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Preface
There aren’t too many beginners interested in the game of Core War these days. Of course, this is quite
natural - not that many people would consider optimizing assembly code to be fun anyway - but one
reason for the high starting threshold may be the difficulty of finding information on the very basics of
the game. True, there are many good documents around, but most of them are either too technical,
outdated, too hard to find or simply incomplete.

That is why I decided to write this guide. My aim is to guide newcomers from their very first contact
with Core War and Redcode to the point where they can write a working (if not successful) warrior,
and are able to proceed to the more technical stuff.
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To be honest, I am still a beginner in this game myself. I know the language fairly well, but have yet to
produce a really successful warrior. But I decided not to wait until I’ve gotten more experienced and
instead write this guide as soon as possible while I still have a fresh memory of what it’s like to be a
new player struggling to comprehend the peculiarities of the game.

This guide is intended for the very beginners. No previous knowledge of any assembly language (or 
programming in general) should be needed, though knowing the general idea should help in under-
standing the basic terms. Redcode, especially the modern versions, may look like any assembly code,
but it is more abstract than most and quite different in details from any other assembly language.

The flavor of Redcode used in this guide is (mostly) the current de facto standard, the ICWS ’94 Stan-
dard Draft with pMARS 0.8 extensions. (sort of like the Netscape extensions to HTML.. hmm.. luckily
we still don’t have a Microsoft Corewar Simulator. maybe they think the market’s too small) The
earlier ’88 standard will be mentioned briefly, but this guide is mostly about the ’94 standard. For
those who want to learn it, there are plenty of ’88 tutorials available on the Web.

Important: There is no simple way to teach Redcode - or any programming language - in a strictly
linear way. While I’ve tried to organise this guide into a somewhat sensible order, if you want to skip
around, do so. That’s what the contents section is for.

To maintain any coherency at all, I’ve often been forced to show you things and then explain them a
few chapters later. If you don’t seem to understand something, read on for a while. If you still can’t
figure it out, try browsing around to see if it’s explained in some other chapter.

Everybody learns in a different way, and so any order you decide to read the chapters in is probably
better than the one I’ve chosen. But if you think something is boring and leave it completely unread,
the chances are you’ll miss some important piece if information. I’ve tried to mark important parts
with emphasis, so you know where to stop and think, but try to read everything carefully . I simply
can’t spell everything out, or this guide would grow too long to read.

Introduction to Core War

What is Core War?

Core War (or Core Wars) is a programming game where assembly programs try to destroy each other
in the memory of a simulated computer. The programs (or warriors) are written in a special language
called Redcode, and run by a program called MARS (Memory Array Redcode Simulator).

Both Redcode and the MARS environment are much simplified and abstracted compared to ordinary
computer systems. This is a good thing, since CW programs are written for performance, not for
clarity. If the game used an ordinary assembly language, there might be two or three people in the
world capable of writing an effective and durable warrior, and even they wouldn’t probably be able to 
understand it fully. It would certainly be challenging and full of potential, but it’d probably take years
to reach even a moderate level of skill.
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How does it work?

The system in which the programs run is quite simple. The core (the memory of the simulated
computer) is a continuous array of instructions, empty except for the competing programs. The core
wraps around, so that after the last instruction comes the first one again.

In fact, the programs have no way of knowing where the core ends, since there are no absolute
addresses. That is, the address 0 doesn’t mean the first instruction in the memory, but the instruction
that contains the address. The next instruction is 1, and the previous one obviously -1.

As you can see, the basic unit of memory in Core War is one instruction, instead of one byte as is
usual. Each Redcode instruction contains three parts: the OpCode itself, the source address (a.k.a. the 
A-field) and the destination address. (the B-field) While it is possible for example to move data
between the A-field and the B-field, in general you need to treat the instructions as indivisible blocks.

The execution of the programs is equally simple. The MARS executes one instruction at a time, and
then proceeds to the next one in the memory, unless the instruction explicitly  tells it to jump to another
address. If there is more than one program running, (as is usual) the programs execute alternately, one 
instruction at a time. The execution of each instruction takes the same time, one cycle, whether it is 
MOV, DIV or even DAT. (which kills the process)

Starting with Redcode

The Redcode instruction set

The number of instructions in Redcode has grown with each new standard, from the original number
of about 5 to the current 18 or 19. And this doesn’t even include the new modifiers and addressing
modes that allow literally hundreds of combinations. Luckily, we don’t need to learn all the combina-
tions. It is enough to remember the instructions, and how the modifiers change them.

Here is a list of all the instructions used in Redcode:

DAT - data (kills the process) 
MOV - move (copies data from one address to another) 
ADD - add (adds one number to another) 
SUB - subtract (subtracts one number from another) 
MUL - multiply (multiplies one number with another) 
DIV - divide (divides one number with another) 
MOD - modulus (divides one number with another and gives the remainder) 
JMP - jump (continues execution from another address) 
JMZ - jump if zero (tests a number and jumps to an address if it’s 0) 
JMN - jump if not zero (tests a number and jumps if it isn’t 0) 
DJN - decrement and jump if not zero (decrements a number by one, and jumps unless the result
is 0) 
SPL - split (starts a second process at another address) 
CMP - compare (same as SEQ) 
SEQ - skip if equal (compares two instructions, and skips the next instruction if they are equal) 
SNE - skip if not equal (compares two instructions, and skips the next instruction if they aren’t
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equal) 
SLT - skip if lower than (compares two values, and skips the next instruction if the first is lower
than the second) 
LDP - load from p-space (loads a number from private storage space) 
STP - save to p-space (saves a number to private storage space) 
NOP - no operation (does nothing) 

Don’t worry if some of them seem, to put it mildly, weird. As I said, Redcode is quite a bit different
from more ordinary assembly languages, which results from its abstract nature.

