accidental interrupt from.. 
      ADD ESP,8        ; overwriting value on stack 

 
C. WAIT is sometimes used to check for exceptions. It will generate an interrupt if an 
unmasked exception bit in the floating-point status word has been set by a preceding 
floating-point instruction. 
 
Regarding A: 
The function in point A is never needed on any other processors than the old 8087. Unless 
you want your code to be compatible with the 8087, you should tell your assembler not to 
put in these WAIT's by specifying a higher processor. An 8087 floating-point emulator also 
inserts WAIT instructions. You should therefore tell your assembler not to generate 
emulation code unless you need it.  
 
Regarding B: 
WAIT instructions to coordinate memory access are definitely needed on the 8087 and 
80287 but not on the Pentiums. It is not quite clear whether it is needed on the 80387 and 
80486. I have made several tests on these Intel processors and not been able to provoke 
any error by omitting the WAIT on any 32-bit Intel processor, although Intel manuals say that 
the WAIT is needed for this purpose except after FNSTSW and FNSTCW. Omitting WAIT 
instructions for coordinating memory access is not 100 % safe, even when writing 32-bit 
code, because the code may be able to run on the very rare combination of a 80386 main 
processor with a 287 coprocessor, which requires the WAIT. Also, I have no information on 
non-Intel processors, and I have not tested all possible hardware and software 
combinations, so there may be other situations where the WAIT is needed.  
 
If you want to be certain that your code will work on any 32-bit processor then I would 
recommend that you include the WAIT here in order to be safe. If rare and obsolete 
hardware platforms such as the combination of 80386 and 80287 can be ruled out, then you 
may omit the WAIT. 
 
Regarding C: 
The assembler automatically inserts a WAIT for this purpose before the following 
instructions: FCLEX, FINIT, FSAVE, FSTCW, FSTENV, FSTSW. You can omit the WAIT by 
writing FNCLEX, etc. My tests show that the WAIT is unnecessary in most cases because 
these instructions without WAIT will still generate an interrupt on exceptions except for 
FNCLEX and FNINIT on the 80387. (There is some inconsistency about whether the IRET 
from the interrupt points to the FN.. instruction or to the next instruction).  



 
Almost all other floating-point instructions will also generate an interrupt if a previous 
floating-point instruction has set an unmasked exception bit, so the exception is likely to be 
detected sooner or later anyway. You may insert a WAIT after the last floating-point 
instruction in your program to be sure to catch all exceptions.  
 
You may still need the WAIT if you want to know exactly where an exception occurred in 
order to be able to recover from the situation. Consider, for example, the code under B3 
above: If you want to be able to recover from an exception generated by the FLD here, then 
you need the WAIT because an interrupt after ADD ESP,8 would overwrite the value to 
load. FNOP may be faster than WAIT on some processors and serve the same purpose. 
 

18.10 FCOM + FSTSW AX (all processors)  
The FNSTSW instruction is very slow on all processors. The PPro, P2, P3 and P4 processors 
have FCOMI instructions to avoid the slow FNSTSW. Using FCOMI instead of the common 
sequence FCOM / FNSTSW AX / SAHF will save 8 clock cycles on PPro, P2 and P3, and 4 
clock cycles on P4. You should therefore use FCOMI to avoid FNSTSW wherever possible, 
even in cases where it costs some extra code.  
 
On P1 and PMMX processors, which don't have FCOMI instructions, the usual way of doing 
floating-point comparisons is: 

    FLD [a] 
    FCOMP [b] 
    FSTSW AX 
    SAHF 
    JB ASmallerThanB 

You may improve this code by using FNSTSW AX rather than FSTSW AX and test AH directly 
rather than using the non-pairable SAHF (TASM version 3.0 has a bug with the FNSTSW AX 
instruction): 

    FLD [a] 
    FCOMP [b] 
    FNSTSW AX 
    SHR AH,1 
    JC ASmallerThanB 

Testing for zero or equality: 
    FTST 
    FNSTSW AX 
    AND AH,40H 
    JNZ IsZero     ; (the zero flag is inverted!) 

Test if greater: 
    FLD [a] 
    FCOMP [b] 
    FNSTSW AX 
    AND AH,41H 
    JZ AGreaterThanB 

Do not use TEST AH,41H as it is not pairable on P1 and PMMX. 
 
On the P1 and PMMX, the FNSTSW instruction takes 2 clocks, but it is delayed for an 
additional 4 clocks after any floating-point instruction because it is waiting for the status 
word to retire from the pipeline. This delay comes even after FNOP, which cannot change 
the status word, but not after integer instructions. You can fill the latency between FCOM and 
FNSTSW with integer instructions taking up to four clock cycles. A paired FXCH immediately 
after FCOM doesn't delay the FNSTSW, not even if the pairing is imperfect. 
 
It is sometimes faster to use integer instructions for comparing floating-point values, as 
described on page 129 and 130. 
 



18.11 FPREM (all processors)  
The FPREM and FPREM1 instructions are slow on all processors. You may replace it by the 
following algorithm: Multiply by the reciprocal divisor, get the fractional part by subtracting 
the truncated value, and then multiply by the divisor. (See page 127 on how to truncate on 
processors that don't have truncate instructions). 
 
Some documents say that these instructions may give incomplete reductions and that it is 
therefore necessary to repeat the FPREM or FPREM1 instruction until the reduction is 
complete. I have tested this on several processors beginning with the old 8087 and I have 
found no situation where a repetition of the FPREM or FPREM1 was needed. 
 

18.12 FRNDINT (all processors)  
This instruction is slow on all processors. Replace it by: 
 

    FISTP QWORD PTR [TEMP] 
    FILD  QWORD PTR [TEMP] 

 
This code is faster despite a possible penalty for attempting to read from [TEMP] before the 
write is finished. It is recommended to put other instructions in between in order to avoid this 
penalty. See page 127 on how to truncate on processors that don't have truncate 
instructions. On P3 and P4, use the conversion instructions such as CVTSS2SI and 
CVTTSS2SI. 
 

18.13 FSCALE and exponential function (all processors) 
FSCALE is slow on all processors. Computing integer powers of 2 can be done much faster 
by inserting the desired power in the exponent field of the floating-point number. To 
calculate 2N, where N is a signed integer, select from the examples below the one that fits 
your range of N: 
 
For |N| < 27-1 you can use single precision: 
 

    MOV     EAX, [N] 
    SHL     EAX, 23 
    ADD     EAX, 3F800000H 
    MOV     DWORD PTR [TEMP], EAX 
    FLD     DWORD PTR [TEMP] 

 
For |N| < 210-1 you can use double precision: 
 

    MOV     EAX, [N] 
    SHL     EAX, 20 
    ADD     EAX, 3FF00000H 
    MOV     DWORD PTR [TEMP], 0 
    MOV     DWORD PTR [TEMP+4], EAX 
    FLD     QWORD PTR [TEMP] 

 
For |N| < 214-1 use long double precision: 
 

    MOV     EAX, [N] 
    ADD     EAX, 00003FFFH 
    MOV     DWORD PTR [TEMP],   0 
    MOV     DWORD PTR [TEMP+4], 80000000H 
    MOV     DWORD PTR [TEMP+8], EAX 
    FLD     TBYTE PTR [TEMP] 

 
On P4, you can make these operations in XMM registers without the need for a memory 
intermediate (see page 130). 



 
FSCALE is often used in the calculation of exponential functions. The following code shows 
an exponential function without the slow FRNDINT and FSCALE instructions: 
 

; extern "C" long double _cdecl exp (double x); 
_exp    PROC    NEAR 
PUBLIC  _exp 
        FLDL2E 
        FLD     QWORD PTR [ESP+4]             ; x 
        FMUL                                  ; z = x*log2(e) 
        FIST    DWORD PTR [ESP+4]             ; round(z) 
        SUB     ESP, 12 
        MOV     DWORD PTR [ESP], 0 
        MOV     DWORD PTR [ESP+4], 80000000H 
        FISUB   DWORD PTR [ESP+16]            ; z - round(z) 
        MOV     EAX, [ESP+16] 
        ADD     EAX,3FFFH 
        MOV     [ESP+8],EAX 
        JLE     SHORT UNDERFLOW 
        CMP     EAX,8000H 
        JGE     SHORT OVERFLOW 
        F2XM1 
        FLD1 
        FADD                                  ; 2^(z-round(z)) 
        FLD     TBYTE PTR [ESP]               ; 2^(round(z)) 
        ADD     ESP,12 
        FMUL                                  ; 2^z = e^x 
        RET 
UNDERFLOW: 
        FSTP    ST 
        FLDZ                                  ; return 0 
        ADD     ESP,12 
        RET 
OVERFLOW: 
        PUSH    07F800000H                    ; +infinity 
        FSTP    ST 
        FLD     DWORD PTR [ESP]               ; return infinity 
        ADD     ESP,16 
        RET 
_exp    ENDP 

 

18.14 FPTAN (all processors)  
According to the manuals, FPTAN returns two values, X and Y, and leaves it to the 
programmer to divide Y with X to get the result; but in fact it always returns 1 in X so you 
can save the division. My tests show that on all 32-bit Intel processors with floating-point 
unit or coprocessor, FPTAN always returns 1 in X regardless of the argument. If you want to 
be absolutely sure that your code will run correctly on all processors, then you may test if X 
is 1, which is faster than dividing with X. The Y value may be very high, but never infinity, so 
you don't have to test if Y contains a valid number if you know that the argument is valid. 
 

18.15 FSQRT (P3 and P4)  
A fast way of calculating an approximate square root on the P3 and P4 is to multiply the 
reciprocal square root of x by x: 
 

SQRT(x) = x * RSQRT(x) 
 
The instruction RSQRTSS or RSQRTPS gives the reciprocal square root with a precision of 12 
bits. You can improve the precision to 23 bits by using the Newton-Raphson formula 
described in Intel's application note AP-803: 



 
x0 = RSQRTSS(a) 
x1 = 0.5 * x0 * (3 - (a * x0)) * x0) 

 
where x0 is the first approximation to the reciprocal square root of a, and x1 is a better 
approximation. The order of evaluation is important. You must use this formula before 
multiplying with a to get the square root. 
 

18.16 FLDCW (PPro, P2, P3, P4)  
The PPro, P2 and P3 have a serious stall after the FLDCW instruction if followed by any 
floating-point instruction which reads the control word (which almost all floating-point 
instructions do). 
 
When C or C++ code is compiled, it often generates a lot of FLDCW instructions because 
conversion of floating-point numbers to integers is done with truncation while other floating-
point instructions use rounding. After translation to assembly, you can improve this code by 
using rounding instead of truncation where possible, or by moving the FLDCW out of a loop 
where truncation is needed inside the loop.  
 
On the P4, this stall is even longer, approximately 143 clocks. But the P4 has made a 
special case out of the situation where the control word is alternating between two different 
values. This is the typical case in C++ programs where the control word is changed to 
specify truncation when a floating-point number is converted to integer, and changed back 
to rounding after this conversion. The latency for FLDCW is 3 when the new value loaded is 
the same as the value of the control word before the preceding FLDCW. The latency is still 
143, however, when loading the same value into the control word as it already has, if this is 
not the same as the value it had one time earlier. 
 
