
Programming languages — C

ABSTRACT

(Cover sheet to be provided by ISO Secretariat.)

This International Standard specifies the form and establishes the interpretation of
programs expressed in the programming language C. Its purpose is to promote
portability, reliability, maintainability, and efficient execution of C language programs on
a variety of computing systems.

Clauses are included that detail the C language itself and the contents of the C language
execution library. Annexes summarize aspects of both of them, and enumerate factors
that influence the portability of C programs.

Although this International Standard is intended to guide knowledgeable C language
programmers as well as implementors of C language translation systems, the document
itself is not designed to serve as a tutorial.

Contents
Foreword . 1

Introduction . 4

1. Scope . 5

2. Normative references . 6

3. Terms and definitions . 6

4. Conformance . 9

5. Environment . 11
5.1 Conceptual models. 11

5.1.1 Translation environment 11
5.1.2 Execution environments 13

5.2 Environmental considerations 19
5.2.1 Character sets . 19
5.2.2 Character display semantics. 21
5.2.3 Signals and interrupts 22
5.2.4 Environmental limits 22

6. Language . 31
6.1 Notation . 31
6.2 Concepts . 31

6.2.1 Scopes of identifiers. 31
6.2.2 Linkages of identifiers 32
6.2.3 Name spaces of identifiers 33
6.2.4 Storage durations of objects. 34
6.2.5 Types . 35
6.2.6 Representations of types. 39
6.2.7 Compatible type and composite type. 41

6.3 Conversions . 43
6.3.1 Arithmetic operands 43
6.3.2 Other operands. 47

6.4 Lexical elements . 50
6.4.1 Ke ywords . 51
6.4.2 Identifiers . 52
6.4.3 Universal character names 54
6.4.4 Constants . 54
6.4.5 String literals . 63
6.4.6 Punctuators . 64
6.4.7 Header names . 65
6.4.8 Preprocessing numbers. 66
6.4.9 Comments . 66

6.5 Expressions . 68

i

6.5.1 Primary expressions. 70
6.5.2 Postfix operators 70
6.5.3 Unary operators 78
6.5.4 Cast operators . 82
6.5.5 Multiplicative operators 83
6.5.6 Additive operators 83
6.5.7 Bitwise shift operators 85
6.5.8 Relational operators. 86
6.5.9 Equality operators 87
6.5.10 BitwiseAND operator 88
6.5.11 Bitwise exclusiveOR operator 89
6.5.12 Bitwise inclusiveOR operator 89
6.5.13 LogicalAND operator 89
6.5.14 LogicalOR operator 90
6.5.15 Conditional operator. 90
6.5.16 Assignment operators 92
6.5.17 Comma operator 94

6.6 Constant expressions. 95
6.7 Declarations . 97

6.7.1 Storage-class specifiers 98
6.7.2 Type specifiers . 99
6.7.3 Type qualifiers . 108
6.7.4 Function specifiers 112
6.7.5 Declarators . 113
6.7.6 Type names . 120
6.7.7 Type definitions 121
6.7.8 Initialization . 123

6.8 Statements . 130
6.8.1 Labeled statements 130
6.8.2 Compound statement, or block. 131
6.8.3 Expression and null statements 131
6.8.4 Selection statements. 132
6.8.5 Iteration statements 134
6.8.6 Jump statements 135

6.9 External definitions . 140
6.9.1 Function definitions 141
6.9.2 External object definitions 143

6.10 Preprocessing directives. 145
6.10.1 Conditional inclusion 147
6.10.2 Source file inclusion. 149
6.10.3 Macro replacement 150
6.10.4 Line control . 157
6.10.5 Error directive . 158
6.10.6 Pragma directive 158

ii

6.10.7 Null directive . 159
6.10.8 Predefined macro names. 159
6.10.9 Pragma operator 160

6.11 Future language directions. 162
6.11.1 Floating Types . 162
6.11.2 Character escape sequences. 162
6.11.3 Storage-class specifiers 162
6.11.4 Function declarators. 162
6.11.5 Function definitions 162
6.11.6 Pragma directives. 162

7. Library .163
7.1 Introduction . 163

7.1.1 Definitions of terms 163
7.1.2 Standard headers. 164
7.1.3 Reserved identifiers 165
7.1.4 Use of library functions 166

7.2 Diagnostics<assert.h> 168
7.2.1 Program diagnostics. 168

7.3 Complex arithmetic<complex.h> 169
7.3.1 Introduction . 169
7.3.2 Conventions . 170
7.3.3 Branch cuts . 170
7.3.4 TheCX_LIMITED_RANGEpragma 170
7.3.5 Trigonometric functions 171
7.3.6 Hyperbolic functions 174
7.3.7 Exponential and logarithmic functions 176
7.3.8 Power and absolute-value functions. 177
7.3.9 Manipulation functions 179

7.4 Character handling<ctype.h> 182
7.4.1 Character testing functions 182
7.4.2 Character case mapping functions. 186

7.5 Errors<errno.h> . 187
7.6 Floating-point environment<fenv.h> 188

7.6.1 TheFENV_ACCESSpragma 190
7.6.2 Exceptions . 191
7.6.3 Rounding . 193
7.6.4 Environment . 195

7.7 Characteristics of floating types<float.h> 197
7.8 Format conversion of integer types<inttypes.h> 198

7.8.1 Macros for format specifiers 198
7.8.2 Conversion functions for greatest-width integer types. 199

7.9 Alternative spellings<iso646.h> 201
7.10 Sizes of integer types<limits.h> 202
7.11 Localization<locale.h> 203

iii

7.11.1 Locale control . 204
7.11.2 Numeric formatting convention inquiry 205

7.12 Mathematics<math.h> 211
7.12.1 Treatment of error conditions 213
7.12.2 TheFP_CONTRACTpragma 214
7.12.3 Classification macros 214
7.12.4 Trigonometric functions 217
7.12.5 Hyperbolic functions 220
7.12.6 Exponential and logarithmic functions 223
7.12.7 Power and absolute-value functions. 229
7.12.8 Error and gamma functions. 231
7.12.9 Nearest integer functions. 233
7.12.10 Remainder functions 237
7.12.11 Manipulation functions 239
7.12.12 Maximum, minimum, and positive difference functions. . . . 241
7.12.13 Floating multiply-add 242
7.12.14 Comparison macros. 243

7.13 Nonlocal jumps<setjmp.h> 247
7.13.1 Save calling environment. 247
7.13.2 Restore calling environment. 248

7.14 Signal handling<signal.h> 250
7.14.1 Specify signal handling 251
7.14.2 Send signal . 252

7.15 Variable arguments<stdarg.h> 253
7.15.1 Variable argument list access macros. 253

7.16 Boolean type and values<stdbool.h> 257
7.17 Common definitions<stddef.h> 258
7.18 Integer types<stdint.h> 259

7.18.1 Integer types . 259
7.18.2 Limits of specified-width integer types 261
7.18.3 Limits of other integer types 263
7.18.4 Macros for integer constants 264

7.19 Input/output<stdio.h> 266
7.19.1 Introduction . 266
7.19.2 Streams . 268
7.19.3 Files . 269
7.19.4 Operations on files 272
7.19.5 File access functions. 274
7.19.6 Formatted input/output functions. 278
7.19.7 Character input/output functions. 300
7.19.8 Direct input/output functions 306
7.19.9 File positioning functions. 307
7.19.10 Error-handling functions 309

7.20 General utilities<stdlib.h> 312

iv

7.20.1 String conversion functions. 313
7.20.2 Pseudo-random sequence generation functions. 318
7.20.3 Memory management functions. 319
7.20.4 Communication with the environment. 321
7.20.5 Searching and sorting utilities. 323
7.20.6 Integer arithmetic functions. 325
7.20.7 Multibyte character functions 326
7.20.8 Multibyte string functions 328

7.21 String handling<string.h> 331
7.21.1 String function conventions. 331
7.21.2 Copying functions 331
7.21.3 Concatenation functions 333
7.21.4 Comparison functions 334
7.21.5 Search functions 337
7.21.6 Miscellaneous functions 341

7.22 Type-generic math<tgmath.h> 343
7.22.1 Type-generic macros 343

7.23 Date and time<time.h> 346
7.23.1 Components of time. 346
7.23.2 Time manipulation functions 347
7.23.3 Time conversion functions 349

7.24 Extended multibyte and wide-character utilities<wchar.h> 356
7.24.1 Introduction . 356
7.24.2 Formatted wide-character input/output functions. 357
7.24.3 Wide-character input/output functions. 375
7.24.4 General wide-string utilities. 381
7.24.5 Wide-character time conversion functions. 396
7.24.6 Extended multibyte and wide-character conversion

utilities . 397
7.25 Wide-character classification and mapping utilities<wctype.h> . . . 404

7.25.1 Introduction . 404
7.25.2 Wide-character classification utilities. 405
7.25.3 Wide-character mapping utilities. 411

7.26 Future library directions. 413
7.26.1 Complex arithmetic<complex.h> 413
7.26.2 Character handling<ctype.h> 413
7.26.3 Errors<errno.h> 413
7.26.4 Format conversion of integer types<inttypes.h> 413
7.26.5 Localization<locale.h> 413
7.26.6 Signal handling<signal.h> 413
7.26.7 Boolean type and values<stdbool.h> 414
7.26.8 Integer types<stdint.h> 414
7.26.9 Input/output<stdio.h> 414
7.26.10 General utilities<stdlib.h> 414

v

7.26.11 String handling<string.h> 414
7.26.12 Extended multibyte and wide-character utilities

<wchar.h> . 414
7.26.13 Wide-character classification and mapping utilities

<wctype.h> . 415

Annex A (informative) Language syntax summary. 416
A.1 Lexical grammar . 416
A.2 Phrase structure grammar. 422
A.3 Preprocessing directives. 429

Annex B (informative) Library summary 431
B.1 Diagnostics<assert.h> 431
B.2 Complex<complex.h> 431
B.3 Character handling<ctype.h> 433
B.4 Errors<errno.h> . 433
B.5 Floating-point environment<fenv.h> 433
B.6 Characteristics of floating types<float.h> 434
B.7 Format conversion of integer types<inttypes.h> 434
B.8 Alternative spellings<iso646.h> 435
B.9 Sizes of integer types<limits.h> 435
B.10 Localization<locale.h> 436
B.11 Mathematics<math.h> 436
B.12 Nonlocal jumps<setjmp.h> 441
B.13 Signal handling<signal.h> 441
B.14 Variable arguments<stdarg.h> 441
B.15 Boolean type and values<stdbool.h> 441
B.16 Common definitions<stddef.h> 441
B.17 Integer types<stdint.h> 442
B.18 Input/output<stdio.h> 443
B.19 General utilities<stdlib.h> 445
B.20 String handling<string.h> 446
B.21 Type-generic math<tgmath.h> 447
B.22 Date and time<time.h> 448
B.23 Extended multibyte and wide-character utilities<wchar.h> 448
B.24 Wide-character classification and mapping utilities<wctype.h> . . . 451

Annex C (informative) Sequence points. 452

Annex D (normative) Universal character names for identifiers. 453

Annex E (informative) Implementation limits. 455

Annex F (normative) IEC 60559 floating-point arithmetic. 457
F.1 Introduction . 457
F.2 Types .457
F.3 Operators and functions. 458

vi

F.4 Floating to integer conversion 460
F.5 Binary-decimal conversion. 460
F.6 Contracted expressions. 461
F.7 Environment . 461
F.8 Optimization . 464
F.9 Mathematics<math.h> 467

Annex G (informative) IEC 60559-compatible complex arithmetic. 482
G.1 Introduction . 482
G.2 Types .482
G.3 Conversions . 482
G.4 Binary operators . 483
G.5 Complex arithmetic<complex.h> 488
G.6 Type-generic math<tgmath.h> 496

Annex H (informative) Language independent arithmetic. 497
H.1 Introduction . 497
H.2 Types .497
H.3 Notification . 501

Annex I (informative) Common warnings 503

Annex J (informative) Portability issues. 505
J.1 Unspecified behavior . 505
J.2 Undefined behavior . 507
J.3 Implementation-defined behavior. 521
J.4 Locale-specific behavior 528
J.5 Common extensions . 529

Bibliography . 532

Index .535

vii

viii

Programming languages — C

Foreword
1 ISO (the International Organization for Standardization) and IEC (the International

Electrotechnical Commission) form the specialized system for worldwide
standardization. National bodies that are member of ISO or IEC participate in the
development of International Standards through technical committees established by the
respective org anization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

2 International Standards are drafted in accordance with the rules given in the ISO/IEC
Directives, Part 3. ∗

3 In the field of information technology, ISO and IEC have established a joint technical
committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committee are circulated to national bodies for voting. Publication as an International
Standard requires approval by at least 75% of the national bodies casting a vote.

4 International Standard ISO/IEC 9899 was prepared by Joint Technical Committee
ISO/IEC JTC 1, ‘‘Information Technology’’, subcommittee 22, ‘‘Programming
languages, their environments and system software interfaces’’. The Working Group
responsible for this standard (WG14) maintains a site on the World Wide Web at
http://www.dkuug.dk/JTC1/SC22/WG14/ containing additional information
relevant to this standard such as a Rationale for many of the decisions made during its
preparation and a log of Defect Reports and Responses.

5 This edition replaces the previous edition, ISO/IEC 9899:1990, as amended and corrected
by ISO/IEC 9899/COR1:1994, ISO/IEC 9899/COR2:1995, and ISO/IEC
9899/AMD1:1995. Major changes from the previous edition include:

— restricted character set support in<iso646.h> (originally specified in AMD1)

— wide-character library support in<wchar.h> and <wctype.h> (originally
specified in AMD1)

— restricted pointers

— variable-length arrays

Foreword

2 Committee Draft — January 18, 1999 WG14/N869

— flexible array members

— complex (and imaginary) support in<complex.h>

— type-generic math macros in<tgmath.h>

— the long long int type and library functions

— increased translation limits

— remove implicit int

— thevscanf family of functions

— reliable integer division

— universal character names

— extended identifiers

— binary floating-point literals andprintf /scanf conversion specifiers

— compound literals

— designated initializers

— // comments

— extended integer types in<inttypes.h> and<stdint.h>

— remove implicit function declaration

— preprocessor arithmetic done inintmax_t /uintmax_t

— mixed declarations and code

— integer constant type rules

— integer promotion rules

— vararg macros

— additional math library functions in<math.h>

— floating-point environment access in<fenv.h>

— IEC 60559 (also known as IEC 559 or IEEE arithmetic) support

— trailing comma allowed inenum declaration

— %lf conversion specifier allowed inprintf

— inline functions

— thesnprintf family of functions

Foreword

WG14/N869 Committee Draft — January 18, 1999 3

— boolean type in<stdbool.h>

— idempotent type qualifiers

— empty macro arguments

— new struct type compatibility rules (tag compatibility)

— _Prama preprocessing operator

— standard pragmas

— __func__ predefined identifier

— VA_COPYmacro

— additionalstrftime conversion specifiers

— LIA compatibility annex

— deprecateungetc at the beginning of a binary file

— remove deprecation of aliased array parameters

6 Annexes D and F form a normative part of this standard; annexes A, B, C, E, G, H, I, J,
the bibliography, and the index are for information only. In accordance with the ISO/IEC
Directives, Part 3, this foreword, the introduction, notes, footnotes, and examples are for
information only.

Foreword

4 Committee Draft — January 18, 1999 WG14/N869

Introduction
1 With the introduction of new devices and extended character sets, new features may be

added to this International Standard. Subclauses in the language and library clauses warn
implementors and programmers of usages which, though valid in themselves, may
conflict with future additions.

2 Certain features areobsolescent, which means that they may be considered for
withdrawal in future revisions of this International Standard. They are retained because
of their widespread use, but their use in new implementations (for implementation
features) or new programs (for language [6.11] or library features [7.26]) is discouraged.

3 This International Standard is divided into four major subdivisions:

— the introduction and preliminary elements (clauses 1−4);

— the characteristics of environments that translate and execute C programs (clause 5);

— the language syntax, constraints, and semantics (clause 6);

— the library facilities (clause 7).

4 Examples are provided to illustrate possible forms of the constructions described.
Footnotes are provided to emphasize consequences of the rules described in that
subclause or elsewhere in this International Standard. References are used to refer to
other related subclauses. Recommendations are provided to give advice or guidance to
implementors. Annexes provide additional information and summarize the information
contained in this International Standard. A bibliography lists documents that were
referred to during the preparation of the standard.

5 The language clause (clause 6) is derived from ‘‘The C Reference Manual’’.

6 The library clause (clause 7) is based on the1984 /usr/group Standard.

Introduction

WG14/N869 Committee Draft — January 18, 1999 5

1. Scope
1 This International Standard specifies the form and establishes the interpretation of

programs written in the C programming language.1) It specifies

— the representation of C programs;

— the syntax and constraints of the C language;

— the semantic rules for interpreting C programs;

— the representation of input data to be processed by C programs;

— the representation of output data produced by C programs;

— the restrictions and limits imposed by a conforming implementation of C.

2 This International Standard does not specify

— the mechanism by which C programs are transformed for use by a data-processing
system;

— the mechanism by which C programs are invoked for use by a data-processing
system;

— the mechanism by which input data are transformed for use by a C program;

— the mechanism by which output data are transformed after being produced by a C
program;

— the size or complexity of a program and its data that will exceed the capacity of any
specific data-processing system or the capacity of a particular processor;

— all minimal requirements of a data-processing system that is capable of supporting a
conforming implementation.

1) This International Standard is designed to promote the portability of C programs among a variety of

data-processing systems. It is intended for use by implementors and programmers.

1 General 1

6 Committee Draft — January 18, 1999 WG14/N869

2. Normative references
1 The following normative documents contain provisions which, through reference in this

text, constitute provisions of this International Standard. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply.
However, parties to agreements based on this International Standard are encouraged to
investigate the possibility of applying the most recent editions of the normative
documents indicated below. For undated references, the latest edition of the normative
document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

2 ISO/IEC 646:1991,Information technology —ISO 7-bit coded character set for
information interchange.

3 ISO/IEC 2382−1:1993,Information technology — Vocabulary — Part 1: Fundamental
terms.

4 ISO 4217:1995,Codes for the representation of currencies and funds.

5 ISO 8601:1988,Data elements and interchange formats — Information interchange —
Representation of dates and times.

6 ISO/IEC 10646:1993,Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

7 IEC 60559:1989,Binary floating-point arithmetic for microprocessor systems, second
edition(previously designated IEC 559:1989).

3. Terms and definitions
1 For the purposes of this International Standard, the following definitions apply. Other

terms are defined where they appear initalic type or on the left side of a syntax rule.
Terms explicitly defined in this International Standard are not to be presumed to refer
implicitly to similar terms defined elsewhere. Terms not defined in this International
Standard are to be interpreted according to ISO/IEC 2382−1.

3.1
1 alignment

requirement that objects of a particular type be located on storage boundaries with
addresses that are particular multiples of a byte address

3.2
1 argument

actual argument
actual parameter (deprecated)
expression in the comma-separated list bounded by the parentheses in a function call
expression, or a sequence of preprocessing tokens in the comma-separated list bounded

2 General 3.2

WG14/N869 Committee Draft — January 18, 1999 7

by the parentheses in a function-like macro invocation

3.3
1 bit

unit of data storage in the execution environment large enough to hold an object that may
have one of two values

2 NOTE It need not be possible to express the address of each individual bit of an object.

3.4
1 byte

addressable unit of data storage large enough to hold any member of the basic character
set of the execution environment

2 NOTE 1 It is possible to express the address of each individual byte of an object uniquely.

3 NOTE 2 A byte is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called thelow-order bit; the most significant bit is called thehigh-order
bit.

3.5
1 character

bit representation that fits in a byte

3.6
1 constraints

restrictions, both syntactic and semantic, by which the exposition of language elements is
to be interpreted

3.7
1 correctly rounded result

a representation in the result format that is nearest in value, subject to the effective
rounding mode, to what the result would be given unlimited range and precision

3.8
1 diagnostic message

message belonging to an implementation-defined subset of the implementation’s message
output

3.9
1 forward references

references to later subclauses of this International Standard that contain additional
information relevant to this subclause

3.10
1 implementation

a particular set of software, running in a particular translation environment under
particular control options, that performs translation of programs for, and supports

3.2 General 3.10

8 Committee Draft — January 18, 1999 WG14/N869

execution of functions in, a particular execution environment

3.11
1 implementation-defined behavior

unspecified behavior where each implementation documents how the choice is made

2 EXAMPLE An example of implementation-defined behavior is the propagation of the high-order bit
when a signed integer is shifted right.

3.12
1 implementation limits

restrictions imposed upon programs by the implementation

3.13
1 locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each
implementation documents

2 EXAMPLE An example of locale-specific behavior is whether theislower function returns true for
characters other than the 26 lowercase Latin letters.

3.14
1 multibyte character

sequence of one or more bytes representing a member of the extended character set of
either the source or the execution environment

2 NOTE The extended character set is a superset of the basic character set.

3.15
1 object

region of data storage in the execution environment, the contents of which can represent
values

2 NOTE When referenced, an object may be interpreted as having a particular type; see 6.3.2.1.

3.16
1 parameter

formal parameter
formal argument (deprecated)
object declared as part of a function declaration or definition that acquires a value on
entry to the function, or an identifier from the comma-separated list bounded by the
parentheses immediately following the macro name in a function-like macro definition

3.17
1 recommended practice

specifications that are strongly recommended as being in keeping with the intent of the
standard, but that may be impractical for some implementations

3.10 General 3.17

WG14/N869 Committee Draft — January 18, 1999 9

3.18
1 undefined behavior

behavior, upon use of a nonportable or erroneous program construct, of erroneous data, or
of indeterminately valued objects, for which this International Standard imposes no
requirements

2 NOTE Possible undefined behavior ranges from ignoring the situation completely with unpredictable
results, to behaving during translation or program execution in a documented manner characteristic of the
environment (with or without the issuance of a diagnostic message), to terminating a translation or
execution (with the issuance of a diagnostic message).