The Imp

The truth is, the most important parts of Redcode are the easiest ones. Most of the basic warrior types
were invented before the new instructions and modes existed. The simplest, and probably the first,
Core War program is the Imp, published by A. K. Dewdney in the original 1984 Scientific American
article that first introduced Core War to the public.

        MOV 0, 1

Yes, that’s it. Just one lousy MOV. But what does it do? MOV of course copies an instruction. You
should recall that all addresses in Core War are relative to the current instruction, so the Imp in fact
copies itself to the instruction just after itself.

        MOV 0, 1         ; this was just executed
        MOV 0, 1         ; this instruction will be executed next

Now, the Imp will execute the instruction it just wrote! Since it’s exactly the same as the first one, it
will once again copy itself one instruction forward, execute the copy, and continue to move forward
while filling the core with MOVs. Since the core has no actual end, the Imp, after filling the whole core,
reaches its starting position again and keeps on running happily in circles ad infinitum. 

So the Imp actually creates it’s own code as it executes it! In Core War, self-modification is a rule
rather than an exception. You need to be effective to be successful, and that nearly always means 
changing your code on the fly. Luckily, the abstract environment makes this a lot easier to follow than
in ordinary assembly.

BTW, it should be obvious that there are no caches in Core War. Well, actually the current instruction
is cached so you can’t modify it in the middle of executing it, but maybe we should leave all that for
the later..

The Dwarf

The Imp has one little drawback as a warrior. It won’t win too many games, since when it overwrites
another warrior, it too starts to execute the MOV 0, 1 and becomes an imp itself, resulting in a tie. To
kill a program, you’d have to copy a DAT over its code.

This is just what another classic warrior by Dewdney, the Dwarf, does. It "bombs" the core at regularly
spaced locations with DATs, while making sure it won’t hit itself.

        ADD #4, 3        ; execution begins here
        MOV 2, @2
        JMP -2
        DAT #0, #0
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Actually, this isn’t precisely what Dewdney wrote, but it works exactly the same way. The execution
begins again at the first instruction. This time it’s an ADD. The ADD instruction adds the source and the 
destination together, and puts the result in the destination. If you’re familiar with other assembly
languages, you may recognise the # sign as a way of marking immediate addressing. That is, the ADD
adds the number 4 to the instruction at address 3, instead of adding the instruction 4 to the instruction
3. Since the 3rd instruction after the ADD is the DAT, the result will be:

        ADD #4, 3
        MOV 2, @2        ; next instruction
        JMP -2
        DAT #0, #4

If you add two instructions together, both the A- and the B-fields will be added together independently
of each other. If you add a single number to an instruction, it will by default be added to the B-field.
It’s quite possible to use a # in the B-field of the ADD too. Then the A-field would be added to the
B-field of the ADD itself.

The immediate addressing mode may seem simple and familiar, but the new modifiers in the ICWS
’94 standard will give it an entirely new twist. But let’s look at the Dwarf first.

The MOV once again presents us with yet another addressing mode: the @ or the indirect addressing
mode. It means that the DAT will not be copied on itself as it seems, (what good would that be) but on
the instruction its B-field points to, like this:

        ADD #4, 3
        MOV 2, @2  ;  --.
        JMP -2     ;    | +2
        DAT #0, #4 ; <--’ --. The B-field of the MOV points here.
        ...                 |
        ...                 | +4
        ...                 |
        DAT #0, #4 ; <------’ The B-field of the DAT points here.

As you can see, the DAT will be copied 4 instructions ahead of it. The next instruction, JMP, simply
makes the process jump two instructions backwards, back to the ADD. Since the JMP ignores its
B-field I’ve left it empty. The MARS will initialise it for me as a 0.

OBTW, as you see the MARS will not start tracing further chains of indirect addresses. If the indirect
operand points to an instruction with a B-field of, say, 4, the actual destination will be 4 instructions
after it, regardless of the addressing mode.

Now the ADD and the MOV will be executed again. When the execution reaches the JMP again, the
core looks like this:

        ADD #4, 3
        MOV 2, @2
        JMP -2           ; next instruction
        DAT #0, #8
        ...
        ...
        ...
        DAT #0, #4
        ...
        ...
        ...
        DAT #0, #8
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The Dwarf will keep on dropping DATs every 4 instructions, until it has looped around the whole core
and reached itself again:

        ...
        DAT #0, #-8
        ...
        ...
        ...
        DAT #0, #-4
        ADD #4, 3        ; next instruction
        MOV 2, @2
        JMP -2
        DAT #0, #-4
        ...
        ...
        ...
        DAT #0, #4
        ...

Now, the ADD will turn the DAT back into #0, #0, the MOV will perform an exercise in futil ity by
copying the DAT right where it already is, and the whole process will start again from the beginning.

This naturally won’t work unless the size of the core is divisible by 4, since otherwise the Dwarf
would hit an instruction from 1 to 3 instructions behind the DAT, thus killing itself. Luckily, the most
popular core size is currently 8000, followed by 8192, 55400, 800, all of them divisible by 4, so our
Dwarf should be safe

As a side note, including the DAT #0, #0 in the warrior wouldn’t really have been necessary; The 
instruction the core is initially filled with, which I’ve written as three dots (...) is actually DAT 0, 
0. I’ll continue to use the dots to describe empty core, since is it shorter and easier to read.

The addressing modes

In the first versions of Core War the only addressing modes were the immediate (#), the direct ($ or
nothing at all) and the B-field indirect (@) addressing modes. Later, the predecrement addressing
mode, or <, was added. It’s the same as the indirect mode, except that the pointer will be decremented
by one before the target address is calculated.