See page 127 on how to convert floating-point numbers to integers without changing the 
control word. On P3 and P4, use truncation instructions such as CVTTSS2SI instead. 
 

18.17 Bit scan (P1 and PMMX)  
BSF and BSR are the poorest optimized instructions on the P1 and PMMX, taking 
approximately 11 + 2*n clock cycles, where n is the number of zeros skipped. 
 
The following code emulates BSR ECX,EAX: 
 

        TEST    EAX,EAX 
        JZ      SHORT BS1 
        MOV     DWORD PTR [TEMP],EAX 
        MOV     DWORD PTR [TEMP+4],0 
        FILD    QWORD PTR [TEMP] 
        FSTP    QWORD PTR [TEMP] 
        WAIT    ; WAIT only needed for compatibility with old 80287 
        MOV     ECX, DWORD PTR [TEMP+4] 
        SHR     ECX,20        ; isolate exponent 
        SUB     ECX,3FFH      ; adjust 
        TEST    EAX,EAX       ; clear zero flag 
BS1: 

 
The following code emulates BSF ECX,EAX: 
 

        TEST    EAX,EAX 
        JZ      SHORT BS2 
        XOR     ECX,ECX 
        MOV     DWORD PTR [TEMP+4],ECX 
        SUB     ECX,EAX 



        AND     EAX,ECX 
        MOV     DWORD PTR [TEMP],EAX 
        FILD    QWORD PTR [TEMP] 
        FSTP    QWORD PTR [TEMP] 
        WAIT    ; WAIT only needed for compatibility with old 80287 
        MOV     ECX, DWORD PTR [TEMP+4] 
        SHR     ECX,20 
        SUB     ECX,3FFH 
        TEST    EAX,EAX       ; clear zero flag 
BS2: 

 
These emulation codes should not be used on later processors. 
 

19 Special topics  

19.1 Freeing floating-point registers (all processors)  
You have to free all used floating-point registers before exiting a subroutine, except for any 
register used for the result. 
 
The fastest way of freeing one register is FSTP ST. The fastest way of freeing two registers 
is FCOMPP on P1 and PMMX. On later processors you may use either FCOMPP or twice 
FSTP ST,  whichever fits best into the decoding sequence (PPro, P2, P3) or port load (P4). 
 
It is not recommended to use FFREE. 
 

19.2 Transitions between floating-point and MMX instructions (PMMX, P2, P3, 
P4) 
It is not possible to use 64-bit MMX registers and 80-bit floating-point registers in the same 
part of the code. You must issue an EMMS instruction after the last instruction that uses 64-
bit MMX registers if there is a possibility that later code uses floating-point registers. You 
may avoid this problem by using 128-bit XMM registers instead. 
 
On PMMX there is a high penalty for switching between floating-point and MMX instructions. 
The first floating-point instruction after an EMMS takes approximately 58 clocks extra, and 
the first MMX instruction after a floating-point instruction takes approximately 38 clocks 
extra. 
 
On P2, P3 and P4 there is no such penalty. The delay after EMMS can be hidden by putting 
in integer instructions between EMMS and the first floating-point instruction. 
 

19.3 Converting from floating-point to integer (All processors)  
All conversions between floating-point registers and integer registers must go via a memory 
location: 
 

    FISTP DWORD PTR [TEMP] 
    MOV EAX, [TEMP] 

 
On PPro, P2, P3 and especially P4, this code is likely to have a penalty for attempting to 
read from [TEMP] before the write to [TEMP] is finished. It doesn't help to put in a WAIT. It 
is recommended that you put in other instructions between the write to [TEMP] and the 
read from [TEMP] if possible in order to avoid this penalty. This applies to all the examples 
that follow.  
 



The specifications for the C and C++ language requires that conversion from floating-point 
numbers to integers use truncation rather than rounding. The method used by most C 
libraries is to change the floating-point control word to indicate truncation before using an 
FISTP instruction, and changing it back again afterwards. This method is very slow on all 
processors. On PPro and later processors, the floating-point control word cannot be 
renamed, so all subsequent floating-point instructions must wait for the FLDCW instruction to 
retire. See page 125. 
 
On the P3 and P4 you can avoid all these problems by using XMM registers instead of 
floating-point registers and use the CVT.. instructions to avoid the memory intermediate. 
(On the P3, these instructions are only available in single precision). 
 
Whenever you have a conversion from a floating-point register to an integer register, you 
should think of whether you can use rounding to nearest integer instead of truncation. 
 
If you need truncation inside a loop then you should change the control word only outside 
the loop if the rest of the floating-point instructions in the loop can work correctly in 
truncation mode. 
 
You may use various tricks for truncating without changing the control word, as illustrated in 
the examples below. These examples presume that the control word is set to default, i.e. 
rounding to nearest or even. 
 

; Rounding to nearest or even: 
; extern "C" int round (double x); 
_round  PROC    NEAR 
PUBLIC  _round 
        FLD     QWORD PTR [ESP+4] 
        FISTP   DWORD PTR [ESP+4] 
        MOV     EAX, DWORD PTR [ESP+4] 
        RET 
_round  ENDP 

 
; Truncation towards zero: 
; extern "C" int truncate (double x); 
_truncate PROC    NEAR 
PUBLIC  _truncate 
        FLD     QWORD PTR [ESP+4]   ; x 
        SUB     ESP, 12             ; space for local variables 
        FIST    DWORD PTR [ESP]     ; rounded value 
        FST     DWORD PTR [ESP+4]   ; float value 
        FISUB   DWORD PTR [ESP]     ; subtract rounded value 
        FSTP    DWORD PTR [ESP+8]   ; difference 
        POP     EAX                 ; rounded value 
        POP     ECX                 ; float value 
        POP     EDX                 ; difference (float) 
        TEST    ECX, ECX            ; test sign of x 
        JS      SHORT NEGATIVE 
        ADD     EDX, 7FFFFFFFH      ; produce carry if difference < -0 
        SBB     EAX, 0              ; subtract 1 if x-round(x) < -0 
        RET 
NEGATIVE: 
        XOR     ECX, ECX 
        TEST    EDX, EDX 
        SETG    CL                  ; 1 if difference > 0 
        ADD     EAX, ECX            ; add 1 if x-round(x) > 0 
        RET 
_truncate ENDP 

 
; Truncation towards minus infinity: 
; extern "C" int ifloor (double x); 
_ifloor PROC    NEAR 



PUBLIC  _ifloor 
        FLD     QWORD PTR [ESP+4]   ; x 
        SUB     ESP, 8              ; space for local variables 
        FIST    DWORD PTR [ESP]     ; rounded value 
        FISUB   DWORD PTR [ESP]     ; subtract rounded value 
        FSTP    DWORD PTR [ESP+4]   ; difference 
        POP     EAX                 ; rounded value 
        POP     EDX                 ; difference (float) 
        ADD     EDX, 7FFFFFFFH      ; produce carry if difference < -0 
        SBB     EAX, 0              ; subtract 1 if x-round(x) < -0 
        RET 
_ifloor ENDP 

 
These procedures work for -231 < x < 231-1. They do not check for overflow or NAN's. 
 

19.4 Using integer instructions for floating-point operations 
Integer instructions are generally faster than floating-point instructions, so it is often 
advantageous to use integer instructions for doing simple floating-point operations. The 
most obvious example is moving data. For example 
 

FLD QWORD PTR [ESI] / FSTP QWORD PTR [EDI] 
 
can be replaced by: 
 

MOV EAX,[ESI] / MOV EBX,[ESI+4] / MOV [EDI],EAX / MOV [EDI+4],EBX 
 
or: 
 

MOVQ MM0,[ESI] / MOVQ [EDI],MM0 
 
Many other manipulations are possible if you know how floating-point numbers are 
represented in binary format. The floating-point format used in registers as well as in 
memory is in accordance with the IEEE-754 standard. Future implementations are certain to 
use the same format. The floating-point format consists of three parts: the sign s, mantissa 
m, and exponent e:  
 

x = s· m· 2e. 
 
The sign s is represented as one bit, where a zero means +1 and a one means -1. The 
mantissa is a value in the interval 1 ≤ m < 2. The binary representation of m always has a 1 
before the radix point. This 1 is not stored, except in the long double (80 bits) format. Thus, 
the left-most bit of the mantissa represents ½, the next bit represents ¼, etc. The exponent 
e can be both positive and negative. It is not stored in the usual 2-complement signed 
format, but in a biased format where 0 is represented by the value that has all but the most 
significant bit = 1. This format makes comparisons easier. The value x = 0.0 is represented 
by setting all bits of m and e to zero. The sign bit may be 0 or 1 so we can actually 
distinguish between +0.0 and -0.0, but comparisons must of course treat +0.0 and -0.0 as 
equal. The bit positions are shown in this table: 
 
precision mantissa always 1 exponent sign 
single (32 bits) bit 0 - 22  bit 23 - 30 bit 31 
double (64 bits) bit 0 - 51  bit 52 - 62 bit 63 
long double (80 bits) bit 0 - 62 bit 63 bit 64 - 78 bit 79 
 
From this table we can find that the value 1.0 is represented as 3F80,0000H in single 
precision format, 3FF0,0000,0000,0000H in double precision, and 
3FFF,8000,0000,0000,0000H in long double precision. 



Generating constants 
It is possible to generate simple floating-point constants without using data in memory: 
 

; generate four single-precision values = 1.0 
PCMPEQD XMM0,XMM0   ; generate all 1's 
PSRLD   XMM0,25     ; seven 1's 
PSLLD   XMM0,23     ; shift into exponent field 

 
To generate the constant 0.0, it is better to use PXOR XMM0,XMM0 than XORPS, XORPD, 
SUBPS, etc., because the PXOR instruction is recognized by the P4 processor to be 
independent of the previous value of the register if source and destination are the same, 
while this is not the case for the other instructions. 

Testing if a floating-point value is zero 
To test if a floating-point number is zero, we have to test all bits except the sign bit, which 
may be either 0 or 1. For example: 
 

FLD DWORD PTR [EBX] / FTST / FNSTSW AX / AND AH,40H / JNZ IsZero 
 
can be replaced by 
 

MOV EAX,[EBX] / ADD EAX,EAX / JZ IsZero 
 
where the ADD EAX,EAX shifts out the sign bit. Double precision floats have 63 bits to test, 
but if denormal numbers can be ruled out, then you can be certain that the value is zero if 
the exponent bits are all zero. Example: 
 

FLD QWORD PTR [EBX] / FTST / FNSTSW AX / AND AH,40H / JNZ IsZero 
 
can be replaced by 
 

MOV EAX,[EBX+4] / ADD EAX,EAX / JZ IsZero 

Manipulating the sign bit 
A floating-point number is negative if the sign bit is set and at least one other bit is set. 
Example (single precision): 
 

MOV EAX,[NumberToTest] / CMP EAX,80000000H / JA IsNegative 
 
You can change the sign of a floating-point number simply by flipping the sign bit. This is 
useful when XMM registers are used, because there is no XMM change sign instruction. 
Example: 
 

; change sign of four single-precision floats in XMM0 
CMPEQD XMM1,XMM1    ; generate all 1's 
PSLLD  XMM1,31      ; 1 in the leftmost bit of each DWORD only 
XORPS  XMM0,XMM1    ; change sign of XMM0 

 
You can get the absolute value of a floating-point number by AND'ing out the sign bit: 
 

; absolute value of four single-precision floats in XMM0 
CMPEQD XMM1,XMM1    ; generate all 1's 
PSRLD  XMM1,1       ; 1 in all but the leftmost bit of each DWORD 
ANDPS  XMM0,XMM1    ; set sign bits to 0 

 
You can extract the sign bit of a floating-point number: 
 

; generate a bit-mask if single-precision floats in XMM0 are.. 
; negative or -0.0 



PSRAD  XMM0,31      ; copy sign bit into all bit positions 

Manipulating the exponent 
You can multiply a non-zero number with a power of 2 by simply adding to the exponent: 
 

MOVAPS  XMM0, [X]   ; four single-precision floats 
MOVDQA  XMM1, [N]   ; four 32-bit integers 
PSLLD   XMM1, 23    ; shift integers into exponent field 
PADDD   XMM0, XMM1  ; X * 2^N 

 
Likewise, you can divide by a power of 2 by subtracting from the exponent. Note that this 
code does not work if X is zero or if overflow or underflow is possible. 

