Beginner’sguide to Redcode

Version 1.10

Contents

e |Contentg
.
e |[Introduction to Core War{
O What is Core War?
O [How doesit work?
e |[Starting with Redcodd
O [The Redcode instruction set|
o
o
O [The addressing modeg
O [The process queug
O [Theinstruction modifiery
e [Diving deeper into the ' 94 standard|
O [The#ismorethan it seems..|
o
O [The’94 standard instruction by instruction|
O |P-space - the final frontier|
°
O [Labelsand addresseq
O [Thewhole thing
O [The environment and ;assert]
O [#define? Well, aimost. |
O What's"rof" used for?
O |Variety with variabled
O |PINs and needleq
O |Climbing the hill
® |History

Preface

There aren’t too many beginners interested in the game of Core War these days. Of course, thisis quite
natural - not that many people would consider optimizing assembly code to be fun anyway - but one
reason for the high starting threshold may be the difficulty of finding information on the very basics of
the game. True, there are many good documents around, but most of them are either too technical,

outdated, too hard to find or simply incomplete.

That iswhy | decided to write this guide. My aim is to guide newcomers from their very first contact
with Core War and Redcode to the point where they can write aworking (if not successful) warrior,

and are able to proceed to the more technical stuff.

To be honest, | am stilllmzegimerin this game myself. | know the language fairly well, but have yet to
produce a reallgucceskl warrior. But | decided not to wait until I've gotten menepeaiencedand
instead write this guide as soonpassble while | still have a fresh memory of what it’s like to be a
new playerstruggling to comprdiendthe pecdiarities of thegame.

This guide is intended for thery begimers No previousknowledgeof anyasserhly language (or
progranming in general) should be needed, though knowing the general idea should uredgiin
standng the basic terms. Redcodespeially the modern versions, may look like aagserbly code,
but it is more abstract than most and qdiféerentin details from any othersserbly language.

The flavor of Redcode used in this guide is (mostly) the cudesfacto stardard the ICWS '94Stan
dardDraft with pMARS 0.8extersions (sort of like the Netscapxtersionsto HTML.. hmm.. luckily
we still don’t have a Microsoft Corew&imuator. maybe they think the market’s too small) The
earlier '88stardardwill be mentioned briefly, but this guide is mostly about thes@ddard For
those who want to learn it, there are plenty ofti@@rialsavailableon theWeb.

Important: There is no simple way to teach Redcode - orpaogranming language - in a strictly
linear way. While I've tried t@rgarise this guide into aomevhatsensble order,if you want to skip

around, do so. That's whalthe contentksection idor.

To maintain any coherency at all, I've often been forced to show you things and then explain them a
few chaperslater. If you don’t seem tondestandsomehing, read on for a while. If you still can’'t
figure it out, trybrowsng around to see if it's explained in some ottleapter.

Evenypodylearns in aifferentway, and so any order you decide to reacctiaiersin is probably
better than the one I've chosen. But if you theoknehing is boring and leave it completely unread,
the chances are you'll miss soimgortantpiece ifinformation. I've tried to markmportant parts
with emphasis, so you know where to stop and think, but try to reashthing cardully . 1 simply
can't spelleverything out, or this guide would grow too longriead.

I ntroduction to Core War

What isCoreWar?

Core War (or Core Wars) is aprogranming game wherasserbly programs try to destroy each other
in the memory of aimuatedcomputer. The programs (aarriors) are written in a special language
calledRedcode, and run by a program call®étiARS (Memory Array Redcode Smulator).

Both Redcode and the MARSwironmentare muctsimplified and abstracted comparedoi@inary
computer systems. This is a good thing, since CW programs are writfggrfimmance not for
clarity. If the game used andinaryasserbly language, there might be two or three people in the
world capable of writing arffedive and durable warrior, and even they woulgmibebly be able to
undestandit fully. It would certainly bechalengng and full ofpotertial, but it'd probebly take years
to reach even modeatelevel ofskill.

How doesit work?

The system in which the programs run is quite simple.cbhe(the memory of theimuated
computer) is @ontinuousarray ofinstrudions, empty except for theompeing programs. The core
wraps around, so that after the lmstrudion comes the first onagain.

In fact, the programs have no way of knowing where the core ends, since theralasdute
addresses. That is, the address 0 doesn’t mean thadtrsition in the memory, but thiastrudion
that contains the address. The nastrudion is 1, and th@reviousoneobviously-1.

As you can see, the basic unit of memory in Core War isnstreidion, instead of one byte as is
usual. Each Redcodlestrudion contains three parts: ti@pCode itself, the source address (a.k.a. the
A-field) and thadesthaion address. (thB-field) While it ispossble for example to move data
between the A-field and the B-field, in general you need to tre@&stredions asindivisible blocks.

Theexecuion of the programs is equally simple. The MARS executesrmtrudion at a time, and
then proceeds to the next one in the memory, unlegsdtiadion explictly tells it to jump to another
address. If there is more than one program running, (as is usual) the programsadteaately, one
instrudion at a time. Thexecuion of eachinstrudion takes the same time, one cycle, whether it is
MOV, DI V or evenDAT. (which kills theprocess)

Starting with Redcode

The Redcode instruction set

The number oinstrudionsin Redcode has grown with each netardard from theoriginal number
of about 5 to the current 18 or 19. And this doesn't even include thenneifiers andaddresmg
modes that alloviterally hundreds oEombhnations Luckily, we don’t need to learn all ttembina
tions It is enough teemenibertheinstrudions and how thenodifiers changehem.

