Newsgr oups: rec.ganes. cor ewar

From DURHAM@i cevnl.rice.edu (Mark A Durham
Subject: Intro to Redcode Part |

Organi zation: Rice University, Houston, TX
Date: Thu, 14 Nov 1991 09:41:37 GVI

I ntroduction to Redcode

|. Preface - Reader Beware! { Part | }

Il. Notation { Part | }

I1l. MARS Peculiarities { Part | }
I V. Address Modes { Part Il }
V. Instruction Set { Part II }

|. Preface - Reader Beware!

The name "Core War" arguably can be clained as public domain.
Thus, any program can pass itself off as an inplementation of Core
War. ldeally, one would like to wite a Redcode program on one system
and know that it will run in exactly the same manner on every ot her
system Alas, this is not the case.

Basically, Core War systenms fall under one of four catagories:
Non-1 CW5, | CW\S' 86, | CW5' 88, or Extended. Non-ICAS systens are usually
a variant of Core War as described by A. K Dewdney in his "Conputer
Recreations" articles appearing in Scientific Arerican. |CW 86 and
| CW5' 88 systenms conformto the standards set out by the International
Core War Society in their standards of 1986 and 1988, respectively.
Ext ended systens generally support |ICA5 86, | CA5 88, and proprietary
extensions to those standards. | will discuss frequently comon
extensions as if they were available on all Extended systems (which
they nmost certainly are not).

I will not describe Non-1CWA5 systens in this article. Mdst Non-
| CW5 systens will be easily understood if you understand the systens
described in this article however. Although called "standards",

ICW5' 86 and |CW\5' 88 (to a | esser extent) both suffer from anbiguities
and extra-standard issues which | will try to address.

This is where the reader should beware. Because al nost any
interpretation of the standard(s) is as valid as any other, |
naturally prefer MY interpretation. | will try to point out other
common interpretations when anbiguities arise though, and | will
clearly indicate what is interpretation (m ne or otherw se) as such.
You have been war ned!

I'l. Notation

"86:" will indicate an ICWN5' 86 feature. "88:" will indicate an
ICW5 88 feature. "X " wll indicate an Extended feature. "Durham"”
will indicate ny biased interpretation. "Oher:" will indicate
interpretati ons adhered to by others. "Conmentary:" is ne explaining

what | am doing and why. "Editorial:" is nme railing for or against
certain usages. Itenms w thout col on-suffixed prefaces can be
consi dered uni versal .

Redcode consists of assenbly | anguage instructions of the form

<| abel > <opcode> <A-node><A-fiel d> <B-npde><B-field> <conmmrent >

An exanpl e Recode program

; Inp

; by A. K Dewdney

imp MOV i nmp, inp+l ; This program copies itself ahead one
END ; instruction and noves through nenory.

The <l abel > is optional.

86: <l abel > begins in the first colum, is one to eight characters
I ong, beginning with an al phabetic character and consisting
entirely of al phanunerals. Case is ignored ("abc" is equival ent
to "ABC').

88: <l abel > as above, except length is not linted and case is not
addressed. Only the first eight characters are considered
significant.

X: <l abel > can be preceded by any anount of whitespace (spaces, tabs,
and new i nes), consists of any nunber of significant al phanunerals
but rnust start with an al phabetic, and case is significant ("abc"
is different from"ABC').

Commentary: | will always use |lowercase letters for |abels to
di stinguish |abels fromopcodes and fami |y operands.

The <opcode> is separated fromthe <label> (if there is one) by
whi tespace. Opcodes may be entered in either uppercase or
| onercase. The case does not alter the instruction. DAT, MV,
ADD, SUB, JwmP, JMZ, JMN, DIN, CMP, SPL, and END are acceptable
opcodes.

86: SPACE is also recogni zed as an opcode.

88: SLT and EQU are recogni zed as opcodes. SPACE is not.

X: Al of the above are recognized as opcodes as well as XCH and PCT,
pl us countl ess ot her extensions.

Comment ary: END, SPACE, and EQU are known as pseudo- ops because they
really indicate instructions to the assenbler and do not produce
executable code. | wll always capitalize opcodes and pseudo- ops
to distinguish themfroml|abels and text.