3 EXAMPLE An example of undefined behavior is the behavior on integer overflow.

3.19
1 unspecified behavior

behavior where this International Standard provides two or more possibilities and
imposes no requirements on which is chosen in any instance

2 EXAMPLE An example of unspecified behavior is the order in which the arguments to a function are
evaluated.

Forward references: bitwise shift operators (6.5.7), expressions (6.5), function calls
(6.5.2.2), theislower function (7.4.1.6), localization (7.11).

4. Conformance
1 In this International Standard, ‘‘shall’’ is to be interpreted as a requirement on an

implementation or on a program; conversely, ‘‘shall not’’ is to be interpreted as a
prohibition.

2 If a ‘‘shall’’ or ‘‘shall not’’ requirement that appears outside of a constraint is violated, the
behavior is undefined. Undefined behavior is otherwise indicated in this International
Standard by the words ‘‘undefined behavior’’ or by the omission of any explicit definition
of behavior. There is no difference in emphasis among these three; they all describe
‘‘behavior that is undefined’’.

3 A program that is correct in all other aspects, operating on correct data, containing
unspecified behavior shall be a correct program and act in accordance with 5.1.2.3.

4 The implementation shall not successfully translate a preprocessing translation unit
containing a#error preprocessing directive unless it is part of a group skipped by
conditional inclusion.

5 A strictly conforming programshall use only those features of the language and library
specified in this International Standard.2) It shall not produce output dependent on any
unspecified, undefined, or implementation-defined behavior, and shall not exceed any
minimum implementation limit.

3.17 General 4

10 Committee Draft — January 18, 1999 WG14/N869

6 The two forms ofconforming implementationare hosted and freestanding. Aconforming
hosted implementationshall accept any strictly conforming program. Aconforming
freestanding implementationshall accept any strictly conforming program that does not
use complex types and in which the use of the features specified in the library clause
(clause 7) is confined to the contents of the standard headers<float.h> ,
<iso646.h> , <limits.h> , <stdarg.h> , <stdbool.h> , <stddef.h> , and
<stdint.h> . A conforming implementation may have extensions (including additional
library functions), provided they do not alter the behavior of any strictly conforming
program.3)

7 A conforming programis one that is acceptable to a conforming implementation.4)

8 An implementation shall be accompanied by a document that defines all implementation-
defined and locale-specific characteristics and all extensions.

Forward references: conditional inclusion (6.10.1), characteristics of floating types
<float.h> (7.7), alternative spellings<iso646.h> (7.9), sizes of integer types
<limits.h> (7.10), variable arguments<stdarg.h> (7.15), boolean type and values
<stdbool.h> (7.16), common definitions<stddef.h> (7.17), integer types
<stdint.h> (7.18).

2) A strictly conforming program can use conditional features (such as those in annex F) provided the

use is guarded by a#ifdef directive with the appropriate macro. For example:

#ifdef _ _STDC_IEC_559_ _ /* FE_UPWARD defined */

/* ... */

fesetround(FE_UPWARD);

/* ... */

#endif

3) This implies that a conforming implementation reserves no identifiers other than those explicitly

reserved in this International Standard.

4) Strictly conforming programs are intended to be maximally portable among conforming

implementations. Conforming programs may depend upon nonportable features of a conforming

implementation.

4 General 4

WG14/N869 Committee Draft — January 18, 1999 11

5. Environment
1 An implementation translates C source files and executes C programs in two data-

processing-system environments, which will be called thetranslation environmentand
theexecution environmentin this International Standard. Their characteristics define and
constrain the results of executing conforming C programs constructed according to the
syntactic and semantic rules for conforming implementations.

Forward references: In this clause, only a few of many possible forward references
have been noted.

5.1 Conceptual models

5.1.1 Translation environment

5.1.1.1 Program structure

1 A C program need not all be translated at the same time. The text of the program is kept
in units calledsource files, (or preprocessing files) in this International Standard. A
source file together with all the headers and source files included via the preprocessing
directive#include is known as apreprocessing translation unit. After preprocessing, a
preprocessing translation unit is called atranslation unit. Previously translated translation
units may be preserved individually or in libraries. The separate translation units of a
program communicate by (for example) calls to functions whose identifiers have external
linkage, manipulation of objects whose identifiers have external linkage, or manipulation
of data files. Translation units may be separately translated and then later linked to
produce an executable program.

Forward references: conditional inclusion (6.10.1), linkages of identifiers (6.2.2),
source file inclusion (6.10.2), external definitions (6.9), preprocessing directives (6.10).

5.1.1.2 Translation phases

1 The precedence among the syntax rules of translation is specified by the following
phases.5)

1. Physical source file multibyte characters are mapped to the source character set
(introducing new-line characters for end-of-line indicators) if necessary. Trigraph
sequences are replaced by corresponding single-character internal representations.

2. Each instance of a backslash character (\) immediately followed by a new-line
character is deleted, splicing physical source lines to form logical source lines. If,
as a result, a character sequence that matches the syntax of a universal character
name is produced, the behavior is undefined. Only the last backslash on any

5) Implementations shall behave as if these separate phases occur, even though many are typically folded

together in practice.

5 Environment 5.1.1.2

12 Committee Draft — January 18, 1999 WG14/N869

physical source line shall be eligible for being part of such a splice. A source file
that is not empty shall end in a new-line character, which shall not be immediately
preceded by a backslash character before any such splicing takes place.

3. The source file is decomposed into preprocessing tokens6) and sequences of
white-space characters (including comments). A source file shall not end in a
partial preprocessing token or in a partial comment. Each comment is replaced by
one space character. New-line characters are retained. Whether each nonempty
sequence of white-space characters other than new-line is retained or replaced by
one space character is implementation-defined.

4. Preprocessing directives are executed, macro invocations are expanded, and
_Pragma unary operator expressions are executed. If a character sequence that
matches the syntax of a universal character name is produced by token
concatenation (6.10.3.3), the behavior is undefined. A#include preprocessing
directive causes the named header or source file to be processed from phase 1
through phase 4, recursively. All preprocessing directives are then deleted.

5. Eachsource character set member and escape sequence in character constants and
string literals is converted to the corresponding member of the execution character
set; if there is no corresponding member, it is converted to an implementation-
defined member.

6. Adjacent string literal tokens are concatenated.

7. White-space characters separating tokens are no longer significant. Each
preprocessing token is converted into a token. The resulting tokens are
syntactically and semantically analyzed and translated as a translation unit.

8. All external object and function references are resolved. Library components are
linked to satisfy external references to functions and objects not defined in the
current translation. All such translator output is collected into a program image
which contains information needed for execution in its execution environment.

Forward references: universal character names (6.4.3), lexical elements (6.4),
preprocessing directives (6.10), trigraph sequences (5.2.1.1), external definitions (6.9).

6) As described in 6.4, the process of dividing a source file’s characters into preprocessing tokens is

context-dependent. For example, see the handling of< within a#include preprocessing directive.

5.1.1.2 Environment 5.1.1.2

WG14/N869 Committee Draft — January 18, 1999 13

5.1.1.3 Diagnostics

1 A conforming implementation shall produce at least one diagnostic message (identified in
an implementation-defined manner) if a preprocessing translation unit or translation unit
contains a violation of any syntax rule or constraint, even if the behavior is also explicitly
specified as undefined or implementation-defined. Diagnostic messages need not be
produced in other circumstances.7)

2 EXAMPLE An implementation shall issue a diagnostic for the translation unit:

char i;
int i;

because in those cases where wording in this International Standard describes the behavior for a construct
as being both a constraint error and resulting in undefined behavior, the constraint error shall be diagnosed.

5.1.2 Execution environments

1 Tw o execution environments are defined:freestandingand hosted. In both cases,
program startup occurs when a designated C function is called by the execution
environment. All objects in static storage shall beinitialized (set to their initial values)
before program startup. The manner and timing of such initialization are otherwise
unspecified.Program terminationreturns control to the execution environment.

Forward references: initialization (6.7.8).

5.1.2.1 Freestanding environment

1 In a freestanding environment (in which C program execution may take place without any
benefit of an operating system), the name and type of the function called at program
startup are implementation-defined. Any library facilities available to a freestanding
program, other than the minimal set required by clause 4, are implementation-defined.

2 The effect of program termination in a freestanding environment is implementation-
defined.

5.1.2.2 Hosted environment

1 A hosted environment need not be provided, but shall conform to the following
specifications if present.

5.1.2.2.1 Program startup

1 The function called at program startup is namedmain . The implementation declares no
prototype for this function. It shall be defined with a return type ofint and with no
parameters:

7) The intent is that an implementation should identify the nature of, and where possible localize, each

violation. Of course, an implementation is free to produce any number of diagnostics as long as a

valid program is still correctly translated. It may also successfully translate an invalid program.

5.1.1.3 Environment 5.1.2.2.1

14 Committee Draft — January 18, 1999 WG14/N869

int main(void) { /* ... */ }

or with two parameters (referred to here asargc andargv , though any names may be
used, as they are local to the function in which they are declared):

int main(int argc, char *argv[]) { /* ... */ }

or equivalent;8) or in some other implementation-defined manner.

2 If they are declared, the parameters to themain function shall obey the following
constraints:

— The value ofargc shall be nonnegative.

— argv[argc] shall be a null pointer.

— If the value ofargc is greater than zero, the array membersargv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program startup. The
intent is to supply to the program information determined prior to program startup
from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation
shall ensure that the strings are received in lowercase.

— If the value of argc is greater than zero, the string pointed to byargv[0]
represents theprogram name; argv[0][0] shall be the null character if the
program name is not available from the host environment. If the value ofargc is
greater than one, the strings pointed to byargv[1] through argv[argc-1]
represent theprogram parameters.

— The parametersargc andargv and the strings pointed to by theargv array shall
be modifiable by the program, and retain their last-stored values between program
startup and program termination.

5.1.2.2.2 Program execution

1 In a hosted environment, a program may use all the functions, macros, type definitions,
and objects described in the library clause (clause 7).

5.1.2.2.3 Program termination

1 If the return type of themain function is a type compatible withint , a return from the
initial call to themain function is equivalent to calling theexit function with the value
returned by themain function as its argument;9) reaching the} that terminates themain

8) Thus,int can be replaced by a typedef name defined asint , or the type ofargv can be written as

char ** argv , and so on.

9) In accordance with 6.2.4, objects with automatic storage duration declared inmain will no longer

have storage guaranteed to be reserved in the former case even where they would in the latter.

5.1.2.2.1 Environment 5.1.2.2.3

WG14/N869 Committee Draft — January 18, 1999 15

function returns a value of 0. If the return type is not compatible withint , the
termination status returned to the host environment is unspecified.

Forward references: definition of terms (7.1.1), theexit function (7.20.4.3).

5.1.2.3 Program execution

1 The semantic descriptions in this International Standard describe the behavior of an
abstract machine in which issues of optimization are irrelevant.

2 Accessing a volatile object, modifying an object, modifying a file, or calling a function
that does any of those operations are allside effects,10) which are changes in the state of
the execution environment. Evaluation of an expression may produce side effects. At
certain specified points in the execution sequence calledsequence points, all side effects
of previous evaluations shall be complete and no side effects of subsequent evaluations
shall have taken place. (A summary of the sequence points is given in annex C.)

3 In the abstract machine, all expressions are evaluated as specified by the semantics. An
actual implementation need not evaluate part of an expression if it can deduce that its
value is not used and that no needed side effects are produced (including any caused by
calling a function or accessing a volatile object).

4 When the processing of the abstract machine is interrupted by receipt of a signal, only the
values of objects as of the previous sequence point may be relied on. Objects that may be
modified between the previous sequence point and the next sequence point need not have
received their correct values yet.

5 An instance of each object with automatic storage duration is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution
of the block and while the block is suspended (by a call of a function or receipt of a
signal).

6 The least requirements on a conforming implementation are:

— At sequence points, volatile objects are stable in the sense that previous accesses are
complete and subsequent accesses have not yet occurred.

— At program termination, all data written into files shall be identical to the result that
execution of the program according to the abstract semantics would have produced.

10) The IEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status

flags and control modes. Floating-point operations implicitly set the status flags; modes affect result

values of floating-point operations. Implementations that support such floating-point state are

required to regard changes to it as side effects — see annex F for details. The floating-point

environment library<fenv.h> provides a programming facility for indicating when these side

effects matter, freeing the implementations in other cases.

5.1.2.2.3 Environment 5.1.2.3

16 Committee Draft — January 18, 1999 WG14/N869

— The input and output dynamics of interactive devices shall take place as specified in
7.19.3. The intent of these requirements is that unbuffered or line-buffered output
appear as soon as possible, to ensure that prompting messages actually appear prior to
a program waiting for input.

7 What constitutes an interactive device is implementation-defined.

8 More stringent correspondences between abstract and actual semantics may be defined by
each implementation.

9 EXAMPLE 1 An implementation might define a one-to-one correspondence between abstract and actual
semantics: at every sequence point, the values of the actual objects would agree with those specified by the
abstract semantics. The keywordvolatile would then be redundant.

10 Alternatively, an implementation might perform various optimizations within each translation unit, such
that the actual semantics would agree with the abstract semantics only when making function calls across
translation unit boundaries. In such an implementation, at the time of each function entry and function
return where the calling function and the called function are in different translation units, the values of all
externally linked objects and of all objects accessible via pointers therein would agree with the abstract
semantics. Furthermore, at the time of each such function entry the values of the parameters of the called
function and of all objects accessible via pointers therein would agree with the abstract semantics. In this
type of implementation, objects referred to by interrupt service routines activated by thesignal function
would require explicit specification ofvolatile storage, as well as other implementation-defined
restrictions.

11 EXAMPLE 2 In executing the fragment

char c1, c2;
/* ... */
c1 = c1 + c2;

the ‘‘integer promotions’’ require that the abstract machine promote the value of each variable toint size
and then add the twoint s and truncate the sum. Provided the addition of twochar s can be done without
overflow, or with overflow wrapping silently to produce the correct result, the actual execution need only
produce the same result, possibly omitting the promotions.

12 EXAMPLE 3 Similarly, in the fragment

float f1, f2;
double d;
/* ... */
f1 = f2 * d;

the multiplication may be executed using single-precision arithmetic if the implementation can ascertain
that the result would be the same as if it were executed using double-precision arithmetic (for example, ifd
were replaced by the constant2.0 , which has typedouble).

13 EXAMPLE 4 Implementations employing wide registers have to take care to honor appropriate
semantics. Values are independent of whether they are represented in a register or in memory. For
example, an implicitspilling of a register is not permitted to alter the value. Also, an explicitstore and load
is required to round to the precision of the storage type. In particular, casts and assignments are required to
perform their specified conversion. For the fragment

5.1.2.3 Environment 5.1.2.3

WG14/N869 Committee Draft — January 18, 1999 17

double d1, d2;
float f;
d1 = f = expression;
d2 = (float) expressions;

the values assigned tod1 andd2 are required to have been converted tofloat .

14 EXAMPLE 5 Rearrangement for floating-point expressions is often restricted because of limitations in
precision as well as range. The implementation cannot generally apply the mathematical associative rules
for addition or multiplication, nor the distributive rule, because of roundoff error, even in the absence of
overflow and underflow. Likewise, implementations cannot generally replace decimal constants in order to
rearrange expressions. In the following fragment, rearrangements suggested by mathematical rules for real
numbers are often not valid (see F.8).

double x, y, z;
/* ... */
x = (x * y) * z; // not equivalent tox *= y * z;
z = (x - y) + y ; // not equivalent toz = x;
z = x + x * y; // not equivalent toz = x * (1.0 + y);
y = x / 5.0; // not equivalent toy = x * 0.2;

15 EXAMPLE 6 To illustrate the grouping behavior of expressions, in the following fragment

int a, b;
/* ... */
a = a + 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum(a + 32760) is
next added tob, and that result is then added to5 which results in the value assigned toa. On a machine in
which overflows produce an explicit trap and in which the range of values representable by anint is
[−32768, +32767], the implementation cannot rewrite this expression as

a = ((a + b) + 32765);

since if the values fora andb were, respectively, −32754 and −15, the suma + b would produce a trap
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);
or

a = (a + (b + 32765));

since the values fora andb might have been, respectively, 4 and −8 or −17 and 12. However, on a machine
in which overflow silently generates some value and where positive and negative overflows cancel, the
above expression statement can be rewritten by the implementation in any of the above ways because the
same result will occur.

16 EXAMPLE 7 The grouping of an expression does not completely determine its evaluation. In the
following fragment

5.1.2.3 Environment 5.1.2.3

18 Committee Draft — January 18, 1999 WG14/N869

#include <stdio.h>
int sum;
char *p;
/* ... */
sum = sum * 10 - ’0’ + (*p++ = getchar());

the expression statement is grouped as if it were written as

sum = (((sum * 10) - ’0’) + ((*(p++)) = (getchar())));

but the actual increment ofp can occur at any time between the previous sequence point and the next
sequence point (the;), and the call togetchar can occur at any point prior to the need of its returned
value.

Forward references: compound statement, or block (6.8.2), expressions (6.5), files
(7.19.3), sequence points (6.5, 6.8), thesignal function (7.14), type qualifiers (6.7.3).

5.1.2.3 Environment 5.1.2.3

WG14/N869 Committee Draft — January 18, 1999 19

5.2 Environmental considerations

5.2.1 Character sets

1 Tw o sets of characters and their associated collating sequences shall be defined: the set in
which source files are written, and the set interpreted in the execution environment. The
values of the members of the execution character set are implementation-defined; any
additional members beyond those required by this subclause are locale-specific.

2 In a character constant or string literal, members of the execution character set shall be
represented by corresponding members of the source character set or byescape
sequencesconsisting of the backslash\ followed by one or more characters. A byte with
all bits set to 0, called thenull character, shall exist in the basic execution character set; it
is used to terminate a character string.

3 Both the basic source and basic execution character sets shall have at least the following
members: the 26 uppercase letters of the Latin alphabet

A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

the 26 lowercase letters of the Latin alphabet

a b c d e f g h i j k l m
n o p q r s t u v w x y z

the 10 decimal digits

0 1 2 3 4 5 6 7 8 9

the following 29 graphic characters

! " # % & ’ () * + , - . / :
; < = > ? [\] ˆ _ { | } ˜

the space character, and control characters representing horizontal tab, vertical tab, and
form feed. The representation of each member of the source and execution basic
character sets shall fit in a byte. In both the source and execution basic character sets, the
value of each character after0 in the above list of decimal digits shall be one greater than
the value of the previous. In source files, there shall be some way of indicating the end of
each line of text; this International Standard treats such an end-of-line indicator as if it
were a single new-line character. In the execution character set, there shall be control
characters representing alert, backspace, carriage return, and new line. If any other
characters are encountered in a source file (except in an identifier, a character constant, a
string literal, a header name, a comment, or a preprocessing token that is never converted
to a token), the behavior is undefined.

5.2 Environment 5.2.1

20 Committee Draft — January 18, 1999 WG14/N869

4 The universal character name construct provides a way to name other characters.

Forward references: universal character names (6.4.3), character constants (6.4.4.4),
preprocessing directives (6.10), string literals (6.4.5), comments (6.4.9), string (7.1.1).

5.2.1.1 Trigraph sequences

1 All occurrences in a source file of the following sequences of three characters (called
trigraph sequences11)) are replaced with the corresponding single character.

??= #
??([
??/ \

??)]
??’ ˆ
??< {

??! |
??> }
??- ˜

No other trigraph sequences exist. Each? that does not begin one of the trigraphs listed
above isnot changed.

2 EXAMPLE The following source line

printf("Eh???/n");

becomes (after replacement of the trigraph sequence??/)

printf("Eh?\n");

5.2.1.2 Multibyte characters

1 The source character set may contain multibyte characters, used to represent members of
the extended character set. The execution character set may also contain multibyte
characters, which need not have the same encoding as for the source character set. For
both character sets, the following shall hold:

— The single-byte characters defined in 5.2.1 shall be present.

— The presence, meaning, and representation of any additional members is locale-
specific.

— A multibyte character set may have astate-dependent encoding, wherein each
sequence of multibyte characters begins in aninitial shift state and enters other
locale-specificshift stateswhen specific multibyte characters are encountered in the
sequence. While in the initial shift state, all single-byte characters retain their usual
interpretation and do not alter the shift state. The interpretation for subsequent bytes
in the sequence is a function of the current shift state.

— A byte with all bits zero shall be interpreted as a null character independent of shift
state.

11) The trigraph sequences enable the input of characters that are not defined in the Invariant Code Set as

described in ISO/IEC 646, which is a subset of the seven-bit US ASCII code set.

5.2.1 Environment 5.2.1.2

WG14/N869 Committee Draft — January 18, 1999 21

— A byte with all bits zero shall not occur in the second or subsequent bytes of a
multibyte character.

2 For source files, the following shall hold:

— An identifier, comment, string literal, character constant, or header name shall begin
and end in the initial shift state.

— An identifier, comment, string literal, character constant, or header name shall consist
of a sequence of valid multibyte characters.

5.2.2 Character display semantics

1 Theactive positionis that location on a display device where the next character output by
the fputc or fputwc function would appear. The intent of writing a printing character
(as defined by theisprint or iswprint function) to a display device is to display a
graphic representation of that character at the active position and then advance the active
position to the next position on the current line. The direction of writing is locale-
specific. If the active position is at the final position of a line (if there is one), the
behavior is unspecified.