Here is a list of all thenstrudionsused inRedcode:

DAT - data (kills the process)

MOV - move (copies data from one address to another)

ADD - add (adds one number to another)

SUB - subtract (subtracts one number from another)

MUL - multiply (multipliesone number with another)

Dl V - divide (divides one number with another)

MOD - modulus (divides one number with another and givesctimairder)

JMP - jump (continuesexection from another address)

JMZ - jump if zero (tests a number and jumps to an address if it's 0)

JMN - jump if not zero (tests a number and jumps if it isn’'t 0)

DJIN - decrenentand jump if not zergdecrenentsa number by one, and jumps unless the result
is 0)

SPL - split (starts a second process at another address)

CWVP - compare (same &EQ)

SEQ- skip if equal (compares twostrudions and skips the nextstrudion if they are equal)
SNE - skip if not equal (compares tvirstrudions and skips the nextstrudion if they aren’t

equal)

® SLT-skipif lower than (compares two values, and skips the next instruction if thefirst islower
than the second)

® | DP - |oad from p-space (loads a number from private storage space)

® STP - save to p-space (saves a number to private storage space)

® NOP - no operation (does nothing)

Don't worry if some of them seem, to put it mildly, weird. As| said, Redcodeis quite a bit different
from more ordinary assembly languages, which results from its abstract nature.

Thelmp

Thetruth is, the most important parts of Redcode are the easiest ones. Most of the basic warrior types
were invented before the new instructions and modes existed. The simplest, and probably the first,
Core War program is the Imp, published by A. K. Dewdney in the original 1984 Scientific American
article that first introduced Core War to the public.

MOV 0, 1

Yes, that’sit. Just one lousy MOV. But what does it do? MOV of course copies an instruction. Y ou
should recall that all addressesin Core War are relative to the current instruction, so the Imp in fact
copies itself to the instruction just after itself.

MOV O, 1 ; this was just executed
MOV O, 1 : this instruction will be executed next

Now, the Imp will execute the instruction it just wrote! Sinceit's exactly the same as the first one, it
will once again copy itself one instruction forward, execute the copy, and continue to move forward
while filling the core with MOVs. Since the core has no actua end, the Imp, after filling the whole core,
reaches its starting position again and keeps on running happily in circles ad infinitum.

So the Imp actually createsit’s own code as it executesit! In Core War, self-modificationisarule
rather than an exception. Y ou need to be effective to be successful, and that nearly always means
changing your code on the fly. Luckily, the abstract environment makes this alot easier to follow than
in ordinary assembly.

BTW, it should be obvious that there are no cachesin Core War. Well, actually the current instruction
is cached so you can’t modify it in the middle of executing it, but maybe we should leave al that for
thelater..

The Dwarf

The Imp has one little drawback as awarrior. It won’t win too many games, since when it overwrites
another warrior, it too startsto execute the MOV 0, 1 and becomes animp itself, resultingin atie. To
kill aprogram, you'd have to copy a DAT over its code.

Thisisjust what another classic warrior by Dewdney, the Dwarf, does. It "bombs" the core at regularly
spaced |ocations with DATS, while making sure it won't hit itself.

ADD #4, 3 ; execution begins here
MV 2, @

JWP -2

DAT #0, #0

Actually, thisisn’t precisely what Dewdney wrote, but it works exactly the same way. The execution
begins again at the first instruction. Thistimeit's an ADD. The ADD instruction adds the source and the
destination together, and puts the result in the destination. If you’ re familiar with other assembly
languages, you may recognise the # sign as away of marking immediate addressing. That is, the ADD
adds the number 4 to the instruction at address 3, instead of adding the instruction 4 to the instruction
3. Since the 3rd instruction after the ADD is the DAT, the result will be:

ADD #4, 3

MV 2, @ : next instruction
JWP -2

DAT #0, #4

If you add two instructions together, both the A- and the B-fields will be added together independently
of each other. If you add a single number to an instruction, it will by default be added to the B-field.
It's quite possible to use a# in the B-field of the ADD too. Then the A-field would be added to the
B-field of the ADD itself.

The immediate addressing mode may seem simple and familiar, but the new [modifierdin the ICWS
'94 standard will giveitfan entirely new twistl But let’slook at the Dwarf first.

The MOV once again presents us with yet another addressing mode: the @or the indirect addressing
mode. It means that the DAT will not be copied on itself asit seems, (what good would that be) but on
the instruction its B-field pointsto, like this:

ADD #4, 3
MV 2 @ ; --.
JMP -2 : | +2
DAT #0, #4 ; <--' --. The B-field of the MOV points here.
|
| +4
|
DAT #0, #4 ; <------ ' The B-field of the DAT points here.

Asyou can see, the DAT will be copied 4 instructions ahead of it. The next instruction, JMP, simply
makes the process jump two instructions backwards, back to the ADD. Since the JIMP ignoresits
B-field I’ veleft it empty. The MARS will initidliseit for measaO.

OBTW, as you see the MARS will not start tracing further chains of indirect addresses. If the indirect
operand points to an instruction with a B-field of, say, 4, the actual destination will be 4 instructions
after it, regardless of the addressing mode.

Now the ADD and the MOV will be executed again. When the execution reaches the JMP again, the
core looks like this:

ADD #4, 3
MV 2, @

JWP -2 ; next instruction
DAT #0, #8

DAT #0, #4

DAT #0, #8

The Dwarf will keep ordropping DATs every 4nstrudions, until it has looped around the whole core
and reached itse#fgain:

DAT #0, #-8

DAT #0,
ADD #4,
MOV 2,
JMP -2
DAT #0, #-4

next instruction

Y-

DAT #0, #4

Now, theADD will turn the DAT back into#0, #0, theMOV will perform anexecisein futility by
copying theDAT right where it already is, and the whole process will start again frobetfiming.

This natually won’'t work unless the size of the coraisisible by 4, sinceothewisethe Dwarf
would hit aninstrudion from 1 to 3instrudions behind theDAT, thus killing itself. Luckily, the most
popular core size is currently 8000, followed by 8192, 55400, 800, all ofdivsible by 4, so our
Dwarf should besafe

As a side notencluding theDAT #0, #0 in the warrior wouldn't really have beeecesary, The
instrudion the core is initially filled with, which I've written as three d¢ts .) is actually DAT 0,
0. I'l continue to use the dots to describe empty core, since is it shorter and eeesiet. to

The addressing modes

In the first versions of Core War the omlgidresgig modes were thinmediate (#), the direc{($ or
nothing at all) and the B-fielahdirect(@ addrestg modes. Later, thpredecrenentaddresig
mode, o, was added. It's the same as itgirectmode, except that the pointer will becrenented
by one before the target addressakuated

DAT #0, #5
MOV 0, <-1 ; next instruction

When thisMOV is executed, the result wbke:

DAT #0, #4 ; ---.
MOV 0, <-1 ; |
.. ; | +4

; [
MV 0, <-1; <---'

The ICWS '94stardarddraft added four moraddresimg modes, mostly to deal with A-fieiddirec
tion, to give a total of 8nodes:

- immediate

$ - direct (theb may be omitted)
* - A-field indirect

@- B-field indirect

{ - A-field indirect with predecrement
< - B-field indirect with predecrement
} - A-field indirect with postincrement
> - B-field indirect with postincrement

The postincrement modes are similar to the predecrement, but the pointer will be incremented by one
after the instruction has been executed, as you might have guessed.

