Miscellaneoustips & tricks

Index
[Core-cledr
[Bombing/scaning patterm

Self-mutatg

[Onlineprocesses

Bootstrapping

Some warriordoostraptheir codes by copying thdinnctional ones tasomavheredistant from their
original ones. Its general purposes are to arrange a better setup and to leaiginileodes as
decoys.

back tolndex

Core-clear

A core clear idastally a linear bombing stone. Its size dndction fit in many warriors as the
routine that completely clear the arena.

Typical core cleais:

mov 2, <1
jm -1, -1

or:

spl 0, O
nmov 2, <

-1
jmp -1, -1

The presence of SPL 0 is to prevent the warrior fromself
term nation.

back tolndex

Self-splitting

Self-spliting or SPL 0 is such gecdiar instrudion that can be used as either a weaponpmrotec
tion.

As a weapon, SPL 0 is usua#lgconpanied by JMP -1 and thrown together into the core. These two
instrudions are very lethal againséplicaiorg because they can hinder anerually stall their
progress.

Self-spliting can also be used to improve the warrior endurance. Considefltieng example:



MOV 3, 3
ADD #165, -1
JMP -2

If any part of this code is hit, the programw || term nate inmediately.
Now compare it with the follow ng:

SPL 0

MOV 3, 3
ADD #165, -1
JMP -2

After few cycles are running, this small nodul e have accunul ated sone
processes in its loop. Ahit to any of its parts will not stop it
fromrunning. Furthernore, a single hit to either the first or the
last instruction will still let the programrenain operational.

There is a notabldifferencebetween théollowing routines:

SPL O SPL O
MOV 3, 3 MOV 3, 3 ADD #165, -1
ADD #165, -1 ADD #165, -1 MOV 3, 3
JMP -2 JWP -2 JMWP -2

<hr >

e Thedifferenceis due to the way SPL works. Fasmparson
® No self-spliting routine works as:

MOV, ADD, MOV, ADD, MOV, ADD, MOV, ADD, MOV, ADD, MOV, ADD, ...
® Self-spliting routine 1 works as:

MOV, ADD, MOV, ADD, MOV, MOV, ADD, MOV, ADD, MOV, ADD, MOV, ...
® Self-spliting routine 2 works as:

ADD, MOV, ADD, MOV, ADD, ADD, MOV, ADD, MOV, ADD, MOV, ADD, ...

back tolndex

Bombing/scanning pattern

Such kind of pattern iypically shown in:(C * i) modcoresize.

C is an integer number thatrispettively added to or subtracted from another number. If C is one,
then the formed pattern will be similar to that of linear bombingcaming.

i is the nth times c&ddtion or subtration.

coresize is the size of the arena.

Themeasurmentof good constant number Cgeneally chamaderized by how swift the module
employing C can fully break the arena down into smaitagmentswhose size is equal or less than N.

N here is the expectdchgmentation size. The smaller the N, the slower the break down process. This
is undestandbleas the smaller the N, the more fragmertation is needed.



There is also a lower limit in whichfeagmentcannot be broken into smaller ones. Thus this limit
number sets as the minimdragmentsize and it depends on the chosen constamber Modulo is
asseiatedwith this limit number. A pattern of modulo 5 means that the arena cannot be broken into
fragmentswhose size is smaller than 5. For every five cells in a row, four of them cannot be touched
and left as gaps. Another term for modulo isgheaestcommon divisor or gcd between the constant

C and thecoresize

Below is the list of some constants that produce best pattern for any given mazhriesire
8000:

1 3039 3359

2 2234 3094

4 3044 3364

52365 3315

8 23762936

There ar¢C sourcecodg¢andDOS executabléle|that compute best constant for any given modulo.

back tolndex

Salf-mutate

This is a beauty in corewarogranming. A simple few lines of code can have more thanfanetion

or behavor. Not all of them are readilgppaentuntil the codaindegoesself-mutdion or hits itself on
its own purpose during its course. This is cheap and hajfdgive. Twill, for example is designed as
a very capable stone that changesdisavor four times during its full course.

back tolndex

On-Line Processes

® On-Line processes are several processes that run at the saevetitime. They are very useful
in manyprotaypesespeially [papef The formula to create N number of these processes:

e Subtract N by 1.