2 Alphabetic escape sequences representing nongraphic characters in the execution
character set are intended to produce actions on display devices as follows:

\a (alert) Produces an audible or visible alert. The active position shall not be changed.

\b (backspace) Moves the active position to the previous position on the current line. If
the active position is at the initial position of a line, the behavior is unspecified.

\f (form feed) Moves the active position to the initial position at the start of the next
logical page.

\n (new line) Moves the active position to the initial position of the next line.

\r (carriage return) Moves the active position to the initial position of the current line.

\t (horizontal tab) Moves the active position to the next horizontal tabulation position
on the current line. If the active position is at or past the last defined horizontal
tabulation position, the behavior is unspecified.

\v (vertical tab) Moves the active position to the initial position of the next vertical
tabulation position. If the active position is at or past the last defined vertical
tabulation position, the behavior is unspecified.

3 Each of these escape sequences shall produce a unique implementation-defined value
which can be stored in a singlechar object. The external representations in a text file
need not be identical to the internal representations, and are outside the scope of this
International Standard.

5.2.1.2 Environment 5.2.2

22 Committee Draft — January 18, 1999 WG14/N869

Forward references: the isprint function (7.4.1.7), thefputc function (7.19.7.3),
thefputwc functions (7.24.3.3), theiswprint function (7.25.2.1.7).

5.2.3 Signals and interrupts

1 Functions shall be implemented such that they may be interrupted at any time by a signal,
or may be called by a signal handler, or both, with no alteration to earlier, but still active,
invocations’ control flow (after the interruption), function return values, or objects with
automatic storage duration. All such objects shall be maintained outside thefunction
image (the instructions that compose the executable representation of a function) on a
per-invocation basis.

5.2.4 Environmental limits

1 Both the translation and execution environments constrain the implementation of
language translators and libraries. The following summarizes the language-related
environmental limits on a conforming implementation; the library-related limits are
discussed in clause 7.

5.2.4.1 Translation limits

1 The implementation shall be able to translate and execute at least one program that
contains at least one instance of every one of the following limits:12)

— 127 nesting levels of blocks

— 63 nesting levels of conditional inclusion

— 12 pointer, array, and function declarators (in any combinations) modifying an
arithmetic, structure, union, or incomplete type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator

— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name (each
universal character name or extended source character is considered a single
character)

— 31 significant initial characters in an external identifier (each universal character name
specifying a character short identifier of 0000FFFF or less is considered 6 characters,
each universal character name specifying a character short identifier of 00010000 or
more is considered 10 characters, and each extended source character is considered
the same number of characters as the corresponding universal character name, if any)

12) Implementations should avoid imposing fixed translation limits whenever possible.

5.2.2 Environment 5.2.4.1

WG14/N869 Committee Draft — January 18, 1999 23

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit

— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a character string literal or wide string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for#include d files

— 1023case labels for aswitch statement (excluding those for any nestedswitch
statements)

— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 lev els of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

1 A conforming implementation shall document all the limits specified in this subclause,
which are specified in the headers<limits.h> and<float.h> . Additional limits are
specified in<stdint.h> .

5.2.4.2.1 Sizes of integer types<limits.h>

1 The values given below shall be replaced by constant expressions suitable for use in#if
preprocessing directives. Moreover, except forCHAR_BIT and MB_LEN_MAX, the
following shall be replaced by expressions that have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Their implementation-defined values shall be equal or greater in magnitude
(absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)
CHAR_BIT 8

— minimum value for an object of typesigned char
SCHAR_MIN -127 // −(27 − 1)

5.2.4.1 Environment 5.2.4.2.1

24 Committee Draft — January 18, 1999 WG14/N869

— maximum value for an object of typesigned char
SCHAR_MAX +127 // 27 − 1

— maximum value for an object of typeunsigned char
UCHAR_MAX 255 // 28 − 1

— minimum value for an object of typechar
CHAR_MIN see below

— maximum value for an object of typechar
CHAR_MAX see below

— maximum number of bytes in a multibyte character, for any supported locale
MB_LEN_MAX 1

— minimum value for an object of typeshort int
SHRT_MIN -32767 // −(215 − 1)

— maximum value for an object of typeshort int
SHRT_MAX +32767 // 215 − 1

— maximum value for an object of typeunsigned short int
USHRT_MAX 65535 // 216 − 1

— minimum value for an object of typeint
INT_MIN -32767 // −(215 − 1)

— maximum value for an object of typeint
INT_MAX +32767 // 215 − 1

— maximum value for an object of typeunsigned int
UINT_MAX 65535 // 216 − 1

— minimum value for an object of typelong int
LONG_MIN -2147483647 // −(231 − 1)

— maximum value for an object of typelong int
LONG_MAX +2147483647 // 231 − 1

— maximum value for an object of typeunsigned long int
ULONG_MAX 4294967295 // 232 − 1

— minimum value for an object of typelong long int
LLONG_MIN -9223372036854775807 // −(263 − 1)

— maximum value for an object of typelong long int
LLONG_MAX +9223372036854775807 // 263 − 1

— maximum value for an object of typeunsigned long long int
ULLONG_MAX 18446744073709551615 // 264 − 1

5.2.4.2.1 Environment 5.2.4.2.1

WG14/N869 Committee Draft — January 18, 1999 25

2 If the value of an object of typechar is treated as a signed integer when used in an
expression, the value ofCHAR_MINshall be the same as that ofSCHAR_MINand the
value ofCHAR_MAXshall be the same as that ofSCHAR_MAX. Otherwise, the value of
CHAR_MINshall be 0 and the value ofCHAR_MAXshall be the same as that of
UCHAR_MAX.13) The value UCHAR_MAX+1shall equal 2 raised to the power
CHAR_BIT.

5.2.4.2.2 Characteristics of floating types<float.h>

1 The characteristics of floating types are defined in terms of a model that describes a
representation of floating-point numbers and values that provide information about an
implementation’s floating-point arithmetic.14) The following parameters are used to
define the model for each floating-point type:

s sign (±1)
b base or radix of exponent representation (an integer > 1)
e exponent (an integer between a minimumemin and a maximumemax)
p precision (the number of base-b digits in the significand)
fk nonnegative integers less thanb (the significand digits)

2 A normalized floating-point numberx (f1 > 0 if x ≠ 0) is defined by the following model:

x = s × be ×
p

k=1
Σ fk × b−k , emin ≤ e ≤ emax

3 Floating types may include values that are not normalized floating-point numbers, for
example subnormal floating-point numbers (x ≠ 0, e = emin, f1 = 0), infinities, and
NaNs.15) A NaN is an encoding signifying Not-a-Number. Aquiet NaN propagates
through almost every arithmetic operation without raising an exception; asignaling NaN
generally raises an exception when occurring as an arithmetic operand.16)

4 The accuracy of the floating-point operations (+, - , * , /) and of the library functions in
<math.h> and <complex.h> that return floating-point results is implementation
defined. The implementation may state that the accuracy is unknown.

13) See 6.2.5.

14) The floating-point model is intended to clarify the description of each floating-point characteristic and

does not require the floating-point arithmetic of the implementation to be identical.

15) Although they are stored in floating types, infinities and NaNs are not floating-point numbers.

16) IEC 60559:1989 specifies quiet and signaling NaNs. For implementations that do not support IEC

60559:1989, the terms quiet NaN and signaling NaN are intended to apply to encodings with similar

behavior.

5.2.4.2.1 Environment 5.2.4.2.2

26 Committee Draft — January 18, 1999 WG14/N869

5 All integer values in the<float.h> header, exceptFLT_ROUNDS, shall be constant
expressions suitable for use in#if preprocessing directives; all floating values shall be
constant expressions. All exceptDECIMAL_DIG, FLT_EVAL_METHOD, FLT_RADIX,
andFLT_ROUNDShave separate names for all three floating-point types. The floating-
point model representation is provided for all values exceptFLT_EVAL_METHODand
FLT_ROUNDS.

6 The rounding mode for floating-point addition is characterized by the value of
FLT_ROUNDS:17)

-1 indeterminable
0 toward zero
1 to nearest
2 toward positive infinity
3 toward negative infinity

All other values for FLT_ROUNDScharacterize implementation-defined rounding
behavior.

7 The values of operations with floating operands and values subject to the usual arithmetic
conversions and of floating constants are evaluated to a format whose range and precision
may be greater than required by the type. The use of evaluation formats is characterized
by the value ofFLT_EVAL_METHOD:18)

-1 indeterminable;

0 evaluate all operations and constants just to the range and precision of the
type;

1 evaluate operations and constants of typefloat and double to the
range and precision of thedouble type, evaluatelong double
operations and constants to the range and precision of thelong double
type;

2 evaluate all operations and constants to the range and precision of the
long double type.

All other negative values forFLT_EVAL_METHODcharacterize implementation-defined
behavior.

17) Evaluation ofFLT_ROUNDScorrectly reflects any execution-time change of rounding mode through

the functionfesetround in <fenv.h> .

18) The evaluation method determines evaluation formats of expressions involving all floating types, not

just real types. For example, ifFLT_EVAL_METHODis 1, then the product of twofloat

_Complex operands is represented in thedouble _Complex format, and its parts are evaluated to

double .

5.2.4.2.2 Environment 5.2.4.2.2

WG14/N869 Committee Draft — January 18, 1999 27

8 The values given in the following list shall be replaced by implementation-defined
constant expressions with values that are greater or equal in magnitude (absolute value) to
those shown, with the same sign:

— radix of exponent representation,b
FLT_RADIX 2

— number of base-FLT_RADIX digits in the floating-point significand,p

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

— number of decimal digits,n, such that any floating-point number in the widest
supported floating type withpmax radix b digits can be rounded to a floating-point
number withn decimal digits and back again without change to the value,

pmax × log10 b

1 + pmax × log10 b
if b is a power of 10

otherwise

DECIMAL_DIG 10

— number of decimal digits,q, such that any floating-point number withq decimal digits
can be rounded into a floating-point number withp radix b digits and back again
without change to theq decimal digits,

p × log10 b

(p − 1) × log10 b
if b is a power of 10

otherwise

FLT_DIG 6
DBL_DIG 10
LDBL_DIG 10

— minimum negative integer such thatFLT_RADIX raised to one less than that power is
a normalized floating-point number,emin

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

— minimum negative integer such that 10 raised to that power is in the range of

normalized floating-point numbers,

log10 bemin−1

FLT_MIN_10_EXP -37
DBL_MIN_10_EXP -37
LDBL_MIN_10_EXP -37

— maximum integer such thatFLT_RADIX raised to one less than that power is a
representable finite floating-point number,emax

5.2.4.2.2 Environment 5.2.4.2.2

28 Committee Draft — January 18, 1999 WG14/N869

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

— maximum integer such that 10 raised to that power is in the range of representable
finite floating-point numbers, log10((1 − b−p) × bemax)
FLT_MAX_10_EXP +37
DBL_MAX_10_EXP +37
LDBL_MAX_10_EXP +37

9 The values given in the following list shall be replaced by implementation-defined
constant expressions with values that are greater than or equal to those shown:

— maximum representable finite floating-point number, (1− b−p) × bemax

FLT_MAX 1E+37
DBL_MAX 1E+37
LDBL_MAX 1E+37

10 The values given in the following list shall be replaced by implementation-defined
constant expressions with (positive) values that are less than or equal to those shown:

— the difference between 1 and the least value greater than 1 that is representable in the
given floating point type,b1−p

FLT_EPSILON 1E-5
DBL_EPSILON 1E-9
LDBL_EPSILON 1E-9

— minimum normalized positive floating-point number,bemin−1

FLT_MIN 1E-37
DBL_MIN 1E-37
LDBL_MIN 1E-37

11 EXAMPLE 1 The following describes an artificial floating-point representation that meets the minimum
requirements of this International Standard, and the appropriate values in a<float.h> header for type
float :

x = s × 16e ×
6

k=1
Σ fk × 16−k , − 31 ≤ e ≤ + 32

5.2.4.2.2 Environment 5.2.4.2.2

WG14/N869 Committee Draft — January 18, 1999 29

FLT_RADIX 16
FLT_MANT_DIG 6
FLT_EPSILON 9.53674316E-07F
FLT_DIG 6
FLT_MIN_EXP -31
FLT_MIN 2.93873588E-39F
FLT_MIN_10_EXP -38
FLT_MAX_EXP +32
FLT_MAX 3.40282347E+38F
FLT_MAX_10_EXP +38

12 EXAMPLE 2 The following describes floating-point representations that also meet the requirements for
single-precision and double-precision normalized numbers in IEC 60559,19) and the appropriate values in a
<float.h> header for typesfloat anddouble :

x f = s × 2e ×
24

k=1
Σ fk × 2−k, − 125≤ e ≤ + 128

xd = s × 2e ×
53

k=1
Σ fk × 2−k, − 1021≤ e ≤ + 1024

FLT_RADIX 2
DECIMAL_DIG 17
FLT_MANT_DIG 24
FLT_EPSILON 1.19209290E-07F // decimal constant
FLT_EPSILON 0X1P-23F // hex constant
FLT_DIG 6
FLT_MIN_EXP -125
FLT_MIN 1.17549435E-38F // decimal constant
FLT_MIN 0X1P-126F // hex constant
FLT_MIN_10_EXP -37
FLT_MAX_EXP +128
FLT_MAX 3.40282347E+38F // decimal constant
FLT_MAX 0X1.fffffeP127F // hex constant
FLT_MAX_10_EXP +38
DBL_MANT_DIG 53
DBL_EPSILON 2.2204460492503131E-16 // decimal constant
DBL_EPSILON 0X1P-52 // hex constant
DBL_DIG 15
DBL_MIN_EXP -1021
DBL_MIN 2.2250738585072014E-308 // decimal constant
DBL_MIN 0X1P-1022 // hex constant
DBL_MIN_10_EXP -307
DBL_MAX_EXP +1024
DBL_MAX 1.7976931348623157E+308 // decimal constant
DBL_MAX 0X1.ffffffffffffeP1023 // hex constant
DBL_MAX_10_EXP +308

If a type wider thandouble were supported, thenDECIMAL_DIG would be greater than 17. For

19) The floating-point model in that standard sums powers ofb from zero, so the values of the exponent

limits are one less than shown here.

5.2.4.2.2 Environment 5.2.4.2.2

30 Committee Draft — January 18, 1999 WG14/N869

example, if the widest type were to use the minimal-width IEC 60559 double-extended format (64 bits of
precision), thenDECIMAL_DIGwould be 21.

Forward references: conditional inclusion (6.10.1), complex arithmetic
<complex.h> (7.3), mathematics<math.h> (7.12), integer types<stdint.h>
(7.18).

5.2.4.2.2 Environment 5.2.4.2.2

WG14/N869 Committee Draft — January 18, 1999 31

6. Language
6.1 Notation

1 In the syntax notation used in this clause, syntactic categories (nonterminals) are
indicated byitalic type, and literal words and character set members (terminals) bybold
type . A colon (:) following a nonterminal introduces its definition. Alternative
definitions are listed on separate lines, except when prefaced by the words ‘‘one of’’. An
optional symbol is indicated by the subscript ‘‘opt’’, so that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 A summary of the language syntax is given in annex A.

6.2 Concepts

6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or
enumeration; a typedef name; a label name; a macro name; or a macro parameter. The
same identifier can denote different entities at different points in the program. A member
of an enumeration is called anenumeration constant. Macro names and macro
parameters are not considered further here, because prior to the semantic phase of
program translation any occurrences of macro names in the source file are replaced by the
preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier isvisible (i.e., can be
used) only within a region of program text called itsscope. Different entities designated
by the same identifier either have different scopes, or are in different name spaces. There
are four kinds of scopes: function, file, block, and function prototype. (Afunction
prototypeis a declaration of a function that declares the types of its parameters.)

3 A label name is the only kind of identifier that hasfunction scope. It can be used (in a
goto statement) anywhere in the function in which it appears, and is declared implicitly
by its syntactic appearance (followed by a: and a statement). ∗

4 Every other identifier has scope determined by the placement of its declaration (in a
declarator or type specifier). If the declarator or type specifier that declares the identifier
appears outside of any block or list of parameters, the identifier hasfile scope, which
terminates at the end of the translation unit. If the declarator or type specifier that
declares the identifier appears inside a block or within the list of parameter declarations in
a function definition, the identifier hasblock scope, which terminates at the end of the
associated block. If the declarator or type specifier that declares the identifier appears
within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier hasfunction prototype scope, which terminates at the end of the

6 Language 6.2.1

32 Committee Draft — January 18, 1999 WG14/N869

function declarator. If an identifier designates two different entities in the same name
space, the scopes might overlap. If so, the scope of one entity (theinner scope) will be a
strict subset of the scope of the other entity (theouter scope). Within the inner scope, the
identifier designates the entity declared in the inner scope; the entity declared in the outer
scope ishidden(and not visible) within the inner scope.

5 Unless explicitly stated otherwise, where this International Standard uses the term
identifier to refer to some entity (as opposed to the syntactic construct), it refers to the
entity in the relevant name space whose declaration is visible at the point the identifier
occurs.

6 Tw o identifiers have the same scope if and only if their scopes terminate at the same
point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of
the tag in a type specifier that declares the tag. Each enumeration constant has scope that
begins just after the appearance of its defining enumerator in an enumerator list. Any
other identifier has scope that begins just after the completion of its declarator.

Forward references: compound statement, or block (6.8.2), declarations (6.7),
enumeration specifiers (6.7.2.2), function calls (6.5.2.2), function declarators (including
prototypes) (6.7.5.3), function definitions (6.9.1), thegoto statement (6.8.6.1), labeled
statements (6.8.1), name spaces of identifiers (6.2.3), scope of macro definitions
(6.10.3.5), source file inclusion (6.10.2), tags (6.7.2.3), type specifiers (6.7.2).

6.2.2 Linkages of identifiers

1 An identifier declared in different scopes or in the same scope more than once can be
made to refer to the same object or function by a process calledlinkage. There are three
kinds of linkage: external, internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each
declaration of a particular identifier withexternal linkagedenotes the same object or
function. Within one translation unit, each declaration of an identifier withinternal
linkage denotes the same object or function. Each declaration of an identifier withno
linkagedenotes a unique entity.

3 If the declaration of a file scope identifier for an object or a function contains the storage-
class specifierstatic , the identifier has internal linkage.20)

4 For an identifier declared with the storage-class specifierextern in a scope in which a
prior declaration of that identifier is visible,21) if the prior declaration specifies internal or

20) A function declaration can contain the storage-class specifierstatic only if it is at file scope; see

6.7.1.

21) As specified in 6.2.1, the later declaration might hide the prior declaration.

6.2.1 Language 6.2.2

WG14/N869 Committee Draft — January 18, 1999 33

external linkage, the linkage of the identifier at the later declaration is the same as the
linkage specified at the prior declaration. If no prior declaration is visible, or if the prior
declaration specifies no linkage, then the identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage
is determined exactly as if it were declared with the storage-class specifierextern . If
the declaration of an identifier for an object has file scope and no storage-class specifier,
its linkage is external.

6 The following identifiers have no linkage: an identifier declared to be anything other than
an object or a function; an identifier declared to be a function parameter; a block scope
identifier for an object declared without the storage-class specifierextern .

7 If, within a translation unit, the same identifier appears with both internal and external
linkage, the behavior is undefined.

Forward references: compound statement, or block (6.8.2), declarations (6.7),
expressions (6.5), external definitions (6.9).

6.2.3 Name spaces of identifiers

1 If more than one declaration of a particular identifier is visible at any point in a
translation unit, the syntactic context disambiguates uses that refer to different entities.
Thus, there are separatename spacesfor various categories of identifiers, as follows:

— label names(disambiguated by the syntax of the label declaration and use);

— the tagsof structures, unions, and enumerations (disambiguated by following any22)

of the keywordsstruct , union , or enum);

— the membersof structures or unions; each structure or union has a separate name
space for its members (disambiguated by the type of the expression used to access the
member via the. or -> operator);

— all other identifiers, calledordinary identifiers(declared in ordinary declarators or as
enumeration constants).

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1),
structure and union specifiers (6.7.2.1), structure and union members (6.5.2.3), tags
(6.7.2.3).

22) There is only one name space for tags even though three are possible.

6.2.2 Language 6.2.3

34 Committee Draft — January 18, 1999 WG14/N869

6.2.4 Storage durations of objects

1 An object has astorage durationthat determines its lifetime. There are three storage
durations: static, automatic, and allocated. Allocated storage is described in 7.20.3.

2 An object whose identifier is declared with external or internal linkage, or with the
storage-class specifierstatic hasstatic storage duration. For such an object, storage is
reserved and its stored value is initialized only once, prior to program startup. The object
exists, has a constant address, and retains its last-stored value throughout the execution of
the entire program.23)

3 An object whose identifier is declared with no linkage and without the storage-class
specifierstatic hasautomatic storage duration.

4 For such an object that does not have a variable length array type, storage is guaranteed to
be reserved for a new instance of the object on each entry into the block with which it is
associated; the initial value of the object is indeterminate. If an initialization is specified
for the object, it is performed each time the declaration is reached in the execution of the
block; otherwise, the value becomes indeterminate each time the declaration is reached.
Storage for the object is no longer guaranteed to be reserved when execution of the block
ends in any way. (Entering an enclosed block or calling a function suspends, but does not
end, execution of the current block.)