        DAT #0, #5
        MOV 0, <-1       ; next instruction

When this MOV is executed, the result will be:

        DAT #0, #4 ;  ---.
        MOV 0, <-1 ;     |
        ...        ;     | +4
        ...        ;     |
        MOV 0, <-1 ; <---’

The ICWS ’94 standard draft added four more addressing modes, mostly to deal with A-field indirec-
tion, to give a total of 8 modes:

# - immediate 
$ - direct (the $ may be omitted) 
* - A-field indirect 
@ - B-field indirect 
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{ - A-field indirect with predecrement 
< - B-field indirect with predecrement 
} - A-field indirect with postincrement 
> - B-field indirect with postincrement 

The postincrement modes are similar to the predecrement, but the pointer will be incremented by one 
after the instruction has been executed, as you might have guessed.

        DAT #5, #-10
        MOV -1, }-1      ; next instruction

will after execution look like this:

        DAT #6, #-10 ;  --.
        MOV -1, }-1  ;    |
        ...          ;    |
        ...          ;    | +5
        ...          ;    |
        DAT #5, #-10 ; <--’

One important thing to remember about the predecrement and postincrement modes is that the pointers
will be in-/decremented even if they’re not used for anything. So JMP -1, <100 would decrement
the instruction 100 even if the value it points to isn’t used for anything. Even DAT <50, <60 will 
decrement the addresses in addition to killing the process.

The process queue

If you looked at the instruction table a few chapters above closely, you may have wondered about an 
instruction named SPL. There’s certainly nothing like that in any ordinary assembly language..

Quite early in the history of Core War, it was suggested that adding multitasking to the game would
make it much more interesting. Since the rough time-slicing techniques used in ordinary systems
wouldn’t fit in the abstract Core War environment, (most importantly, you’d need an OS to control
them) a system was invented whereby each process is executed for one cycle in turn.

The instruction used to create new processes is the SPL. It takes an address as a parameter in its
A-field, just like JMP. The difference between JMP and SPL is that, in addition to starting execution at
the new address, SPL also continues execution at the next instruction.

The two - or more - processes thus created will share the processing time equally. Instead of a single
process counter that would show the current instruction, the MARS has a process queue, a list of
processes that are executed repeatedly in the order in which they were started. New processes created
by SPL are added just after the current process, while those that execute a DAT will be removed from
the queue. If all the processes die, the warrior will lose.

It’s important to remember that each program has its own process queue. With more than one program
in the core, they will be executed alternately, one cycle at a time regardless of the length of their
process queue, so that the processing time will always be divided equally. If program 1 has 3
processes, and program 2 only 1, the order of execution will be

1.  program 1, process 1 
2.  program 2, process 1 
3.  program 1, process 2 
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4.  program 2, process 1 
5.  program 1, process 3 
6.  program 2, process 1 
7.  program 1, process 1 
8.  program 2, process 1 

And finally, a small example of the use of SPL. More information will be available in the later chap-
ters.

        SPL 0            ; execution starts here
        MOV 0, 1

Since the SPL points to itself, after one cycle the processes will be like this:

        SPL 0            ; second process is here
        MOV 0, 1         ; first process is here

After both of the processes have executed, the core will now look like:

        SPL 0            ; third process is here
        MOV 0, 1         ; second process is here
        MOV 0, 1         ; first process is here

So this code evidently launches a series of imps, one after another. It will keep on doing this until the
imps have circled the whole core and overwrite the SPL.

The size of the process queue for each program is limited. If the maximum number of processes has
been reached, SPL continues execution only at the next instruction, effectively duplicating the
behaviour of NOP. In most cases the process limit is quite high, often the same as the length of the
core, but it can be lower. (even 1, in which case splitting is effectively disabled)

Oh, and as for thruth often being stranger than fiction, I recently came across a web page titled
"Opcodes that should’ve been". Amongst some really absurd ones I found "BBW - Branch Both Ways".
As all the opcodes were supposed to be ficti tious, I can only conclude that the author wasn’t familiar
with Redcode..

The instruction modifiers

The most important new thing brought by the ICWS ’94 standard wasn’t the new instructions or the
new addressing modes, but the modifiers. In the old ’88 standard the addressing modes alone decide
which parts of the instructions are affected by an operation. For example, MOV 1, 2 always moves a
whole instruction, while MOV #1, 2 moves a single number. (and always to the B-field!)

Naturally, this could cause some diffi culties. What if you wanted to move only the A- and B-fields of
an instruction, but not the OpCode? (you’d need to use ADD) Or what if you wanted to move some-
thing from the B-field to the A-field? (possible, but very tricky) To clarify the situation, the instruction 
modifiers were invented.

The modifiers are suffixes that are added to the instruction to specify which parts of the source and the 
destination it will affect. For example, MOV.AB 4, 5 would move the A-field of the instruction 4
into the B-field of the instruction 5. There are 7 different modifiers available:

8



MOV.A - moves the A-field of the source into the A-field of the dest. 
MOV.B - moves the B-field of the source into the B-field of the dest. 
MOV.AB - moves the A-field of the source into the B-field of the dest. 
MOV.BA - moves the B-field of the source into the A-field of the dest. 
MOV.F - moves both fields of the source into the same fields in the dest. 
MOV.X - moves both fields of the source into the opposite fields in the dest. 
MOV.I - moves the whole source instruction into the dest. 

Naturally the same modifiers can be used for all instructions, not just for MOV. Some instructions like 
JMP and SPL, however, don’t care about the modifiers. (why should they? they don’t handle any
actual data, they just jump around)

Since not all the modifiers make sense for all the instructions, they will default to the closest one that
does make sense. The most common case involves the .I modifier; To keep the language simple and
abstract no numerical equivalents have been defined for the OpCodes, so using mathematical opera-
tions on them wouldn’t make any sense at all. This means that for all instructions except MOV, SEQ
and SNE (and CMP which is just an alias for SEQ) the .I modifier will mean the same as the .F.