The <A-node> and <A-field> taken together are referred to as the
A-operand. Simlarly, the <B-node><B-field> conbination is known
as the B-operand. The A-operand is optional for some opcodes.
The B-operand is optional for sonme opcodes. Only END can go
wi t hout at | east one operand.

86: Operands are separated by a conma.

88: Operands are separated by whitespace.

X: Operands are separated by whitespace and/or a comma. Lack of a
comma can | ead to unexpected behavi our for anbi guous constructs.

Comment ary: The ' 88 standard forces you to wite an operand w t hout

whi t espace, reserving whitespace to separate the operands. | I|ike
whi tespace in ny expressions, therefore | prefer to separate ny
operands with a comma and will do so here for clarity.

<node> is # (I medi ate Addressing), @(Indirect Addressing), or <
(86: Auto-Decrenment Indirect, 88: Pre-Decrement Indirect). A

m ssing node indicates Direct Addressing.

86: $ is an acceptable node, also indicating Direct Addressing.

88: $ is not an acceptabl e node.

X: $ is an acceptable node as in 86:.

Comment ary: The distinction between Auto-Decrenent |ndirect Addressing
and Pre-Decrenment Indirect Addressing is semantic, not syntactic.

<field> is any conbi nation of |abels and integers separated by the
arithnetic operators + (addition) and - (subtraction).

86: Parentheses are explicitly forbidden. "*" is defined as a speci al
| abel synbol neaning the current statenent.

88: Arithnetic operators * (rmultiplication) and / (integer division)
are added. "*" is NOT allowed as a special l|abel as in 86:.

X: Parentheses and whitespace are pernitted in expressions.

Comment ary: The use of "*" as meaning the current statenment may be
useful in some real assenblers, but is conpletely superfluous in a
Redcode assenbler. The current statement can al ways be referred
to as 0 in Redcode.

<conment > begins with a ; (sem colon), ends with a newline, and can
have any nunber of intervening characters. A coment may appear
on aline by itself with no instruction preceding it.

88: Blank lines are explicitly all owed.

I will often use "A" to nmean any A-operand and "B" to nean any
B-operand (capitalization is inportant). | use "a" to nmean any A-
field and "b" to mean any B-field. For this reason, | never use "a
or "b" as an actual |abel.

| encl ose sets of operands or instructions in curly braces. Thus
"A" is equivalent to "{ a, #a, @, <a }". | use "???" to nean any
opcode and "x" or "label" as an arbitrary |label. Thus, the conplete
fam |y of acceptable Redcode statements can be represented as

X ??? A B ; This represents all possible Redcode statemnents.

"???" is rarely used as nost often we wi sh to discuss the behavi our of

a specific opcode. | will often use |abels such as "x-1" (despite its
illegality) for the instruction before the instruction |abelled "x",
for the logically obvious reason. "M always stands for the integer

with the sane value as the MARS nenory si ze.

I1l. MARS Peculiarities

There are two things about MARS whi ch make Redcode different from
any other assenbly | anguage. The first of these is that there are no
absol ute addresses in MARS. The second is that nenory is circul ar.

Because there are no absol ute addresses, all Redcode is witten
using relative addressing. 1In relative addressing, all addresses are
interpreted as offsets fromthe currently executing instruction.
Address 0 is the currently executing instruction. Address -1 was the
previ ously executed instruction (assumng no junps or branches).
Address +1 is the next instruction to execute (again assum ng no junps
or branches).

Because menory is circular, each instruction has an infinite nunber
of addresses. Assuning a nenory size of M the current instruction
has the addresses { ..., -2M -M 0, M 2M ... }. The previous
instructionis { ..., -1-2M -1-M -1, M1, 2M1, ... }. The next

instructionis { ..., 1-2M 1-M 1, M+, 2M1, ... }.

Comment ary: MARS systens have historically been made to operate on
obj ect code which takes advantage of this circularity by insisting
that fields be normalized to positive integers between 0 and M1,
inclusive. Since nenory size is often not known at the time of
assenbly, a |oader in the MARS system (which does know t he nenory
size) takes care of field normalization in addition to its nornal
operations of code placenent and task pointer initialization.