DAT #5, #-10
MV -1, }-1 : next instruction

will after execution look like this:

DAT #6, #-10 ; --.
MOV -1, }-1

I
I
| +5
; I
DAT #5, #-10 ; <--'

One important thing to remember about the predecrement and postincrement modes is that the pointers
will be in-/decremented even if they’ re not used for anything. So JMP - 1, <100 would decrement
the instruction 100 even if the value it pointsto isn’t used for anything. Even DAT <50, <60 will
decrement the addresses in addition to killing the process.

The process queue

If you looked at the instruction table a few chapters above closely, you may have wondered about an
instruction named SPL. There's certainly nothing like that in any ordinary assembly language..

Quite early in the history of Core War, it was suggested that adding multitasking to the game would
make it much more interesting. Since the rough time-dlicing techniques used in ordinary systems
wouldn’t fit in the abstract Core War environment, (most importantly, you' d need an OS to control
them) a system was invented whereby each process is executed for one cyclein turn.

The instruction used to create new processes is the SPL. It takes an address as a parameter in its
A-field, just like JMP. The difference between JMP and SPL isthat, in addition to starting execution at
the new address, SPL also continues execution at the next instruction.

The two - or more - processes thus created will share the processing time equally. Instead of asingle
process counter that would show the current instruction, the MARS has a process queue, alist of
processes that are executed repeatedly in the order in which they were started. New processes created
by SPL are added just after the current process, while those that execute a DAT will be removed from
the queue. If al the processes die, the warrior will lose.

It'simportant to remember that each program has its own process queue. With more than one program
in the core, they will be executed alternately, one cycle at a time regardless of the length of their
process queue, so that the processing time will always be divided equally. If program 1 has 3
processes, and program 2 only 1, the order of execution will be

1. program 1, process 1
2. program 2, process 1
3. program 1, process 2

program 2, process 1
program 1, process 3
program 2, process 1
program 1, process 1
program 2, process 1

© N oA

And finally, a small example of the useSPL. Moreinformation will be availablein the latechap
ters

SPL 0 ; execution starts here
MOV 0, 1

Since theSPL points to itself, after one cycle the processes will bethile

SPL O ; second process is here
MOV O, 1 ; first process is here

After both of the processes have executed, the core will nowlilank

SPL 0 ; third process is here
MOV 0, 1 ; second process is here
MOV 0, 1 ; first process is here

So this code evidently launches a series of imps, one after another. It will keep on doing this until the
imps have circled the whole core amkmwrite the SPL.

The size of the process queue for each program is limited. If the maximum number of processes has
been reache@&PL contiruesexecuion only at the next instruction, effedively duplicaing the

behaviour oNOP. In most cases the process limit is quite high, often the same as the length of the
core, but it can be lower. (even 1, in which csgiéting is effedively disabled)

Oh, and as for thruth often being stranger than fiction, | recently came across a web page titled
"Opcodes that should’ve been". Amongst some really absurd ones I"iBBBwWd Branch Both Ways".
As all the opcodes were supposed tdittetious | can only conclude that the author wadainiliar
with Redcode..

Theinstruction modifiers

The mosimportantnew thing brought by the ICWS '®tardardwasn’t the newnstrudionsor the
newaddresitg modes, but thenodffiers. In the old '88stardardtheaddressg modes alone decide
which parts of thénstrudions are affected by aopemtion. For exampleMOv 1, 2 always moves a
wholeinstrudion, while MOV #1, 2 moves a single number. (aalivays to theB-field!)

Naturally, this could cause sonaiffi culties What if you wanted to move only the A- and B-fields of
aninstrudion, but not the OpCode? (you'd need to ABD) Or what if you wanted to mowome

thing from the B-field to the A-fieldPpossble, but very tricky) To clarify theituation, theinstrudion
modifiers wereinvented.

Themodifiers are suffixes that are added to thstrudion to specify which parts of the source and the
desthaion it will affect. For exampleMOV. AB 4, 5 would move the A-field of thastrudion 4
into the B-field of thenstrudion 5. There are differentmodifiers available

MOV. A - moves the A-field of the source into the A-field of the dest.
MOV. B - moves the B-field of the source into the B-field of the dest.
MOV. AB - moves the A-field of the source into the B-field of the dest.
MOV. BA - moves the B-field of the source into the A-field of the dest.
MOV. F - moves both fields of the source into the same fields in the dest.
MOV. X - moves both fields of the source into tpposite fields in the dest.
MOV. | - moves the whole souraastrudion into the dest.

Naturally the samenodifiers can be used for alhstrudions, not just folMOV. Someinstrudions like
JMP andSPL, however, don’t care about theodifiers. (why should they? they don’t handle any
actual data, they just jurground)

Since not all thenodifiers make sense for all thestrudions, they will default to the closest one that
does make sense. The most common case involves thdifier; To keep the language simple and
abstract nmumeical equivalentshave been defined for the OpCodes, so usiatiemaitcal opeie
tionson them wouldn’t make any sense at all. This means that fosalidions exceptMOV, SEQ
andSNE (andCIVP which is just an alias f&8EQ) the. | modifier will mean the same as thé&.

Another thing taementerabout the | and the F is that theaddresig modes too are part of the
OpCode, and are not copied #@V. F

We can now rewrite the old programs to osadifiers as an example. The Imp wouldtually be
MOV. I 0O, 1. The Dwarfwouldbecome:

ADD. AB #4, 3
MWV. I 2, @
JMWP -2

DAT #0, #0

Note that I've left out thenodifiers for JMP andDAT since they don’t use them for anything. The
MARS turns them into (for exampl@\P. B andDAT. F, but whocares?