Another thing to remember about the .I and the .F is that the addressing modes too are part of the
OpCode, and are not copied by MOV.F

We can now rewrite the old programs to use modifiers as an example. The Imp would naturally be 
MOV.I 0, 1. The Dwarf would become:

        ADD.AB #4, 3
        MOV.I  2, @2
        JMP    -2
        DAT    #0, #0

Note that I’ve left out the modifiers for JMP and DAT since they don’t use them for anything. The
MARS turns them into (for example) JMP.B and DAT.F, but who cares?

Oh, one more thing. How did I know which modifier to add to which instruction? (and, more impor-
tantly, how does the MARS add them if we leave them off?) Well, you can usually do it with a bit of
common sense, but the ’94 standard does defines a set of rules for that purpose.

DAT, NOP 
Always .F, but it’s ignored. 

MOV, SEQ, SNE, CMP 
If A-mode is immediate, .AB,
if B-mode is immediate and A-mode isn’t, .B,
if neither mode is immediate, .I. 

ADD, SUB, MUL, DIV, MOD 
If A-mode is immediate, .AB,
if B-mode is immediate and A-mode isn’t, .B,
if neither mode is immediate, .F. 

SLT, LDP, STP 
If A-mode is immediate, .AB,
if it isn’t, (always!) .B. 

JMP, JMZ, JMN, DJN, SPL 
Always .B. (but it’s ignored for JMP and SPL) 
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Diving deeper into the ’94 standard

The # is more than it seems..

The defined behavior of the immediate addressing mode (#) in the ’94 standard is quite unusual.
While the standard is 100% compatible with the old syntax, the immediate addressing has been
defined in a very clever and unique way that lets it be used logically with all the instructions and modi-
fiers, and makes it a very powerful tool.

Looking at the modifiers, you might wonder what MOV.F #7, 10 would do. .F should move both
fields, but there’s only one number in the source?? Would it move 7 into both fields of the destination?

No, it definitely wouldn’t. In fact, it would move 7 into the A-field of the destination, and 10 into the
B-field! Why?

The reason is that, in the ’94 syntax, the source (and the destination) is always a whole instruction. In
the case of immediate addressing, it’s simply always the current instruction, (ie. 0) whatever the actual
value. So MOV.F #7, 10 moves both fields of the source (0) to the destination (10). Surprising,
isn’t it?

The same even works for MOV.I. This way of defining immediate addressing also lets us use instruc-
tions which, even without modifiers, wouldn’t make sense in the ’88 standard such as JMP #1234. 
Obviously you can’t jump into a number, but you can jump into the address of that number, or 0. This
offers many obvious advantages, since not only can we store data in the A-field for "free", but the code
will survive even if someone decrements it. We could now rewrite the earlier imp-making code to be a
bit more robust:

        SPL    #0, }1
        MOV.I  #1234, 1

It still works the same, but now the A-fields are free. Just for fun I’ve let the SPL increment the
A-field of the imp, so that all the imps will look different. Since SPL doesn’t use its B-field, that incre-
ment is also "free". It works, trust me - or try it yourself!

Modulo math

You should already know that addresses in the core wrap around, so that the instruction one coresize
ahead or behind the current instruction refers to the current instruction itself. But in fact, this effect
goes much deeper: all numbers in Core War are converted into the range 0 - coresize-1.

For those of you who already know about programming and limited-range integer math, let’s just say
that all numbers in Core War are considered unsigned, with the maximum integer being coresize-1. If
that didn’t clarify everything, read on..

In effect, all numbers in Core War are divided by the length of the core, or coresize, and only the 
remainder is kept. You might try thinking of a calculator with a display of only 8 numbers that throws
off any digits past that, so that 100*12345678 (1234567800, of course) is only shown (and stored) as
34567800. Similarly, in a core of 8000 instructions, 7900+222 (8122) becomes only 122.
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What happens to negative numbers, then? They are normalised too, by adding coresize until they
become positive. This means that what I wrote as -1 is actually stored by the MARS as coresize-1, or
in an 8000 instruction core, as is common, 7999.

Of course, this makes no difference for the addresses, which wrap around anyway. In fact, it doesn’t
make any difference to the simple math instructions like ADD or SUB either, since with coresize=8000,
6+7998 gives the same result of 4 (or 8004) as does 6-2.

What’s the problem, then? Well, there are a few instructions where it makes a difference. Such instruc-
tions as DIV, MOD and SLT always treat numbers as unsigned. This means that -2/2 isn’t -1, but (core-
size-2)/2 = (coresize/2)-1. (or for coresize=8000, 7998/2=3999, not 7999) Similarly, SLT considers -2
(or 7998) to be greater than 0! In fact, 0 is the lowest possible number in Core War, so all other
numbers are considered greater than it.

The ’94 standard instruction by instruction

Ok, your patience has been rewarded. Until now I’ve given you only some separate pieces of informa-
tion. Now it’s time to tie it all together by describing each instruction to you.

Of course I could’ve listed them at the very beginning, when I shoved you the instruction set, and it 
probably would’ve saved you from a lot of guessing. But I had - at least in my opinion - a very good
reason to wait. Not only did I want to show you some practical code before getting into the boring 
theoretical stuff, but most of all I wanted you to grasp at least the basic idea of addressing modes and 
modifiers before describing the instructions in detail. If I had described the instructions before the 
modifiers, I would’ve had to first teach you the older ’88 rules, and later teach it all again with modi-
fiers included. It’s not a bad way to learn Redcode, but it’d make this guide unnecessarily  complicated.