Manipulating the mantissa 
You can convert an integer to a floating-point number in an interval of length 1.0 by putting 
bits into the mantissa field. The following code computes x = n / 232, where n in an unsigned 
integer in the interval 0 ≤ n < 232, and the resulting x is in the interval 0 ≤ x < 1.0. 
 

DATA SEGMENT PARA PUBLIC 'DATA' 
ONE    DQ  1.0 
X      DQ   ? 
N      DD   ? 
DATA ENDS 
CODE SEGMENT BYTE PUBLIC 'CODE' 
MOVSD  XMM0, [ONE]   ; 1.0, double precision 
MOVD   XMM1, [N]     ; N, 32-bit unsigned integer 
PSLLQ  XMM1, 20      ; align N left in mantissa field 
POR    XMM1, XMM0    ; combine mantissa and exponent 
SUBSD  XMM1, XMM0    ; subtract 1.0 
MOVSD  [X], XMM1     ; store result 

 
In the above code, the exponent from 1.0 is combined with a mantissa containing the bits of 
n. This gives a double-precision float in the interval 1.0 ≤ x < 2.0. The SUBSD instruction 
subtracts 1.0 to get x into the desired interval. 

Comparing numbers 
Thanks to the fact that the exponent is stored in the biased format and to the left of the 
mantissa, it is possible to use integer instructions for comparing positive floating-point 
numbers. Example (single precision): 
 

FLD [a] / FCOMP [b] / FNSTSW AX / AND AH,1 / JNZ ASmallerThanB 
 
can be replaced by: 
 

MOV EAX,[a] / MOV EBX,[b] / CMP EAX,EBX / JB ASmallerThanB 
 
This method works only if you are certain that none of the numbers have the sign bit set. 
You may compare absolute values by shifting out the sign bit of both numbers. For double-
precision numbers, you can make an approximate comparison by comparing the upper 32 
bits using integer instructions. 
 

19.5 Using floating-point instructions for integer operations 
While there are no problems using integer instructions for moving floating-point data, it is 
not always safe to use floating-point instructions for moving integer data. For example, you 
may be tempted to use FLD QWORD PTR [ESI] / FSTP QWORD PTR [EDI] to move 8 
bytes at a time. However, this method may fail if the data do not represent valid floating-
point numbers. The FLD instruction may generate an exception and it may even change 
the value of the data. If you want your code to be compatible with processors that don't have 



MMX and XMM registers then you can only use the slower FILD and FISTP for moving 
8 bytes at a time. 
 
However, some floating-point instructions can handle integer data without generating 
exceptions or modifying data. For example, the MOVAPS instruction can be used for 
moving 16 bytes at a time on the P3 processor that doesn't have the MOVDQA instruction. 
You can determine whether a floating-point instruction can handle integer data by looking at 
the documentation in the "IA-32 Intel Architecture Software Developer's Manual" Volume 2. 
If the instruction can generate any floating-point exception, then it cannot be used for 
integer data. If the documentation says "none" for floating-point exceptions, then this 
instruction can be used for integer data. It is reasonable to assume that such code will work 
correctly on future processors, but there is no guarantee that it will work equally fast on 
future processors. 
 
Most SIMD instructions are "typed", in the sense that they are intended for one type of data 
only. It seems quite odd, for example, that the P4 has three different instructions for OR'ing 
128-bit registers. The instructions POR, ORPS and ORPD are doing exactly the same 
thing. Replacing one with another has absolutely no consequence on the P4 processor. 
However, in some cases there is a performance penalty for using the wrong type on the P3. 
It is unknown whether future processors and processors from other vendors also have a 
penalty for using the wrong type. The reason for this performance penalty is, I guess, that 
the processor may do certain kinds of optimizations on a chain of dependent floating-point 
instructions, which is only possible when the instructions are dedicated to floating-point data 
only. It is therefore recommended to always use the right type of instruction if such an 
instruction is available. 
 
There are certain floating-point instructions that have no integer equivalent and which may 
be useful for handling integer data. This includes the MOVAPS and MOVNTPS instructions 
which are useful for moving 16 bytes of data from and to memory on the P3. The P4 has 
integer versions of the same instructions, MOVDQA and MOVNTDQ. 
 
The MOVSS instruction may be useful for moving 32 bits of data from one XMM register to 
another, while leaving the rest of the destination register unchanged (not if source is a 
memory operand). 
 
Most other movements of integer data within and between registers can be done with the 
various shuffle, pack, unpack and shift instructions. 

Converting binary to decimal numbers 
The FBSTP instruction provides a simple and convenient way of converting a binary number 
to decimal, although not necessarily the fastest method. 
 

19.6 Moving blocks of data (All processors)  
There are several ways to move large blocks of data. The most common method is REP 
MOVSD. See page 114 about the speed of this instruction. 
 
In many cases it is faster to use instructions that move more than 4 bytes at a time. Make 
sure that both source and destination are aligned by 8 if you are moving 8 bytes at a time, 
and aligned by 16 if you are moving 16 bytes at a time. If the size of the block you want to 
move is not a multiple of 8, respectively 16, then it is better to pad the buffers with extra 
space in the end and move a little more data than needed, than to move the extra data 
using other methods. 
 
On P1 and PMMX it is advantageous to use FILD and FISTP with 8 byte operands if the 
destination is not in the cache. You may roll out the loop by two (FILD / FILD / FXCH / 
FISTP / FISTP). 



 
On P2 and P3 it is advantageous to use MMX registers for moving 8 bytes at a time if the 
above conditions are not met and the destination is likely to be in the level 1 cache. The 
loop may be rolled out by two. 
 
On the P3, the fastest way of moving data is to use the MOVAPS instruction if the 
conditions on page 114 are not met or if the destination is in the level 1 or level 2 cache: 
 

        SUB     EDI, ESI 
TOP:    MOVAPS  XMM0, [ESI] 
        MOVAPS  [ESI+EDI], XMM0 
        ADD     ESI, 16 
        DEC     ECX 
        JNZ     TOP 

 
On the P3 you also have the option of writing directly to RAM memory without involving the 
cache by using the MOVNTQ or MOVNTPS instruction. This can be useful if you don't want 
the destination to go into a cache. MOVNTPS is only slightly faster than MOVNTQ. 
 
On the P4, the fastest way of moving blocks of data is to use MOVDQA. You may use 
MOVNTDQ if you don't want the destination to be cached, but MOVDQA is often faster. REP 
MOVSD may still be the best choice for small blocks of data if the block size is varying and a 
loop would suffer a branch misprediction. 
 
For further advices on improving memory access see the Intel Pentium 4 and Intel Xeon 
Processor Optimization Reference Manual. 
 

19.7 Self-modifying code (All processors)  
The penalty for executing a piece of code immediately after modifying it is approximately 19 
clocks for P1, 31 for PMMX, and 150-300 for PPro, P2 and P3. The P4 will purge the entire 
trace cache after self-modifying code. The 80486 and earlier processors require a jump 
between the modifying and the modified code in order to flush the code cache. 
 
To get permission to modify code in a protected operating system you need to call special 
system functions: In 16-bit Windows call ChangeSelector; in 32-bit Windows call 
VirtualProtect and FlushInstructionCache (or put the code in a data segment). 
 
Self-modifying code is not considered good programming practice. It should only be used if 
the gain in speed is substantial and the modified code is executed so many times that the 
advantage outweighs the penalties for using self-modifying code. 
 

20 Testing speed  
The microprocessors in the Pentium family have an internal 64-bit clock counter which can 
be read into EDX:EAX using the instruction RDTSC (read time stamp counter). This is very 
useful for measuring exactly how many clock cycles a piece of code takes. 
 
On the PPro, P2, P3 and P4 processors, you have to insert XOR EAX,EAX / CPUID before 
and after each RDTSC to prevent it from executing in parallel with anything else. CPUID is 
a serializing instruction, which means that it flushes the pipeline and waits for all pending 
operations to finish before proceeding. This is very useful for testing purposes. 
 
The RDTSC instruction cannot execute in virtual mode on the P1 and PMMX, so if you are 
testing DOS programs on these processors you must run in real mode. 
 



The biggest problem when counting clock ticks is to avoid interrupts. Protected operating 
systems may not allow you to clear the interrupt flag, so you cannot avoid interrupts and 
task switches during the test. There are several alternative ways to overcome this problem: 
 

1. Run the test code with a high priority to minimize the risk of interrupts and task 
switches. 
 

2. If the piece of code you are testing is relatively short then you may repeat the test 
several times and assume that the lowest of the clock counts measured represents a 
situation where no interrupt has occurred. 
 

3. If the piece of code you are testing takes so long time that interrupts are unavoidable 
then you may repeat the test many times and take the average of the clock count 
measurements. 
 

4. Make a virtual device driver to clear the interrupt flag. 
   

5. Use an operating system that allows clearing the interrupt flag (e.g. Windows 98 
without network, in console mode). 
 

6. Start the test program in real mode using the old DOS operating system. 
 
My test programs use method 1, 2, 5 and 6. These programs are available at 
www.agner.org/assem/testp.zip. The test programs that use method 6 set up a segment 
descriptor table and switch to 32-bit protected mode with the interrupt flag cleared. You can 
insert the code you want to test into these test programs. You need a bootable disk with 
Windows 98 or earlier to get access to run the test programs in real mode. 
 
Remember when you are measuring clock ticks that a piece of code always takes longer 
time the first few times it is executed where it is not in the code cache or trace cache. 
Furthermore, it may take three iterations before the branch predictor has adapted to the 
code. 
 
The alignment effects on the PPro, P2 and P3 processors make time measurements very 
difficult on these processors. Assume that you have a piece code and you want to make a 
change which you expect to make the code a few clocks faster. The modified code does not 
have exactly the same size as the original. This means that the code below the modification 
will be aligned differently and the instruction fetch blocks will be different. If instruction fetch 
and decoding is a bottleneck, which is often the case on these processors, then the change 
in the alignment may make the code several clock cycles faster or slower. The change in 
the alignment may actually have a larger effect on the clock count than the modification you 
have made. So you may be unable to verify whether the modification in itself makes the 
code faster or slower. It can be quite difficult to predict where each instruction fetch block 
begins, as explained on page 62. 
 