Oh, one more thing. How did | know whiamodifier to add to whichinstrudion? (and, morémpor-
tantly, how does the MARS add them if we leave them off?) Well, you can usually do it with a bit of
common sense, but the 'Stardarddoes defines a set of rules for thatpose.

DAT, NOP
Always. F, but it's ignored.
MOV, SEQ, SNE, C\VP
If A-mode isimmediate . AB,
if B-mode isimmediateand A-mode isn’t, B,
if neither mode ismmediate . | .
ADD, SUB, MJUL, DI V, MOD
If A-mode isimmediate . AB,
if B-mode isimmediateand A-mode isn’t, B,
if neither mode ismmediate . F.
SLT, LDP, STP
If A-mode isimmediate . AB,
if it isn’t, (always!). B.
JMP, IMZ, JWN, DIN, SPL
Always. B. (but it's ignored fod MP andSPL)

Diving deeper into the’94 standard

The#ismorethan it seems..

The definedbehavor of theimmediateaddresgg mode(#) in the '94stardardis quite unusual.
While thestardardis 100%compaible with the old syntax, thenmediateaddresing has been
defined in a very clever and unique way that lets it be laggchlly with all theinstrudionsandmodi
fiers, and makes it a veggowerful tool.

Looking at themodifiers, you might wonder whatOv. F #7, 10 would do.. F should move both
fields, but there’s only one number in the source?? Would it move 7 into both fieldddekthetion?

No, it definitely wouldn't. In fact, it would move 7 into the A-field of tidesthaion, and10 into the
B-field! Why?

The reason is that, in the '94 syntax, the source (andiet@ation) is always a wholeinstrudion. In
the case oimmediateaddresmg, it's simply always the curremstrudion, (ie. O)whatkverthe actual
value. SAVOV. F #7, 10 moves both fields of the source (0) to thestnation (10). Surprisng,
isn'tit?

The same even works fdfOV. | . This way ofdefining immediateaddresimg also lets us usastruc
tionswhich, even withoumodifiers, wouldn’t make sense in the '88ardardsuch assMP #1234.
Obviouslyyou can’t jump into a number, but you can jump into the address of that number, or 0. This
offers many obviouadvartages since not only can we store data in the A-field for "free", but the code
will survive even if someongecranentsit. We could now rewrite the earlier imp-making code to be a
bit morerobust:

SPL #0, }1
MOV. | #1234, 1

It still works the same, but now the A-fields are free. Just for fun I've |eéBRheincrementthe
A-field of the imp, so that all the imps will loakfferent SinceSPL doesn’t use its B-field, thaicre-
mentis also "free". It works, trust me - or tryyiourself

M odulo math

You should already know that addresses in the core wrap around, so thatrtiidon onecoresize
ahead or behind the currénstrudion refers to the curremstrudion itself. But in fact, this effect
goes much deeper: all numbers in Core War are converted into the racgyedze-1.

For those of you who already know abpubgranming and limited-range integer math, let's just say
that all numbers in Core War azensiceredunsigned, with the maximum integer betugesize-1. If
that didn’t clarifyeverything, readon..

In effect, all numbers in Core War are divided by the length of the coteresize, and only the
remairderis kept. You might tryhinking of acalcuator with a display of only 8 numbers that throws

off any digits past that, so that 100*12345678 (1234567800, of course) is only shown (and stored) as
34567800Similarly, in a core of 800thstrudions 7900+222 (8122) becomes onlg2.

10

What happens tnegdive numbers, then? They are normalised too, by adwhngsizeuntil they
becomepostive. This means that what | wrote as -hdally stored by the MARS awresizel, or
in an 8000nstrudion core, as is commoii999.

Of course, this makes mtifferencefor the addresses, which wrap around anyway. In fact, it doesn’t
make anydifferenceto the simple matmstrudionslike ADD or SUB either, since witltoresize=8000,
6+7998 gives the same result of 4 (or 8004) as 6¢es

What's the problem, then? Well, there are a ifestrudionswhere it makes difference Suchinstruc
tionsasDl V, MOD andSLT always treat numbers as unsigned. This means that -2/2 isn’t {tphat
size2)/2 =(coresiz€2)-1. (or forcoresize=8000, 7998/2=3999, not 7998)milarly, SLT considers-2
(or 7998) to bereaterthan 0! In fact, O is the lowepbssble number in Core War, so all other
numbers areonsiceredgreater thait.

The’94 standard instruction by instruction

Ok, your patience has been rewarded. Until now I've given you only sepaatepieces ofnforma
tion. Now it's time to tie it all together bgescriling eachinstrudion to you.

Of course | could’ve listed them at the véggiming, when | shoved ydtheinstrudion sef and it
probebly would've saved you from a lot glues#g. But | had - at least in my opinion - a very good
reason to wait. Not only did | want to show you s@restical code before getting into the boring
theaetical stuff, but most of all | wanted you to grasp at least the basic ideddoésgg modes and
modifiers beforedescriling theinstrudionsin detail. If | had described thestrudions before the
maodifiers, | would've had to first teach you the older '88 rules, and later teach it all agaimuedth
fiersincluded. It's not a bad way to learn Redcode, but it'd make this guigeessaily complicated

DAT
Originally, as its name showBAT was intended for storing data, just like in most languages.
Since in Core War you want to minimise the numbeénsifrudions, storingpointersetc. in
unused parts of otharstrudionsis common. This means that the mogpbortantthing about
DAT is thatexecuing it kills a process. In fact, since the 'Stardardhas no illegainstrudions
DAT is defined as a completely legastrudion, whichremoves the currentlgxecuing process
from the procesqueue Sounds likesplitting hairs, maybe, but precisaigfining the obvious can
often save a lot acfonfusion
Themodifiers have no effect oBAT, and in fact some MARS’s remove them. Howevemem
berthatpredecrenening andpostircremening are always done even if the value isn’t used for
anything. One unusual thing ab®@AT, a relic of thepreviousstardards is that if it has only one
argumentit’s placed in theB-field.