® Encode (N-1) into itequivalent binary value.

e Staring from left to right, replace every 1 with "SPL 1" and every 0 with "MOW0“1,

Example:
For N = 10, its (N-1 or %quivalent binary value is: 1001. The sequence is:

|(back to | ndex)]



ftp://ftp.csua.berkeley.edu/pub/corewar/misc/corestep.c
ftp://ftp.csua.berkeley.edu/pub/corewar/documents/num8000.zip

PREFACE

Thefollowing part ofintrodudion describes about some paper warriors. It covers about: basic paper
style,improving paper, winning with paper, atieclsumdesign.

® Table lookup
e [Basic papestyld
o [Checlsumdesign

Basic paper style

A paper warrior idbastally areplicaor. Its ability to spread in the core and to disrojppanentcode

is its main strength. Byeplicaing andspreaihg, it assures itself a long endurance. Tibgdive

effect is it exposes and renders itselinerable to warriors that applgtunattack Hence paper is a
formidableoppmentagainst a single process stone and at the same time is an easy target@gainst
sorstype warriors.

A basic paper program might look likes:
; name Paper 1
cnt EQU I st-src ; nunber of code in paper
src DAT #cnt ; source pointer
dst DAT #1222 destination pointer

pap MOV #cnt, src #cnt is nunber of lines to be copied
MOV <src, <dst copy a code. ..

JW -1, src once at a tine and
| oop back until all lines copied
SPL @ist split the process to a new copy
SUB #23, dst give nore distance to the next copy
JMP pap make ot her copies
| st END pap

As early as thelevebpmentof '88 had gone, this kind of program was also known as mice program.
They could fill-up the core faster than what eatiynesor dwarfs could cover.

Nowadays there is little to be expected from it as fae#tciencyis concerned. Notice that some of
the codes have only offienctional operand. Bytilizing the unused operandsprovementon both
speed and size can bained.

; name Paper 2

cnt EQU Ist-src ; nunmber of code in paper
src MOV #cnt, O ; source pointer
MOV <src, <dst ; copy the code...
JW -1, src ; once at a tine
dst SPL @, 1222 ; destination pointer
SUB #23, dst ; give nore distance to next copy
JMZ src, src ; redo
I st END src

The second paper doesn’'t need DAT fopibinters Its pointersare used in double usages with others.
Instead ofeplicaing 8 lines of code, it noweplicatest lines. This means smaller module and faster



progress.

Checksum

As paper moduleseplicate their growth rate decreasgpotionally. There is a side effect to this
kind of event. Since paper warrior overidesaitvyesarycodes with its owmeplicaing codes, there is
a chance that itadvesarybecomes converted into another working paper instead of gelttiolmered
andterminated For their besadvarage many paper warriors include in thetmeclsum

Like others, paper’s goal is terminateall of itsadvesaryprocesses. Although it is lacking of what
other warriors havdcore-cledrit can win mainly just bypvemriting theoppaentcode with its own
paper code. An ideal paper module should provide fduations replicaor andterminaor. Check
sum as part of codes being copied, controls all the procegsesiing it to choose among the two
functions They are allowed to continueplicaing if they canidertify thenselvesas their own
processes or forcddrminatedothemwise

One way to desigoheclsumis byobsening how distinct own processes frappmentones when
running in a paper module. Thaye:

Initial location.

Theoppmentprocess may start at anywhere in the copied module.
Number.

There are more process®gecuing the module (own’s ®ppments).

A checlsumcan bamplementedeffedively with only fewaddtional codes. The first warrior that
demorstratecheclsumis notepaper

The concept is a®llow:
; name Paper 3

cnt EQU dt - src

init SPL 1
MOV -1, O
SPL 1 ; Create 6 on-line processes
src MV #cnt, O ; Init nunmber of lines to be copied

; This also serves as a source pointer
MOV <src, <dst ; Copy a line 6 tinmes (rmake one full copy)
dst SPL @, #1222 ; Split 6 tines

MOV dt, <-1 ; G ve nore distance to next copy
JMWZ src, src ;. Test for checksum
MOV O, -1 ; Attenpt to erase that nodul e

dt END init

The new warrior requirgigitial set-upthat create 6 processes that have texaeuing on the same
line. This paper module is equipped witheclsumand self-erase routine. The self-erase routine is
intended for all alien processes.

In order to make a full copy, there has to be at least 6 processes in any loop or modthiechHuen
checks for exactly 6 processes being present in that loop. If it is, the processes continue the copy
routine.Othemwise, their progress are simply denied and forcegctivatethe self-eraseoutine.