The P1, PMMX and P4 processors do not have these alignment problems. The P4 does, 
however, have a somewhat similar, though less severe, effect. This effect is caused by 
changes in the alignment of uops in the trace cache. The time it takes to jump to the least 
common (but predicted) branch after a conditional jump instruction may differ by up to two 
clock cycles on different alignments if trace cache delivery is the bottleneck. The alignment 
of uops in the trace cache lines is difficult to predict (see page 79). 
 
The processors in the Pentium family have special performance monitor counters which can 
count events such as cache misses, misalignments, branch mispredictions, etc. You need 
privileged access to set up these counters. The performance monitor counters are model 
specific. This means that you must use a different test setup for each microprocessor 
model. Details about how to use the performance monitor counters can be found in Intel's 
Software Developer's Manuals. 

http://www.agner.org/assem/testp.zip


 
The test programs at www.agner.org/assem/testp.zip give access to the performance 
monitor counters when run under real mode DOS. 

http://www.agner.org/assem/testp.zip


 

21 List of instruction timings for P1 and PMMX  

21.1 Integer instructions (P1 and PMMX)  

Explanation of column headings: 
 
Operands: r = register, m = memory, i = immediate data, sr = segment register 
m32 = 32 bit memory operand, etc. 
 
Clock cycles: The numbers are minimum values. Cache misses, misalignment, and 
exceptions may increase the clock counts considerably. 
 
Pairability: u = pairable in u-pipe, v = pairable in v-pipe, uv = pairable in either 
pipe, np = not pairable. 
 
 
Instruction Operands Clock cycles Pairability 

NOP  1 uv 

MOV r/m, r/m/i 1 uv 

MOV r/m, sr 1 np 

MOV sr , r/m >= 2 b) np 

MOV m , accum 1 uv h) 

XCHG (E)AX, r 2 np 

XCHG r , r 3 np 

XCHG r , m >15 np 

XLAT  4 np 

PUSH r/i 1 uv 

POP r 1 uv 

PUSH m 2 np 

POP m 3 np 

PUSH sr 1 b) np 

POP sr >= 3 b) np 

PUSHF  3-5 np 

POPF  4-6 np 

PUSHA POPA  5-9 i) np 

PUSHAD POPAD  5 np 

LAHF SAHF  2 np 

MOVSX MOVZX r , r/m 3 a) np 

LEA r , m 1 uv 

LDS LES LFS LGS LSS m 4 c) np 

ADD SUB AND OR XOR r , r/i 1 uv 

ADD SUB AND OR XOR r , m 2 uv 

ADD SUB AND OR XOR m , r/i 3 uv 

ADC SBB r , r/i 1 u 

ADC SBB r , m 2 u 

ADC SBB m , r/i 3 u 

CMP r , r/i 1 uv 

CMP m , r/i 2 uv 

TEST r , r 1 uv 

TEST m , r 2 uv 



TEST r , i 1 f) 

TEST m , i 2 np 

INC DEC r 1 uv 

INC DEC m 3 uv 

NEG NOT r/m 1/3 np 

MUL IMUL r8/r16/m8/m16 11 np 

MUL IMUL all other versions 9 d) np 

DIV r8/m8 17 np 

DIV r16/m16 25 np 

DIV r32/m32 41 np 

IDIV r8/m8 22 np 

IDIV r16/m16 30 np 

IDIV r32/m32 46 np 

CBW CWDE  3 np 

CWD CDQ  2 np 

SHR SHL SAR SAL r , i 1 u 

SHR SHL SAR SAL m , i 3 u 

SHR SHL SAR SAL r/m, CL 4/5 np 

ROR ROL RCR RCL r/m, 1 1/3 u 

ROR ROL r/m, i(><1) 1/3 np 

ROR ROL r/m, CL 4/5 np 

RCR RCL r/m, i(><1) 8/10 np 

RCR RCL r/m, CL 7/9 np 

SHLD SHRD r, i/CL 4 a) np 

SHLD SHRD m, i/CL 5 a) np 

BT r, r/i 4 a) np 

BT m, i 4 a) np 

BT m, i 9 a) np 

BTR BTS BTC r, r/i 7 a) np 

BTR BTS BTC m, i 8 a) np 

BTR BTS BTC m, r 14 a) np 

BSF BSR r , r/m 7-73 a) np 

SETcc r/m 1/2 a) np 

JMP CALL short/near 1 e) v 

JMP CALL far >= 3 e) np 

conditional jump short/near 1/4/5/6 e) v 

CALL JMP r/m 2/5 e np 

RETN  2/5 e np 

RETN i 3/6 e) np 

RETF  4/7 e) np 

RETF i 5/8 e) np 

J(E)CXZ short 4-11 e) np 

LOOP short 5-10 e) np 

BOUND r , m 8 np 

CLC STC CMC CLD STD  2 np 

CLI STI  6-9 np 

LODS  2 np 

REP LODS  7+3*n g) np 

STOS  3 np 

REP STOS  10+n g) np 

MOVS  4 np 



REP MOVS  12+n g) np 

SCAS  4 np 

REP(N)E SCAS  9+4*n g) np 

CMPS  5 np 

REP(N)E CMPS  8+4*n g) np 

BSWAP  1 a) np 

CPUID  13-16 a) np 

RDTSC  6-13 a) j) np 
 
Notes: 
a) this instruction has a 0FH prefix which takes one clock cycle extra to decode on a P1 
unless preceded by a multicycle instruction (see page 57). 
b) versions with FS and GS have a 0FH prefix. see note a. 
c) versions with SS, FS, and GS have a 0FH prefix. see note a. 
d) versions with two operands and no immediate have a 0FH prefix, see note a. 
e) see page 40 (P1) and 43 (PMMX). 
f) only pairable if register is AL, AX or EAX. 
g) add one clock cycle for decoding the repeat prefix unless preceded by a multicycle 
instruction (such as CLD). 
h) pairs as if it were writing to the accumulator. 
i) 9 if SP divisible by 4. See page 54. 
j) on P1: 6 in privileged or real mode; 11 in nonprivileged; error in virtual mode. On PMMX: 8 
and 13 clocks respectively. 
 

21.2 Floating-point instructions (P1 and PMMX)  

Explanation of column headings: 
Operands: r = register, m = memory, m32 = 32 bit memory operand, etc. 
 
Clock cycles: The numbers are minimum values. Cache misses, misalignment, denormal 
operands, and exceptions may increase the clock counts considerably. 
 
Pairability: + = pairable with FXCH, np = not pairable with FXCH. 
 
i-ov: Overlap with integer instructions. i-ov = 4 means that the last four clock cycles can 
overlap with subsequent integer instructions. 
 
fp-ov: Overlap with floating-point instructions. fp-ov = 2 means that the last two clock cycles 
can overlap with subsequent floating-point instructions. (WAIT is considered a floating-point 
instruction here) 
 
 

Instruction Operand 
Clock 
cycles Pairability i-ov fp-ov 

FLD r/m32/m64 1 + 0 0 

FLD m80 3 np 0 0 

FBLD m80 48-58 np 0 0 

FST(P) r 1 np 0 0 

FST(P) m32/m64 2 m) np 0 0 

FST(P) m80 3 m) np 0 0 

FBSTP m80 148-154 np 0 0 

FILD m 3 np 2 2 

FIST(P) m 6 np 0 0 



FLDZ FLD1  2 np 0 0 

FLDPI FLDL2E etc.  5 s) np 2 2 

FNSTSW AX/m16 6 q) np 0 0 

FLDCW m16 8 np 0 0 

FNSTCW m16 2 np 0 0 

FADD(P) r/m 3 + 2 2 

FSUB(R)(P) r/m 3 + 2 2 

FMUL(P) r/m 3 + 2 2 n) 

FDIV(R)(P) r/m 19/33/39 p) + 38 o) 2 

FCHS FABS  1 + 0 0 

FCOM(P)(P) FUCOM r/m 1 + 0 0 

FIADD FISUB(R) m 6 np 2 2 

FIMUL m 6 np 2 2 

FIDIV(R) m 22/36/42 p) np 38 o) 2 

FICOM m 4 np 0 0 

FTST  1 np 0 0 

FXAM  17-21 np 4 0 

FPREM  16-64 np 2 2 

FPREM1  20-70 np 2 2 

FRNDINT  9-20 np 0 0 

FSCALE  20-32 np 5 0 

FXTRACT  12-66 np 0 0 

FSQRT  70 np 69 o) 2 

FSIN FCOS  65-100 r) np 2 2 

FSINCOS  89-112 r) np 2 2 

F2XM1  53-59 r) np 2 2 

FYL2X  103 r) np 2 2 

FYL2XP1  105 r) np 2 2 

FPTAN  120-147 r) np 36 o) 0 

FPATAN  112-134 r) np 2 2 

FNOP  1 np 0 0 

FXCH r 1 np 0 0 

FINCSTP FDECSTP  2 np 0 0 

FFREE r 2 np 0 0 

FNCLEX  6-9 np 0 0 

FNINIT  12-22 np 0 0 

FNSAVE m 124-300 np 0 0 

FRSTOR m 70-95 np 0 0 

WAIT  1 np 0 0 
Notes: 
m) The value to store is needed one clock cycle in advance. 
n) 1 if the overlapping instruction is also an FMUL. 
o) Cannot overlap integer multiplication instructions. 
p) FDIV takes 19, 33, or 39 clock cycles for 24, 53, and 64 bit precision respectively. FIDIV 
takes 3 clocks more. The precision is defined by bit 8-9 of the floating-point control word. 
q) The first 4 clock cycles can overlap with preceding integer instructions. See page 122. 
r) clock counts are typical. Trivial cases may be faster, extreme cases may be slower. 
s) may be up to 3 clocks more when output needed for FST, FCHS, or FABS. 
 



21.3 MMX instructions (PMMX)  
A list of MMX instruction timings is not needed because they all take one clock cycle, except 
the MMX multiply instructions which take 3. MMX multiply instructions can be overlapped 
and pipelined to yield a throughput of one multiplication per clock cycle. 
 
The EMMS instruction takes only one clock cycle, but the first floating-point instruction after 
an EMMS takes approximately 58 clocks extra, and the first MMX instruction after a floating-
point instruction takes approximately 38 clocks extra. There is no penalty for an MMX 
instruction after EMMS on the PMMX (but a possible small penalty on the P2 and P3). 
 
There is no penalty for using a memory operand in an MMX instruction because the MMX 
arithmetic unit is one step later in the pipeline than the load unit. But the penalty comes 
when you store data from an MMX register to memory or to a 32-bit register: The data have 
to be ready one clock cycle in advance. This is analogous to the floating-point store 
instructions. 
 
All MMX instructions except EMMS are pairable in either pipe. Pairing rules for MMX 
instructions are described on page 54. 



 

22 List of instruction timings and uop breakdown for PPro, 
P2 and P3 

Explanation of column headings: 
Operands: r = register, m = memory, i = immediate data, sr = segment register, m32 = 
32-bit memory operand, etc. 
 