5 For such an object that does have a variable length array type, storage is guaranteed to be
reserved for a new instance of the object each time the declaration is reached in the
execution of the program. The initial value of the object is indeterminate. Storage for the
object is no longer guaranteed to be reserved when the execution of the program leaves
the scope of the declaration.24)

6 If an object is referred to when storage is not reserved for it, the behavior is undefined.
The value of a pointer that referred to an object whose storage is no longer reserved is
indeterminate. During the time that its storage is reserved, an object has a constant
address.

Forward references: compound statement, or block (6.8.2), function calls (6.5.2.2),
declarators (6.7.5), array declarators (6.7.5.2), initialization (6.7.8).

23) The termconstant addressmeans that two pointers to the object constructed at possibly different times

will compare equal. The address may be different during two different executions of the same

program.

In the case of a volatile object, the last store need not be explicit in the program.

24) Leaving the innermost block containing the declaration, or jumping to a point in that block or an

embedded block prior to the declaration, leaves the scope of the declaration.

6.2.4 Language 6.2.4

WG14/N869 Committee Draft — January 18, 1999 35

6.2.5 Types

1 The meaning of a value stored in an object or returned by a function is determined by the
type of the expression used to access it. (An identifier declared to be an object is the
simplest such expression; the type is specified in the declaration of the identifier.) Types
are partitioned intoobject types(types that describe objects),function types(types that
describe functions), andincomplete types(types that describe objects but lack
information needed to determine their sizes).

2 An object declared as type_Bool is large enough to store the values 0 and 1.

3 An object declared as typechar is large enough to store any member of the basic
execution character set. If a member of the required source character set enumerated in
5.2.1 is stored in achar object, its value is guaranteed to be positive. If any other
character is stored in achar object, the resulting value is implementation-defined but
shall be within the range of values that can be represented in that type.

4 There are fivestandard signed integer types, designated assigned char , short
int , int , long int , and long long int . (These and other types may be
designated in several additional ways, as described in 6.7.2.) There may also be
implementation-definedextended signed integer types.25) The standard and extended
signed integer types are collectively calledsigned integer types.26)

5 An object declared as typesigned char occupies the same amount of storage as a
‘‘plain’’ char object. A ‘‘plain’’ int object has the natural size suggested by the
architecture of the execution environment (large enough to contain any value in the range
INT_MIN to INT_MAXas defined in the header<limits.h>).

6 For each of the signed integer types, there is a corresponding (but different) unsigned
integer type (designated with the keywordunsigned) that uses the same amount of
storage (including sign information) and has the same alignment requirements. The type
_Bool and the unsigned integer types that correspond to the standard signed integer
types are thestandard unsigned integer types. The unsigned integer types that
correspond to the extended signed integer types are theextended unsigned integer types.
The standard and extended unsigned integer types are collectively calledunsigned integer
types.27)

25) Implementation-defined keywords shall have the form of an identifier reserved for any use as

described in 7.1.3.

26) Therefore, any statement in this Standard about signed integer types also applies to the extended

signed integer types.

27) Therefore, any statement in this Standard about unsigned integer types also applies to the extended

unsigned integer types.

6.2.5 Language 6.2.5

36 Committee Draft — January 18, 1999 WG14/N869

7 The standard signed integer types and standard unsigned integer types are collectively
called the standard integer types, the extended signed integer types and extended
unsigned integer types are collectively called theextended integer types.

8 For any two types with the same signedness and different integer conversion rank (see
6.3.1.1), the range of values of the type with smaller integer conversion rank is a subrange
of the values of the other type.

9 The range of nonnegative values of a signed integer type is a subrange of the
corresponding unsigned integer type, and the representation of the same value in each
type is the same.28) A computation involving unsigned operands can never overflow,
because a result that cannot be represented by the resulting unsigned integer type is
reduced modulo the number that is one greater than the largest value that can be
represented by the resulting type.

10 There are threereal floating types, designated asfloat , double , and long
double .29) The set of values of the typefloat is a subset of the set of values of the
typedouble ; the set of values of the typedouble is a subset of the set of values of the
type long double .

11 There are threecomplex types, designated asfloat _Complex , double
_Complex , and long double _Complex .30) The real floating and complex types
are collectively called thefloating types.

12 For each floating type there is acorresponding real type, which is always a real floating
type. For real floating types, it is the same type. For complex types, it is the type given
by deleting the keyword_Complex from the type name.

13 Each complex type has the same representation and alignment requirements as an array
type containing exactly two elements of the corresponding real type; the first element is
equal to the real part, and the second element to the imaginary part, of the complex
number.

14 The typechar , the signed and unsigned integer types, and the floating types are
collectively called thebasic types. Even if the implementation defines two or more basic
types to have the same representation, they are nevertheless different types.31)

15 The three typeschar , signed char , andunsigned char are collectively called
the character types. The implementation shall definechar to have the same range,
representation, and behavior as eithersigned char or unsigned char .32)

28) The same representation and alignment requirements are meant to imply interchangeability as

arguments to functions, return values from functions, and members of unions.

29) See ‘‘future language directions’’ (6.11.1).

30) A specification for imaginary types is in informative annex G.

6.2.5 Language 6.2.5

WG14/N869 Committee Draft — January 18, 1999 37

16 An enumerationcomprises a set of named integer constant values. Each distinct
enumeration constitutes a differentenumerated type.

17 The typechar , the signed and unsigned integer types, and the enumerated types are
collectively calledinteger types. The integer and real floating types are collectively called
real types.

18 Thevoid type comprises an empty set of values; it is an incomplete type that cannot be
completed.

19 Any number of derived typescan be constructed from the object, function, and
incomplete types, as follows:

— An array type describes a contiguously allocated nonempty set of objects with a
particular member object type, called theelement type.33) Array types are
characterized by their element type and by the number of elements in the array. An
array type is said to be derived from its element type, and if its element type isT, the
array type is sometimes called ‘‘array ofT ’’. The construction of an array type from
an element type is called ‘‘array type derivation’’.

— A structure typedescribes a sequentially allocated nonempty set of member objects
(and, in certain circumstances, an incomplete array), each of which has an optionally
specified name and possibly distinct type.

— A union typedescribes an overlapping nonempty set of member objects, each of
which has an optionally specified name and possibly distinct type.

— A function typedescribes a function with specified return type. A function type is
characterized by its return type and the number and types of its parameters. A
function type is said to be derived from its return type, and if its return type isT, the
function type is sometimes called ‘‘function returningT ’’. The construction of a
function type from a return type is called ‘‘function type derivation’’.

— A pointer typemay be derived from a function type, an object type, or an incomplete
type, called thereferenced type. A pointer type describes an object whose value
provides a reference to an entity of the referenced type. A pointer type derived from

31) An implementation may define new keywords that provide alternative ways to designate a basic (or

any other) type; this does not violate the requirement that all basic types be different.

Implementation-defined keywords shall have the form of an identifier reserved for any use as

described in 7.1.3.

32) CHAR_MIN, defined in<limits.h> , will have one of the values 0 orSCHAR_MIN, and this can be

used to distinguish the two options. Irrespective of the choice made,char is a separate type from the

other two and is not compatible with either.

33) Since object types do not include incomplete types, an array of incomplete type cannot be constructed.

6.2.5 Language 6.2.5

38 Committee Draft — January 18, 1999 WG14/N869

the referenced typeT is sometimes called ‘‘pointer toT ’’. The construction of a
pointer type from a referenced type is called ‘‘pointer type derivation’’.

20 These methods of constructing derived types can be applied recursively.

21 Integer and floating types are collectively calledarithmetic types. Arithmetic types and
pointer types are collectively calledscalar types. Array and structure types are
collectively calledaggregate types.34)

22 Each arithmetic type belongs to onetype domain. The real type domaincomprises the
real types. Thecomplex type domaincomprises the complex types.

23 An array type of unknown size is an incomplete type. It is completed, for an identifier of
that type, by specifying the size in a later declaration (with internal or external linkage).
A structure or union type of unknown content (as described in 6.7.2.3) is an incomplete
type. It is completed, for all declarations of that type, by declaring the same structure or
union tag with its defining content later in the same scope. A structure type containing a
flexible array member is an incomplete type that cannot be completed.

24 Array, function, and pointer types are collectively calledderived declarator types. A
declarator type derivationfrom a typeT is the construction of a derived declarator type
from T by the application of an array-type, a function-type, or a pointer-type derivation to
T.

25 A type is characterized by itstype category, which is either the outermost derivation of a
derived type (as noted above inthe construction of derived types), or the type itself if the
type consists of no derived types.

26 Any type so far mentioned is anunqualified type. Each unqualified type has several
qualified versionsof its type,35) corresponding to the combinations of one, two, or all
three of theconst , volatile , andrestrict qualifiers. The qualified or unqualified
versions of a type are distinct types that belong to the same type category and have the
same representation and alignment requirements.28) A derived type is not qualified by the
qualifiers (if any) of the type from which it is derived.

27 A pointer tovoid shall have the same representation and alignment requirements as a
pointer to a character type. Similarly, pointers to qualified or unqualified versions of
compatible types shall have the same representation and alignment requirements.28) All
pointers to structure types shall have the same representation and alignment requirements
as each other. All pointers to union types shall have the same representation and
alignment requirements as each other. Pointers to other types need not have the same
representation or alignment requirements.

34) Note that aggregate type does not include union type because an object with union type can only

contain one member at a time.

35) See 6.7.3 regarding qualified array and function types.

6.2.5 Language 6.2.5

WG14/N869 Committee Draft — January 18, 1999 39

28 EXAMPLE 1 The type designated as ‘‘float * ’’ has type ‘‘pointer tofloat ’’. Its type category is
pointer, not a floating type. The const-qualified version of this type is designated as ‘‘float * const ’’
whereas the type designated as ‘‘const float * ’’ is not a qualified type — its type is ‘‘pointer to const-
qualifiedfloat ’’ and is a pointer to a qualified type.

29 EXAMPLE 2 The type designated as ‘‘struct tag (*[5])(float) ’’ has type ‘‘array of pointer to
function returningstruct tag ’’. The array has length five and the function has a single parameter of type
float . Its type category is array.

Forward references: character constants (6.4.4.4), compatible type and composite type
(6.2.7), declarations (6.7), tags (6.7.2.3), type qualifiers (6.7.3).

6.2.6 Representations of types

6.2.6.1 General

1 The representations of all types are unspecified except as stated in this subclause.

2 Except for bit-fields, objects are composed of contiguous sequences of one or more bytes,
the number, order, and encoding of which are either explicitly specified or
implementation-defined.

3 Values stored in objects of typeunsigned char shall be represented using a pure
binary notation.36)

4 Values stored in objects of any other object type consist ofn × CHAR_BIT bits, wheren
is the size of an object of that type, in bytes. The value may be copied into an object of
type unsigned char [n] (e.g., bymemcpy); the resulting set of bytes is called the
object representationof the value. Two values (other than NaNs) with the same object
representation compare equal, but values that compare equal may have different object
representations.

5 Certain object representations need not represent a value of the object type. If the stored
value of an object has such a representation and is accessed by an lvalue expression that
does not have character type, the behavior is undefined. If such a representation is
produced by a side effect that modifies all or any part of the object by an lvalue
expression that does not have character type, the behavior is undefined.37) Such a
representation is called atrap representation.

36) A positional representation for integers that uses the binary digits 0 and 1, in which the values

represented by successive bits are additive, begin with 1, and are multiplied by successive integral

powers of 2, except perhaps the bit with the highest position. (Adapted from theAmerican National

Dictionary for Information Processing Systems.) A byte containsCHAR_BIT bits, and the values of

typeunsigned char range from 0 to2CHAR_BIT − 1.

37) Thus, an automatic variable can be initialized to a trap representation without causing undefined

behavior, but the value of the variable cannot be used until a proper value is stored in it.

6.2.5 Language 6.2.6.1

40 Committee Draft — January 18, 1999 WG14/N869

6 When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that correspond to any padding bytes take
unspecified values.38) The values of padding bytes shall not affect whether the value of
such an object is a trap representation. Those bits of a structure or union object that are
in the same byte as a bit-field member, but are not part of that member, shall similarly not
affect whether the value of such an object is a trap representation.

7 When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspecified values, but the value of the union object shall not thereby become a trap
representation.

8 Where an operator is applied to a value which has more than one object representation,
which object representation is used shall not affect the value of the result. Where a value
is stored in an object using a type that has more than one object representation for that
value, it is unspecified which representation is used, but a trap representation shall not be
generated.

6.2.6.2 Integer types

1 For unsigned integer types other thanunsigned char , the bits of the object
representation shall be divided into two groups: value bits and padding bits (there need
not be any of the latter). If there areN value bits, each bit shall represent a different
power of 2 between 1 and 2N−1, so that objects of that type shall be capable of
representing values from 0 to 2N − 1 using a pure binary representation; this shall be
known as the value representation. The values of any padding bits are unspecified.39)

2 For signed integer types, the bits of the object representation shall be divided into three
groups: value bits, padding bits, and the sign bit. There need not be any padding bits;
there shall be exactly one sign bit. Each bit that is a value bit shall have the same value as
the same bit in the object representation of the corresponding unsigned type (if there are
M value bits in the signed type andN in the unsigned type, thenM ≤ N). If the sign bit
is zero, it shall not affect the resulting value. If the sign bit is one, then the value shall be
modified in one of the following ways:

— the corresponding value with sign bit 0 is negated;

38) Thus, for example, structure assignment may be implemented element-at-a-time or viamemcpy.

39) Some combinations of padding bits might generate trap representations, for example, if one padding

bit is a parity bit. Regardless, no arithmetic operation on valid values can generate a trap

representation other than as part of an exception such as an overflow, and this cannot occur with

unsigned types. All other combinations of padding bits are alternative object representations of the

value specified by the value bits.

6.2.6.1 Language 6.2.6.2

WG14/N869 Committee Draft — January 18, 1999 41

— the sign bit has the value−2N ;

— the sign bit has the value 1− 2N .

3 The values of any padding bits are unspecified.39) A valid (non-trap) object
representation of a signed integer type where the sign bit is zero is a valid object
representation of the corresponding unsigned type, and shall represent the same value.

4 The precision of an integer type is the number of bits it uses to represent values,
excluding any sign and padding bits. Thewidth of an integer type is the same but
including any sign bit; thus for unsigned integer types the two values are the same, while
for signed integer types the width is one greater than the precision.

6.2.7 Compatible type and composite type

1 Tw o types havecompatible typeif their types are the same. Additional rules for
determining whether two types are compatible are described in 6.7.2 for type specifiers,
in 6.7.3 for type qualifiers, and in 6.7.5 for declarators.40) Moreover, two structure,
union, or enumerated types declared in separate translation units are compatible if their
tags and members satisfy the following requirements: If one is declared with a tag, the
other shall be declared with the same tag. If both are completed types, then the following
additional requirements apply: there shall be a one-to-one correspondence between their
members such that each pair of corresponding members are declared with compatible
types, and such that if one member of a corresponding pair is declared with a name, the
other member is declared with the same name. For two structures, corresponding
members shall be declared in the same order. For two structures or unions, corresponding
bit-fields shall have the same widths. For two enumerations, corresponding members
shall have the same values.

2 All declarations that refer to the same object or function shall have compatible type;
otherwise, the behavior is undefined.

3 A composite typecan be constructed from two types that are compatible; it is a type that
is compatible with both of the two types and satisfies the following conditions:

— If one type is an array of known constant size, the composite type is an array of that
size; otherwise, if one type is a variable length array, the composite type is that type.

— If only one type is a function type with a parameter type list (a function prototype),
the composite type is a function prototype with the parameter type list.

— If both types are function types with parameter type lists, the type of each parameter
in the composite parameter type list is the composite type of the corresponding
parameters.

These rules apply recursively to the types from which the two types are derived.

40) Tw o types need not be identical to be compatible.

6.2.6.2 Language 6.2.7

42 Committee Draft — January 18, 1999 WG14/N869

4 For an identifier with internal or external linkage declared in a scope in which a prior
declaration of that identifier is visible,41) if the prior declaration specifies internal or
external linkage, the type of the identifier at the later declaration becomes the composite
type.

5 EXAMPLE Given the following two file scope declarations:

int f(int (*)(), double (*)[3]);
int f(int (*)(char *), double (*)[]);

The resulting composite type for the function is:

int f(int (*)(char *), double (*)[3]);

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), type definitions (6.7.7), type qualifiers (6.7.3), type specifiers
(6.7.2).

41) As specified in 6.2.1, the later declaration might hide the prior declaration.

6.2.7 Language 6.2.7

WG14/N869 Committee Draft — January 18, 1999 43

6.3 Conversions

1 Several operators convert operand values from one type to another automatically. This
subclause specifies the result required from such animplicit conversion, as well as those
that result from a cast operation (anexplicit conversion). The list in 6.3.1.8 summarizes
the conversions performed by most ordinary operators; it is supplemented as required by
the discussion of each operator in 6.5.

2 Conversion of an operand value to a compatible type causes no change to the value or the
representation.

Forward references: cast operators (6.5.4).

6.3.1 Arithmetic operands

6.3.1.1 Boolean, characters, and integers

1 Every integer type has aninteger conversion rankdefined as follows:

— No two signed integer types shall have the same rank, even if they hav e the same
representation.

— The rank of a signed integer type shall be greater than the rank of any signed integer
type with less precision.

— The rank oflong long int shall be greater than the rank oflong int , which
shall be greater than the rank ofint , which shall be greater than the rank ofshort
int , which shall be greater than the rank ofsigned char .

— The rank of any unsigned integer type shall equal the rank of the corresponding
signed integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended
integer type with the same width.

— The rank ofchar shall equal the rank ofsigned char andunsigned char .

— The rank of_Bool shall be less than the rank of all other standard integer types.

— The rank of any enumerated type shall equal the rank of the compatible integer type
(see 6.7.2.2).

— The rank of any extended signed integer type relative to another extended signed
integer type with the same precision is implementation-defined, but still subject to the
other rules for determining the integer conversion rank.

— For all integer typesT1, T2, and T3, if T1 has greater rank thanT2 and T2 has
greater rank thanT3, thenT1 has greater rank thanT3.

6.3 Language 6.3.1.1

44 Committee Draft — January 18, 1999 WG14/N869

2 The following may be used in an expression wherever anint or unsigned int may
be used:

— An object or expression with an integer type whose integer conversion rank is less
than the rank ofint andunsigned int .

— A bit-field of type_Bool , int , signed int , or unsigned int .

If an int can represent all values of the original type, the value is converted to anint ;
otherwise, it is converted to anunsigned int . These are called theinteger
promotions.42) All other types are unchanged by the integer promotions.

3 The integer promotions preserve value including sign. As discussed earlier, whether a
‘‘plain’’ char is treated as signed is implementation-defined.

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1).

6.3.1.2 Boolean type

1 When any scalar value is converted to_Bool , the result is 0 if the value compares equal
to 0; otherwise, the result is 1.

6.3.1.3 Signed and unsigned integers

1 When a value with integer type is converted to another integer type other than_Bool , if
the value can be represented by the new type, it is unchanged.

2 Otherwise, if the new type is unsigned, the value is converted by repeatedly adding or
subtracting one more than the maximum value that can be represented in the new type
until the value is in the range of the new type.

3 Otherwise, the new type is signed and the value cannot be represented in it; the result is
implementation-defined.

6.3.1.4 Real floating and integer

1 When a finite value of real floating type is converted to an integer type other than_Bool ,
the fractional part is discarded (i.e., the value is truncated toward zero). If the value of
the integral part cannot be represented by the integer type, the behavior is undefined.43)

42) The integer promotions are applied only: as part of the usual arithmetic conversions, to certain

argument expressions, to the operands of the unary+, - , and˜ operators, and to both operands of the

shift operators, as specified by their respective subclauses.

43) The remaindering operation performed when a value of integer type is converted to unsigned type

need not be performed when a value of real floating type is converted to unsigned type. Thus, the

range of portable real floating values is (−1,Utype_MAX+1).

6.3.1.1 Language 6.3.1.4

WG14/N869 Committee Draft — January 18, 1999 45

2 When a value of integer type is converted to a real floating type, if the value being
converted is in the range of values that can be represented but cannot be represented
exactly, the result is either the nearest higher or nearest lower value, chosen in an
implementation-defined manner. If the value being converted is outside the range of
values that can be represented, the behavior is undefined.

6.3.1.5 Real floating types

1 When afloat is promoted todouble or long double , or adouble is promoted
to long double , its value is unchanged.

2 When adouble is demoted tofloat , a long double is demoted todouble or
float , or a value being represented in greater precision and range than required by its
semantic type (see 6.3.1.8) is explicitly converted to its semantic type, if the value being
converted is outside the range of values that can be represented, the behavior is
undefined. If the value being converted is in the range of values that can be represented
but cannot be represented exactly, the result is either the nearest higher or nearest lower
representable value, chosen in an implementation-defined manner.

6.3.1.6 Complex types

1 When a value of complex type is converted to another complex type, both the real and
imaginary parts follow the conversion rules for the corresponding real types.

6.3.1.7 Real and complex

1 When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and
the imaginary part of the complex result value is a positive zero or an unsigned zero.

2 When a value of complex type is converted to a real type, the imaginary part of the
complex value is discarded and the value of the real part is converted according to the
conversion rules for the corresponding real type.

6.3.1.8 Usual arithmetic conversions

1 Many operators that expect operands of arithmetic type cause conversions and yield result
types in a similar way. The purpose is to determine acommon real typefor the operands
and result. For the specified operands, each operand is converted, without change of type
domain, to a type whose corresponding real type is the common real type. Unless
explicitly stated otherwise, the common real type is also the corresponding real type of
the result, whose type domain is the type domain of the operands if they are the same,
and complex otherwise. This pattern is called theusual arithmetic conversions:

First, if the corresponding real type of either operand islong double , the other
operand is converted, without change of type domain, to a type whose
corresponding real type islong double .