Comment ary: Redcode programers often want to know what the nenory
size of the MARS is ahead of time. This is not always possible.
Since nornalized fields can only represent integers between 0 and
M1 inclusive, we can not represent Min a nornalized field. The
next best thing? M1. But how can we wite M1 when we do not
know the nenory size? Recall fromabove that -1 is equivalent to
M 1. Final word of caution: -1/2 is assenbled as 0 (nhot as M 2)
since the expression is evaluated within the assenbler as -0.5 and
then truncat ed.

86: Only two assenbl ed- Redcode prograns (warriors) are |oaded into
MARS nmenory (core).

88: Core is initialized to (filled with) DAT 0, O before |oading any
warriors. Any nunber of warriors may be | oaded into core.

Comment ary: Tournaments al nost always pit warrior versus warrior with
only two warriors in core.

MARS is a nulti-tasking system \Warriors start as just one task,
but can "split" off additional tasks. Wen all of a warriors tasks
have been killed, the warrior is declared dead. Wen there is a sole
warrior still executing in core, that warrior is declared the w nner.
86: Tasks are |limted to a maxi num of 64 for each warrior.

88: The task limt is not set by the standard.

Newsgr oups: rec.ganes. cor ewar

From DURHAM@i cevnl.rice.edu (Mark A Durham
Subject: Intro to Redcode Part 11

Organi zation: Rice University, Houston, TX
Date: Thu, 14 Nov 1991 09:45:13 GVI

I V. Address Modes

Addr essi ng nodes subtly (sometimes not-so-subtly) alter the
behavi our of instructions. A somewhat brief description of their
general properties is given here. Specifics will be left to the
instruction set section.

An octothorpe (#) is used to indicate an operand with an | nmediate
Address Mdde. Inmediate node data is contained in the current
instruction’s field. If the A-nbde is imMmediate, the data is in the
A-field. |If the B-node is imediate, the data is in the B-field.

If no node indicator is present (86: or the US dollar sign'$ is
present), Direct Address Mdde is used. Direct addresses refer to
instructions relative to the current instruction. Address O refers to
the current instruction. Direct address -1 refers to the (physically)
previous instruction. Direct address +1 refers to the (physically)
next instruction.

The comrercial-at (@ is used to indicate |Indirect Address Mode.

In indirect addressing, the indirect address points to an instruction
as in direct addressing, except the target is not the instruction to
whi ch the indirect address points but rather the instruction pointed
to by the B-field of the instruct pointed to by the indirect address.
Exanpl e:

X-2 DAT #0, #0 ; Target instruction.
x-1 DAT #0, #-1 ; Pointer instruction.
X MOV 0, @1 ; Copies this instruction to |ocation x-2.

The less-than (<) is used to indicate (86: Auto-, 88: Pre-)
Decrenment Indirect Address Mdde. |Its behaviour is just like that of
I ndirect Address Mdde, except the pointer is decrenented before use.
Exanpl e:

X-2 DAT #0, #0 ; Target instruction
x-1 DAT #0, #0 ; Pointer instruction. Conpare to @ exanple.
X MOV 0, <-1 ; Copies this instruction to |ocation x-2.

Comment ary: Al though Decrenent |Indirect addressing appears to be a
sinpl e extension of Indirect addressing, it is really very tricky
at tines - especially when conbined with DIN. There are senmatic
di fferences between the '86 and ' 88 standards, thus the change in
name from Aut o-Decrenent to Pre-Decrenment. These differences are
di scussed below. This discussion is non-essential for the average
Redcode progranmer. | suggesting skipping to the next section for
t he weak- st omached.

86: Durham Instructions are fetched frommenory into an instruction
regi ster. Each operand is evaluated, storing a location (into an
address register) and an instruction (into a value register) for
each operand. After the operands have been eval uated, the
instruction is executed.

Operand Evaluation: If the node is i mediate, the address register
is loaded with O (the current instruction’s address) and the val ue
register is loaded with the current instruction. |If the node is
direct, the address register is loaded with the field val ue and
the value register is |loaded with the instruction pointed to by

the address register. |If the nbde is indirect, the address
register is loaded with the sumof the field value and the B-field
value of the instruction pointed to by the field value and the
value register is |loaded with the instruction pointed to by the
address register. |If the node is auto-decrenent, the address
register is loaded with a value one less than the sumof the field
value and the B-field value of the instruction pointed to by the
field value and the value register is |oaded with the instruction
pointed to by the address register. AFTER the operands have been
eval uated (but before instruction execution), if either nbde was
aut o-decrement, the appropriate nmenory |ocation is decremnented.