Replicator Warriors

® [ndex
o [Replicaor frameawork|
® [Checlsumdesign

Replicator framework

A replicaor is also referred as paper. Its ability to spread in the core and to dippmentcode is its
main strength. Byeplicaing andspreadhg, it assures itself a long endurance. Tikgdive effect is it
exposes and renders itselfinerable to warriors that applgtunattack Hencereplicaor is a
formidableoppamentagainst a single process stone and at the same time is an easy targed@gainst
sorstype warriors.

Bastally, areplicaor might look likethis:

;name Paper 1

cnt EQU I st-src ; nunber of code in paper
src DAT #cnt ; source pointer
dst DAT #1222 ; destination pointer
pap MOV #cnt, src ; #cnt is nunber of lines to be copied
MOV <src, <dst ; copy a code...
JW -1, src ; once at a time and
; loop back until all lines copied
SPL @ist ; split the process to a new copy
SUB #23, dst ; give nore distance to the next copy
JVP pap ; make ot her copies

| st END pap</listing>
At earlier tinme, this kind of warrior was al so known as mce warrior.
Agai nst stones or dwarfs, they could easily
overrun them

; hame Paper 2

cnt EQU Ist-src ; nunmber of code in paper
src MOV #cnt, O ; source pointer
MOV <src, <dst ; copy the code...
JW -1, src ; once at a time
dst SPL @, 1222 ; destination pointer
SUB #23, dst ; give nore distance to next copy
JMZ src, src ; redo

I st END src</listing>

The second replicator doesn't need DAT for its pointers. Its pointers are used
in doubl e usages with others. Instead of replicating 8 lines of code, it now
replicates 6 lines. This nmeans smaller nodul e and faster progress.



Checksum

Like others, paper’s goal is terminateall of itsadvesaryprocesses. Although it is lacking of what
other warriors havdcore-cledrit still can win just by mainlpvemriting theoppaentcode with its
own code. One hindrance with this is that simple plain of copying isufifatientfor paper to win
alone. There is a chance thatdth/esarybecomes converted into another working paper instead of
gettingclobbered Thus, an ideal paper module should be abselistermnateas well as toeplicate
Here is themportanceof checlsum It allows paper to check all tlexecuing processes and direct
their contiruation. Those who caitertify thenselvesasoriginal paper’s processes are allowed to
continuereplicaing. Those who can't are forced terminated

One way to designheclsumis byobsening how distinct own processes frappmentones when
running in a paper module. Thaye:

Initial location.

Theoppmentprocess may start at anywhere in the copied module.
Number.

There are more process®gcuing the module (own’s eppments).

A checlsumcan bamplementedeffedively with only fewaddtional codes. The first warrior that
demorstratescheclsumis notepaper

The concept is dsllow:
; hame Paper 3

cnt EQU dt - src

init SPL 1
MOV -1, O
SPL 1 ; Create 6 on-line processes
src MW #cnt, 0O ; Init nunber of lines to be copied

; This also serves as a source pointer
MV <src, <dst ; Copy a line 6 tines (nmake one full copy)
dst SPL @, #1222 ; Split 6 tines

MOV dt, <-1 ; Gve nore distance to next copy
JMZ src, src ; Test for checksum
MV 0, -1 ; Attenpt to erase that nodul e

dt END init</listing>

The new warrior requires an initial set-up that creates 6

lonl' i ne processes| Down at the bottomis

a neat single piece of code. It is intended for all alien processes.

The checksumis such as in order to replicate successfully, there have to be
exactly 6 processes runni ng synchronously. Failing the requirenent should
trigger the self-erase routine at the bottom




PREFACE

This part ofintrodudion describes what and how the scanner warriors work. The scope dlothis
mentcovers onlyclassical scamers Classical scamersarescamersthat are designed gpecifcally
catchpapefstyle warriors byhrowing[self-spliting instrudions This includes two scannproto-
types B-scanner and CMP-scanner. They are detailed irsepaate parts.Comparsonbetween
scamerscan be founa@ftemward Further details on other typessaiamerscan be obtained from
[variouscolledion of articlegin ftp. CSUA.berkéy.edu undediredory pub/corewar/redcode.