6.3.1.4 Language 6.3.1.8

46 Committee Draft — January 18, 1999 WG14/N869

Otherwise, if the corresponding real type of either operand isdouble , the other
operand is converted, without change of type domain, to a type whose
corresponding real type isdouble .

Otherwise, if the corresponding real type of either operand isfloat , the other
operand is converted, without change of type domain, to a type whose
corresponding real type isfloat .44)

Otherwise, the integer promotions are performed on both operands. Then the
following rules are applied to the promoted operands:

If both operands have the same type, then no further conversion is needed.

Otherwise, if both operands have signed integer types or both have unsigned
integer types, the operand with the type of lesser integer conversion rank is
converted to the type of the operand with greater rank.

Otherwise, if the operand that has unsigned integer type has rank greater or
equal to the rank of the type of the other operand, then the operand with
signed integer type is converted to the type of the operand with unsigned
integer type.

Otherwise, if the type of the operand with signed integer type can represent
all of the values of the type of the operand with unsigned integer type, then
the operand with unsigned integer type is converted to the type of the
operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type
corresponding to the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be
represented in greater precision and range than that required by the type; the types are not
changed thereby.45)

44) For example, addition of adouble _Complex and afloat entails just the conversion of the

float operand todouble (and yields adouble _Complex result).

45) The cast and assignment operators are still required to perform their specified conversions as

described in 6.3.1.4 and 6.3.1.5.

6.3.1.8 Language 6.3.1.8

WG14/N869 Committee Draft — January 18, 1999 47

6.3.2 Other operands

6.3.2.1 Lvalues and function designators

1 An lvalue is an expression with an object type or an incomplete type other thanvoid ;46)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the lvalue used to
designate the object. Amodifiable lvalueis an lvalue that does not have array type, does
not have an incomplete type, does not have a const-qualified type, and if it is a structure
or union, does not have any member (including, recursively, any member or element of
all contained aggregates or unions) with a const-qualified type.

2 Except when it is the operand of thesizeof operator, the unary& operator, the++
operator, the-- operator, or the left operand of the. operator or an assignment operator,
an lvalue that does not have array type is converted to the value stored in the designated
object (and is no longer an lvalue). If the lvalue has qualified type, the value has the
unqualified version of the type of the lvalue; otherwise, the value has the type of the
lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is
undefined.

3 Except when it is the operand of thesizeof operator or the unary& operator, or is a
string literal used to initialize an array, an expression that has type ‘‘array oftype’’ is
converted to an expression with type ‘‘pointer totype’’ that points to the initial element of
the array object and is not an lvalue. If the array object has register storage class, the
behavior is undefined.

4 A function designatoris an expression that has function type. Except when it is the
operand of thesizeof operator47) or the unary& operator, a function designator with
type ‘‘function returningtype’’ is converted to an expression that has type ‘‘pointer to
function returningtype’’.

Forward references: address and indirection operators (6.5.3.2), assignment operators
(6.5.16), common definitions<stddef.h> (7.17), initialization (6.7.8), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), thesizeof operator (6.5.3.4), structure and union members (6.5.2.3).

46) The name ‘‘lvalue’’ comes originally from the assignment expressionE1 = E2 , in which the left

operandE1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an

object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described

as the ‘‘value of an expression’’.

An obvious example of an lvalue is an identifier of an object. As a further example, ifE is a unary

expression that is a pointer to an object,*E is an lvalue that designates the object to whichE points.

47) Because this conversion does not occur, the operand of thesizeof operator remains a function

designator and violates the constraint in 6.5.3.4.

6.3.2 Language 6.3.2.1

48 Committee Draft — January 18, 1999 WG14/N869

6.3.2.2 void

1 The (nonexistent) value of avoid expression(an expression that has typevoid) shall not
be used in any way, and implicit or explicit conversions (except tovoid) shall not be
applied to such an expression. If an expression of any other type is evaluated as a void
expression, its value or designator is discarded. (A void expression is evaluated for its
side effects.)

6.3.2.3 Pointers

1 A pointer tovoid may be converted to or from a pointer to any incomplete or object
type. A pointer to any incomplete or object type may be converted to a pointer tovoid
and back again; the result shall compare equal to the original pointer.

2 For any qualifierq, a pointer to a non-q-qualified type may be converted to a pointer to
theq-qualified version of the type; the values stored in the original and converted pointers
shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to typevoid
* , is called anull pointer constant.48) If a null pointer constant is converted to a pointer
type, the resulting pointer, called anull pointer, is guaranteed to compare unequal to a
pointer to any object or function.

4 Conversion of a null pointer to another pointer type yields a null pointer of that type.
Any two null pointers shall compare equal.

5 An integer may be converted to any pointer type. Except as previously specified, the
result is implementation-defined, might not be properly aligned, and might not point to an
entity of the referenced type.49)

6 Any pointer type may be converted to an integer type. Except as previously specified, the
result is implementation-defined. If the result cannot be represented in the integer type,
the behavior is undefined. The result need not be in the range of values of any integer
type.

7 A pointer to an object or incomplete type may be converted to a pointer to a different
object or incomplete type. If the resulting pointer is not correctly aligned50) for the
pointed-to type, the behavior is undefined. Otherwise, when converted back again, the
result shall compare equal to the original pointer. When a pointer to an object is

48) The macroNULL is defined in<stddef.h> as a null pointer constant; see 7.17.

49) The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to

be consistent with the addressing structure of the execution environment.

50) In general, the concept ‘‘correctly aligned’’ is transitive: if a pointer to type A is correctly aligned for a

pointer to type B, which in turn is correctly aligned for a pointer to type C, then a pointer to type A is

correctly aligned for a pointer to type C.

6.3.2.1 Language 6.3.2.3

WG14/N869 Committee Draft — January 18, 1999 49

converted to a pointer to a character type, the result points to the lowest addressed byte of
the object. Successive increments of the result, up to the size of the object, yield pointers
to the remaining bytes of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another
type and back again; the result shall compare equal to the original pointer. If a converted
pointer is used to call a function whose type is not compatible with the pointed-to type,
the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), simple
assignment (6.5.16.1).

6.3.2.3 Language 6.3.2.3

50 Committee Draft — January 18, 1999 WG14/N869

6.4 Lexical elements
Syntax

1 token:
keyword
identifier
constant
string-literal
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
each non-white-space character that cannot be one of the above ∗

Constraints

2 Each preprocessing token that is converted to a token shall have the lexical form of a
keyword, an identifier, a constant, a string literal, or a punctuator.

Semantics

3 A tokenis the minimal lexical element of the language in translation phases 7 and 8. The
categories of tokens are: keywords, identifiers, constants, string literals, and punctuators.
A preprocessing token is the minimal lexical element of the language in translation
phases 3 through 6. The categories of preprocessing token are: header names, identifiers,
preprocessing numbers, character constants, string literals, punctuators, and single non-
white-space characters that do not lexically match the other preprocessing token
categories.51) If a ’ or a" character matches the last category, the behavior is undefined.
Preprocessing tokens can be separated bywhite space; this consists of comments
(described later), orwhite-space characters(space, horizontal tab, new-line, vertical tab,
and form-feed), or both. As described in 6.10, in certain circumstances during translation
phase 4, white space (or the absence thereof) serves as more than preprocessing token
separation. White space may appear within a preprocessing token only as part of a
header name or between the quotation characters in a character constant or string literal.

51) An additional category, placemarkers, is used internally in translation phase 4 (see 6.10.3.3); it cannot

occur in source files.

6.4 Language 6.4

WG14/N869 Committee Draft — January 18, 1999 51

4 If the input stream has been parsed into preprocessing tokens up to a given character, the
next preprocessing token is the longest sequence of characters that could constitute a
preprocessing token. There is one exception to this rule: a header name preprocessing
token is only recognized within a#include preprocessing directive, and within such a
directive, a sequence of characters that could be either a header name or a string literal is
recognized as the former.

5 EXAMPLE 1 The program fragment1Ex is parsed as a preprocessing number token (one that is not a
valid floating or integer constant token), even though a parse as the pair of preprocessing tokens1 andEx
might produce a valid expression (for example, ifEx were a macro defined as+1). Similarly, the program
fragment1E1 is parsed as a preprocessing number (one that is a valid floating constant token), whether or
notE is a macro name.

6 EXAMPLE 2 The program fragmentx+++++y is parsed asx ++ ++ + y , which violates a constraint on
increment operators, even though the parsex ++ + ++ y might yield a correct expression.

Forward references: character constants (6.4.4.4), comments (6.4.9), expressions (6.5),
floating constants (6.4.4.2), header names (6.4.7), macro replacement (6.10.3), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators
(6.5.3.1), preprocessing directives (6.10), preprocessing numbers (6.4.8), string literals
(6.4.5).

6.4.1 Keywords
Syntax

1 keyword: one of
auto
break
case
char
const
continue
default
do
double
else

enum
extern
float
for
goto
if
inline
int
long
register

restrict
return
short
signed
sizeof
static
struct
switch
typedef
union

unsigned
void
volatile
while
_Bool
_Complex
_Imaginary

Semantics

2 The above tokens (case sensitive) are reserved (in translation phases 7 and 8) for use as
keywords, and shall not be used otherwise.

6.4 Language 6.4.1

52 Committee Draft — January 18, 1999 WG14/N869

6.4.2 Identifiers

6.4.2.1 General

Syntax

1 identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

nondigit: one of
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

Semantics

2 An identifier is a sequence of nondigit characters (including the underscore_, the
lowercase and uppercase Latin letters, and other characters) and digits, which designates
one or more entities as described in 6.2.1. Lowercase and uppercase letters are distinct.
There is no specific limit on the maximum length of an identifier.

3 Each universal character name in an identifier shall designate a character whose encoding
in ISO/IEC 10646 falls into one of the ranges specified in annex D.52) The initial
character shall not be a universal character name designating a digit. An implementation
may allow multibyte characters that are not part of the required source character set to
appear in identifiers; which characters and their correspondence to universal character
names is implementation defined.

4 When preprocessing tokens are converted to tokens during translation phase 7, if a
preprocessing token could be converted to either a keyword or an identifier, it is converted
to a keyword.

52) On systems in which linkers cannot accept extended characters, an encoding of the universal character

name may be used in forming valid external identifiers. For example, some otherwise unused

character or sequence of characters may be used to encode the\u in a universal character name.

Extended characters may produce a long external identifier.

6.4.2 Language 6.4.2.1

WG14/N869 Committee Draft — January 18, 1999 53

Implementation limits

5 As discussed in 5.2.4.1, an implementation may limit the number of significant initial
characters in an identifier; the limit for anexternal name(an identifier that has external
linkage) may be more restrictive than that for aninternal name(a macro name or an
identifier that does not have external linkage). The number of significant characters in an
identifier is implementation-defined.

6 Any identifiers that differ in a significant character are different identifiers. If two
identifiers differ only in nonsignificant characters, the behavior is undefined.

Forward references: universal character names (6.4.3), macro replacement (6.10.3).

6.4.2.2 Predefined identifiers

Semantics

1 The identifier _ _func_ _ shall be implicitly declared by the translator as if,
immediately following the opening brace of each function definition, the declaration

static const char _ _func_ _[] = " function-name";

appeared, wherefunction-nameis the name of the lexically-enclosing function.53)

2 This name is encoded as if the implicit declaration had been written in the source
character set and then translated into the execution character set as indicated in translation
phase 5.

3 EXAMPLE Consider the code fragment:

#include <stdio.h>
void myfunc(void)
{

printf("%s\n", _ _func_ _);
/* ... */

}

Each time the function is called, it will print to the standard output stream:

myfunc

Forward references: function definitions (6.9.1).

53) Note that since the name_ _func_ _ is reserved for any use by the implementation (7.1.3), if any

other identifier is explicitly declared using the name_ _func_ _, the behavior is undefined.

6.4.2.1 Language 6.4.2.2

54 Committee Draft — January 18, 1999 WG14/N869

6.4.3 Universal character names
Syntax

1 universal-character-name:
\u hex-quad
\U hex-quad hex-quad

hex-quad:
hexadecimal-digit hexadecimal-digit

hexadecimal-digit hexadecimal-digit

Constraints

2 A universal character name shall not specify a character short identifier in the range
00000000 through 00000020, 0000007F through 0000009F, or 0000D800 through
0000DFFF inclusive. A universal character name shall not designate a character in the
required character set.

Description

3 Universal character names may be used in identifiers, character constants, and string
literals to designate characters that are not in the required character set.

Semantics

4 The universal character name\U nnnnnnnndesignates the character whose character short
identifier (as specified by ISO/IEC 10646) isnnnnnnnn. Similarly, the universal
character name\u nnnn designates the character whose character short identifier is
0000nnnn.

6.4.4 Constants
Syntax

1 constant:
integer-constant
floating-constant
enumeration-constant
character-constant

Constraints

2 The value of a constant shall be in the range of representable values for its type.

Semantics

3 Each constant has a type, determined by its form and value, as detailed later.

6.4.3 Language 6.4.4

WG14/N869 Committee Draft — January 18, 1999 55

6.4.4.1 Integer constants

Syntax

1 integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

hexadecimal-prefix:one of
0x 0X

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

unsigned-suffix:one of
u U

long-suffix: one of
l L

6.4.4.1 Language 6.4.4.1

56 Committee Draft — January 18, 1999 WG14/N869

long-long-suffix: one of
ll LL

Description

2 An integer constant begins with a digit, but has no period or exponent part. It may have a
prefix that specifies its base and a suffix that specifies its type.

3 A decimal constant begins with a nonzero digit and consists of a sequence of decimal
digits. An octal constant consists of the prefix0 optionally followed by a sequence of the
digits 0 through7 only. A hexadecimal constant consists of the prefix0x or 0X followed
by a sequence of the decimal digits and the lettersa (or A) throughf (or F) with values
10 through 15 respectively.

Semantics

4 The value of a decimal constant is computed base 10; that of an octal constant, base 8;
that of a hexadecimal constant, base 16. The lexically first digit is the most significant.

5 The type of an integer constant is the first of the corresponding list in which its value can
be represented.

6.4.4.1 Language 6.4.4.1

WG14/N869 Committee Draft — January 18, 1999 57

Octal or Hexadecimal
Suffix Decimal Constant Constant

int int
long int unsigned int

long int
unsigned long int
long long int
unsigned long long int

long long int

none

unsigned int unsigned int
unsigned long int unsigned long int
unsigned long long int unsigned long long int

u or U

long int long int
unsigned long int
long long int
unsigned long long int

long long int
l or L

Both u or U unsigned long int unsigned long int
and l or L unsigned long long int unsigned long long int

long long int
unsigned long long int

ll or LL long long int

Both u or U
and ll or LL

unsigned long long int unsigned long long int

If an integer constant cannot be represented by any type in its list, it may have an
extended integer type, if the extended integer type can represent its value. If all of the
types in the list for the constant are signed, the extended integer type shall be signed. If
all of the types in the list for the constant are unsigned, the extended integer type shall be
unsigned. If the list contains both signed and unsigned types, the extended integer type
may be signed or unsigned.

6.4.4.1 Language 6.4.4.1

58 Committee Draft — January 18, 1999 WG14/N869

6.4.4.2 Floating constants

Syntax

1 floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

exponent-part:
e signopt digit-sequence
E signopt digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt .

hexadecimal-digit-sequence
hexadecimal-digit-sequence.

binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

floating-suffix: one of
f l F L

6.4.4.2 Language 6.4.4.2

WG14/N869 Committee Draft — January 18, 1999 59

Description

2 A floating constant has asignificand partthat may be followed by anexponent partand a
suffix that specifies its type. The components of the significand part may include a digit
sequence representing the whole-number part, followed by a period (.), followed by a
digit sequence representing the fraction part. The components of the exponent part are an
e, E, p, or P followed by an exponent consisting of an optionally signed digit sequence.
Either the whole-number part or the fraction part has to be present; for decimal floating
constants, either the period or the exponent part has to be present.

Semantics

3 The significand part is interpreted as a (decimal or hexadecimal) rational number; the
digit sequence in the exponent part is interpreted as a decimal integer. For decimal
floating constants, the exponent indicates the power of 10 by which the significand part is
to be scaled. For hexadecimal floating constants, the exponent indicates the power of 2
by which the significand part is to be scaled. For decimal floating constants, and also for
hexadecimal floating constants whenFLT_RADIX is not a power of 2, the result is either
the nearest representable value, or the larger or smaller representable value immediately
adjacent to the nearest representable value, chosen in an implementation-defined manner.
For hexadecimal floating constants whenFLT_RADIX is a power of 2, the result is
correctly rounded.

4 An unsuffixed floating constant has typedouble . If suffixed by the letterf or F, it has
typefloat . If suffixed by the letterl or L, it has typelong double .

Recommended practice

5 The implementation should produce a diagnostic message if a hexadecimal constant
cannot be represented exactly in its evaluation format; the implementation should then
proceed with the translation of the program.

6 The translation-time conversion of floating constants should match the execution-time
conversion of character strings by library functions, such asstrtod , giv en matching
inputs suitable for both conversions, the same result format, and default execution-time
rounding.54)

54) The specification for the library functions recommends more accurate conversion than required for

floating constants (see 7.20.1.3).

6.4.4.2 Language 6.4.4.2

60 Committee Draft — January 18, 1999 WG14/N869

6.4.4.3 Enumeration constants

Syntax

1 enumeration-constant:
identifier

Semantics

2 An identifier declared as an enumeration constant has typeint .

Forward references: enumeration specifiers (6.7.2.2).

6.4.4.4 Character constants

Syntax

1 character-constant:
’ c-char-sequence’
L’ c-char-sequence’

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

6.4.4.3 Language 6.4.4.4

WG14/N869 Committee Draft — January 18, 1999 61

Description

2 An integer character constant is a sequence of one or more multibyte characters enclosed
in single-quotes, as in’x’ or ’ab’ . A wide character constant is the same, except
prefixed by the letterL. With a few exceptions detailed later, the elements of the sequence
are any members of the source character set; they are mapped in an implementation-
defined manner to members of the execution character set.

3 The single-quote’ , the double-quote" , the question-mark?, the backslash\ , and
arbitrary integer values, are representable according to the following table of escape
sequences:

single quote’ \’
double quote" \"
question mark? \?
backslash\ \\
octal character \ octal digits
hexadecimal character \x hexadecimal digits

4 The double-quote" and question-mark? are representable either by themselves or by the
escape sequences\" and \? , respectively, but the single-quote’ and the backslash\
shall be represented, respectively, by the escape sequences\’ and\\ .

5 The octal digits that follow the backslash in an octal escape sequence are taken to be part
of the construction of a single character for an integer character constant or of a single
wide character for a wide character constant. The numerical value of the octal integer so
formed specifies the value of the desired character or wide character.

6 The hexadecimal digits that follow the backslash and the letterx in a hexadecimal escape
sequence are taken to be part of the construction of a single character for an integer
character constant or of a single wide character for a wide character constant. The
numerical value of the hexadecimal integer so formed specifies the value of the desired
character or wide character.

7 Each octal or hexadecimal escape sequence is the longest sequence of characters that can
constitute the escape sequence.

8 In addition, characters not in the required character set are representable by universal
character names and certain nongraphic characters are representable by escape sequences
consisting of the backslash\ followed by a lowercase letter:\a , \b , \f , \n , \r , \t ,
and\v .55)

55) The semantics of these characters were discussed in 5.2.2. If any other character follows a backslash,

the result is not a token and a diagnostic is required. See ‘‘future language directions’’ (6.11.2).

6.4.4.4 Language 6.4.4.4

62 Committee Draft — January 18, 1999 WG14/N869

Constraints

9 The value of an octal or hexadecimal escape sequence shall be in the range of
representable values for the typeunsigned char for an integer character constant, or
the unsigned type corresponding towchar_t for a wide character constant.

Semantics

10 An integer character constant has typeint . The value of an integer character constant
containing a single character that maps to a member of the basic execution character set is
the numerical value of the representation of the mapped character interpreted as an
integer. The value of an integer character constant containing more than one character, or
containing a character or escape sequence not represented in the basic execution character
set, is implementation-defined. If an integer character constant contains a single
character or escape sequence, its value is the one that results when an object with type
char whose value is that of the single character or escape sequence is converted to type
int .

11 A wide character constant has typewchar_t , an integer type defined in the
<stddef.h> header. The value of a wide character constant containing a single
multibyte character that maps to a member of the extended execution character set is the
wide character (code) corresponding to that multibyte character, as defined by the
mbtowc function, with an implementation-defined current locale. The value of a wide
character constant containing more than one multibyte character, or containing a
multibyte character or escape sequence not represented in the extended execution
character set, is implementation-defined.

12 EXAMPLE 1 The construction’\0’ is commonly used to represent the null character.

13 EXAMPLE 2 Consider implementations that use two’s-complement representation for integers and eight
bits for objects that have typechar . In an implementation in which typechar has the same range of
values assigned char , the integer character constant’\xFF’ has the value −1; if typechar has the
same range of values asunsigned char , the character constant’\xFF’ has the value +255 .

14 EXAMPLE 3 Even if eight bits are used for objects that have typechar , the construction’\x123’
specifies an integer character constant containing only one character, since a hexadecimal escape sequence
is terminated only by a non-hexadecimal character. To specify an integer character constant containing the
two characters whose values are’\x12’ and’3’ , the construction’\0223’ may be used, since an octal
escape sequence is terminated after three octal digits. (The value of this two-character integer character
constant is implementation-defined.)

15 EXAMPLE 4 Even if 12 or more bits are used for objects that have typewchar_t , the construction
L’\1234’ specifies the implementation-defined value that results from the combination of the values
0123 and’4’ .