Micro-ops: The number of micro-ops that the instruction generates for each execution port. 
 
p0: port 0: ALU, etc. 
 
p1: port 1: ALU, jumps 
 
p01: instructions that can go to either port 0 or 1, whichever is vacant first. 
 
p2: port 2: load data, etc. 
 
p3: port 3: address generation for store 
 
p4: port 4: store data 
 
Latency: This is the delay that the instruction generates in a dependence chain. (This is not 
the same as the time spent in the execution unit. Values may be inaccurate in situations 
where they cannot be measured exactly, especially with memory operands). The numbers 
are minimum values. Cache misses, misalignment, and exceptions may increase the clock 
counts considerably. Floating-point operands are presumed to be normal numbers. 
Denormal numbers, NANs and infinity increase the delays by 50-150 clocks, except in XMM 
move, shuffle and Boolean instructions. Floating-point overflow, underflow, denormal or 
NAN results give a similar delay.  
 
Reciprocal throughput: One divided by the maximum throughput for several instructions of 
the same kind. This is also called issue latency. For example, a reciprocal throughput of 2 
for FMUL means that a new FMUL instruction can start executing 2 clock cycles after a 
previous FMUL. 
 

22.1 Integer instructions (PPro, P2 and P3)  

Instruction Operands Micro-ops Latency 
Reciprocal 
throughput 

  p0 p1 p01 p2 p3 p4   
NOP    1      

MOV r,r/i   1      

MOV r,m    1     

MOV m,r/i     1 1   

MOV r,sr   1      

MOV m,sr   1  1 1   

MOV sr,r 8      5  

MOV sr,m 7   1   8  

MOVSX MOVZX r,r   1      

MOVSX MOVZX r,m    1     

CMOVcc r,r 1  1      

CMOVcc r,m 1  1 1     



XCHG r,r   3      

XCHG r,m   4 1 1 1 high b)  

XLAT    1 1     

PUSH r/i   1  1 1   

POP r   1 1     

POP (E)SP   2 1     

PUSH m   1 1 1 1   

POP m   5 1 1 1   

PUSH sr   2  1 1   

POP sr   8 1     

PUSHF(D)  3  11  1 1   

POPF(D)  10  6 1     

PUSHA(D)    2  8 8   

POPA(D)    2 8     

LAHF SAHF    1      

LEA r,m 1      1 c)  

LDS LES LFS LGS          

LSS m   8 3     

ADD SUB AND OR XOR r,r/i   1      

ADD SUB AND OR XOR r,m   1 1     

ADD SUB AND OR XOR m,r/i   1 1 1 1   

ADC SBB r,r/i   2      

ADC SBB r,m   2 1     

ADC SBB m,r/i   3 1 1 1   

CMP TEST r,r/i   1      

CMP TEST m,r/i   1 1     

INC DEC NEG NOT r   1      

INC DEC NEG NOT m   1 1 1 1   

AAS DAA DAS   1       

AAD  1  2    4  

AAM  1 1 2    15  

MUL IMUL r,(r),(i) 1      4 1 

MUL IMUL (r),m 1   1   4 1 

DIV IDIV r8 2  1    19 12 

DIV IDIV r16 3  1    23 21 

DIV IDIV r32 3  1    39 37 

DIV IDIV m8 2  1 1   19 12 

DIV IDIV m16 2  1 1   23 21 

DIV IDIV m32 2  1 1   39 37 

CBW CWDE    1      

CWD CDQ  1        

SHR SHL SAR ROR          

ROL r,i/CL 1        

SHR SHL SAR ROR          

ROL m,i/CL 1   1 1 1   

RCR RCL r,1 1  1      

RCR RCL r8,i/CL 4  4      

RCR RCL r16/32,i/CL 3  3      

RCR RCL m,1 1  2 1 1 1   

RCR RCL m8,i/CL 4  3 1 1 1   

RCR RCL m16/32,i/CL 4  2 1 1 1   



SHLD SHRD r,r,i/CL 2        

SHLD SHRD m,r,i/CL 2  1 1 1 1   

BT r,r/i   1      

BT m,r/i 1  6 1     

BTR BTS BTC r,r/i   1      

BTR BTS BTC m,r/i 1  6 1 1 1   

BSF BSR r,r  1 1      

BSF BSR r,m  1 1 1     

SETcc r   1      

SETcc m   1  1 1   

JMP short/near  1      2 

JMP far 21   1     

JMP r  1      2 

JMP m(near)  1  1    2 

JMP m(far) 21   2     

conditional jump short/near  1      2 

CALL near  1 1  1 1  2 

CALL far 28   1 2 2   

CALL r  1 2  1 1  2 

CALL m(near)  1 4 1 1 1  2 

CALL m(far) 28   2 2 2   

RETN   1 2 1    2 

RETN i  1 3 1    2 

RETF  23   3     

RETF i 23   3     

J(E)CXZ short  1 1      

LOOP short 2 1 8      

LOOP(N)E short 2 1 8      

ENTER i,0   12  1 1   

ENTER a,b ca. 18 +4b  b-1 2b   

LEAVE    2 1     

BOUND r,m 7  6 2     

CLC STC CMC    1      

CLD STD    4      

CLI  9        

STI  17        

INTO    5      

LODS     2     

REP LODS    10+6n      

STOS     1 1 1   

REP STOS    ca. 5n a)     

MOVS    1 3 1 1   

REP MOVS    ca. 6n a)     

SCAS    1 2     

REP(N)E SCAS    12+7n      

CMPS    4 2     

REP(N)E CMPS    12+9n      

BSWAP  1  1      

CPUID  23-48        

RDTSC  31        

IN  18      >300  



OUT  18      >300  

PREFETCHNTA  d) m    1     

PREFETCHT0/1/2  d) m    1     

SFENCE  d)      1 1  6 
 
Notes: 
a) faster under certain conditions: see page 114. 
b) see page 113.  
c) 3 if constant without base or index register 
d) P3 only. 
 

22.2 Floating-point instructions (PPro, P2 and P3)  

Instruction Operands Micro-ops Latency 
Reciprocal 
throughput 

  p0 p1 p01 p2 p3 p4   
FLD r 1        

FLD m32/64    1   1  

FLD m80 2   2     

FBLD m80 38   2     

FST(P) r 1        

FST(P) m32/m64     1 1 1  

FSTP m80 2    2 2   

FBSTP m80 165    2 2   

FXCH r       0 ⅓ f) 
FILD m 3   1   5  

FIST(P) m 2    1 1 5  

FLDZ  1        

FLD1 FLDPI FLDL2E etc.  2        

FCMOVcc r 2      2  

FNSTSW AX 3      7  

FNSTSW m16 1    1 1   

FLDCW m16 1  1 1   10  

FNSTCW m16 1    1 1   

FADD(P) FSUB(R)(P) r 1      3 1 

FADD(P) FSUB(R)(P) m 1   1   3-4 1 

FMUL(P) r 1      5 2 g) 

FMUL(P) m 1   1   5-6 2 g) 

FDIV(R)(P) r 1      38 h) 37 

FDIV(R)(P) m 1   1   38 h) 37 

FABS  1        

FCHS  3      2  

FCOM(P) FUCOM r 1      1  

FCOM(P) FUCOM m 1   1   1  

FCOMPP FUCOMPP  1  1    1  

FCOMI(P) FUCOMI(P) r 1      1  

FCOMI(P) FUCOMI(P) m 1   1   1  

FIADD FISUB(R) m 6   1     

FIMUL m 6   1     

FIDIV(R) m 6   1     

FICOM(P) m 6   1     

FTST  1      1  

FXAM  1      2  



FPREM  23        

FPREM1  33        

FRNDINT  30        

FSCALE  56        

FXTRACT  15        

FSQRT  1      69 e,i) 

FSIN FCOS  17-9 7     27-103 e) 

FSINCOS  18-1 10     29-130 e) 

F2XM1  17-4 8     66 e) 

FYL2X  36-5 4     103 e) 

FYL2XP1  31-5 3     98-107 e) 

FPTAN  21-1 02     13-143 e) 

FPATAN  25-8 6     44-143 e) 

FNOP  1        

FINCSTP FDECSTP  1        

FFREE r 1        

FFREEP r 2        

FNCLEX    3      

FNINIT  13        

FNSAVE  141        

FRSTOR  72        

WAIT    2      
Notes: 
e) not pipelined 
f) FXCH generates 1 uop that is resolved by register renaming without going to any port. 
g) FMUL uses the same circuitry as integer multiplication. Therefore, the combined 
throughput of mixed floating-point and integer multiplications is 1 FMUL + 1 IMUL per 3 clock 
cycles. 
h) FDIV latency depends on precision specified in control word: 64 bits precision gives 
latency 38, 53 bits precision gives latency 32, 24 bits precision gives latency 18. Division by 
a power of 2 takes 9 clocks. Reciprocal throughput is 1/(latency-1). 
i) faster for lower precision. 
 

22.3 MMX instructions (P2 and P3)  

Instruction Operands Micro-ops Latency 
Reciprocal 
throughput 

  p0 p1 p01 p2 p3 p4   
MOVD MOVQ r,r   1    1 ½ 

MOVD MOVQ r64,m32/64    1    1 

MOVD MOVQ m32/64,r64     1 1  1 

PADD PSUB PCMP r64,r64   1    1 1 

PADD PSUB PCMP r64,m64   1 1    1 

PMUL PMADD r64,r64 1      3 1 

PMUL PMADD r64,m64 1   1   3 1 

PAND(N) POR PXOR r64,r64   1    1 ½ 

PAND(N) POR PXOR r64,m64   1 1    1 

PSRA PSRL PSLL r64,r64/i  1     1 1 

PSRA PSRL PSLL r64,m64  1  1    1 

PACK PUNPCK r64,r64  1     1 1 

PACK PUNPCK r64,m64  1  1    1 

EMMS  11      6 k)  

MASKMOVQ  d) r64,r64   1  1 1 2-8 2 - 30 



PMOVMSKB  d) r32,r64  1     1 1 

MOVNTQ  d) m64,r64     1 1  1 - 30 

PSHUFW  d) r64,r64,i  1     1 1 

PSHUFW  d) r64,m64,i  1  1   2 1 

PEXTRW  d) r32,r64,i  1 1    2 1 

PISRW  d) r64,r32,i  1     1 1 

PISRW  d) r64,m16,i  1  1   2 1 

PAVGB PAVGW  d) r64,r64   1    1 ½ 

PAVGB PAVGW  d) r64,m64   1 1   2 1 

PMIN/MAXUB/SW d) r64,r64   1    1 ½ 

PMIN/MAXUB/SW d) r64,m64   1 1   2 1 

PMULHUW  d) r64,r64 1      3 1 

PMULHUW  d) r64,m64 1   1   4 1 

PSADBW  d) r64,r64 2  1    5 2 

PSADBW  d) r64,m64 2  1 1   6 2 
Notes: 
d) P3 only. 
k) you may hide the delay by inserting other instructions between EMMS and any subsequent 
floating-point instruction. 
 