MOV
MOV copies data from oriastrudion to another. If you don’t knowverything about that already,
you shouldprobably re-read the earliehapgers MOV is one of the fevinstrudionsthat support
. |, and that’s its defauliehavor if no modifier is given. (and if neither of the fields usesne
diateaddresig)

ADD
ADD adds the source value(s) to thestnation. Themodifiers work like with MOV, except that
. | isn’t supported but behaves lik&. (what wouldMOV. AB+DJN. F be?) Alsaremenberthat
all math in Core War is dofmodulocoresize

SUB
Thisinstrudion works exactly likeADD, except for one fairly obvioudifference In fact, all the
"arithmeticlogical” instrudionswork pretty much the same..

11

MUL
..as is the case fdfL too. If you can’t guess what it does, youpmbably missedsomehing
very important

Dl V
DI V too works pretty much the sameMdL and the others, but there are a few things to keep in
mind. First of all, this iginsignedivisior} which can givesurprisng resultssomeimes Division
by zero killsthe process, just likeexecuing aDAT, and leaves théestnaion unchanged. If you
useDl V. F or. X to divide two numbers at a time and one ofdhesorsis 0, the othedivision
will still be done as normal.

MOD
Eventhing | said abouDl V applies here toancluding thedivisionby zero partRemenberthat
the result of aalcdation like MOD. AB #10, #- 1 depends on the size of the core. For the
common8000-instrution core the result would be 9. (7999 mod 10)

JMWP
JMP movesexection to the address its A-field points to. The obviousitmgortantdifferenceto
the "math"instrudionsis thatJ MP only cares about the address, not the data that address points
to. Anothersignificantdifferenceis thatJ MP doesn’t use its B-field for anything. (and so also
ignores itanodifier) Being able to jump (or split) into two addresses would simply bpdom@F
ful, and it'd makemplemening the next thre@strudions quitediffi cult. Remenberthat you
can still place amcrementor adecrenentin the unused B-field, with luctamagng youroppo
nents code.

JMZ
Thisinstrudion works likeJ MP, but instead oignoring its B-field, it tests the value(s) it points to
and only jumps if it's zerdOthemwise theexecuion will continue at the next address. Since
there’s only onénstrudion to test, the choice ohodffiersis fairly limited.. AB means the same
as. B, . BAthe same asA, and. X and. | the same asF. If you test both fields of amstruc
tion with IMEZ. F, it will jump only if both fields are zero.

JIWN
JMN works likeJMZ, but jumps if the value testedrist zero. (surprise, surpriseJMN. F jumps
if either of the fields is non-zero.

DIN
DJINis like JMN, but the value(s) amecranentedby onebefore testing. Thisnstrudion is useful
for making a loop counter, but it can also be used to damag®pparent

SPL
This is the big one. Thaddtion of SPL into the language wawsobably the mossignificant
change ever made to Redcode, only rivalled perhaps bgttbdudion of the ICWS '94stan
dard SPL works like,JMP, but theexecudion also contiruesat the nexinstrudion, so that the
process is "split" into two new ones. The process at themsridion executedbefore the one
which jumped to a new address, which is a smaliaytimportantdetail. (most of today’s
warriors wouldn’t work without it) If the max. number of processes has been re&éthedorks
like NOP. Like JMP, SPL ignores its B-field and itsmodifier.

SEQ
SEQ compares twanstrudions, and skips the nextstrudion if they are equal. (it always jumps
only those twanstrudionsforward, since there’s no room for a jump address) Sinceshec
tionsare compared only faquaity, using the | modjffier is supported. Quiteatually, with the
modifiers. F,. Xand. | the nextinstrudion will be skipped only il the fields are equal.

SNE
Ok, you guessed it. Thiastrudion skips the nexinstrudion if the instrudionsit compares are
not equal. If you compare more than one field, the msttudion will be skipped ifany pair of
them aren’t equal. (sounésmiliar, doesn’t it? just like witld MZ andJ MN..)

12

CwP
CMP is an alias foSEQ. This was the only name of tiestrudion beforeSEQ andSNE were
introduced Nowadaysit doesn’t really matter which name you use, since the most popular
MARS programsecoqiiseSEQeven in '88 mode.

SLT
Like thepreviousinstrudions, SLT skips the nexinstrudion, this time if the first value is lower
than the second. Since this isaithmetical comparsoninstead of a logical one, it makes no
sense to usel . It might seem that there should beimstrudion calledSGT, (skip if greater
than) but in most cases the same effect can be achieved simglyapying the operands @<.
Remenberthatall values are€onsiceredunsigne¢lso 0 is thesmalkestpossble number andl is
the largest.

NOP
Well, thisinstrudion does nothing. (and it does it really well, too) It's almost never used in an
actual warrior, but it's very useful mebugying. Remenberthat any in- odecrenentsare still
evalated

You might notice that twinstrudions namelyLDP andSTP are missing. They are a fairly recent
addtion to the language, and will be discussed... um, well right ndpw.

P-space - thefinal frontier

P-space is the lateatidtion to Redcodeintroducedby pMARS 0.8. The "P" stands for private,
permanent personal, pathetic and so on, whichever you Besically, the P-space is an area of
memory which only your program can access, and which survives between rounds in a multi-round
match.

The P-space is in many wagiferentfrom the normal core. First of all, each P-spacetion can
only store one number, not a whalstrudion. Also, theaddresig in P-space iabsdute, ie. the
P-space address 1 is alwayefgardessof where in the core thastrudion contairing it is. And last
but not least, the P-space can only be accessed by two $psttiations, LDP andSTP.

The syntax of these twiastrudionsis a bit unusual. Th8TP, for example has aordinaryvalue in
the core as its source, which is put into the P-space field pointed to dgstinetion. So the P-space
locaion isn’'t deteminedby thedestnation address, but by itsvalue, ie. the value that would mver
writtenif this were aviov.

SoSTP. AB #4, #5 for example would put thealue 4 into theP-space field 5. Similarly,
STP.B 2, 3

DAT #0, #10
DAT #0, #7

would put the value 10 into the P-space figldiot 3! This can get pretgonfusng if the STP itself
usesindirectaddresig, which leads into a sort 6flouble-indrect' addresmg system.