If both nobdes were auto-decrenent and both fields pointed to the
same pointer, that nenory |location is decrenmented twice. Note
that this instruction in nenmory then points to a different
instruction than either operand and also differs from any copies
of it in registers.

86: Other: As above, except there are no registers. Everything is
done in menory.

Commentary: |CA5 86 clearly states the use of an instruction register,
but the other operand address and val ue registers are only
inplied. Anbiguities and |ack of strong statenments delineating
what takes place in nmenory and what takes place in registers
condemmed | CA5' 86 to eternal confusion and gave birth to | CA5 88.

88: As above except everything is done in menory and Pre-Decrenent
I ndirect replaces Auto-Decrenent Indirect. Pre-Decrenment Indirect
decrenents nmenory as it is evaluating the operands rather than
after. It evaluates operand A before eval uating operand B.

V. Instruction Set

DAT A B
The DAT (data) instruction serves two purposes. First, it allows
you to store data for use as pointers, offsets, etc. Second, any task
whi ch executes a DAT instruction is renoved fromthe task queue. Wen
all of warrior’s tasks have been renpoved fromthe queue, that warrior
has | ost.
86: DAT allows only one operand - the B-operand. The A-field is left
undefi ned (the exanple shows #0), but conparisons of DAT
instructions with identical B-operands nust yield equality.

88: DAT allows two operands but only two nodes - imedi ate and
pre-decrenent.
X: DAT takes one or two operands and accepts all mpbdes. |If only one

operand is present, that operand is considered to be the B-operand
and the A-operand defaults to #0.

Commentary: It is inmportant to note that any decrement(s) WLL occur
before the task is renpbved fromthe queue since the instruction
executes only after the operand eval uati on.

MOV A B
The MOV (nmove) instruction either copies a field value (if either

nmode is imediate) or an entire instruction (if neither node is

imedi ate) to another |ocation in core (fromA to B).

86: Durham MOV #a, #b changes itself to MOV #a, #a.

Commentary: There is a clear typographical error in | CA 86 which
changes the interpretation of MOV #a, B to something non-sensical.
For those with a copy of ICW5 86, delete the term"B-field" from
the next-to-last line of the second columm on page 4.

88: No inmmedi ate B-npdes are all owed.

X: I mmedi ate B-nodes are all owed and have the sane effect as a
B- operand of 0. (See 86: Durham above).

ADD A B

86: The ADD instruction adds the value at the A-location to the val ue
at the B-location, replacing the B-location’s old contents.

88: If the A-nmbde is imediate, ADDis interpreted as above. |If the
A-node is not imediate, both the A-field and the B-field of the
instruction pointed to by the A-operand are added to the A-field
and B-field of the instruction pointed to by the B-operand,
respectively. The B-npde can not be immedi ate.

X: I mmedi ate B-nodes are all owed and have the sane effect as in 86:.
Exanpl e: ADD #2, #3 becomes ADD #2, #5 when executed once.

SUB A B
The SUB (subtract) instruction is interpreted as above for all
three cases, except A is subtracted fromB.

JW A B
The JWP (junp) instruction changes the instruction pointer to point
to the instruction pointed to by the A-operand.
86: JMWP allows only one operand - the A-operand. The B-operand is
shown as #0.
88: JWP all ows both operands, but the A-npde can not be imedi ate.
X: JMP all ows both operands and the A-nbde can be imediate. An
i medi ate A-node operand is treated just |ike JMP 0, B when
execut ed.

JMZ A, B

The JMZ (junp if zero) instruction junps to the instruction pointed
to by the A-operand only if the B-field of the instruction pointed to
by the B-operand is zero.
88: Inmmedi ate A-nodes are not al | owned.

JW A B

The JWN (junp if non-zero) instruction junps to the instruction
pointed to by the A-operand only if the B-field of the instruction
pointed to by the B-operand is non-zero.
88: Inmmedi ate A-nodes are not al | owned.