DAT 
Originally, as its name shows, DAT was intended for storing data, just like in most languages.
Since in Core War you want to minimise the number of instructions, storing pointers etc. in
unused parts of other instructions is common. This means that the most important thing about 
DAT is that executing it kills a process. In fact, since the ’94 standard has no illegal instructions, 
DAT is defined as a completely legal instruction, which removes the currently executing process
from the process queue. Sounds like splitting hairs, maybe, but precisely defining the obvious can
often save a lot of confusion.
The modifiers have no effect on DAT, and in fact some MARS’s remove them. However, remem-
ber that predecrementing and postincrementing are always done even if the value isn’t used for
anything. One unusual thing about DAT, a relic of the previous standards, is that if it has only one 
argument it’s placed in the B-field. 

MOV 
MOV copies data from one instruction to another. If you don’t know everything about that already,
you should probably re-read the earlier chapters. MOV is one of the few instructions that support 
.I, and that’s its default behavior if no modifier is given. (and if neither of the fields uses imme-
diate addressing) 

ADD 
ADD adds the source value(s) to the destination. The modifiers work like with MOV, except that 
.I isn’t supported but behaves like .F. (what would MOV.AB+DJN.F be?) Also remember that
all math in Core War is done modulo coresize. 

SUB 
This instruction works exactly like ADD, except for one fairly obvious difference. In fact, all the 
"arithmetic-logical" instructions work pretty much the same.. 
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MUL 
..as is the case for MUL too. If you can’t guess what it does, you’ve probably missed something
very important. 

DIV 
DIV too works pretty much the same as MUL and the others, but there are a few things to keep in
mind. First of all, this is unsigned division, which can give surprising results sometimes. Division
by zero kills the process, just like executing a DAT, and leaves the destination unchanged. If you
use DIV.F or .X to divide two numbers at a time and one of the divisors is 0, the other division
will still be done as normal. 

MOD 
Everything I said about DIV applies here too, including the division by zero part. Remember that
the result of a calculation like MOD.AB #10, #-1 depends on the size of the core. For the
common 8000-instruction core the result would be 9. (7999 mod 10) 

JMP 
JMP moves execution to the address its A-field points to. The obvious but important difference to
the "math" instructions is that JMP only cares about the address, not the data that address points
to. Another significant difference is that JMP doesn’t use its B-field for anything. (and so also
ignores its modifier) Being able to jump (or split) into two addresses would simply be too power-
ful, and it’d make implementing the next three instructions quite diffi cult. Remember that you
can still place an increment or a decrement in the unused B-field, with luck damaging your oppo-
nent’s code. 

JMZ 
This instruction works like JMP, but instead of ignoring its B-field, it tests the value(s) it points to
and only jumps if it’s zero. Otherwise the execution will continue at the next address. Since
there’s only one instruction to test, the choice of modifiers is fairly limited. .AB means the same
as .B, .BA the same as .A, and .X and .I the same as .F. If you test both fields of an instruc-
tion with JMZ.F, it will jump only if both fields are zero. 

JMN 
JMN works like JMZ, but jumps if the value tested is not zero. (surprise, surprise..) JMN.F jumps
if either of the fields is non-zero. 

DJN 
DJN is like JMN, but the value(s) are decremented by one before testing. This instruction is useful
for making a loop counter, but it can also be used to damage your opponent. 

SPL 
This is the big one. The addition of SPL into the language was probably the most significant
change ever made to Redcode, only rivalled perhaps by the introduction of the ICWS ’94 stan-
dard. SPL works like, JMP, but the execution also continues at the next instruction, so that the
process is "split" into two new ones. The process at the next instruction executes before the one
which jumped to a new address, which is a small but very important detail. (most of today’s
warriors wouldn’t work without it) If the max. number of processes has been reached, SPL works
like NOP. Like JMP, SPL ignores its B-field and its modifier. 

SEQ 
SEQ compares two instructions, and skips the next instruction if they are equal. (it always jumps
only those two instructions forward, since there’s no room for a jump address) Since the instruc-
tions are compared only for equality, using the .I modifier is supported. Quite naturally, with the 
modifiers .F, .X and .I the next instruction will be skipped only if all the fields are equal. 

SNE 
Ok, you guessed it. This instruction skips the next instruction if the instructions it compares are
not equal. If you compare more than one field, the next instruction will be skipped if any pair of
them aren’t equal. (sounds familiar, doesn’t it? just like with JMZ and JMN..) 
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CMP 
CMP is an alias for SEQ. This was the only name of the instruction before SEQ and SNE were 
introduced. Nowadays it doesn’t really matter which name you use, since the most popular
MARS programs recognise SEQ even in ’88 mode. 

SLT 
Like the previous instructions, SLT skips the next instruction, this time if the first value is lower
than the second. Since this is an arithmetical comparison instead of a logical one, it makes no
sense to use .I. It might seem that there should be an instruction called SGT, (skip if greater 
than) but in most cases the same effect can be achieved simply by swapping the operands of SLT. 
Remember that all values are considered unsigned, so 0 is the smallest possible number and -1 is
the largest. 

NOP 
Well, this instruction does nothing. (and it does it really well, too) It’s almost never used in an
actual warrior, but it’s very useful in debugging. Remember that any in- or decrements are still 
evaluated. 

You might notice that two instructions, namely LDP and STP are missing. They are a fairly recent 
addition to the language, and will be discussed... um, well right now. :-)

P-space - the final frontier

P-space is the latest addition to Redcode, introduced by pMARS 0.8. The "P" stands for private, 
permanent, personal, pathetic and so on, whichever you like. Basically, the P-space is an area of
memory which only your program can access, and which survives between rounds in a multi-round 
match.