LDP works the same way, except that now the source is a P-space field dedtttaion a core

instrudion. The P-spackcation 0 is a special read-onlgcaion. Any writes to it will be ignored, and

it is initialised to a special value before each round. This value is -1 for the first round, 0 the program
died in thepreviousround, andthewisethe number o$urviving programs. This means that, for
one-on-one matches, 0 means a loss, 1 a win artig¢2 a

13

The size of the P-space is usually smaller than that of thetgpieally 1/16 of the core size. The
addresses in the P-space wrap around just like in the core. The size of the P-spaaanallsbe a
factor of the core size, @omehing weird will happen.

There is one littlpecdiarity in the pMARSImplemertation of P-space. Since thetertion was to
keep access to P-space slow, loading or saving two P-space fields wiitstaungion isn’t allowed.
This is a Good Thing, but the result is at the very least a kludge. Whattiey means is that
LDP. F,. Xand. | all work like LDP. B! (and the same f&TP too, ofcourse)

Absdutely the most common use of P-space is to use it to sedd@tgy. In its simplest form, this
means saving thgreviousstraegyin P-space, answitching strat@jiesif the P-space field 0 shows the
program lost last time. This kind of programs are called P-warRessvitcrersor P-brains.
(pronouncegea-brains)

Unfortunately, the P-space isn't as private as it seems. While gppmentcan’t read or write your
P-space directly, your processes may be captured and made executgpynantscode,including
STPs. This kind otechiqueis known asrainvashng, and allP-switchersmust be prepared for it,
and not freak out if thetraegyfield containssomehing weird.

The par ser

L abels and addr esses

So far, I've written all the addresses in our example programnstasdion numbersrelative to the
currentinstrudion. But in larger programs, this can geinoyng, not to mentiordiffi cult to read.

Luckily, we don't really have to do this, since Redcode lets us use labels, symbolic constants, macros
and all the other things you'd expect of a gasderbler. All we need to do is to label thastrudions

an refer to them with the labels, and the patatrlatesthe real addresses for us, likés:

i mp: nov. i inmp, inmp+l

Whoa, what happened? This is exactly the same program as the one | showed you irbigirvery
ning. I've just replaced theumercal addressed witheferencego a label, "imp". Of course, in this
case doing that is pretty futile. The omigtrudion in which the label is used is "imp" itself, in which
the label is replaced k.

Beforeexecuing it, the parser in the MARS converts all such labels and other symbols iriéortie

iar numbers. Such a "pre-compiled" Redcode file is calleadfile, for whakeverreason. All

MARSes must be able to read load files, but some may not have a real parser. In load file format, the
previouscode becomeSOV. | 0, 1. We could've also written the same cade

i mp: nmov. i i mp, next
next : dat 0, O ;. or whatever

In this case, thastrudion labelled "next" is onestrudion after "imp", so it's replaced by 1.
Remenberthat the real addresses are séliive numbers, so the Imp will continue tolBV. | 0,
1 even after it has copied itself forward oteext".

Actually, the: in the end of the labels isn't realgcesary. I've used it here to help you see where
the labels are, but | usually don’t use it in my own programs. It's a mattizstef

14

Oh, and just in case you'veondeing about it, Redcodmstrudions arecase-insesitive. | like using
lower case for the sources since it looks nicer, and upper case only for the compiled, "load file"
format. (mostly because it’steadition)

Thewhole thing

While theexanplesin previouschapersmight compile just fine, they’re not really complete
programs, but parts of one. A typical redcode file contains someimfaranation for theMARS.

; redcode- 94
;nanme | np
;author A K. Dewdney

org inmp
i mp: nov. i inmp, inmp+l
end

As youprobably have already figured owtyenything after a; is a comment in Redcode. The lines on
the top of this program, however, aren’t jaedinary comments. The MARS uses them to get some
information about thegorogram.

The first line,; r edcode- 94, tells the MARS that this really is a Redcode file. Anything above this
line is ignored by the MARSActually, the MARS only expects a lirggarting with ; r edcode, but

we can use the rest of the lineidertify the flavor of Redcode used. Specially,[futH serveread
this linethenselves and use it tadertify the hill the program is going.

The; nane and; aut hor lines just give sommformation on the program. Of course you could give
it in any format, but using the specific codes lets the MARS read the names and display them when the
program isun.

The line with the wordEND - surprise, surprise - ends the program. Anything after it will be ignored.
Together withy r edcode, it can be use for example to include Redcode prograesnail.

The line withORGtells where th@xecuion of the program should start. This lets us put oit&ruc
tionsbefore thebegiming of the program. Th@RG command is one of the new things included in the
'94 stardard The older syntax, which still works in modern programs too, is to givetdining

address as aargumentto theEND.

; redcode- 94

;nanme | np
;author A K. Dewdney

i mp: nov. i imp, inmp+l
end inmp

Simple, compact, angnfortunatelyquiteillogical. And with long programs, you have to scroll to the
end just to see where it begins. In Reddedminology, bothORG andEND are called
pseudo-OpCodes. They look like actuahstrudions, but they’re notictually compiled into the
program.

15

But enough of the Imp. Let’s see what the Dwarf would look like in modern Redcode:

:redcode- 94

:nane Dwar f

;author A K. Dewdney

;strategy Bonbs the core at regular intervals.
;(slightly nodified by Il mari Karonen)

;assert CORESIZE %4 == 0

org | oop

| oop: add. ab #4, bonb

nmov. i bonmb, @onb
j mp | oop

bomb: dat #0, #0
end

The labels make understanding the program alot easier, don’t they? Notice that I’ ve added two new
comment lines. The; st r at egy line describes the program briefly. There may be several such lines
in the program. Most current MARSes ignore them, so you might as well use ordinary comments like
the one my nameisin, but the Hillsdisplay the ; st r at egy linesto others. Sending the previous
program to one, something like this might be shown:

A new chal | enger has appeared on the '94 hill!

Dwarf by A. K Dewdney: (length 4)
;strategy Bonbs the core at regular intervals.