® Table lookup:
® [ScanneProtaypes$
O [B-scanngr
e Compments
® [B-scanphase
tuming phase

ndphase

F
Iiomi

o

=

=1 =

2 &)

0

Q)

=3

o

=1

Stuming phasg
|[Loopingsolution|
Endphase
[
o [ComparsonbetweerB-scamersandCMP-scaners

°
O

<

®

)

Scanner prototypes

Scanner warriors are those that @vafiguredto detect th@reenceof oppmentbefore laying down
their bombs on anguspciouslocaions Aside fromscaming, it is alsoimportantthat thescamersare
able to avoid messing up their own code.

There are two distingirotatypesfor scamers They argB-scanngandCMP-scanngrTheir names
were derived from thefunctionsthat doscaming. B-scamersdetect theioppamentby searcimg for
any non-zero B-field in their codEMP-scamersprovide more rigidletet¢ion by compamg (CMP)
for anynon-idertical instrudions between twalifferentlocaions. In the extent of theiiunctional
differencesboth kinds oscamersavoid self-attack ifmnteresingly differentmanner. (For further
detail, sef€Comparsor)betweerB-scamersandCMP-scamers.

B-scanner

B-scamersassumes that at least one of tlgipanentcode has non-zero value in their B-field.

One ofB-scamers duties might be afollow:


ftp://ftp.CSUA.berkeley.edu/pub/corewar/redcode

. ... B-scan
; ... throw self-splitting instructions
;... redo before finish
; ... core-clear</listing>

<h3>B- scan</ h3>

Its main instruction is: JMZ scan, ptr where scan refers to
the scanning instructions and ptr refers to the current scanning |ocation.
The scanning instructions update the scanning pointer and test if it points
to a non-zero B-field. The instructions night be:
<listing> scan ADD #const, ptr

JMZ scan, ptr</listing>

During scanni ng phase, the scanner shouldn’t be mistaken with any of its
own codes. An easy way to do it is to add SLT after JMZ, e.qQ:
<listing> scan ADD #const, ptr
JMZ scan, ptr
SLT #num ptr ; numis nunber of codes...
; ...in-between ptr and last line</listing>

<h3>Throw sel f-splitting instructions</h3>

These are the two instructions:
<listing> MV jnp_i, @tr
MOV spl _i, <ptr</listing>

spl _i refers to SPL 0 and jnp_i refers to JMP -1.
<h3>Redo before finish</h3>

Agai nst |[replicator|warriors or other

warriors that execute nore than one nodules, it is neccessary to scan as
many | ocations as possible before core-clearing. A sinple test to see whether
it has undergone a [self-nodification|or

not is sufficient. This test could be a single instruction:

<listing> JMWMN scan, scan</listing>

<h3>Cor e- cl ear </ h3>

This is to clear away all the opponent stunned processes and to convert
tie into w nning:
<listing> SPL 0, O

MOV dat i, <-1

JMWP -1, 0</listing>

<h3>Overal | </ h3>

Putting up together, here is the first version of B-scanner:
This version uses SLT to avoid sel f-attack.

<listing> ;. nanme B-scanner 1
const EQU 3094
init EQU scan
scan ADD #const, ptr
ptr JMZ scan, ptr+init

SLT #dat _i, ptr
throw MW jnp_i, @tr

MOV spl _i, <ptr ; pointer is decrenented by 1
ADD #1, ptr ; needed to readjust the pointer
redo JMN scan, scan
spl _i SPL 0, O
MOV dat i, <-1
jp_i JW -1, 0



dat _i END scan</li sting>

Here is a nuch nore el egant solution to B-scanner, blatantly taken from
a successful classical B-scanner:
B- scanner live in vain.

<listing> ;. nanme B-scanner 2
const EQU 2234
init EQU scan

scan ADD #const, @
JMZ scan, @tr ; hit here
throw MW jnp_i, @tr

ptr MOV spl _i, <init+ptr
redo JMN scan, scan
spl _i SPL 0, O
MOV dat i, <-1
jp_i JWw -1, 0
dat _i END scan</li sting>

The SLT instruction has been dropped off but this program perfornms
much better. Note that the warrior scans in nmodulo 2 or one for
every two instructions. Also note that the warrior structure is aligned

such as the B-scanner will scan zero B-field inits own code. This
is howit avoids winding up its owmn code. There is but one instruction:
the second one that will be read as non-zero when it reads its own code.