DIN A B

The DIN (decrenment and junp if non-zero) instruction causes the
B-field of the instruction pointed to by the B-operand to be
decrenented. |If the decrenented values is non-zero, a junp to the
instruction pointed to by the A-operand is taken.
88: Inmmedi ate A-nodes are not al | owned.

CWw A B
The CWP (conpare, skip if equal) instruction conpares two fields
(if either node is inmmediate) or two entire instructions (if neither
nmode is imediate) and skips the next instruction if the two are
equi val ent .
Commentary: There is a clear typographical error in I CA 86 which
changes the interpretation of CMP #a, B to something non-sensical.
For those with a copy of ICW5 86, delete the term"B-field" from
the fifth line fromthe bottom of the second colum on page 5.
Al so, the comments to the exanple on page 6 have been sw tched
(equal is not equal and vice versa). The |abels are correct
t hough.
88: Inmedi ate B-nodes are not al | owned.

SPL A, B

The SPL (split) instruction splits the execution between this
warrior’s currently running tasks and a new task. Exanple: A battle
between two warriors, 1 and 2, where warrior 1 has two tasks (1 and
1') and warrior 2 has only one task would look like this: 1, 2, 1", 2,
1, 2, 1, 2, etc.

86: SPL allows only one operand - the B-operand. The A-operand is
shown as #0. After executing the SPL, the next instruction to
execute for this warrior is that of the newy added task (the new
task is placed at the front of the task queue). A maxi mum of 64
tasks is allowed for each warrior.

88: SPL splits the A-operand, not the B-operand. After executing the

SPL, the next instruction to execute for this warrior is the sane

instruction which woul d have executed had another task not been

added (the new task is placed at the back of the task queue).

There is no explicit task limt on warriors. |mediate A-operands

are not al |l owed.

mredi at e A-operands are all owed and behave as SPL 0, B when

execut ed.

pes

88: SLT A, B: The SLT (skip if less than) instruction skips the next
instruction if Ais less than B. No | mmedi ate B-nbdes are
al | owed.

X: I medi ate B-npdes are al | oned.

X: XCH A, B: The XCH (exchange) instructions exchanges the A-field and
the B-field of the instruction pointed to by the A-operand.

X: PCT A, B: The PCT (protect) instruction protects the instruction
pointed to by the A-operand until the protection is renoved by an
instruction attenpting to copy over the protected instruction.

Pseudo- Ops: Instructions to the Assenbl er

END
The END pseudo-op indicates the end of the Redcode source program
86: END takes no operands.
88: If ENDis followed by a |label, the first instruction to be
executed is that with the | abel follow ng END.
X: ORG A (origin) takes over this initial instruction function from

END.
Commentary: If no initial instruction is identified, the first
instruction of your programw |l be the initial instruction. You

can acconplish the same effect as "END start” or "ORG start" by
merely starting your programwth the instruction "JWP start".

86: SPACE A, B: The SPACE pseudo-op hel ps pretty-up Redcode source
listings. SPACE A, B neans to skip A lines, then keep B Ilines on
the next page. Sone assenblers do not support SPACE, but will
treat it as a comment.

88: |label EQU A: The EQU (equate) pseudo-op gives the programmer a
macro-like facility by replacing every subsequent occurrence of
the label "label”™ with the string "A".

Commentary: A normal |abel is a relative thing. Exanple:

X DAT #0, #x : Here x is used in the B-field
x+1 DAT #0, #x ; Each instruction’s B-field gives
X+2 DAT #0, #x ; the offset to x.

is the sane as

X DAT #0, #0 . OFfset of zero

X+1 DAT #0, #-1 ; one

X+2 DAT #0, #-2 ; two

but

x! EQU 0 ; Equate | abel |ike #define x! 0
DAT #0, #x! ; Exclamation points can be used
DAT #0, #x! ; in labels (in Extended systens)
DAT #0, #x! ; | use themexclusively to indicate

; i medi at e equate | abel s.

is the sane as

DAT #0, #0 ; A direct text replacenent
DAT #0, #O ; appears the sanme on every
DAT #0, #0 ; line it is used.