[other info here..]

The environment and :assert

Another new detail in our example codeisthe; assert line. It can be used to make sure the program
really works with the current settings. The Dwarf, for example, killsitself if the size of the coreisn’t
evenly divisibleby 4. So, I'veused theline; assert CORESI ZE % 4 == 0 to make sureit
awaysis.

The CORES ZE is a predefined constant which tells us the size of the core. That is, n+CORES ZE is
always the same address as n. The %is the modulus operator, which gives the remainder in adivision.
The syntax of the expressions used inthe ; asser t linesand elsewhere in Redcode isthe same asin
the C-language, although the set of operators is much more limited.

For those who don’t know C, here's some sort of alist of the operators which are used in Redcode
expressions:

Arithmetic:

+ addition

- subtraction (or negation)

* multiplication

/ division

%modulus (remainder)
Comparison:

== equals

I = doesn't equal

16

< is lessthan

> is greatethan

<= is equal or lesthan

>= is equal or greater than

Logical:
&& and
|| or
I not
Assigmment
= assigmentto

The; assert is followed by a logicaéxpresion If it's false, the program will not be compiled. In
C, a value of 0 means false and anything else means true. The logicahgratsonopeitorsreturn
1 for true, a fact which can be usefatler.

Typically, ; assert is used to check that the size of the core is the one the constants have been
designed for, like assert CORESI ZE == 8000. If the program uses P-space gisgtencemay

be tested with assert PSPACESI ZE > 0. Since our example, the Dwarf, is faidgapable |

only tested th€ORES ZE for divisibility, not for a specific size. The Imp, which runs vty

settings, could usgassert 1,;assert 0 == 0 and so on, all of which alwagvalateas true.
This is useful sincethewisethe MARS may complain about'mi ssi ng ; assert line --
warrior may not work with current settings."

Some of thgreddined constants, such &0RESZE, are defined by the '9dtardard and others may
and have been added. pMARS 0.8 should support at ledstltveing:

CORES ZE -- the size of the core (default 8000)

PSPACES ZE -- the size of the P-space (def. 500)

MAXCYCLES -- the number of cycles until a tie is declared (80000)
MAXPROCESSES -- the maximum size of the process queue (8000)
WARRIORS -- the number of programs in the core (2)

MAXLENGTH -- the maximum length of a program (100)

CURLINE -- the number oinstrudions compiled (1 MAXLENGTH)
MINDISTANCE -- the minimum distance between two warriors (100)
VERSON -- the version of pMARSnultiplied by 100 (80)

#define? Well, aimost..

Thepreddined constants are useful, and so are labels, but is that really all? Can'’t | usessaivles
or somehing?

Well, Redcode is aassernly language, and they don’t really use a lovafiables But there’ssome
thing almost as good, or mayBemeimeseven better. There’s a pseudo-OpCEBQ® that lets us
define our own constantsxpresionsand even macros. It looks likieis:

step equ 2667

After this, step is always replaced by 2667. There’s a catch, howevenefhacenentis textual, not
numercal. In this case it shouldn’t do any harm, but while it ma&k@d a verypoweiful tool, it can
create somprodemswhich Cprogrammersshould be quitéamiliar with. Let’s take arexample.

17

step equ 2667
target equ st ep- 100

start nmov. i target, step-target

The A-field of theMOV would be 2567, just as it should be. But the B-field would become
2667-2667-100 == -100, not 2667-(2667-100) == 2667-2567 == 100, asjrebly intended. The
soluion is simple. Just pyiarenhesesaround evergxpresionin EQUs, such ast ar get equ

(st ep-100)".

With the modern versions of pMARS if@ssble to use multi-lineequs, and thus create some sort of
macros. The way it's done tisis:

dec7 equ dat #1, #1
equ dat $1, $1
equ dat @, @
equ dat *1, *1
equ dat {1, {1
equ dat }1, }1
equ dat <1, <1
decoy dec?7
dec7 ; 21-instruction decoy
dec7

What's" rof" used for?

There are a few more features of the pMARS parser left, and this one is perhapsweiid (and
harder to learn) than any of the above. FRER/ROF pseudo-OpCodes not only can make your
sources shorter and create complex code sequences easily, but they can be useddodiieatd
code fordifferentsettings.

A FOR block begins with - yes, you guessed it - the pseudo-OpE0Bgefollowed by the number of
times the block should be repeated. If there’s a label before the block, it will be used as a loop counter,
like this;

i ndex for 7
dat i ndex, 10-i ndex
r of

The block ends, as you can see, ViRE@F. (much better that the old clichNEXT or REPEAT, I'd say)
Thefollowing block would be parsed by pMAR®&to:

DAT.F $1, $9
DAT.F $2, $8
DAT.F $3, $7
DAT.F $4, $6
DAT.F $5, $5
DAT.F $6, $4
DAT.F $7, $3

It's quite possble to have sever&OR blocks inside each other. The blocks can even cok@liis
inside them, which lets us create some wetgrestng code. An even more useful feature is that the
loop counter can be joined to a label with &aepeitor. This is most commonly used to avaieclar
ing labels twice, but it can be useful for various other purposeglas

18

dest 01 equ 1000

dest 02 equ 1234
dest 03 equ 1666
dest04 equ (CORESI ZE- 1111)
jtable
i X for 4
jump&i x spl dest & x
din.b jump& x, #ix
r of

Thiswould, after the FOR/ROF is parsed, become:

jtable

jump01 spl dest 01
din.b junp0l1l, #1

jump02 spl dest 02
din.b junp02, #2

j ump03 spl dest 03
din.b jump03, #3

j ump04 spl dest 04

din.b junpo4, #4

Asfor what thiswould be useful for, well, that’s up to your own imagination. The only warriors I’ve
seen using such complex expressions are some quickscanners. The predefined constants can also be
used with FOR/ROF, like this:

; The main warrior body is here

decoy

f oo for (MAXLENGTH- CURLI NE)
dat 1, 1
r of
end

Thisfills the remaining space in your warrior with DAT 1, 1. Such adecoy can misdirect other
warriors attacks, provided that you’ ve copied (booted) your own program away from the decoy. Note
that I’ ve used foo as aloop counter even though it isn’t used for anything. That’s because otherwise
the MARS would consider decoy to be aloop counter instead of the label it should be.