This instruction is the indicator for this warrior to begin its core-clear.
<h2>CMP- scanner s</ h2>

CWP-scanners detect the presence of opponent code by conparing (CVW) two
instructions at different |locations. One of 88 rules is that at |oading tinme,
all instructions other than those of two warriors are initialized with
DAT $0, $0. Wien CMP-scanner finds two non-identical instructions,
it knows that it is not conparing two DAT $0, $0. At |east one of these
two instructions is either an opponent code or a nodified code. In both
cases, CMP-scanner sinply throws in self-splitting instructions at the
concerned | ocations. The tricky part is to find out which one of the two
potentially belongs to the opponent. Like B-scanner, it should also avoid
any unintentional self-nodification.
CWP-scanners might as well fall into two smaller divisions. Their difference
is in the way they handl e two non-identical instructions. Their choices are
based on their scanning gap. The CMP-scanner with | arge/ nedi um scanni ng gap
assunmes the following: "if it is not the first instruction, then the second
one is part of opponent’s". It then takes the next step (detailed below) to
accomplish its duty. The other CMP-scanner (small scanning gap) assumes that
they have touched the intersection of the opponent’s code. It then throws in
self-splitting instructions at all |ocations between the two | ocations
it is conparing.
Most CMP-scanners have the fol |l owi ng conponents:
<listing> ;... CMP-scan

; ... handle everything to do upon two non-identical instructions.

;... redo before finish

; ... core-clear</listing>

<h3>CMP- scan</ h3>
The standard instructions for this conponent:
<listing> update ADD | oc_nod, scan

scan CWP | oc, loc + gap

avoid SLT #num scan

rescan JMP update, O</listing>

The first instruction updates both A-field and B-field of scanning |ocation.

10



The second instruction does the scanning. The third instruction provides a
mechani smto prevent damaging its own codes. The last instruction |oops
back to | abel update in the case of identical instructions. Myt scanners
use the form DIN update, <b-attack as their |ooping

instruction.

<h3>Handl e the next part after CMP-scan</h3>

One basic problemw th CVP-scanners is that ' 88 doesn’t have any A-field
indirect references. Since CWMP-scanners use both A-field and B-field as
their scanning location, they should as well be able to inspect both pointed
| ocations and to take the neccessary actions based on both fields. Not until
then, their progress is inconplete.
<dl >
Sone solutions to the above problem are:
<dt >Bonb i n-between the two | ocati ons.
<dd><li sti ng> MOV #gap, cnt ; the constant gap is known
MOV spl _i, <scan
cnt DIN -1, #cnt
ADD #gap, scan ; re-adjust the B-field scan ptr</listing>
<dt >Bonb exactly at the two locations. (I)

<dd><li sti ng> MV jnp_i, @can ; on B-field
MOV spl _i, <scan
SUB #gap-1, scan : now B-field scan has the sane val ue. ..
;... as A-field scan
MOV jnp_i, @can ; on A-field
MOV spl _i, <scan
ADD #gap+1, scan ;resume to B-field scan</listing>

<dt>Bonb at first |location and re-enter the scanning phase with B-field
now refers to A-field.
<dd><li sti ng> MOV jnp_i, @can

MOV spl _i, <scan
ADD | oc_npd2, scan</listing>
</dl >

Due to the I engthy codes, the second nmethod is rarely used. The first
The first method is used by CMP-scanners based on
Agony type warrior.
The second nmethod is rarely used due to its | engthy codes.
The | ast nmethod is used by Crinp type
CMP- scanners.
The last nmethod is intriguing to know. In normal scanning (instruction 1 - 4),
both | ocation pointers are updated as fromE-Fto CDto A-B ... (below.
<| | Stl ng> * * * * * *

A B C D E F
</listing>
When it detects different instructions, e.g between E and F, it changes
its scanning pointers as fromE-F to D-E. The purpose is to provide way
to access the A-Field.
<h3>Redo before finish</h3>

Li ke CVP-scanner intentionally bonbs itself

to indicate that it has finished its scanning phase. A single instruction
does the trick:

<listing> JMN updat e, update</listing>

<h3>Cor e- cl ear </ h3>

A nornmal core-clear. The const val ue of MOV const, <const can
be used as | oc_nod constant.