Forward references: common definitions<stddef.h> (7.17), thembtowc function
(7.20.7.2).

6.4.4.4 Language 6.4.4.4

WG14/N869 Committee Draft — January 18, 1999 63

6.4.5 String literals
Syntax

1 string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

Description

2 A character string literalis a sequence of zero or more multibyte characters enclosed in
double-quotes, as in"xyz" . A wide string literal is the same, except prefixed by the
letterL.

3 The same considerations apply to each element of the sequence in a character string
literal or a wide string literal as if it were in an integer character constant or a wide
character constant, except that the single-quote’ is representable either by itself or by the
escape sequence\’ , but the double-quote" shall be represented by the escape sequence
\" .

Semantics

4 In translation phase 6, the multibyte character sequences specified by any sequence of
adjacent character and wide string literal tokens are concatenated into a single multibyte
character sequence. If any of the tokens are wide string literal tokens, the resulting
multibyte character sequence is treated as a wide string literal; otherwise, it is treated as a
character string literal.

5 In translation phase 7, a byte or code of value zero is appended to each multibyte
character sequence that results from a string literal or literals.56) The multibyte character
sequence is then used to initialize an array of static storage duration and length just
sufficient to contain the sequence. For character string literals, the array elements have
type char , and are initialized with the individual bytes of the multibyte character
sequence; for wide string literals, the array elements have typewchar_t , and are
initialized with the sequence of wide characters corresponding to the multibyte character

56) A character string literal need not be a string (see 7.1.1), because a null character may be embedded in

it by a\0 escape sequence.

6.4.5 Language 6.4.5

64 Committee Draft — January 18, 1999 WG14/N869

sequence, as defined by thembstowcs function with an implementation-defined current
locale. The value of a string literal containing a multibyte character or escape sequence
not represented in the execution character set is implementation-defined.

6 It is unspecified whether these arrays are distinct provided their elements have the
appropriate values. If the program attempts to modify such an array, the behavior is
undefined.

7 EXAMPLE This pair of adjacent character string literals

"\x12" "3"

produces a single character string literal containing the two characters whose values are’\x12’ and’3’ ,
because escape sequences are converted into single members of the execution character set just prior to
adjacent string literal concatenation.

Forward references: common definitions<stddef.h> (7.17).

6.4.6 Punctuators
Syntax

1 punctuator: one of
[] () { } . ->
++ -- & * + - ˜ !
/ % << >> < > <= >= == != ˆ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ˆ= |=
, # ##
<: :> <% %> %: %:%:

Semantics

2 A punctuator is a symbol that has independent syntactic and semantic significance.
Depending on context, it may specify an operation to be performed (which in turn may
yield a value or a function designator, produce a side effect, or some combination thereof)
in which case it is known as anoperator (other forms of operator also exist in some
contexts). Anoperandis an entity on which an operator acts.

3 In all aspects of the language, these six tokens

<: :> <% %> %: %:%:

behave, respectively, the same as these six tokens

[] { } # ##

except for their spelling.57)

57) Thus [and <: behave differently when ‘‘stringized’’ (see 6.10.3.2), but can otherwise be freely

interchanged.

6.4.5 Language 6.4.6

WG14/N869 Committee Draft — January 18, 1999 65

Forward references: expressions (6.5), declarations (6.7), preprocessing directives
(6.10), statements (6.8).

6.4.7 Header names
Syntax

1 header-name:
<h-char-sequence>
" q-char-sequence"

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any member of the source character set except

the new-line character and>

q-char-sequence:
q-char
q-char-sequence q-char

q-char:
any member of the source character set except

the new-line character and"

Semantics

2 The sequences in both forms of header names are mapped in an implementation-defined
manner to headers or external source file names as specified in 6.10.2.

3 If the characters’ , \ , " , // , or /* occur in the sequence between the< and> delimiters,
the behavior is undefined. Similarly, if the characters’ , \ , // , or /* occur in the
sequence between the" delimiters, the behavior is undefined.58) A header name
preprocessing token is recognized only within a#include preprocessing directive.

4 EXAMPLE The following sequence of characters:

0x3<1/a.h>1e2
#include <1/a.h>
#define const.member@$

forms the following sequence of preprocessing tokens (with each individual preprocessing token delimited
by a{ on the left and a} on the right).

58) Thus, sequences of characters that resemble escape sequences cause undefined behavior.

6.4.6 Language 6.4.7

66 Committee Draft — January 18, 1999 WG14/N869

{0x3 }{<}{1}{ / }{a}{ . }{h}{>}{1e2 }
{#}{ include } {<1/a.h> }
{#}{define } {const }{ . }{member}{@}{$}

Forward references: source file inclusion (6.10.2).

6.4.8 Preprocessing numbers
Syntax

1 pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

Description

2 A preprocessing number begins with a digit optionally preceded by a period (.) and may
be followed by letters, underscores, digits, periods, ande+, e- , E+, E- , p+, p- , P+, or
P- character sequences.

3 Preprocessing number tokens lexically include all floating and integer constant tokens.

Semantics

4 A preprocessing number does not have type or a value; it acquires both after a successful
conversion (as part of translation phase 7) to a floating constant token or an integer
constant token.

6.4.9 Comments

1 Except within a character constant, a string literal, or a comment, the characters/*
introduce a comment. The contents of a comment are examined only to identify
multibyte characters and to find the characters*/ that terminate it.59)

2 Except within a character constant, a string literal, or a comment, the characters//
introduce a comment that includes all multibyte characters up to, but not including, the
next new-line character. The contents of such a comment are examined only to identify
multibyte characters and to find the terminating new-line character.

59) Thus,/* ... */ comments do not nest.

6.4.7 Language 6.4.9

WG14/N869 Committee Draft — January 18, 1999 67

3 EXAMPLE 1

"a//b" // four-character string literal
#include "//e" // undefined behavior
// */ // comment, not syntax error
f = g/**//h; // equivalent tof = g / h;
//\
i(); // part of a two-line comment
/\
/ j(); // part of a two-line comment
#define glue(x,y) x##y
glue(/,/) k(); // syntax error, not comment
/*//*/ l(); // equivalent tol();
m = n//**/o

+ p; // equivalent tom = n + p;

6.4.9 Language 6.4.9

68 Committee Draft — January 18, 1999 WG14/N869

6.5 Expressions

1 An expressionis a sequence of operators and operands that specifies computation of a
value, or that designates an object or a function, or that generates side effects, or that
performs a combination thereof.

2 Between the previous and next sequence point an object shall have its stored value
modified at most once by the evaluation of an expression. Furthermore, the prior value
shall be accessed only to determine the value to be stored.60) ∗

3 The grouping of operators and operands is indicated by the syntax.61) Except as specified
later (for the function-call() , &&, || , ?: , and comma operators), the order of evaluation
of subexpressions and the order in which side effects take place are both unspecified.

4 Some operators (the unary operator˜ , and the binary operators<<, >>, &, ˆ , and | ,
collectively described asbitwise operators) are required to have operands that have
integer type. These operators return values that depend on the internal representations of
integers, and have implementation-defined and undefined aspects for signed types.

5 If an exceptionoccurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the
behavior is undefined.

6 Theeffective typeof an object for an access to its stored value is the declared type of the
object, if any.62) If a value is stored into an object having no declared type through an

60) This paragraph renders undefined statement expressions such as

i = ++i + 1;

a[i++] = i;

while allowing

i = i + 1;

a[i] = i;

61) The syntax specifies the precedence of operators in the evaluation of an expression, which is the same

as the order of the major subclauses of this subclause, highest precedence first. Thus, for example, the

expressions allowed as the operands of the binary+ operator (6.5.6) are those expressions defined in

6.5.1 through 6.5.6. The exceptions are cast expressions (6.5.4) as operands of unary operators

(6.5.3), and an operand contained between any of the following pairs of operators: grouping

parentheses() (6.5.1), subscripting brackets[] (6.5.2.1), function-call parentheses() (6.5.2.2), and

the conditional operator?: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is

indicated in each subclause by the syntax for the expressions discussed therein.

62) Allocated objects have no declared type.

6.5 Language 6.5

WG14/N869 Committee Draft — January 18, 1999 69

lvalue having a type that is not a character type, then the type of the lvalue becomes the
effective type of the object for that access and for subsequent accesses that do not modify
the stored value. If a value is copied into an object having no declared type using
memcpyor memmove, or is copied as an array of character type, then the effective type
of the modified object for that access and for subsequent accesses that do not modify the
value is the effective type of the object from which the value is copied, if it has one. For
all other accesses to an object having no declared type, the effective type of the object is
simply the type of the lvalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of
the following types:63)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

— a type that is the signed or unsigned type corresponding to the effective type of the
object,

— a type that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object,

— an aggregate or union type that includes one of the aforementioned types among its
members (including, recursively, a member of a subaggregate or contained union), or

— a character type.

8 A floating expression may becontracted, that is, evaluated as though it were an atomic
operation, thereby omitting rounding errors implied by the source code and the
expression evaluation method.64) TheFP_CONTRACTpragma in<math.h> provides a
way to disallow contracted expressions. Otherwise, whether and how expressions are
contracted is implementation-defined.65)

63) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

64) A contracted expression might also omit the raising of floating-point exception flags.

65) This license is specifically intended to allow implementations to exploit fast machine instructions that

combine multiple C operators. As contractions potentially undermine predictability, and can even

decrease accuracy for containing expressions, their use needs to be well-defined and clearly

documented.

6.5 Language 6.5

70 Committee Draft — January 18, 1999 WG14/N869

6.5.1 Primary expressions
Syntax

1 primary-expression:
identifier
constant
string-literal
(expression)

Semantics

2 An identifier is a primary expression, provided it has been declared as designating an
object (in which case it is an lvalue) or a function (in which case it is a function
designator).66)

3 A constant is a primary expression. Its type depends on its form and value, as detailed in
6.4.4.

4 A string literal is a primary expression. It is an lvalue with type as detailed in 6.4.5.

5 A parenthesized expression is a primary expression. Its type and value are identical to
those of the unparenthesized expression. It is an lvalue, a function designator, or a void
expression if the unparenthesized expression is, respectively, an lvalue, a function
designator, or a void expression.

Forward references: declarations (6.7).

6.5.2 Postfix operators
Syntax

1 postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(argument-expression-listopt)
postfix-expression. identifier
postfix-expression-> identifier
postfix-expression++
postfix-expression--
(type-name) { initializer-list }
(type-name) { initializer-list , }

66) Thus, an undeclared identifier is a violation of the syntax.

6.5.1 Language 6.5.2

WG14/N869 Committee Draft — January 18, 1999 71

argument-expression-list:
assignment-expression
argument-expression-list, assignment-expression

6.5.2.1 Array subscripting

Constraints

1 One of the expressions shall have type ‘‘pointer to objecttype’’, the other expression shall
have integer type, and the result has type ‘‘type’’.

Semantics

2 A postfix expression followed by an expression in square brackets[] is a subscripted
designation of an element of an array object. The definition of the subscript operator[]
is thatE1[E2] is identical to(*((E1)+(E2))) . Because of the conversion rules that
apply to the binary+ operator, ifE1 is an array object (equivalently, a pointer to the
initial element of an array object) andE2 is an integer,E1[E2] designates theE2-th
element ofE1 (counting from zero).

3 Successive subscript operators designate an element of a multidimensional array object.
If E is ann-dimensional array (n≥2) with dimensionsi× j× . . . ×k, thenE (used as other
than an lvalue) is converted to a pointer to an (n−1)-dimensional array with dimensions
j× . . . ×k. If the unary* operator is applied to this pointer explicitly, or implicitly as a
result of subscripting, the result is the pointed-to (n−1)-dimensional array, which itself is
converted into a pointer if used as other than an lvalue. It follows from this that arrays
are stored in row-major order (last subscript varies fastest).

4 EXAMPLE Consider the array object defined by the declaration

int x[3][5];

Herex is a 3×5 array ofint s; more precisely,x is an array of three element objects, each of which is an
array of fiveint s. In the expressionx[i] , which is equivalent to(*((x)+(i))) , x is first converted to
a pointer to the initial array of fiveint s. Theni is adjusted according to the type ofx , which conceptually
entails multiplyingi by the size of the object to which the pointer points, namely an array of fiveint
objects. The results are added and indirection is applied to yield an array of fiveint s. When used in the
expressionx[i][j] , that array is in turn converted to a pointer to the first of theint s, sox[i][j]
yields anint .

Forward references: additive operators (6.5.6), address and indirection operators
(6.5.3.2), array declarators (6.7.5.2).

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function67) shall have type pointer to function
returningvoid or returning an object type other than an array type.

67) Most often, this is the result of converting an identifier that is a function designator.

6.5.2 Language 6.5.2.2

72 Committee Draft — January 18, 1999 WG14/N869

2 If the expression that denotes the called function has a type that includes a prototype, the
number of arguments shall agree with the number of parameters. Each argument shall
have a type such that its value may be assigned to an object with the unqualified version
of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses() containing a possibly empty, comma-
separated list of expressions is a function call. The postfix expression denotes the called
function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the
corresponding argument.68)

5 If the expression that denotes the called function has type pointer to function returning an
object type, the function call expression has the same type as that object type, and has the
value determined as specified in 6.8.6.4. Otherwise, the function call has typevoid . If
an attempt is made to modify the result of a function call or to access it after the next
sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a
prototype, the integer promotions are performed on each argument, and arguments that
have typefloat are promoted todouble . These are called thedefault argument
promotions. If the number of arguments does not agree with the number of parameters,
the behavior is undefined. If the function is defined with a type that includes a prototype,
and either the prototype ends with an ellipsis (, ...) or the types of the arguments after
promotion are not compatible with the types of the parameters, the behavior is undefined.
If the function is defined with a type that does not include a prototype, and the types of
the arguments after promotion are not compatible with those of the parameters after
promotion, the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the
corresponding unsigned integer type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

7 If the expression that denotes the called function has a type that does include a prototype,
the arguments are implicitly converted, as if by assignment, to the types of the
corresponding parameters, taking the type of each parameter to be the unqualified version
of its declared type. The ellipsis notation in a function prototype declarator causes

68) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

converted to a parameter with a pointer type as described in 6.9.1.

6.5.2.2 Language 6.5.2.2

WG14/N869 Committee Draft — January 18, 1999 73

argument type conversion to stop after the last declared parameter. The default argument
promotions are performed on trailing arguments.

8 No other conversions are performed implicitly; in particular, the number and types of
arguments are not compared with those of the parameters in a function definition that
does not include a function prototype declarator.

9 If the function is defined with a type that is not compatible with the type (of the
expression) pointed to by the expression that denotes the called function, the behavior is
undefined.

10 The order of evaluation of the function designator, the actual arguments, and
subexpressions within the actual arguments is unspecified, but there is a sequence point
before the actual call.

11 Recursive function calls shall be permitted, both directly and indirectly through any chain
of other functions.

12 EXAMPLE In the function call

(*pf[f1()]) (f2(), f3() + f4())

the functionsf1 , f2 , f3 , andf4 may be called in any order. All side effects have to be completed before
the function pointed to bypf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.5.3), function
definitions (6.9.1), thereturn statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members

Constraints

1 The first operand of the. operator shall have a qualified or unqualified structure or union
type, and the second operand shall name a member of that type.

2 The first operand of the-> operator shall have type ‘‘pointer to qualified or unqualified
structure’’ or ‘‘pointer to qualified or unqualified union’’, and the second operand shall
name a member of the type pointed to.

Semantics

3 A postfix expression followed by the. operator and an identifier designates a member of
a structure or union object. The value is that of the named member, and is an lvalue if the
first expression is an lvalue. If the first expression has qualified type, the result has the
so-qualified version of the type of the designated member.

4 A postfix expression followed by the-> operator and an identifier designates a member
of a structure or union object. The value is that of the named member of the object to
which the first expression points, and is an lvalue.69) If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated
member.

6.5.2.2 Language 6.5.2.3

74 Committee Draft — January 18, 1999 WG14/N869

5 With one exception, if the value of a member of a union object is used when the most
recent store to the object was to a different member, the behavior is
implementation-defined.70) One special guarantee is made in order to simplify the use of
unions: If a union contains several structures that share a common initial sequence (see
below), and if the union object currently contains one of these structures, it is permitted to
inspect the common initial part of any of them anywhere that a declaration of the
completed type of the union is visible. Tw o structures share acommon initial sequenceif
corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

6 EXAMPLE 1 If f is a function returning a structure or union, andx is a member of that structure or
union,f().x is a valid postfix expression but is not an lvalue.

7 EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;
const struct s cs;
volatile struct s vs;

the various members have the types:

s.i int
s.ci const int
cs.i const int
cs.ci const int
vs.i volatile int
vs.ci volatile const int

8 EXAMPLE 3 The following is a valid fragment:

69) If &E is a valid pointer expression (where& is the ‘‘address-of ’’ operator, which generates a pointer to

its operand), the expression(&E)->MOS is the same asE.MOS.

70) The ‘‘byte orders’’ for scalar types are invisible to isolated programs that do not indulge in type

punning (for example, by assigning to one member of a union and inspecting the storage by accessing

another member that is an appropriately sized array of character type), but have to be accounted for

when conforming to externally imposed storage layouts.

6.5.2.3 Language 6.5.2.3

WG14/N869 Committee Draft — January 18, 1999 75

union {
struct {

int alltypes;
} n;
struct {

int type;
int intnode;

} ni;
struct {

int type;
double doublenode;

} nf;
} u;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... */
if (u.n.alltypes == 1)

if (sin(u.nf.doublenode) == 0.0)
/* ... */

The following is not a valid fragment (because the union type is not visible within functionf):

struct t1 { int m; };
struct t2 { int m; };
int f(struct t1 * p1, struct t2 * p2)
{

if (p1->m < 0)
p2->m = -p2->m;

return p1->m;
}
int g()
{

union {
struct t1 s1;
struct t2 s2;

} u;
/* ... */
return f(&u.s1, &u.s2);

}

Forward references: address and indirection operators (6.5.3.2), structure and union
specifiers (6.7.2.1).

6.5.2.4 Postfix increment and decrement operators

Constraints

1 The operand of the postfix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable lvalue.

6.5.2.3 Language 6.5.2.4

76 Committee Draft — January 18, 1999 WG14/N869

Semantics

2 The result of the postfix++ operator is the value of the operand. After the result is
obtained, the value of the operand is incremented. (That is, the value 1 of the appropriate
type is added to it.) See the discussions of additive operators and compound assignment
for information on constraints, types, and conversions and the effects of operations on
pointers. The side effect of updating the stored value of the operand shall occur between
the previous and the next sequence point.

3 The postfix-- operator is analogous to the postfix++ operator, except that the value of
the operand is decremented (that is, the value 1 of the appropriate type is subtracted from
it).

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.2.5 Compound literals

Constraints

1 The type name shall specify an object type or an array of unknown size, but not a variable
length array type.

2 No initializer shall attempt to provide a value for an object not contained within the entire
unnamed object specified by the compound literal.

3 If the compound literal occurs outside the body of a function, the initializer list shall
consist of constant expressions.

Semantics

4 A postfix expression that consists of a parenthesized type name followed by a brace-
enclosed list of initializers is acompound literal. It provides an unnamed object whose
value is given by the initializer list.71)

5 If the type name specifies an array of unknown size, the size is determined by the
initializer list as specified in 6.7.7, and the type of the compound literal is that of the
completed array type. Otherwise (when the type name specifies an object type), the type
of the compound literal is that specified by the type name. In either case, the result is an
lvalue.

6 The value of the compound literal is that of an unnamed object initialized by the
initializer list. If the compound literal occurs outside the body of a function, the object
has static storage duration; otherwise, it has automatic storage duration associated with
the enclosing block.

71) Note that this differs from a cast expression. For example, a cast specifies a conversion to scalar types

or void only, and the result of a cast expression is not an lvalue.

6.5.2.4 Language 6.5.2.5

WG14/N869 Committee Draft — January 18, 1999 77

7 All the semantic rules and constraints for initializer lists in 6.7.8 are applicable to
compound literals.72)

8 String literals, and compound literals with const-qualified types, need not designate
distinct objects.73)

9 EXAMPLE 1 The file scope definition

int *p = (int []){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the
second, four. The expressions in this compound literal are required to be constant. The unnamed object
has static storage duration.

10 EXAMPLE 2 In contrast, in

void f(void)
{

int *p;
/* ...*/
p = (int [2]){*p};
/* ...*/

}

p is assigned the address of the first element of an array of two ints, the first having the value previously
pointed to byp and the second, zero. The expressions in this compound literal need not be constant. The
unnamed object has automatic storage duration.

11 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects
created using compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers tostruct point :

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

12 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6}

13 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char []){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array ofchar , but need not be modifiable; the last
two hav e automatic storage duration when they occur within the body of a function, and the first of these
two is modifiable.

72) For example, subobjects without explicit initializers are initialized to zero.

73) This allows implementations to share storage for string literals and constant compound literals with

the same or overlapping representations.

6.5.2.5 Language 6.5.2.5

78 Committee Draft — January 18, 1999 WG14/N869

14 EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory
and can even be shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

15 EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly
linked object. For example, there is no way to write a self-referential compound literal that could be used
as the function argument in place of the named objectendless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

16 EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)
{

struct s *p = 0, *q;
int j = 0;

again:
q = p, p = & ((struct s){ j++ });
if (j < 2) goto again;

return p == q && q->i == 1;
}

The functionf() always returns the value 1.

17 Note that if an iteration statement were used instead of an explicitgoto and a labeled statement, the
lifetime of the unnamed object would be the body of the loop only, and on entry next time aroundp would
be pointing to an object which is no longer guaranteed to exist, which would result in undefined behavior.