; redcode- 94

;nane Tricky

;author |l mari Karonen

;strategy Some really conplex warrior thingy

;strategy (A self-explanatory exanple of conditional code)
;assert CORESIZE == 8000 || CORESI ZE == 800

;assert MAXPROCESSES >= 256 && MAXPROCESSES < 10000
;assert MAXLENGTH >= 100

org start
for 0
This is a for/rof comrent block. This will be repeated O tines, which

means that everything here will be ignored by the MARS. This is a
perfect place for explaining the conplex strategy this warrior uses.
r of

; O course, using ordinary comments is al so possible. You can use
;whi chever alternative you like.

19

for (CORESI ZE == 8000)
step equ nor mal st ep
;Since a true conparison returns 1 and a false one 0, this piece of
;code is only conpiled if the conparison is true.

r of

for (CORESI ZE == 800)

step equ tinystep

;And here we can put optim zed constants for the smaller core size.
r of

for 0
;Sstrategy Since strategy and assert lines are really coments, they
;strategy will be parsed even inside FOR 0 / ROF bl ocks!

r of

;[Actual code here..]

Variety with variables

The problem with the constants defined vieQU is that they're, well, constants. Once you've defined
them, you can’t change their values. This is fine for most purposes, but it makes a few tricks damn
nearimpossible.

Luckily pMARS provides a few reafariablesfor us to use. Their use is a bit tricky and it's been a
long time since I've seen anyone really using them, but thexidt

Thevariablenames have only one letteffedively limiting their number to 2§a throughz) Instead
of usingEQU, thevariablesare assigned their values with thepeitor. The tricky bit is that, to use
the opegtor, one has to have axpresion And since pMARS does natcogizethe commapeie-
tor, it may benecesaryto write dummyexpresions

Still, thevariablesare useful. For example, thalowing auto-geneatedFibonacci sequence would be
impossible withoutthem.

dat #1, (g=0)+(f=1)
i dx for 15
dat #idx+1, (f=f+g)+((g=f-g) && 0)

r of

Note how theexpresion(g=f - g) is "hidden" by ANDing it with 0. The system works because
pPMARS won't reorder thexpresionbut alwaysvalatesthe left side ohddtion first, so that when
the right side is being computddjas already bedancreased.

PINs and needles

Okay, | almost forgot. There's one more pseudo-Op left to describe. It's almost never used, but yes,
it's there. ThePI N stands for "P-spaddentificaion Number". If two programs have the same

number as theiPl N, they will share their P-space. This can be used to provide a sort of inter-process
communication and evercooperation. Unfortunatelythestratgy doesn’t seem to be worth the trouble

it takes to create aaffedive and fast method afommunicaion. Of course, if you want to try it, go
ahead. You never know if it'll besuccess..

20

If the program has nBl N, their P-space will always be private. Even if two programs do share their
P-space, the special read-oldgation O is alwayrivate.

Climbing the hill

If you didn't already know about them, the King of the Hill serversarginruousCore Wartouma

mentson thelntemet Warriors are sent by e-mail to the server, which puts them agains all the (usually
10-30) programs already on the hill. The program with the lowest total score falls off the hill, and the
new warrior will replace it(assuning it got a better score than at least one obtliginal programs)

There are currently two KotH servers running, with sewdiftdrenthills availableat both[The]
[StormKing KotH server akoth@koth.orpandthe IntemetPizza KotH server at
[pizza@ecst.csuchico.dthath offer several options npteviously mentioned, mostly accessed by the
special comment lines, such;dsi | | and; passwor d. Since the commands atigferenton each
server, you should check their owtacumertation for moreinfo.

Note that the hillsypically pre-compile the warriors into load files befa&ally running them to
save time. This can lead to some of pheddined constants, such &ARRIORS beingincorrect and
thus tomystaious; assert prodems

History

0.50
Finished the chapter on the parser. (Mar 25, 1997)
0.51
Fixed a bug in the for/raéxanples
0.52
Thefirst published version
0.53
Fixed some typos and misspellings
0.54
Added the '88 ->'94onvesionrules
0.55
Cleaned up the HTML a bit
1.00
Added info on the= opertor. Might as well call this thing "version 1".. (May 5, 1997)
1.01
Fixed a minoiinconpaibility with <DD>s.
1.02
Fixed some typos aritiogical sentences. Changed thavigation bar to have a common style
with the rest of the site.
1.03
Removed some images and align attributes, changed doctype to Strict.
1.10
Aargh! I've got SLThackvardsall this time! Fixed. (March 8, 1998)

21

http://www.koth.org/
http://www.koth.org/
http://www.ecst.csuchico.edu/~pizza/koth/
http://www.ecst.csuchico.edu/~pizza/koth/

Homg{Up
[Location; http:/fwww.sci.fif~iltzuffcorewafguide.html

wsf- HTML
v = Lastmodified: March 8,1998
[Copyighi © Iimari Karonen1997-1998.

22

http://www.sci.fi/~iltzu/
http://www.sci.fi/~iltzu/corewar/
http://www.sci.fi/~iltzu/sitemap.html#corewar_guide
http://www.sci.fi/
http://www.sci.fi/~iltzu/
http://www.sci.fi/~iltzu/corewar/
http://validator.w3.org/check?url=http://www.sci.fi/~iltzu/corewar/guide.html
http://www.sci.fi/~iltzu/copyright.html

	Beginner's guide to Redcode
	Contents
	Preface
	Introduction to Core War
	What is Core War?
	How does it work?

	Starting with Redcode
	The Redcode instruction set
	The Imp
	The Dwarf
	The addressing modes
	The process queue
	The instruction modifiers

	Diving deeper into the '94 standard
	The # is more than it seems..
	Modulo math
	The '94 standard instruction by instruction
	P-space - the final frontier

	The parser
	Labels and addresses
	The whole thing
	The environment and ;assert
	#define? Well, almost..
	What's "rof" used for?
	Variety with variables
	PINs and needles
	Climbing the hill

	History