<h3>Overal | </ h3>

11



Putting up together, here are the two versions of CMP-scanners:

<listing> ; name CMP-scanner (snall) ; name CWVP-scanner (| arge)
gap EQU 12 gap EQU 49
const EQU - 28 const EQU -98
init EQU updat e+const init EQU updat e+const 2
const2 EQU -49
update ADD | oc_nod, scan update ADD | oc_nod, scan
scan CWP init-gap, init scan CWP init-gap, init
SLT #l ast-update, scan SLT #l ast-update, scan
rescan DJN update, <6000 rescan DJN update, <6000
MOV spl _i, <scan MOV jnmp_i, @can
cnt DIN -1, #cnt MOV spl _i, <scan
MOV #gap, cnt ADD nmod_2, scan
ADD #gap, scan redo JMN scan, scan
redo JMWN updat e, update spl _i SPL O
spl _i SPL O nmod_2 MOV const 2, <const2+1
|l oc_nmod MOV const, <const jmp_i JWP -1
| ast END scan | oc_nod DAT #const, #const

END scan</li sting>
<hl1>Conpari son between B-scanners and CMP-scanners

<dl >

<dt >Si ze

<dd>B-scanner is nuch smaller than CMP-scanner. The average B-scanner #lines
of codes is 8. The average CMP-scanner #lines of codes is 12.

<dt >Scanni ng speed

<dd>CMP-scanner is generally faster than B-scanner. CMP-scanner scans

two locations for every three instructions (67% while B-scanner scans

one | ocation for every two instructions (50% .

<dt >Cover age

<dd>A success B-scan can cover exactly half size of the core before entering
core-clear. A success CMP-scan can cover fromhalf size to alnost full size of
the core depending on the spread of its opponents.

<dt >Addi ti onal offense and defense

<dd>B- scanner: B-protection. CMP-scanner: DIN stream plus B-protection.

<dt >Wasti ng on decoys

<dd>B- scanner wastes |ess cycles than CWP-scanner does on decoys spreaded
by their opponents. Mst CMP-scanners however avoid nost decoys caused by
opponent’s DIN-stream

<dt >Ef f i ci ency agai nst stone

<dd>B- scanner perforns better than CMP-scanner does.

<dt >Ef f i ci ency agai nst paper

<dd>CMP- scanner performs better than B-scanner does.

</dl >

<addr ess>Aut hor: wangsawm@i r a. csos. or st. edu</ addr ess>

</ body>

12



Vampire Style (Earlier)

Vampire warriors, rather thahrowing DAT bombs, they throw JMPpointersinto the core. These
pointerspoint to a placed trap. Once any enemy process steps on one qfdimdeses it is immedi-
atelytranderedto the trap and forced to do the slave works for vampire warriors.

Earlierincamation of vampires worked likbelow:
;name Vanpire 1

const EQU 2365

|l oc MOV ptr, ptr ; throw JMP pointer to core
ADD #const, ptr ; update pointer
SUB #const, loc ; update |ocation
JMP | oc ; 1 oop back
ptr JW @, trap ; the pointer weapon
trap SPL 1, -100 ; this is where the pointer points to
MOV bonb, <-1 ;. core-clear
JMP trap

bonb DAT #0</I|isting>

This warrior throws pointers one for every 5 instructions (nodulo 5).

The constant has been chosen to with

Note that the next pointer and the

next |ocation are updated by the sanme constant but reversed in sign.

The trap here sinply forces all processes in it to accunul ate nore processes
and to execute The standard

Isel f-splitting]is not used here so that

the slavers can execute self-destruct once they finish core-clear.
<hl>Vanpire Style (Mdern)</hl>

Moder n vanpi res use nore effective procedure:
<listing> ;nane Vanmpire 2

const EQU 2365

SPL O ; self splitting
vanp MV ptr, @tr ; throw pointer

ADD data, ptr ; update pointer

DIN vanmp, <2339 ; |oop back + non-lethal attack
ptr JMP trap, ptr ; pointer to...
trap SPL 1, -100 ;. ...here

MOV data, <-1

JMP -2

data DAT #const, #-const</listing>

The only changes here are the nmain conponent (vanpire) and the pointer
structure. Pointer is now updated at once. Wth this change, it pernmts

Isel f-splitting] nechani sm for harder

shell (protection). Another inprovement is that the vanpire throws pointers
faster than before. The gained speed is approxi mately 30%

Sanpl es of vanpire warriors are:

13



Sucker ,
PitTrap
Twi light Pits,
</ body>

and many ot hers.

14



	Miscellaneous tips & tricks
	Bootstrapping
	Core-clear
	Self-splitting
	Bombing/scanning pattern
	Self-mutate
	On-Line Processes
	PREFACE
	Basic paper style
	Checksum
	Replicator Warriors
	Replicator framework
	Checksum
	PREFACE
	Scanner prototypes
	B-scanner

	Vampire Style †Earlier‡