6.5.3 Unary operators
Syntax

1 unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

unary-operator: one of
& * + - ˜ !

6.5.2.5 Language 6.5.3

WG14/N869 Committee Draft — January 18, 1999 79

6.5.3.1 Prefix increment and decrement operators

Constraints

1 The operand of the prefix increment or decrement operator shall have qualified or
unqualified real or pointer type and shall be a modifiable lvalue.

Semantics

2 The value of the operand of the prefix++ operator is incremented. The result is the new
value of the operand after incrementation. The expression++E is equivalent to(E+=1) .
See the discussions of additive operators and compound assignment for information on
constraints, types, side effects, and conversions and the effects of operations on pointers.

3 The prefix-- operator is analogous to the prefix++ operator, except that the value of the
operand is decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators

Constraints

1 The operand of the unary& operator shall be either a function designator, the result of a
[] or unary* operator, or an lvalue that designates an object that is not a bit-field and is
not declared with theregister storage-class specifier.

2 The operand of the unary* operator shall have pointer type.

Semantics

3 The unary& operator returns the address of its operand. If the operand has type ‘‘type’’ ,
the result has type ‘‘pointer totype’’. If the operand is the result of a unary* operator,
neither that operator nor the& operator is evaluated and the result is as if both were
omitted, except that the constraints on the operators still apply and the result is not an
lvalue. Similarly, if the operand is the result of a[] operator, neither the& operator nor
the unary* that is implied by the[] is evaluated and the result is as if the& operator
were removed and the[] operator were changed to a+ operator. Otherwise, the result is
a pointer to the object or function designated by its operand.

4 The unary* operator denotes indirection. If the operand points to a function, the result is
a function designator; if it points to an object, the result is an lvalue designating the
object. If the operand has type ‘‘pointer totype’’, the result has type ‘‘type’’. If an
invalid value has been assigned to the pointer, the behavior of the unary* operator is
undefined.74)

Forward references: storage-class specifiers (6.7.1), structure and union specifiers
(6.7.2.1).

6.5.3.1 Language 6.5.3.2

80 Committee Draft — January 18, 1999 WG14/N869

6.5.3.3 Unary arithmetic operators

Constraints

1 The operand of the unary+ or - operator shall have arithmetic type; of the˜ operator,
integer type; of the! operator, scalar type.

Semantics

2 The result of the unary+ operator is the value of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

3 The result of the unary- operator is the negative of its (promoted) operand. The integer
promotions are performed on the operand, and the result has the promoted type.

4 The result of thẽ operator is the bitwise complement of its (promoted) operand (that is,
each bit in the result is set if and only if the corresponding bit in the converted operand is
not set). The integer promotions are performed on the operand, and the result has the
promoted type. If the promoted type is an unsigned type, the expression˜E is equivalent
to the maximum value representable in that type minusE.

5 The result of the logical negation operator! is 0 if the value of its operand compares
unequal to 0, 1 if the value of its operand compares equal to 0. The result has typeint .
The expression!E is equivalent to(0= =E) .

Forward references: characteristics of floating types<float.h> (7.7), sizes of
integer types<limits.h> (7.10).

74) Thus,&*E is equivalent toE (even if E is a null pointer), and&(E1[E2]) to ((E1)+(E2)) . It is

always true that ifE is a function designator or an lvalue that is a valid operand of the unary&

operator,*&E is a function designator or an lvalue equal toE. If *P is an lvalue andT is the name of

an object pointer type,*(T)P is an lvalue that has a type compatible with that to whichT points.

Among the invalid values for dereferencing a pointer by the unary* operator are a null pointer, an

address inappropriately aligned for the type of object pointed to, and the address of an automatic

storage duration object when execution of the block with which the object is associated has

terminated.

6.5.3.3 Language 6.5.3.3

WG14/N869 Committee Draft — January 18, 1999 81

6.5.3.4 Thesizeof operator

Constraints

1 Thesizeof operator shall not be applied to an expression that has function type or an
incomplete type, to the parenthesized name of such a type, or to an expression that
designates a bit-field member.

Semantics

2 The sizeof operator yields the size (in bytes) of its operand, which may be an
expression or the parenthesized name of a type. The size is determined from the type of
the operand. The result is an integer. If the type of the operand is a variable length array
type, the operand is evaluated; otherwise, the operand is not evaluated and the result is an
integer constant.

3 When applied to an operand that has typechar , unsigned char , or signed char ,
(or a qualified version thereof) the result is 1. When applied to an operand that has array
type, the result is the total number of bytes in the array.75) When applied to an operand
that has structure or union type, the result is the total number of bytes in such an object,
including internal and trailing padding.

4 The value of the result is implementation-defined, and its type (an unsigned integer type)
is size_t , defined in the<stddef.h> header.

5 EXAMPLE 1 A principal use of thesizeof operator is in communication with routines such as storage
allocators and I/O systems. A storage-allocation function might accept a size (in bytes) of an object to
allocate and return a pointer tovoid . For example:

extern void *alloc(size_t);
double *dp = alloc(sizeof *dp);

The implementation of thealloc function should ensure that its return value is aligned suitably for
conversion to a pointer todouble .

6 EXAMPLE 2 Another use of thesizeof operator is to compute the number of elements in an array:

sizeof array / sizeof array[0]

7 EXAMPLE 3 In this example, the size of a variable-length array is computed and returned from a
function:

75) When applied to a parameter declared to have array or function type, thesizeof operator yields the

size of the adjusted (pointer) type (see 6.9.1).

6.5.3.3 Language 6.5.3.4

82 Committee Draft — January 18, 1999 WG14/N869

size_t fsize3 (int n)
{

char b[n+3]; // Variable length array.
return sizeof b; // Execution timesizeof .

}
int main()
{

size_t size;
size = fsize3(10); // fsize3 returns 13.
return 0;

}

Forward references: common definitions<stddef.h> (7.17), declarations (6.7),
structure and union specifiers (6.7.2.1), type names (6.7.6), array declarators (6.7.5.2).

6.5.4 Cast operators
Syntax

1 cast-expression:
unary-expression
(type-name) cast-expression

Constraints

2 Unless the type name specifies a void type, the type name shall specify qualified or
unqualified scalar type and the operand shall have scalar type.

3 Conversions that involve pointers, other than where permitted by the constraints of
6.5.16.1, shall be specified by means of an explicit cast.

Semantics

4 Preceding an expression by a parenthesized type name converts the value of the
expression to the named type. This construction is called acast.76) A cast that specifies
no conversion has no effect on the type or value of an expression.77)

Forward references: equality operators (6.5.9), function declarators (including
prototypes) (6.7.5.3), simple assignment (6.5.16.1), type names (6.7.6).

76) A cast does not yield an lvalue. Thus, a cast to a qualified type has the same effect as a cast to the

unqualified version of the type.

77) If the value of the expression is represented with greater precision or range than required by the type

named by the cast (6.3.1.8), then the cast specifies a conversion even if the type of the expression is

the same as the named type.

6.5.3.4 Language 6.5.4

WG14/N869 Committee Draft — January 18, 1999 83

6.5.5 Multiplicative operators
Syntax

1 multiplicative-expression:
cast-expression
multiplicative-expression* cast-expression
multiplicative-expression/ cast-expression
multiplicative-expression%cast-expression

Constraints

2 Each of the operands shall have arithmetic type. The operands of the%operator shall
have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands. ∗

4 The result of the binary* operator is the product of the operands.

5 The result of the/ operator is the quotient from the division of the first operand by the
second; the result of the%operator is the remainder. In both operations, if the value of
the second operand is zero, the behavior is undefined.

6 When integers are divided, the result of the/ operator is the algebraic quotient with any
fractional part discarded.78) If the quotient a/b is representable, the expression
(a/b)*b + a%b shall equala.

6.5.6 Additive operators
Syntax

1 additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a
pointer to an object type and the other shall have integer type. (Incrementing is
equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

78) This is often called ‘‘truncation toward zero’’.

6.5.5 Language 6.5.6

84 Committee Draft — January 18, 1999 WG14/N869

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— the left operand is a pointer to an object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics

4 If both operands have arithmetic type, the usual arithmetic conversions are performed on
them. ∗

5 The result of the binary+ operator is the sum of the operands.

6 The result of the binary- operator is the difference resulting from the subtraction of the
second operand from the first.

7 For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

8 When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element of
an array object, and the array is large enough, the result points to an element offset from
the original element such that the difference of the subscripts of the resulting and original
array elements equals the integer expression. In other words, if the expressionP points to
the i-th element of an array object, the expressions(P)+N (equivalently,N+(P)) and
(P)-N (whereNhas the valuen) point to, respectively, thei+n -th andi−n -th elements of
the array object, provided they exist. Moreover, if the expressionP points to the last
element of an array object, the expression(P)+1 points one past the last element of the
array object, and if the expressionQ points one past the last element of an array object,
the expression(Q)-1 points to the last element of the array object. If both the pointer
operand and the result point to elements of the same array object, or one past the last
element of the array object, the evaluation shall not produce an overflow; otherwise, the
behavior is undefined. If the result points one past the last element of the array object, it
shall not be used as the operand of a unary* operator that is evaluated.

9 When two pointers are subtracted, both shall point to elements of the same array object,
or one past the last element of the array object; the result is the difference of the
subscripts of the two array elements. The size of the result is implementation-defined,
and its type (a signed integer type) isptrdiff_t defined in the<stddef.h> header.
If the result is not representable in an object of that type, the behavior is undefined. In
other words, if the expressionsP andQpoint to, respectively, thei-th andj -th elements of
an array object, the expression(P)-(Q) has the valuei−j provided the value fits in an
object of typeptrdiff_t . Moreover, if the expressionP points either to an element of
an array object or one past the last element of an array object, and the expressionQpoints
to the last element of the same array object, the expression((Q)+1)-(P) has the same

6.5.6 Language 6.5.6

WG14/N869 Committee Draft — January 18, 1999 85

value as((Q)-(P))+1 and as-((P)-((Q)+1)) , and has the value zero if the
expressionP points one past the last element of the array object, even though the
expression(Q)+1 does not point to an element of the array object.79)

10 EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
int n = 4, m = 3;
int a[n][m];
int (*p)[m] = a; // p == &a[0]
p += 1; // p == &a[1]
(*p)[2] = 99; // a[1][2] == 99
n = p - a; // n == 1

}

11 If array a in the above example were declared to be an array of known constant size, and pointerp were
declared to be a pointer to an array of the same known constant size (pointing toa), the results would be
the same.

Forward references: array declarators (6.7.5.2), common definitions<stddef.h>
(7.17).

6.5.7 Bitwise shift operators
Syntax

1 shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The integer promotions are performed on each of the operands. The type of the result is
that of the promoted left operand. If the value of the right operand is negative or is
greater than or equal to the width of the promoted left operand, the behavior is undefined.

79) Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In

this scheme the integer expression added to or subtracted from the converted pointer is first multiplied

by the size of the object originally pointed to, and the resulting pointer is converted back to the

original type. For pointer subtraction, the result of the difference between the character pointers is

similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which may overlap

another object in the program) just after the end of the object in order to satisfy the ‘‘one past the last

element’’ requirements.

6.5.6 Language 6.5.7

86 Committee Draft — January 18, 1999 WG14/N869

4 The result ofE1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with
zeros. IfE1 has an unsigned type, the value of the result isE1 × 2E2, reduced modulo
one more than the maximum value representable in the result type. IfE1 has a signed
type and nonnegative value, andE1 × 2E2 is representable in the result type, then that is
the resulting value; otherwise, the behavior is undefined.

5 The result ofE1 >> E2 is E1 right-shiftedE2 bit positions. IfE1 has an unsigned type
or if E1 has a signed type and a nonnegative value, the value of the result is the integral
part of the quotient ofE1 divided by the quantity, 2 raised to the powerE2. If E1 has a
signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators
Syntax

1 relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

Constraints

2 One of the following shall hold:

— both operands have real type;

— both operands are pointers to qualified or unqualified versions of compatible object
types; or

— both operands are pointers to qualified or unqualified versions of compatible
incomplete types.

Semantics

3 If both of the operands have arithmetic type, the usual arithmetic conversions are
performed.

4 For the purposes of these operators, a pointer to a nonarray object behaves the same as a
pointer to the first element of an array of length one with the type of the object as its
element type.

5 When two pointers are compared, the result depends on the relative locations in the
address space of the objects pointed to. If two pointers to object or incomplete types both
point to the same object, or both point one past the last element of the same array object,
they compare equal. If the objects pointed to are members of the same aggregate object,
pointers to structure members declared later compare greater than pointers to members
declared earlier in the structure, and pointers to array elements with larger subscript

6.5.7 Language 6.5.8

WG14/N869 Committee Draft — January 18, 1999 87

values compare greater than pointers to elements of the same array with lower subscript
values. All pointers to members of the same union object compare equal. If the
expressionP points to an element of an array object and the expressionQ points to the
last element of the same array object, the pointer expressionQ+1 compares greater than
P. In all other cases, the behavior is undefined.

6 Each of the operators< (less than),> (greater than),<= (less than or equal to), and>=
(greater than or equal to) shall yield 1 if the specified relation is true and 0 if it is false.80)

The result has typeint .

6.5.9 Equality operators
Syntax

1 equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

Constraints

2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid ; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

3 The == (equal to) and!= (not equal to) operators are analogous to the relational
operators except for their lower precedence.81) Each of the operators yields 1 if the
specified relation is true and 0 if it is false. The result has typeint . For any pair of
operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are
performed. Values of complex types are equal if and only if both their real parts are equal
and also their imaginary parts are equal. Any two values of arithmetic types from
different type domains are equal if and only if the results of their conversions to the
(complex) result type determined by the usual arithmetic conversions are equal.

80) The expressiona<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it

means(a<b)<c ; in other words, ‘‘ifa is less thanb, compare 1 toc ; otherwise, compare 0 toc ’’.

81) Because of the precedences,a<b == c<d is 1 whenevera<b andc<d have the same truth-value.

6.5.8 Language 6.5.9

88 Committee Draft — January 18, 1999 WG14/N869

5 Otherwise, at least one operand is a pointer. If one operand is a null pointer constant, it is
converted to the type of the other operand. If one operand is a pointer to an object or
incomplete type and the other is a pointer to a qualified or unqualified version ofvoid ,
the former is converted to the type of the latter.

6 Tw o pointers compare equal if and only if both are null pointers, both are pointers to the
same object (including a pointer to an object and a subobject at its beginning) or function,
both are pointers to one past the last element of the same array object, or one is a pointer
to one past the end of one array object and the other is a pointer to the start of a different
array object that happens to immediately follow the first array object in the address
space.82)

6.5.10 BitwiseAND operator
Syntax

1 AND-expression:
equality-expression
AND-expression& equality-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary& operator is the bitwiseAND of the operands (that is, each bit in
the result is set if and only if each of the corresponding bits in the converted operands is
set).

82) Tw o objects may be adjacent in memory because they are adjacent elements of a larger array or

adjacent members of a structure with no padding between them, or because the implementation chose

to place them so, even though they are unrelated. If prior invalid pointer operations (such as accesses

outside array bounds) produced undefined behavior, subsequent comparisons also produce undefined

behavior.

6.5.9 Language 6.5.10

WG14/N869 Committee Draft — January 18, 1999 89

6.5.11 Bitwise exclusiveOR operator
Syntax

1 exclusive-OR-expression:
AND-expression
exclusive-OR-expressionˆ AND-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of thê operator is the bitwise exclusiveOR of the operands (that is, each bit
in the result is set if and only if exactly one of the corresponding bits in the converted
operands is set).

6.5.12 Bitwise inclusiveOR operator
Syntax

1 inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression| exclusive-OR-expression

Constraints

2 Each of the operands shall have integer type.

Semantics

3 The usual arithmetic conversions are performed on the operands.

4 The result of the| operator is the bitwise inclusiveOR of the operands (that is, each bit in
the result is set if and only if at least one of the corresponding bits in the converted
operands is set).

6.5.13 LogicalAND operator
Syntax

1 logical-AND-expression:
inclusive-OR-expression
logical-AND-expression&& inclusive-OR-expression

Constraints

2 Each of the operands shall have scalar type.

6.5.11 Language 6.5.13

90 Committee Draft — January 18, 1999 WG14/N869

Semantics

3 The&& operator shall yield 1 if both of its operands compare unequal to 0; otherwise, it
yields 0. The result has typeint .

4 Unlike the bitwise binary& operator, the&& operator guarantees left-to-right evaluation;
there is a sequence point after the evaluation of the first operand. If the first operand
compares equal to 0, the second operand is not evaluated.

6.5.14 LogicalOR operator
Syntax

1 logical-OR-expression:
logical-AND-expression
logical-OR-expression|| logical-AND-expression

Constraints

2 Each of the operands shall have scalar type.

Semantics

3 The|| operator shall yield 1 if either of its operands compare unequal to 0; otherwise, it
yields 0. The result has typeint .

4 Unlike the bitwise| operator, the|| operator guarantees left-to-right evaluation; there is
a sequence point after the evaluation of the first operand. If the first operand compares
unequal to 0, the second operand is not evaluated.

6.5.15 Conditional operator
Syntax

1 conditional-expression:
logical-OR-expression
logical-OR-expression? expression: conditional-expression

Constraints

2 The first operand shall have scalar type.

3 One of the following shall hold for the second and third operands:

— both operands have arithmetic type;

— both operands have compatible structure or union types;

— both operands have void type;

— both operands are pointers to qualified or unqualified versions of compatible types;

6.5.13 Language 6.5.15

WG14/N869 Committee Draft — January 18, 1999 91

— one operand is a pointer and the other is a null pointer constant; or

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid .

Semantics

4 The first operand is evaluated; there is a sequence point after its evaluation. The second
operand is evaluated only if the first compares unequal to 0; the third operand is evaluated
only if the first compares equal to 0; the result is the value of the second or third operand
(whichever is evaluated), converted to the type described below.83) If an attempt is made
to modify the result of a conditional operator or to access it after the next sequence point,
the behavior is undefined.

5 If both the second and third operands have arithmetic type, the result type that would be
determined by the usual arithmetic conversions, were they applied to those two operands,
is the type of the result. If both the operands have structure or union type, the result has
that type. If both operands have void type, the result has void type.

6 If both the second and third operands are pointers or one is a null pointer constant and the
other is a pointer, the result type is a pointer to a type qualified with all the type qualifiers
of the types pointed-to by both operands. Furthermore, if both operands are pointers to
compatible types or to differently qualified versions of compatible types, the result type is
a pointer to an appropriately qualified version of the composite type; if one operand is a
null pointer constant, the result has the type of the other operand; otherwise, one operand
is a pointer tovoid or a qualified version ofvoid , in which case the result type is a
pointer to an appropriately qualified version ofvoid .

7 EXAMPLE The common type that results when the second and third operands are pointers is determined
in two independent stages. The appropriate qualifiers, for example, do not depend on whether the two
pointers have compatible types.

8 Given the declarations

const void *c_vp;
void *vp;
const int *c_ip;
volatile int *v_ip;
int *ip;
const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in
which the first two columns are the second and third operands (in either order):

83) A conditional expression does not yield an lvalue.

6.5.15 Language 6.5.15

92 Committee Draft — January 18, 1999 WG14/N869

c_vp c_ip const void *
v_ip 0 volatile int *
c_ip v_ip const volatile int *
vp c_cp const void *
ip c_ip const int *
vp ip void *

6.5.16 Assignment operators
Syntax

1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator:one of
= *= /= %= += -= <<= >>= &= ˆ= |=

Constraints

2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics

3 An assignment operator stores a value in the object designated by the left operand. An
assignment expression has the value of the left operand after the assignment, but is not an
lvalue. The type of an assignment expression is the type of the left operand unless the
left operand has qualified type, in which case it is the unqualified version of the type of
the left operand. The side effect of updating the stored value of the left operand shall
occur between the previous and the next sequence point.

4 The order of evaluation of the operands is unspecified. If an attempt is made to modify
the result of an assignment operator or to access it after the next sequence point, the
behavior is undefined.

6.5.16.1 Simple assignment

Constraints

1 One of the following shall hold:84)

— the left operand has qualified or unqualified arithmetic type and the right has
arithmetic type;

— the left operand has a qualified or unqualified version of a structure or union type
compatible with the type of the right;

84) The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion

(specified in 6.3.2.1) that changes lvalues to ‘‘the value of the expression’’ which removes any type

qualifiers from the type category of the expression.

6.5.15 Language 6.5.16.1

WG14/N869 Committee Draft — January 18, 1999 93

— both operands are pointers to qualified or unqualified versions of compatible types,
and the type pointed to by the left has all the qualifiers of the type pointed to by the
right;

— one operand is a pointer to an object or incomplete type and the other is a pointer to a
qualified or unqualified version ofvoid , and the type pointed to by the left has all
the qualifiers of the type pointed to by the right; or

— the left operand is a pointer and the right is a null pointer constant.

— the left operand has type_Bool and the right is a pointer.

Semantics

2 In simple assignment(=), the value of the right operand is converted to the type of the
assignment expression and replaces the value stored in the object designated by the left
operand.

3 If the value being stored in an object is accessed from another object that overlaps in any
way the storage of the first object, then the overlap shall be exact and the two objects
shall have qualified or unqualified versions of a compatible type; otherwise, the behavior
is undefined.