The P-space is in many ways different from the normal core. First of all, each P-space location can
only store one number, not a whole instruction. Also, the addressing in P-space is absolute, ie. the
P-space address 1 is always 1 regardless of where in the core the instruction containing it is. And last
but not least, the P-space can only be accessed by two special instructions, LDP and STP.

The syntax of these two instructions is a bit unusual. The STP, for example has an ordinary value in
the core as its source, which is put into the P-space field pointed to by the destination. So the P-space 
location isn’t determined by the destination address, but by its value, ie. the value that would be over-
written if this were a MOV.

So STP.AB #4, #5 for example would put the value 4 into the P-space field 5. Similarly,

        STP.B  2, 3
        ...
        DAT    #0, #10
        DAT    #0, #7

would put the value 10 into the P-space field 7, not 3! This can get pretty confusing if the STP itself
uses indirect addressing, which leads into a sort of "double-indirect" addressing system.

LDP works the same way, except that now the source is a P-space field and the destination a core 
instruction. The P-space location 0 is a special read-only location. Any writes to it will be ignored, and
it is initialised to a special value before each round. This value is -1 for the first round, 0 the program
died in the previous round, and otherwise the number of surviving programs. This means that, for
one-on-one matches, 0 means a loss, 1 a win and 2 a tie.
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The size of the P-space is usually smaller than that of the core, typically 1/16 of the core size. The
addresses in the P-space wrap around just like in the core. The size of the P-space must naturally be a
factor of the core size, or something weird will happen.

There is one little peculiarity in the pMARS implementation of P-space. Since the intention was to
keep access to P-space slow, loading or saving two P-space fields with one instruction isn’t allowed.
This is a Good Thing, but the result is at the very least a kludge. What this actually means is that 
LDP.F, .X and .I all work like LDP.B! (and the same for STP too, of course)

Absolutely the most common use of P-space is to use it to select a strategy. In its simplest form, this
means saving the previous strategy in P-space, and switching strategies if the P-space field 0 shows the
program lost last time. This kind of programs are called P-warriors, P-switchers or P-brains.
(pronounced pea-brains)

Unfortunately, the P-space isn’t as private as it seems. While your opponent can’t read or write your
P-space directly, your processes may be captured and made execute your opponents code, including 
STPs. This kind of technique is known as brainwashing, and all P-switchers must be prepared for it,
and not freak out if the strategy field contains something weird.

The parser

Labels and addresses

So far, I’ve written all the addresses in our example programs as instruction numbers, relative to the
current instruction. But in larger programs, this can get annoying, not to mention diffi cult to read.
Luckily, we don’t really have to do this, since Redcode lets us use labels, symbolic constants, macros
and all the other things you’d expect of a good assembler. All we need to do is to label the instructions
an refer to them with the labels, and the parser calculates the real addresses for us, like this:

imp:    mov.i   imp, imp+1

Whoa, what happened? This is exactly the same program as the one I showed you in the very begin-
ning. I’ve just replaced the numerical addressed with references to a label, "imp". Of course, in this
case doing that is pretty futile. The only instruction in which the label is used is "imp" itself, in which
the label is replaced by 0.

Before executing it, the parser in the MARS converts all such labels and other symbols into the famil-
iar numbers. Such a "pre-compiled" Redcode file is called a load file, for whatever reason. All
MARSes must be able to read load files, but some may not have a real parser. In load file format, the 
previous code becomes MOV.I 0, 1. We could’ve also written the same code as

imp:    mov.i   imp, next
next:   dat     0, 0            ; or whatever

In this case, the instruction labelled "next" is one instruction after "imp", so it’s replaced by 1. 
Remember that the real addresses are still relative numbers, so the Imp will continue to be MOV.I 0, 
1 even after it has copied itself forward over "next".

Actually, the : in the end of the labels isn’t really necessary. I’ve used it here to help you see where
the labels are, but I usually don’t use it in my own programs. It’s a matter of taste.
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Oh, and just in case you’re wondering about it, Redcode instructions are case-insensitive. I like using
lower case for the sources since it looks nicer, and upper case only for the compiled, "load file"
format. (mostly because it’s a tradition)

The whole thing

While the examples in previous chapters might compile just fine, they’re not really complete
programs, but parts of one. A typical redcode file contains some extra information for the MARS.

;redcode-94
;name Imp
;author A.K. Dewdney

        org     imp

imp:    mov.i   imp, imp+1
        end

As you probably have already figured out, everything after a ; is a comment in Redcode. The lines on
the top of this program, however, aren’t just ordinary comments. The MARS uses them to get some 
information about the program.

The first line, ;redcode-94, tells the MARS that this really is a Redcode file. Anything above this
line is ignored by the MARS. Actually, the MARS only expects a line starting with ;redcode, but
we can use the rest of the line to identify  the flavor of Redcode used. Specially, the KotH servers read
this line themselves, and use it to identify  the hill the program is going to.

The ;name and ;author lines just give some information on the program. Of course you could give
it in any format, but using the specific codes lets the MARS read the names and display them when the
program is run.

The line with the word END - surprise, surprise - ends the program. Anything after it will be ignored.
Together with ;redcode, it can be use for example to include Redcode programs in e-mail.

The line with ORG tells where the execution of the program should start. This lets us put other instruc-
tions before the beginning of the program. The ORG command is one of the new things included in the
’94 standard. The older syntax, which still works in modern programs too, is to give the starting
address as an argument to the END.