22.4 XMM instructions (P3)  

Instruction Operands Micro-ops Latency 
Reciprocal 
throughput 

  p0 p1 p01 p2 p3 p4   
MOVAPS r128,r128   2    1 1 

MOVAPS r128,m128    2   2 2 

MOVAPS m128,r128     2 2 3 2 

MOVUPS r128,m128    4   2 4 

MOVUPS m128,r128  1   4 4 3 4 

MOVSS r128,r128   1    1 1 

MOVSS r128,m32   1 1   1 1 

MOVSS m32,r128     1 1 1 1 

MOVHPS MOVLPS r128,m64   1    1 1 

MOVHPS MOVLPS m64,r128     1 1 1 1 

MOVLHPS MOVHLPS r128,r128   1    1 1 

MOVMSKPS r32,r128 1      1 1 

MOVNTPS m128,r128     2 2  2 - 15 

CVTPI2PS r128,r64  2     3 1 

CVTPI2PS r128,m64  2  1   4 2 

CVT(T)PS2PI r64,r128  2     3 1 

CVTPS2PI r64,m128  1  2   4 1 

CVTSI2SS r128,r32  2  1   4 2 

CVTSI2SS r128,m32  2  2   5 2 

CVT(T)SS2SI r32,r128  1  1   3 1 

CVTSS2SI r32,m128  1  2   4 2 

ADDPS SUBPS r128,r128  2     3 2 

ADDPS SUBPS r128,m128  2  2   3 2 

ADDSS SUBSS r128,r128  1     3 1 

ADDSS SUBSS r128,m32  1  1   3 1 

MULPS r128,r128 2      4 2 

MULPS r128,m128 2   2   4 2 



MULSS r128,r128 1      4 1 

MULSS r128,m32 1   1   4 1 

DIVPS r128,r128 2      48 34 

DIVPS r128,m128 2   2   48 34 

DIVSS r128,r128 1      18 17 

DIVSS r128,m32 1   1   18 17 

AND(N)PS ORPS XORPS r128,r128  2     2 2 

AND(N)PS ORPS XORPS r128,m128  2  2   2 2 

MAXPS MINPS r128,r128  2     3 2 

MAXPS MINPS r128,m128  2  2   3 2 

MAXSS MINSS r128,r128  1     3 1 

MAXSS MINSS r128,m32  1  1   3 1 

CMPccPS r128,r128  2     3 2 

CMPccPS r128,m128  2  2   3 2 

CMPccSS r128,r128  1     3 1 

CMPccSS r128,m32  1  1   3 1 

COMISS UCOMISS r128,r128  1     1 1 

COMISS UCOMISS r128,m32  1  1   1 1 

SQRTPS r128,r128 2      56 56 

SQRTPS r128,m128 2   2   57 56 

SQRTSS r128,r128 2      30 28 

SQRTSS r128,m32 2   1   31 28 

RSQRTPS r128,r128 2      2 2 

RSQRTPS r128,m128 2   2   3 2 

RSQRTSS r128,r128 1      1 1 

RSQRTSS r128,m32 1   1   2 1 

RCPPS r128,r128 2      2 2 

RCPPS r128,m128 2   2   3 2 

RCPSS r128,r128 1      1 1 

RCPSS r128,m32 1   1   2 1 

SHUFPS r128,r128,i  2 1    2 2 

SHUFPS r128,m128,i  2  2   2 2 

UNPCKHPS UNPCKLPS r128,r128  2 2    3 2 

UNPCKHPS UNPCKLPS r128,m128  2  2   3 2 

LDMXCSR m32 11      15 15 

STMXCSR m32 6      7 9 

FXSAVE m4096 116      62  

FXRSTOR m4096 89      68  
 



 

23 List of instruction timings and uop breakdown for P4 

Explanation of column headings: 
 
Instruction: instruction name. cc means any condition code. For example, Jcc can be JB, 
JNE, etc. 
 
Operands: r means any register, r32 means 32-bit register, etc.; m means any memory 
operand including indirect operands, m64 means 64-bit memory operand, etc.; i means any 
immediate constant. 
 
Uops: number of micro-ops issued from instruction decoder and stored in trace cache. 
 
Microcode: number of additional uops issued from microcode ROM. 
 
Latency: the number of clock cycles from the execution of an instruction begins to the next 
dependent instruction can begin, if the latter instruction starts in the same execution unit. 
The numbers are minimum values. Cache misses, misalignment, and exceptions may 
increase the clock counts considerably. Floating-point operands are presumed to be normal 
numbers. Denormal numbers, NANs, infinity and exceptions increase the delays. The 
latency of moves to and from memory cannot be measured accurately because of the 
problem with memory intermediates explained on page 90. You should avoid making 
optimizations that rely on the latency of memory operations. 
 
Additional latency: add this number to the latency if the next dependent instruction is in a 
different execution unit. There is no additional latency between ALU0 and ALU1. 
 
Reciprocal throughput: This is also called issue latency. This value indicates the number 
of clock cycles from the execution of an instruction begins to a subsequent independent 
instruction can begin to execute in the same execution subunit. A value of 0.25 indicates 4 
instructions per clock cycle. 
 
Port: the port through which each uop goes to an execution unit. Two independent uops 
can start to execute simultaneously only if they are going through different ports. 
 
Execution unit: Use this information to determine additional latency. When an instruction 
with more than one uop uses more than one execution unit, only the first and the last 
execution unit is listed. 
 
Execution subunit: throughput measures apply only to instructions executing in the same 
subunit. 
 
Backwards compatibility: Indicates the first microprocessor in the Intel 80x86 family that 
supported the instruction. The history sequence is: 8086, 80186, 80286, 80386, 80486, P1, 
PPro, PMMX, P2, P3, P4. Availability in processors prior to 80386 does not apply for 32-bit 
operands. Availability in PMMX and P2 does not apply to 128-bit packed instructions. 
Availability in P3 does not apply to 128-bit packed integer instructions and double precision 
floating-point instructions. 



 

23.1 integer instructions 
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Move instructions 
MOV r,r 1 0 0.5 0.5-1 0.25 0/1 alu0/1  86 c 
MOV r,i 1 0 0.5 0.5-1 0.25 0/1 alu0/1  86  
MOV r32,m 1 0 1 0 1 2 load  86  
MOV r8/r16,m 2 0 1 0 1 2 load  86  
MOV m,r 1 0 1  2 0 store  86 b,c 
MOV m,i 3 0   2 0,3 store  86  
MOV r,sr 4 2   6    86  
MOV sr,r/m 4 4 12 0 14    86 a,k 
MOVNTI m,r32 2 0   ≈33    p4  
MOVZX r,r 1 0 0.5 0.5-1 0.25 0/1 alu0/1  386 c 
MOVZX r,m 1 0 1 0 1 2 load  386  
MOVSX r,r 1 0 0.5 0.5-1 0.5 0 alu0  386 c 
MOVSX r,m 2 0 1.5 0.5-1 1 2,0   386  
CMOVcc r,r/m 3 0 6 0 3    ppro a,e 
XCHG r,r 3 0 1.5 0.5-1 1 0/1 alu0/1  86  
XCHG r,m 4 8 >100      86  
XLAT  4 0 3      86  
PUSH r 2 0 1  2    86  
PUSH i 2 0 1  2    186  
PUSH m 3 0   2    86  
PUSH sr 4 4   7    86  
POP r 2 0 1 0 1    86  
POP m 4 8   14    86  
POP sr 4 5   13    86  
PUSHF(D)  4 4   10    86  
POPF(D)  4 8   52    86  
PUSHA(D)  4 10   19    186  
POPA(D)  4 16   14    186  
LEA r,[r+r/i] 1 0 0.5 0.5-1 0.25 0/1 alu0/1  86  
LEA r,[r+r+i] 2 0 1 0.5-1 0.5 0/1 alu0/1  86  
LEA r,[r*i] 3 0 4 0.5-1 1 1 int,alu  386  
LEA r,[r+r*i] 2 0 4 0.5-1 1 1 int,alu  386  
LEA r,[r+r*i+i] 3 0 4 0.5-1 1 1 int,alu  386  
LAHF  1 0 4 0 4 1 int  86  
SAHF  1 0 0.5 0.5-1 0.5 0/1 alu0/1  86 d 
SALC  3 0 5 0 1 1 int  86  
LDS, LES, ... r,m 4 7   15    86  
LODS  4 3 6  6    86  
REP LODS  4 5n ≈ 4n+36    86  
STOS  4 2 6  6    86  
REP STOS  4 2n+3 ≈ 3n+10    86  
MOVS  4 4 6  4    86  
REP MOVS  4 ≈163+1.1n ≈ n    86  
BSWAP r 3 0 7 0 2  int,alu  486  



IN, OUT r,r/i 8 64   >1000   86  
PREFETCHCNTA m 4 2   6    p3  
PREFETCHT0/1/2 m 4 2   6    p3  
SFENCE  4 2   40    p3  
LFENCE  4 2   38    p4  
MFENCE  4 2   100    p4  
 
Arithmetic instructions 

ADD, SUB r,r 1 0 0.5 0.5-1 0.25 0/1 alu0/1  86 c 
ADD, SUB r,m 2 0 1 0.5-1 1    86 c 
ADD, SUB m,r 3 0 ≥ 8  ≥ 4    86 c 
ADC, SBB r,r 4 4 6 0 6 1 int,alu  86  
ADC, SBB r,i 3 0 6 0 6 1 int,alu  86  
ADC, SBB r,m 4 6 8 0 8 1 int,alu  86  
ADC, SBB m,r 4 7 ≥ 9  8    86  
CMP r,r 1 0 0.5 0.5-1 0.25 0/1 alu0/1  86 c 
CMP r,m 2 0 1 0.5-1 1    86 c 
INC, DEC r 2 0 0.5 0.5-1 0.5 0/1 alu0/1  86  
INC, DEC m 4 0 4  ≥ 4    86  
NEG r 1 0 0.5 0.5-1 0.5 0 alu0  86  
NEG m 3 0   ≥ 3    86  
AAA, AAS  4 27 90      86  
DAA, DAS  4 57 100      86  
AAD  4 10 22   1 int fpmul 86  
AAM  4 22 56   1 int fpdiv 86  
MUL, IMUL r8/r32 4 6 16 0 8 1 int fpmul 86  
MUL, IMUL r16 4 7 17 0 8 1 int fpmul 86  
MUL, IMUL m8/m32 4 7-8 16 0 8 1 int fpmul 86  
MUL, IMUL m16 4 10 16 0 8 1 int fpmul 86  
IMUL r32,r 4 0 14 0 4.5 1 int fpmul 386  
IMUL r32,(r),i 4 0 14 0 4.5 1 int fpmul 386  
IMUL r16,r 4 5 16 0 9 1 int fpmul 386  
IMUL r16,r,i 4 5 15 0 8 1 int fpmul 186  
IMUL r16,m16 4 7 15 0 10 1 int fpmul 186  
IMUL r32,m32 4 0 14 0 8 1 int fpmul 186  
IMUL r,m,i 4 7 14 0 10 1 int fpmul 186  
DIV r8/m8 4 20 61 0 24 1 int fpdiv 86 a 
DIV r16/m16 4 18 53 0 23 1 int fpdiv 86 a 
DIV r32/m32 4 21 50 0 23 1 int fpdiv 386  
IDIV r8/m8 4 24 61 0 24 1 int fpdiv 86 a 
IDIV r16/m16 4 22 53 0 23 1 int fpdiv 86 a 
IDIV r32/m32 4 20 50 0 23 1 int fpdiv 386 a 
CBW  2 0 1 0.5-1 1 0 alu0  86  
CWD, CDQ  2 0 1 0.5-1 0.5 0/1 alu0/1  86  
CWDE  1 0 0.5 0.5-1 0.5 0 alu0  386  
SCAS  4 3   6    86  
REP SCAS  4 ≈ 40+6n  ≈4n    86  
CMPS  4 5   8    86  
REP CMPS  4 ≈ 50+8n  ≈4n    86  
 
Logic 

AND, OR, XOR r,r 1 0 0.5 0.5-1 0.5 0 alu0  86 c 
AND, OR, XOR r,m 2 0 ≥ 1 0.5-1 ≥ 1    86 c 
AND, OR, XOR m,r 3 0 ≥ 8  ≥ 4    86 c 
TEST r,r 1 0 0.5 0.5-1 0.5 0 alu0  86 c 
TEST r,m 2 0 ≥ 1 0.5-1 ≥ 1    86 c 
NOT r 1 0 0.5 0.5-1 0.5 0 alu0  86  
NOT m 4 0   ≥ 4    86  
SHL, SHR, SAR r,i 1 0 4 1 1 1 int mmxsh 186  
SHL, SHR, SAR r,CL 2 0 6 0 1 1 int mmxsh 86 d 
ROL, ROR r,i 1 0 4 1 1 1 int mmxsh 186 d 



ROL, ROR r,CL 2 0 6 0 1 1 int mmxsh 86 d 
RCL, RCR r,1 1 0 4 1 1 1 int mmxsh 86 d 
RCL, RCR r,i 4 15 16 0 15 1 int mmxsh 186 d 
RCL, RCR r,CL 4 15 16 0 14 1 int mmxsh 86 d 
shl,shr,sar,rol,ror m,i/CL 4 7-8 10 0 10 1 int mmxsh 86 d 
RCL, RCR m,1 4 7 10 0 10 1 int mmxsh 86 d 
RCL, RCR m,i/CL 4 18 18-28  14 1 int mmxsh 86 d 
SHLD, SHRD r,r,i/CL 4 14 14 0 14 1 int mmxsh 386  
SHLD, SHRD m,r,i/CL 4 18 14 0 14 1 int mmxsh 386  
BT r,i 3 0 4 0 2 1 int mmxsh 386 d 
BT r,r 2 0 4 0 1 1 int mmxsh 386 d 
BT m,i 4 0 4 0 2 1 int mmxsh 386 d 
BT m,r 4 12 12 0 12 1 int mmxsh 386 d 
BTR, BTS, BTC r,i 3 0 6 0 2 1 int mmxsh 386  
BTR, BTS, BTC r,r 2 0 6 0 4 1 int mmxsh 386  
BTR, BTS, BTC m,i 4 7 18 0 8 1 int mmxsh 386  
BTR, BTS, BTC m,r 4 15 14 0 14 1 int mmxsh 386  
BSF, BSR r,r 2 0 4 0 2 1 int mmxsh 386  
BSF, BSR r,m 3 0 4 0 3 1 int mmxsh 386  
SETcc r 3 0 5 0 1 1 int  386  
SETcc m 4 0 5 0 3 1 int  386  
CLC, STC  3 0 10 0 2    86 d 
CMC  3 0 10 0 2    86  
CLD  4 7 52 0 52    86  
STD  4 5 48 0 48    86  
CLI  4 5 35  35    86  
STI  4 12 43  43    86  
 
Jump and call 

JMP short/near 1 0 0 0 1 0 alu0 branch 86  
JMP far 4 28 118  118 0   86  
JMP r 3 0 4  4 0 alu0 branch 86  
JMP m(near) 3 0 4  4 0 alu0 branch 86  
JMP m(far) 4 31 11  11 0   86  
Jcc short/near 1 0 0  2-4 0 alu0 branch 86  
J(E)CXZ short 4 4 0  2-4 0 alu0 branch 86  
LOOP short 4 4 0  2-4 0 alu0 branch 86  
CALL near 3 0 2  2 0 alu0 branch 86  
CALL far 4 34    0   86  
CALL r 4 4 8   0 alu0 branch 86  
CALL m(near) 4 4 9   0 alu0 branch 86  
CALL m(far) 4 38    0   86  
RETN  4 0 2   0 alu0 branch 86  
RETN i 4 0 2   0 alu0 branch 86  
RETF  4 33 11   0   86  
RETF i 4 33 11   0   86  
IRET  4 48 24   0   86  
ENTER i,0 4 12 26  26    186  
ENTER i,n 4 45+24n   128+16n   186  
LEAVE  4 0 3  3    186  
BOUND m 4 14 14  14    186  
INTO  4 5 18  18    86  
INT i 4 84 644      86  
 
Other 

NOP  1 0 0  0.25 0/1 alu0/1  86  
PAUSE  4 2       p4  
CPUID  4 39-81  200-500   p5  
RDTSC  4 7   80    p5  

Notes: 
a) Add 1 uop if source is a memory operand. 



b) Uses an extra uop (port 3) if SIB byte used. A SIB byte is needed if the memory operand 
has more than one pointer register, or a scaled index, or ESP is used as base pointer. 
c) Add 1 uop if source or destination, but not both, is a high 8-bit register (AH, BH, CH, DH). 
d) Has false dependence on the flags in most cases. 
e) Not available on PMMX 
k) Latency is 12 in 16-bit real or virtual mode, 24 in 32-bit protected mode. 
 

23.2 Floating-point instructions 
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Move instructions 
FLD r 1 0 6 0 1 0 mov  87  
FLD m32/m64 1 0 ≈ 7 0 1 2 load  87  
FLD m80 3 4   6 2 load  87  
FBLD m80 3 75   90 2 load  87  
FST(P) r 1 0 6 0 1 0 mov  87  
FST(P) m32/m64 2 0 ≈ 7  2-3 0 store  87  
FSTP m80 3 8   8 0 store  87  
FBSTP m80 3 311   400 0 store  87  
FXCH r 1 0 0 0 1 0 mov  87  
FILD m32/64 2 0 ≈ 10  1 2 load  87  
FILD m16 3 3 ≈ 10  6 2 load  87  
FIST m32/64 2 0 ≈ 10  2-3 0 store  87  
FIST m16 3 0 ≈ 10  2-4 0 store  87  
FISTP m 3 0 ≈ 10  2-4 0 store  87  
FLDZ  1 0   2 0 mov  87  
FLD1  2 0   2 0 mov  87  
FCMOVcc st(0),r 4 0 2-4 1 4 1 fp  ppro e 
FFREE r 3 0   4 0 mov  87  
FINCSTP, FDECSTP  1 0 0 0 1 0 mov  87  
FNSTSW AX 4 0 11 0 3 1   287  
FSTSW AX 6 0 11 0 3 1   287  
FNSTSW m16 4 4   6 0   87  
FNSTCW m16 4 4   6 0   87  
FLDCW m16 4 7 (3)  (8) 0,2   87 f 
 
Arithmetic instructions 

FADD(P),FSUB(R)(P) r 1 0 5 1 1 1 fp add 87  
FADD,FSUB(R) m 2 0 5 1 1 1 fp add 87  
FIADD,FISUB(R) m32 3 0 5 1 2 1 fp add 87  
FIADD,FISUB(R) m16 3 4 6 0 6 1 fp add 87  
FMUL(P) r 1 0 7 1 2 1 fp mul 87  
FMUL m 2 0 7 1 2 1 fp mul 87  
FIMUL m32 3 4 7 1 6 1 fp mul 87  
FIMUL m16 3 0 7 1 2 1 fp mul 87  
FDIV(R)(P) r 1 0 43 0 43 1 fp div 87 g,h 
FDIV(R) m 2 0 43 0 43 1 fp div 87 g,h 
FIDIV(R) m32 3 0 43 0 43 1 fp div 87 g,h 
FIDIV(R) m16 3 4 43 0 43 1 fp div 87 g,h 



FABS  1 0 2 1 1 1 fp misc 87  
FCHS  1 0 2 1 1 1 fp misc 87  
FCOM(P), FUCOM(P) r 1 0 2 0 1 1 fp misc 87  
FCOM(P) m 2 0 2 0 1 1 fp misc 387  
FCOMPP, FUCOMPP  2 0 2 0 1 1 fp misc 87  
FCOMI(P) r 3 0 10 0 3 0,1 fp misc ppro  
FICOM(P) m32 3 0 2 0 2 1,2 fp misc 87  
FICOM(P) m16 4 4   6 1 fp misc 87  
FTST  1 0 2 0 1 1 fp misc 87  
FXAM  1 0 2 0 1 1 fp misc 87  
FRNDINT  3 15 23 0 15 0,1   87  
FPREM  6 84 212   1 fp  87  
FPREM1  6 84 212   1 fp  387  
 
Math 

FSQRT  1 0 43 0 43 1 fp div 87 g,h 
FLDPI, etc.  2 0   3 1 fp  87  
FSIN  6 ≈150 ≈180  ≈170 1 fp  387  
FCOS  6 ≈175 ≈207  ≈207 1 fp  387  
FSINCOS  7 ≈178 ≈216  ≈211 1 fp  387  
FPTAN  6 ≈160 ≈230  ≈200 1 fp  87  
FPATAN  3 92 ≈187  ≈153 1 fp  87  
FSCALE  3 24 57  66 1 fp  87  
FXTRACT  3 15 20  20 1 fp  87  
F2XM1  3 45 ≈165  63 1 fp  87  
FYL2X  3 60 ≈200  90 1 fp  87  
FYL2XP1  11 134 ≈242  ≈220 1 fp  87  
 
Other 

FNOP  1 0 1 0 1 0  mov 87  
(F)WAIT  2 0 0 0 1 0  mov 87  
FNCLEX  4 4   96 1   87  
FNINIT  6 29   172    87  
FNSAVE  4 174 456  420 0,1   87  
FRSTOR  4 96 528  532    87  
FXSAVE  4 69 132  96    p3 i 
FXRSTOR  4 94 208  208    p3 i 
 
e) Not available on PMMX 
f) The latency for FLDCW is 3 when the new value loaded is the same as the value of the 
control word before the preceding FLDCW, i.e. when alternating between the same two 
values. In all other cases, the latency and reciprocal throughput is 143. See page 125. 
g) Latency and reciprocal throughput depend on the precision setting in the F.P. control 
word. Single precision: 23, double precision: 38, long double precision (default): 43. 
h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit. 
i) Takes 6 uops more and 40-80 clocks more when XMM registers are disabled. 