;redcode-94
;name Imp
;author A.K. Dewdney

imp:    mov.i   imp, imp+1

        end     imp

Simple, compact, and unfortunately quite illogical. And with long programs, you have to scroll to the
end just to see where it begins. In Redcode terminology, both ORG and END are called 
pseudo-OpCodes. They look like actual instructions, but they’re not actually compiled into the 
program.
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But enough of the Imp. Let’s see what the Dwarf would look like in modern Redcode:

;redcode-94
;name Dwarf
;author A.K. Dewdney
;strategy Bombs the core at regular intervals.
;(slightly modified by Ilmari Karonen)
;assert CORESIZE % 4 == 0

        org     loop

loop:   add.ab  #4, bomb
        mov.i   bomb, @bomb
        jmp     loop
bomb:   dat     #0, #0

        end

The labels make understanding the program a lot easier, don’t they? Notice that I’ve added two new
comment lines. The ;strategy line describes the program briefly. There may be several such lines
in the program. Most current MARSes ignore them, so you might as well use ordinary comments like
the one my name is in, but the Hills display the ;strategy lines to others. Sending the previous
program to one, something like this might be shown:

A new challenger has appeared on the ’94 hill!

Dwarf by A.K. Dewdney: (length 4)
;strategy Bombs the core at regular intervals.

[other info here..]

The environment and ;assert

Another new detail in our example code is the ;assert line. It can be used to make sure the program
really works with the current settings. The Dwarf, for example, kills itself if the size of the core isn’t
evenly divisible by 4. So, I’ve used the line ;assert CORESIZE % 4 == 0 to make sure it
always is.

The CORESIZE is a predefined constant which tells us the size of the core. That is, n+CORESIZE is
always the same address as n. The % is the modulus operator, which gives the remainder in a division.
The syntax of the expressions used in the ;assert lines and elsewhere in Redcode is the same as in
the C-language, although the set of operators is much more limited.

For those who don’t know C, here’s some sort of a list of the operators which are used in Redcode 
expressions:

Arithmetic: 
+ addition
- subtraction (or negation)
* multiplication
/ division
% modulus (remainder) 

Comparison: 
== equals
!= doesn’t equal
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< is less than
> is greater than
<= is equal or less than
>= is equal or greater than 

Logical: 
&& and
|| or
! not 

Assignment: 
= assignment to a variable 

The ;assert is followed by a logical expression. If it’s false, the program will not be compiled. In
C, a value of 0 means false and anything else means true. The logical and comparison operators return
1 for true, a fact which can be useful later.

Typically, ;assert is used to check that the size of the core is the one the constants have been
designed for, like ;assert CORESIZE == 8000. If the program uses P-space, its existence may
be tested with ;assert PSPACESIZE > 0. Since our example, the Dwarf, is fairly adaptable, I
only tested the CORESIZE for divisibility, not for a specific size. The Imp, which runs with any
settings, could use ;assert 1, ;assert 0 == 0 and so on, all of which always evaluate as true.
This is useful since otherwise the MARS may complain about a "missing ;assert line --
warrior may not work with current settings."

Some of the predefined constants, such as CORESIZE, are defined by the ’94 standard, and others may
and have been added. pMARS 0.8 should support at least the following:

CORESIZE -- the size of the core (default 8000) 
PSPACESIZE -- the size of the P-space (def. 500) 
MAXCYCLES -- the number of cycles until a tie is declared (80000) 
MAXPROCESSES -- the maximum size of the process queue (8000) 
WARRIORS -- the number of programs in the core (2) 
MAXLENGTH -- the maximum length of a program (100) 
CURLINE -- the number of instructions compiled (1 - MAXLENGTH) 
MINDISTANCE -- the minimum distance between two warriors (100) 
VERSION -- the version of pMARS, multiplied by 100 (80) 

#define? Well, almost..

The predefined constants are useful, and so are labels, but is that really all? Can’t I use some variables
or something?

Well, Redcode is an assembly language, and they don’t really use a lot of variables. But there’s some-
thing almost as good, or maybe sometimes even better. There’s a pseudo-OpCode EQU that lets us
define our own constants, expressions and even macros. It looks like this:

step    equ     2667

After this, step is always replaced by 2667. There’s a catch, however. The replacement is textual, not 
numerical. In this case it shouldn’t do any harm, but while it makes EQU a very powerful tool, it can
create some problems which C programmers should be quite familiar with. Let’s take an example.
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step    equ     2667
target  equ     step-100

start   mov.i   target, step-target

The A-field of the MOV would be 2567, just as it should be. But the B-field would become
2667-2667-100 == -100, not 2667-(2667-100) == 2667-2567 == 100, as it was probably intended. The 
solution is simple. Just put parentheses around every expression in EQUs, such as "target equ 
(step-100)". 

With the modern versions of pMARS it’s possible to use multi-line equs, and thus create some sort of
macros. The way it’s done is this:

dec7    equ     dat #1, #1
        equ     dat $1, $1
        equ     dat @1, @1
        equ     dat *1, *1
        equ     dat {1, {1
        equ     dat }1, }1
        equ     dat <1, <1

decoy   dec7
        dec7            ; 21-instruction decoy
        dec7

What’s "rof" used for?

There are a few more features of the pMARS parser left, and this one is perhaps more powerful (and
harder to learn) than any of the above. The FOR/ROF pseudo-OpCodes not only can make your
sources shorter and create complex code sequences easily, but they can be used to create conditional
code for different settings.

A FOR block begins with - yes, you guessed it - the pseudo-OpCode FOR, followed by the number of
times the block should be repeated. If there’s a label before the block, it will be used as a loop counter,
like this;

index   for     7
        dat     index, 10-index
        rof

The block ends, as you can see, with ROF. (much better that the old cliché NEXT or REPEAT, I’d say)
The following block would be parsed by pMARS into:

        DAT.F   $1, $9
        DAT.F   $2, $8
        DAT.F   $3, $7
        DAT.F   $4, $6
        DAT.F   $5, $5
        DAT.F   $6, $4
        DAT.F   $7, $3

It’s quite possible to have several FOR blocks inside each other. The blocks can even contain EQUs
inside them, which lets us create some very interesting code. An even more useful feature is that the
loop counter can be joined to a label with the &-operator. This is most commonly used to avoid declar-
ing labels twice, but it can be useful for various other purposes as well.
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dest01  equ     1000
dest02  equ     1234
dest03  equ     1666
dest04  equ     (CORESIZE-1111)

jtable
ix      for     4
jump&ix spl     dest&ix
        djn.b   jump&ix, #ix
        rof

This would, after the FOR/ROF is parsed, become:

jtable
jump01  spl     dest01
        djn.b   jump01, #1
jump02  spl     dest02
        djn.b   jump02, #2
jump03  spl     dest03
        djn.b   jump03, #3
jump04  spl     dest04
        djn.b   jump04, #4

As for what this would be useful for, well, that’s up to your own imagination. The only warriors I’ve
seen using such complex expressions are some quickscanners. The predefined constants can also be
used with FOR/ROF, like this:

; The main warrior body is here

decoy
foo     for     (MAXLENGTH-CURLINE)
        dat     1, 1
        rof

        end

This fills the remaining space in your warrior with DAT 1, 1. Such a decoy can misdirect other
warriors’ attacks, provided that you’ve copied (booted) your own program away from the decoy. Note
that I’ve used foo as a loop counter even though it isn’t used for anything. That’s because otherwise
the MARS would consider decoy to be a loop counter instead of the label it should be.

;redcode-94
;name Tricky
;author Ilmari Karonen
;strategy Some really complex warrior thingy
;strategy (A self-explanatory example of conditional code)
;assert CORESIZE == 8000 || CORESIZE == 800
;assert MAXPROCESSES >= 256 && MAXPROCESSES < 10000
;assert MAXLENGTH >= 100

        org     start

        for     0
This is a for/rof comment block. This will be repeated 0 times, which
means that everything here will be ignored by the MARS. This is a
perfect place for explaining the complex strategy this warrior uses.
        rof

;Of course, using ordinary comments is also possible. You can use
;whichever alternative you like.
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        for     (CORESIZE == 8000)
step    equ     normalstep
;Since a true comparison returns 1 and a false one 0, this piece of
;code is only compiled if the comparison is true.
        rof

        for     (CORESIZE == 800)
step    equ     tinystep
;And here we can put optimized constants for the smaller core size.
        rof

        for     0
;strategy Since strategy and assert lines are really comments, they
;strategy will be parsed even inside FOR 0 / ROF blocks!
        rof

;[Actual code here..]

Variety with variables

The problem with the constants defined with EQU is that they’re, well, constants. Once you’ve defined
them, you can’t change their values. This is fine for most purposes, but it makes a few tricks damn
near impossible.

Luckily pMARS provides a few real variables for us to use. Their use is a bit tricky and it’s been a
long time since I’ve seen anyone really using them, but they do exist.

The variable names have only one letter, effectively limit ing their number to 26. (a through z) Instead
of using EQU, the variables are assigned their values with the = operator. The tricky bit is that, to use
the operator, one has to have an expression. And since pMARS does not recognize the comma opera-
tor, it may be necessary to write dummy expressions.

Still, the variables are useful. For example, the following auto-generated Fibonacci sequence would be 
impossible without them.

        dat     #1, (g=0)+(f=1)
idx     for     15
        dat     #idx+1, (f=f+g)+((g=f-g) && 0)
        rof

Note how the expression (g=f-g) is "hidden" by ANDing it with 0. The system works because
pMARS won’t reorder the expression but always evaluates the left side of addition first, so that when
the right side is being computed, f has already been increased.

PINs and needles

Okay, I almost forgot. There’s one more pseudo-Op left to describe. It’s almost never used, but yes,
it’s there. The PIN stands for "P-space Identification Number". If two programs have the same
number as their PIN, they will share their P-space. This can be used to provide a sort of inter-process 
communication and even cooperation. Unfortunately the strategy doesn’t seem to be worth the trouble
it takes to create an affective and fast method of communication. Of course, if you want to try it, go
ahead. You never know if it’ll be a success..
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If the program has no PIN, their P-space will always be private. Even if two programs do share their
P-space, the special read-only location 0 is always private.

Climbing the hill

If you didn’t already know about them, the King of the Hill servers are continuous Core War tourna-
ments on the Internet. Warriors are sent by e-mail to the server, which puts them agains all the (usually
10-30) programs already on the hill. The program with the lowest total score falls off the hill, and the
new warrior will replace it. (assuming it got a better score than at least one of the original programs)

There are currently two KotH servers running, with several different hills available at both. The 
StormKing KotH server at koth@koth.org and the Internet Pizza KotH server at 
pizza@ecst.csuchico.edu both offer several options not previously mentioned, mostly accessed by the
special comment lines, such as ;kill and ;password. Since the commands are different on each
server, you should check their own documentation for more info.

Note that the hills typically pre-compile the warriors into load files before actually running them to
save time. This can lead to some of the predefined constants, such as WARRIORS, being incorrect, and
thus to mysterious ;assert problems.

History
0.50

Finished the chapter on the parser. (Mar 25, 1997) 
0.51

Fixed a bug in the for/rof examples 
0.52

The first published version 
0.53

Fixed some typos and misspellings 
0.54

Added the ’88 -> ’94 conversion rules 
0.55

Cleaned up the HTML a bit 
1.00

Added info on the = operator. Might as well call this thing "version 1".. (May 5, 1997) 
1.01

Fixed a minor incompatibility with <DD>s. 
1.02

Fixed some typos and illogical sentences. Changed the navigation bar to have a common style
with the rest of the site. 

1.03
Removed some images and align attributes, changed doctype to Strict. 

1.10
Aargh! I’ve got SLT backwards all this time! Fixed. (March 8, 1998) 
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