 

23.3 SIMD integer instructions 
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Move instructions 
MOVD r32, r64 2 0 5 1 1 0 fp  PMMX  
MOVD r64, r32 2 0 2 0 2 1 mmx alu PMMX  
MOVD r64,m32 1 0 ≈ 8 0 1 2 mmx  PMMX  
MOVD r32, r128 2 0 10 1 2 0 fp  PMMX  
MOVD r128, r32 2 0 6 1 2 1 mmx shift PMMX  
MOVD r128,m32 1 0 ≈ 8 0 1 2 load  PMMX  
MOVD m32, r 2 0 ≈ 8  2 0,1   PMMX  
MOVQ r64,r64 1 0 6 0 1 0 mov  PMMX  
MOVQ r128,r128 1 0 2 1 2 1 mmx shift PMMX  
MOVQ r,m64 1 0 ≈ 8  1 2 load  PMMX  
MOVQ m64,r 2 0 ≈ 8  2 0 mov  PMMX  
MOVDQA r128,r128 1 0 6 0 1 0 mov  p4  
MOVDQA r128,m 1 0 ≈ 8  1 2 load  p4  
MOVDQA m,r128 2 0 ≈ 8  2 0 mov  p4  
MOVDQU r128,m 4 0   2 2 load  p4 k 
MOVDQU m,r128 4 6   2 0 mov  p4 k 
MOVDQ2Q r64,r128 3 0 8 1 2 0,1 mov-mmx p4  
MOVQ2DQ r128,r64 2 0 8 1 2 0,1 mov-mmx p4  
MOVNTQ m,r64 3 0   75 0 mov  p3  
MOVNTDQ m,r128 2 0   18 0 mov  p4  
PACKSSWB/DW PACKUSWB r64,r/m 1 0 2 1 1 1 mmx shift PMMX a 
PACKSSWB/DW PACKUSWB r128,r/m 1 0 4 1 2 1 mmx shift PMMX a 
PUNPCKH/LBW/WD/DQ r64,r/m 1 0 2 1 1 1 mmx shift PMMX a 
PUNPCKHBW/WD/DQ/QDQ r128,r/m 1 0 4 1 2 1 mmx shift p4 a 
PUNPCKLBW/WD/DQ/QDQ r128,r/m 1 0 2 1 2 1 mmx shift p4 a 
PSHUFD r128,r128,i 1 0 4 1 2 1 mmx shift p4  
PSHUFL/HW r128,r128,i 1 0 2 1 2 1 mmx shift p3  
PSHUFW r64,r64,i 1 0 2 1 1 1 mmx shift p3  
MASKMOVQ r64,r64 4 4   7 0 mov  p3  
MASKMOVDQU r128,r128 4 6   10 0 mov  p4  
PMOVMSKB r32,r 2 0 7 1 3 0,1 mmx-alu0 p3  
PEXTRW r32,r64,i 3 0 8 1 2 1 mmx-int p3  
PEXTRW r32,r128,i 3 0 9 1 2 1 mmx-int p4  
PINSW r64,r32,i 2 0 3 1 2 1 int-mmx p3  
PINSW r128,r32,i 2 0 4 1 2 1 int-mmx p4  
 
Arithmetic instructions 

PADDB/W/D PADD(U)SB/W r,r/m 1 0 2 1 1,2 1 mmx alu PMMX a,j 
PSUBB/W/D PSUB(U)SB/W r,r/m 1 0 2 1 1,2 1 mmx alu PMMX a,j 
PADDQ, PSUBQ r64,r/m 1 0 2 1 1 1 mmx alu p4 a 
PADDQ, PSUBQ r128,r/m 1 0 4 1 2 1 mmx alu p4 a 
PCMPEQB/W/D PCMPGTB/W/D  r,r/m 1 0 2 1 1,2 1 mmx alu PMMX a,j 
PMULLW PMULHW r,r/m 1 0 6 1 1,2 1 fp mul PMMX a,j 
PMULHUW r,r/m 1 0 6 1 1,2 1 fp mul p3 a,j 



PMADDWD r,r/m 1 0 6 1 1,2 1 fp mul PMMX a,j 
PMULUDQ r,r/m 1 0 6 1 1,2 1 fp mul p4 a,j 
PAVGB/W r,r/m 1 0 2 1 1,2 1 mmx alu p3 a,j 
PMIN/MAXUB r,r/m 1 0 2 1 1,2 1 mmx alu p3 a,j 
PMIN/MAXSW r,r/m 1 0 2 1 1,2 1 mmx alu p3 a,j 
PAVGB/W r,r/m 1 0 2 1 1,2 1 mmx alu p3 a,j 
PSADBW r,r/m 1 0 4 1 1,2 1 mmx alu p3 a,j 
 
Logic 

PAND, PANDN r,r/m 1 0 2 1 1,2 1 mmx alu PMMX a,j 
POR, PXOR r,r/m 1 0 2 1 1,2 1 mmx alu PMMX a,j 
PSL/RLW/D/Q, PSRAW/D r,i/r/m 1 0 2 1 1,2 1 mmx shift PMMX a,j 
PSLLDQ, PSRLDQ r128,i/r/m 1 0 4 1 2 1 mmx shift P4 a 
 
Other 

EMMS  4 11 12  12 0   PMMX  
Notes: 
a) Add 1 uop if source is a memory operand. 
j) Reciprocal throughput is 1 for 64 bit operands, and 2 for 128 bit operands. 
k) It may be advantageous to replace this instruction by two 64-bit moves 
 

23.4 SIMD floating-point instructions 
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Move instructions 
MOVAPS/D r,r 1 0 6 0 1 0 mov  p3  
MOVAPS/D r,m 1 0 ≈ 7 0 1 2   p3  
MOVAPS/D m,r 2 0 ≈ 7  2 0   p3  
MOVUPS/D r,r 1 0 6 0 1 0 mov  p3  
MOVUPS/D r,m 4 0   2 2   p3 k 
MOVUPS/D m,r 4 6   8 0   p3 k 
MOVSS r,r 1 0 2 0 2 1 fp  p3  
MOVSD r,r 1 0 2 1 2 1 fp  p3  
MOVSS, MOVSD r,m 1 0 ≈ 7 0 1 2   p3  
MOVSS, MOVSD m,r 2 0   2 0   p3  
MOVHLPS r,r 1 0 4 0 2 1 fp  p3  
MOVLHPS r,r 1 0 2 0 2 1 fp  p3  
MOVHPS/D, MOVLPS/D r,m 3 0   4 2   p3  
MOVHPS/D, MOVLPS/D m,r 2 0   2 0   p3  
MOVNTPS/D m,r 2 0   4 0   p3  
MOVMSKPS/D r32,r 2 0 6 1 3 1 fp  p3  
SHUFPS/D r,r/m,i 1 0 4 1 2 1 mmx shift p3  
UNPCKHPS/D r,r/m 1 0 4 1 2 1 mmx shift p3  
UNPCKLPS/D r,r/m 1 0 2 1 2 1 mmx shift p3  
 
Conversion 

CVTPS2PD r,r/m 4 0 7 1 4 1 mmx shift p4 a 
CVTPD2PS r,r/m 2 0 10 1 2 1 fp-mmx p4 a 



CVTSD2SS r,r/m 4 0 14 1 6 1 mmx shift p4 a 
CVTSS2SD r,r/m 4 0 10 1 6 1 mmx shift p4 a 
CVTDQ2PS r,r/m 1 0 4 1 2 1 fp  p4 a 
CVTDQ2PD r,r/m 3 0 9 1 4 1 mmx-fp p4 a 
CVT(T)PS2DQ r,r/m 1 0 4 1 2 1 fp  p4 a 
CVT(T)PD2DQ r,r/m 2 0 9 1 2 1 fp-mmx p4 a 
CVTPI2PS r128,r64/m 4 0 10 1 4 1 mmx  p3 a 
CVTPI2PD r128,r64/m 4 0 11 1 5 1 fp  p4 a 
CVT(T)PS2PI r64,r128/m 3 0 7 0 2 0,1 fp-mmx p3 a 
CVT(T)PD2PI r64,r128/m 3 0 11 1 3 0,1 fp  p4 a 
CVTSI2SS r128,r32/m 3 0 10 1 3 1 fp-mmx p3 a 
CVTSI2SD r128,r32/m 4 0 15 1 6 1 fp-mmx p4 a 
CVT(T)SD2SI r32,r128/m 2 0 8 1 2.5 1 fp  p4 a 
CVT(T)SS2SI r32,r128/m 2 0 8 1 2.5 1 fp  p3 a 
 
Arithmetic 

ADDPS/D ADDSS/D r,r/m 1 0 4 1 2 1 fp add p3 a 
SUBPS/D SUBSS/D r,r/m 1 0 4 1 2 1 fp add p3 a 
MULPS/D MULSS/D r,r/m 1 0 6 1 2 1 fp mul p3 a 
DIVSS r,r/m 1 0 23 0 23 1 fp div p3 a,h 
DIVPS r,r/m 1 0 39 0 39 1 fp div p3 a,h 
DIVSD r,r/m 1 0 38 0 38 1 fp div p4 a,h 
DIVPD r,r/m 1 0 69 0 69 1 fp div p4 a,h 
RCPPS PCPSS r,r/m 2 0 4 1 4 1 mmx  p3 a 
MAXPS/D MAXSS/D 
MINPS/D MINSS/D 

r,r/m 1 0 4 1 2 1 fp add p3 a 

CMPccPS/D CMPccSS/D  r,r/m 1 0 4 1 2 1 fp add p3 a 
COMISS/D UCOMISS/D  r,r/m 2 0 6 1 3 1 fp  p3 a 
 
Logic 

ANDPS/D ANDNPS/D 
ORPS/D XORPS/D 

r,r/m 1 0 2 1 2 1 mmx alu p3 a 

 
Math 

SQRTSS r,r/m 1 0 23 0 23 1 fp div p3 a,h 
SQRTPS r,r/m 1 0 39 0 39 1 fp div p3 a,h 
SQRTSD r,r/m 1 0 38 0 38 1 fp div p4 a,h 
SQRTPD r,r/m 1 0 69 0 69 1 fp div p4 a,h 
RSQRTSS r,r/m 2 0 4 1 3 1 mmx  p3 a 
RSQRTPS r,r/m 2 0 4 1 4 1 mmx  p3 a 
 
Other 

LDMXCSR m 4 8 98  100 1   p3  
STMXCSR m 4 4   6 1   p3  
Notes: 
a) Add 1 uop if source is a memory operand. 
h) Throughput of FP-MUL unit is reduced during the use of the FP-DIV unit. 
k) It may be advantageous to replace this instruction by two 64-bit moves. 



 

24 Comparison of the different microprocessors 
The following table summarizes some important differences between the microprocessors in 
the Pentium family: 
 
 P1 PMMX PPro P2 P3 P4 

code cache, kb 8 16 8 16 16 ≈ 60 
code cache associativity, ways 2 4 4 4 4 4 
data cache, kb 8 16 8 16 16 8 
data cache associativity, ways 2 4 2 4 4 4 
data cache line size 32 32 32 32 32 64 
built-in level 2 cache, kb 0 0 256 *) 256 *) 256 *) 256 *) 
level 2 cache associativity, ways 0 0 4 4 8 8 
level 2 cache bus size, bits 0 0 64 64 256 256 
MMX instructions no yes no yes yes yes 
XMM instructions no no no no yes yes 
conditional move instructions no no yes yes yes yes 
out of order execution no no yes yes yes yes 
branch prediction poor good good good good good 
branch target buffer entries 256 256 512 512 512 4096 
return stack buffer size 0 4 16 16 16 16 
branch misprediction penalty 3-4 4-5 10-20 10-20 10-20 ≥ 24 
partial register stall 0 0 5 5 5 0 
FMUL latency 3 3 5 5 5 6-7 
FMUL reciprocal throughput 2 2 2 2 2 1 
IMUL latency 9 9 4 4 4 14 
IMUL reciprocal throughput 9 9 1 1 1 5-10 
*) Celeron: 0-128, Xeon: 512 or more, many other variants available. On some versions the 
level 2 cache runs at half speed. 
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