4 EXAMPLE 1 In the program fragment

int f(void);
char c;
/* ... */
if ((c = f()) == -1)

/* ... */

the int value returned by the function may be truncated when stored in thechar , and then converted back
to int width prior to the comparison. In an implementation in which ‘‘plain’’char has the same range of
values asunsigned char (and char is narrower thanint), the result of the conversion cannot be
negative, so the operands of the comparison can never compare equal. Therefore, for full portability, the
variablec should be declared asint .

5 EXAMPLE 2 In the fragment:

char c;
int i;
long l;

l = (c = i);

the value ofi is converted to the type of the assignment expressionc = i , that is,char type. The value
of the expression enclosed in parentheses is then converted to the type of the outer assignment expression,
that is,long int type.

6 EXAMPLE 3 Consider the fragment:

const char **cpp;
char *p;
const char c = ’A’;

6.5.16.1 Language 6.5.16.1

94 Committee Draft — January 18, 1999 WG14/N869

cpp = &p; // constraint violation
*cpp = &c; // valid
*p = 0; // valid

The first assignment is unsafe because it would allow the following valid code to attempt to change the
value of the const objectc .

6.5.16.2 Compound assignment

Constraints

1 For the operators+= and -= only, either the left operand shall be a pointer to an object
type and the right shall have integer type, or the left operand shall have qualified or
unqualified arithmetic type and the right shall have arithmetic type.

2 For the other operators, each operand shall have arithmetic type consistent with those
allowed by the corresponding binary operator.

Semantics

3 A compound assignmentof the form E1 op= E2 differs from the simple assignment
expressionE1 = E1 op (E2) only in that the lvalueE1 is evaluated only once.

6.5.17 Comma operator
Syntax

1 expression:
assignment-expression
expression, assignment-expression

Semantics

2 The left operand of a comma operator is evaluated as a void expression; there is a
sequence point after its evaluation. Then the right operand is evaluated; the result has its
type and value.85) If an attempt is made to modify the result of a comma operator or to
access it after the next sequence point, the behavior is undefined.

3 EXAMPLE As indicated by the syntax, the comma operator (as described in this subclause) cannot
appear in contexts where a comma is used to separate items in a list (such as arguments to functions or lists
of initializers). On the other hand, it can be used within a parenthesized expression or within the second
expression of a conditional operator in such contexts. In the function call

f(a, (t=3, t+2), c)

the function has three arguments, the second of which has the value 5.

Forward references: initialization (6.7.8).

85) A comma operator does not yield an lvalue.

6.5.16.1 Language 6.5.17

WG14/N869 Committee Draft — January 18, 1999 95

6.6 Constant expressions
Syntax

1 constant-expression:
conditional-expression

Description

2 A constant expressioncan be evaluated during translation rather than runtime, and
accordingly may be used in any place that a constant may be.

Constraints

3 Constant expressions shall not contain assignment, increment, decrement, function-call,
or comma operators, except when they are contained within a subexpression that is not
evaluated.86)

4 Each constant expression shall evaluate to a constant that is in the range of representable
values for its type.

Semantics

5 An expression that evaluates to a constant is required in several contexts. If a floating
expression is evaluated in the translation environment, the arithmetic precision and range
shall be at least as great as if the expression were being evaluated in the execution
environment.

6 An integer constant expression87) shall have integer type and shall only have operands
that are integer constants, enumeration constants, character constants,sizeof
expressions whose results are integer constants, and floating constants that are the
immediate operands of casts. Cast operators in an integer constant expression shall only
convert arithmetic types to integer types, except as part of an operand to thesizeof
operator.

7 More latitude is permitted for constant expressions in initializers. Such a constant
expression shall be, or evaluate to, one of the following:

— an arithmetic constant expression,

— a null pointer constant,

86) The operand of asizeof operator is usually not evaluated (6.5.3.4).

87) An integer constant expression is used to specify the size of a bit-field member of a structure, the

value of an enumeration constant, the size of an array, or the value of acase constant. Further

constraints that apply to the integer constant expressions used in conditional-inclusion preprocessing

directives are discussed in 6.10.1.

6.6 Language 6.6

96 Committee Draft — January 18, 1999 WG14/N869

— an address constant, or

— an address constant for an object type plus or minus an integer constant expression.

8 An arithmetic constant expressionshall have arithmetic type and shall only have
operands that are integer constants, floating constants, enumeration constants, character
constants, andsizeof expressions. Cast operators in an arithmetic constant expression
shall only convert arithmetic types to arithmetic types, except as part of an operand to the
sizeof operator.

9 An address constantis a null pointer, a pointer to an lvalue designating an object of static
storage duration, or to a function designator; it shall be created explicitly using the unary
& operator or an integer constant cast to pointer type, or implicitly by the use of an
expression of array or function type. The array-subscript[] and member-access. and
-> operators, the address& and indirection* unary operators, and pointer casts may be
used in the creation of an address constant, but the value of an object shall not be
accessed by use of these operators.

10 An implementation may accept other forms of constant expressions.

11 The semantic rules for the evaluation of a constant expression are the same as for
nonconstant expressions.88)

Forward references: array declarators (6.7.5.2), initialization (6.7.8).

88) Thus, in the following initialization,

static int i = 2 || 1 / 0;

the expression is a valid integer constant expression with value one.

6.6 Language 6.6

WG14/N869 Committee Draft — January 18, 1999 97

6.7 Declarations
Syntax

1 declaration:
declaration-specifiers init-declarator-listopt ;

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt

init-declarator-list:
init-declarator
init-declarator-list , init-declarator

init-declarator:
declarator
declarator = initializer

Constraints

2 A declaration shall declare at least a declarator (other than the parameters of a function or
the members of a structure or union), a tag, or the members of an enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier
(in a declarator or type specifier) with the same scope and in the same name space, except
for tags as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify
compatible types.

Semantics

5 A declaration specifies the interpretation and attributes of a set of identifiers. A
definitionof an identifier is a declaration for that identifier that:

— for an object, causes storage to be reserved for that object;

— for a function, includes the function body;89)

— for an enumeration constant or typedef name, is the (only) declaration of the
identifier.

6 The declaration specifiers consist of a sequence of specifiers that indicate the linkage,
storage duration, and part of the type of the entities that the declarators denote. The init-
declarator-list is a comma-separated sequence of declarators, each of which may have

89) Function definitions have a different syntax, described in 6.9.1.

6.7 Language 6.7

98 Committee Draft — January 18, 1999 WG14/N869

additional type information, or an initializer, or both. The declarators contain the
identifiers (if any) being declared.

7 If an identifier for an object is declared with no linkage, the type for the object shall be
complete by the end of its declarator, or by the end of its init-declarator if it has an
initializer.

Forward references: declarators (6.7.5), enumeration specifiers (6.7.2.2), initialization
(6.7.8), tags (6.7.2.3).

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
auto
register

Constraints

2 At most, one storage-class specifier may be given in the declaration specifiers in a
declaration.90)

Semantics

3 The typedef specifier is called a ‘‘storage-class specifier’’ for syntactic convenience
only; it is discussed in 6.7.7. The meanings of the various linkages and storage durations
were discussed in 6.2.2 and 6.2.4.

4 A declaration of an identifier for an object with storage-class specifierregister
suggests that access to the object be as fast as possible. The extent to which such
suggestions are effective is implementation-defined.91)

5 The declaration of an identifier for a function that has block scope shall have no explicit
storage-class specifier other thanextern .

90) See ‘‘future language directions’’ (6.11.3).

91) The implementation may treat anyregister declaration simply as anauto declaration. However,

whether or not addressable storage is actually used, the address of any part of an object declared with

storage-class specifierregister cannot be computed, either explicitly (by use of the unary&

operator as discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in

6.3.2.1). Thus,the only operator that can be applied to an array declared with storage-class specifier

register is sizeof .

6.7 Language 6.7.1

WG14/N869 Committee Draft — January 18, 1999 99

6 If an aggregate or union object is declared with a storage-class specifier other than
typedef , the properties resulting from the storage-class specifier, except with respect to
linkage, also apply to the members of the object, and so on recursively for any aggregate
or union member objects.

Forward references: type definitions (6.7.7).

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

Constraints

2 At least one type specifier shall be given in the declaration specifiers in each declaration,
and in the specifier-qualifier list in each struct declaration and type name. Each list of
type specifiers shall be one of the following sets (delimited by commas, when there is
more than one set on a line); the type specifiers may occur in any order, possibly
intermixed with the other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short , signed short , short int , or signed short int

— unsigned short , or unsigned short int

6.7.1 Language 6.7.2

100 Committee Draft — January 18, 1999 WG14/N869

— int , signed , or signed int

— unsigned , or unsigned int

— long , signed long , long int , or signed long int

— unsigned long , or unsigned long int

— long long , signed long long , long long int , or signed long
long int

— unsigned long long , or unsigned long long int

— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex

— float _Imaginary

— double _Imaginary

— long double _Imaginary

— struct or union specifier

— enum specifier

— typedef name

3 The type specifiers_Complex and _Imaginary shall not be used if the
implementation does not provide those types.92)

Semantics

4 Specifiers for structures, unions, and enumerations are discussed in 6.7.2.1 through
6.7.2.3. Declarations of typedef names are discussed in 6.7.7. The characteristics of the
other types are discussed in 6.2.5.

5 Each of the comma-separated sets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifierint designates the same type assigned
int or the same type asunsigned int .

92) Implementations are not required to provide imaginary types. Freestanding implementations are not

required to provide complex types.

6.7.2 Language 6.7.2

WG14/N869 Committee Draft — January 18, 1999 101

Forward references: enumeration specifiers (6.7.2.2), structure and union specifiers
(6.7.2.1), tags (6.7.2.3), type definitions (6.7.7).

6.7.2.1 Structure and union specifiers

Syntax

1 struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Constraints

2 A structure or union shall not contain a member with incomplete or function type (hence,
a structure shall not contain an instance of itself, but may contain a pointer to an instance
of itself), except that the last member of a structure with more than one named member
may have incomplete array type; such a structure (and any union containing, possibly
recursively, a member that is such a structure) shall not be a member of a structure or an
element of an array.

3 The expression that specifies the width of a bit-field shall be an integer constant
expression that has nonnegative value that shall not exceed the number of bits in an object
of the type that is specified if the colon and expression are omitted. If the value is zero,
the declaration shall have no declarator.

6.7.2 Language 6.7.2.1

102 Committee Draft — January 18, 1999 WG14/N869

Semantics

4 As discussed in 6.2.5, a structure is a type consisting of a sequence of members, whose
storage is allocated in an ordered sequence, and a union is a type consisting of a sequence
of members whose storage overlap.

5 Structure and union specifiers have the same form.

6 The presence of a struct-declaration-list in a struct-or-union-specifier declares a new type,
within a translation unit. The struct-declaration-list is a sequence of declarations for the
members of the structure or union. If the struct-declaration-list contains no named
members, the behavior is undefined. The type is incomplete until after the} that
terminates the list.

7 A member of a structure or union may have any object type other than a variably
modified type.93) In addition, a member may be declared to consist of a specified number
of bits (including a sign bit, if any). Such a member is called abit-field;94) its width is
preceded by a colon.

8 A bit-field shall have a type that is a qualified or unqualified version of_Bool , signed
int , or unsigned int . A bit-field is interpreted as a signed or unsigned integer type
consisting of the specified number of bits.95) If the value 0 or 1 is stored into a nonzero-
width bit-field of type_Bool , the value of the bit-field shall compare equal to the value
stored.

9 An implementation may allocate any addressable storage unit large enough to hold a bit-
field. If enough space remains, a bit-field that immediately follows another bit-field in a
structure shall be packed into adjacent bits of the same unit. If insufficient space remains,
whether a bit-field that does not fit is put into the next unit or overlaps adjacent units is
implementation-defined. The order of allocation of bit-fields within a unit (high-order to
low-order or low-order to high-order) is implementation-defined. The alignment of the
addressable storage unit is unspecified.

10 A bit-field declaration with no declarator, but only a colon and a width, indicates an
unnamed bit-field.96) As a special case, a bit-field structure member with a width of 0
indicates that no further bit-field is to be packed into the unit in which the previous bit-

93) A structure or union can not contain a member with a variably modified type because member names

are not ordinary identifiers as defined in 6.2.3.

94) The unary& (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to

or arrays of bit-field objects.

95) As specified in 6.7.2 above, if the actual type specifier used isint or a typedef-name defined asint ,

then it is implementation-defined whether the bit-field is signed or unsigned.

96) An unnamed bit-field structure member is useful for padding to conform to externally imposed

layouts.

6.7.2.1 Language 6.7.2.1

WG14/N869 Committee Draft — January 18, 1999 103

field, if any, was placed.

11 Each non-bit-field member of a structure or union object is aligned in an implementation-
defined manner appropriate to its type.

12 Within a structure object, the non-bit-field members and the units in which bit-fields
reside have addresses that increase in the order in which they are declared. A pointer to a
structure object, suitably converted, points to its initial member (or if that member is a
bit-field, then to the unit in which it resides), and vice versa. There may be unnamed
padding within a structure object, but not at its beginning.

13 The size of a union is sufficient to contain the largest of its members. The value of at
most one of the members can be stored in a union object at any time. A pointer to a
union object, suitably converted, points to each of its members (or if a member is a bit-
field, then to the unit in which it resides), and vice versa.

14 There may be unnamed padding at the end of a structure or union.

15 As a special case, the last element of a structure with more than one named member may
have an incomplete array type. This is called aflexible array member, and the size of the
structure shall be equal to the offset of the last element of an otherwise identical structure
that replaces the flexible array member with an array of unspecified length.97) When an
lvalue whose type is a structure with a flexible array member is used to access an object,
it behaves as if that member were replaced with the longest array, with the same element
type, that would not make the structure larger than the object being accessed; the offset of
the array shall remain that of the flexible array member, even if this would differ from
that of the replacement array. If this array would have no elements, then it behaves as if it
had one element, but the behavior is undefined if any attempt is made to access that
element or to generate a pointer one past it.

16 EXAMPLE Assuming that all array members are aligned the same, after the declarations:

struct s { int n; double d[]; };
struct ss { int n; double d[1]; };

the three expressions:

sizeof (struct s)
offsetof(struct s, d)
offsetof(struct ss, d)

have the same value. The structurestruct s has a flexible array memberd.

17 If sizeof (double) is 8, then after the following code is executed:

97) The length is unspecified to allow for the fact that implementations may give array members different

alignments according to their lengths.

6.7.2.1 Language 6.7.2.1

104 Committee Draft — January 18, 1999 WG14/N869

struct s *s1;
struct s *s2;
s1 = malloc(sizeof (struct s) + 64);
s2 = malloc(sizeof (struct s) + 46);

and assuming that the calls tomalloc succeed, the objects pointed to bys1 and s2 behave as if the
identifiers had been declared as:

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

18 Following the further successful assignments:

s1 = malloc(sizeof (struct s) + 10);
s2 = malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *s1, *s2;

and:

double *dp;
dp = &(s1->d[0]); // Permitted
*dp = 42; // Permitted
dp = &(s2->d[0]); // Permitted
*dp = 42; // Undefined behavior

Forward references: tags (6.7.2.3).

6.7.2.2 Enumeration specifiers

Syntax

1 enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

enumerator-list:
enumerator
enumerator-list , enumerator

enumerator:
enumeration-constant
enumeration-constant= constant-expression

Constraints

2 The expression that defines the value of an enumeration constant shall be an integer
constant expression that has a value representable as anint .

Semantics

6.7.2.1 Language 6.7.2.2

WG14/N869 Committee Draft — January 18, 1999 105

3 The identifiers in an enumerator list are declared as constants that have typeint and
may appear wherever such are permitted.98) An enumerator with= defines its
enumeration constant as the value of the constant expression. If the first enumerator has
no =, the value of its enumeration constant is 0. Each subsequent enumerator with no=
defines its enumeration constant as the value of the constant expression obtained by
adding 1 to the value of the previous enumeration constant. (The use of enumerators with
= may produce enumeration constants with values that duplicate other values in the same
enumeration.) The enumerators of an enumeration are also known as its members.

4 Each enumerated type shall be compatible with an integer type. The choice of type is
implementation-defined,99) but shall be capable of representing the values of all the
members of the enumeration. The enumerated type is incomplete until after the} that
terminates the list of enumerator declarations.

5 EXAMPLE The following fragment:

enum hue { chartreuse, burgundy, claret=20, winedark };
enum hue col, *cp;
col = claret;
cp = &col;
if (*cp != burgundy)

/* ... */

makeshue the tag of an enumeration, and then declarescol as an object that has that type andcp as a
pointer to an object that has that type. The enumerated values are in the set { 0, 1, 20, 21 }.

Forward references: tags (6.7.2.3).

6.7.2.3 Tags

Constraints

1 A specific type shall have its content defined at most once.

2 A type specifier of the form

enum identifier

without an enumerator list shall only appear after the type it specifies is completed.

Semantics

3 All declarations of structure, union, or enumerated types that have the same scope and
use the same tag declare the same type. The type is incomplete100) until the closing
brace of the list defining the content, and complete thereafter.

98) Thus, the identifiers of enumeration constants declared in the same scope shall all be distinct from

each other and from other identifiers declared in ordinary declarators.

99) An implementation may delay the choice of which integer type until all enumeration constants have

been seen.

6.7.2.2 Language 6.7.2.3

106 Committee Draft — January 18, 1999 WG14/N869

4 Tw o declarations of structure, union, or enumerated types which are in different scopes or
use different tags declare distinct types. Each declaration of a structure, union, or
enumerated type which does not include a tag declares a distinct type.

5 A type specifier of the form

struct-or-union identifieropt { struct-declaration-list }
or

enum identifier { enumerator-list }
or

enum identifier { enumerator-list , }

declares a structure, union, or enumerated type. The list defines thestructure content,
union content, or enumeration content. If an identifier is provided,101) the type specifier
also declares the identifier to be the tag of that type.

6 A declaration of the form

struct-or-union identifier;

specifies a structure or union type and declares the identifier as a tag of that type.102)

7 If a type specifier of the form

struct-or-union identifier

occurs other than as part of one of the above forms, and no other declaration of the
identifier as a tag is visible, then it declares an incomplete structure or union type, and
declares the identifier as the tag of that type.102)

8 If a type specifier of the form

struct-or-union identifier
or

enum identifier

occurs other than as part of one of the above forms, and a declaration of the identifier as a
tag is visible, then it specifies the same type as that other declaration, and does not

100) An incomplete type may only by used when the size of an object of that type is not needed. It is not

needed, for example, when a typedef name is declared to be a specifier for a structure or union, or

when a pointer to or a function returning a structure or union is being declared. (See incomplete types

in 6.2.5.) The specification has to be complete before such a function is called or defined.

101) If there is no identifier, the type can, within the translation unit, only be referred to by the declaration

of which it is a part. Of course, when the declaration is of a typedef name, subsequent declarations

can make use of that typedef name to declare objects having the specified structure, union, or

enumerated type.

102) A similar construction withenum does not exist.

6.7.2.3 Language 6.7.2.3

WG14/N869 Committee Draft — January 18, 1999 107

redeclare the tag.

9 EXAMPLE 1 This mechanism allows declaration of a self-referential structure.

struct tnode {
int count;
struct tnode *left, *right;

};

specifies a structure that contains an integer and two pointers to objects of the same type. Once this
declaration has been given, the declaration

struct tnode s, *sp;

declaress to be an object of the given type andsp to be a pointer to an object of the given type. With
these declarations, the expressionsp->left refers to the leftstruct tnode pointer of the object to
which sp points; the expressions.right->count designates thecount member of the rightstruct
tnode pointed to froms .

10 The following alternative formulation uses thetypedef mechanism:

typedef struct tnode TNODE;
struct tnode {

int count;
TNODE *left, *right;

};
TNODE s, *sp;

11 EXAMPLE 2 To illustrate the use of prior declaration of a tag to specify a pair of mutually referential
structures, the declarations

struct s1 { struct s2 *s2p; /* ... */ }; // D1
struct s2 { struct s1 *s1p; /* ... */ }; // D2

specify a pair of structures that contain pointers to each other. Note, however, that ifs2 were already
declared as a tag in an enclosing scope, the declarationD1 would refer toit , not to the tags2 declared in
D2. To eliminate this context sensitivity, the declaration

struct s2;

may be inserted ahead ofD1. This declares a new tags2 in the inner scope; the declarationD2 then
completes the specification of the new type.

Forward references: declarators (6.7.5), array declarators (6.7.5.2), type definitions
(6.7.7).

6.7.2.3 Language 6.7.2.3

108 Committee Draft — January 18, 1999 WG14/N869

6.7.3 Type qualifiers
Syntax

1 type-qualifier:
const
restrict
volatile

Constraints

2 Types other than pointer types derived from object or incomplete types shall not be
restrict-qualified.

Semantics

3 The properties associated with qualified types are meaningful only for expressions that
are lvalues.103)

4 If the same qualifier appears more than once in the samespecifier-qualifier-list, either
directly or via one or moretypedef s, the behavior is the same as if it appeared only
once.

5 If an attempt is made to modify an object defined with a const-qualified type through use
of an lvalue with non-const-qualified type, the behavior is undefined. If an attempt is
made to refer to an object defined with a volatile-qualified type through use of an lvalue
with non-volatile-qualified type, the behavior is undefined.104)

6 An object that has volatile-qualified type may be modified in ways unknown to the
implementation or have other unknown side effects. Therefore any expression referring
to such an object shall be evaluated strictly according to the rules of the abstract machine,
as described in 5.1.2.3. Furthermore, at every sequence point the value last stored in the
object shall agree with that prescribed by the abstract machine, except as modified by the
unknown factors mentioned previously.105) What constitutes an access to an object that
has volatile-qualified type is implementation-defined.

103) The implementation may place aconst object that is notvolatile in a read-only region of

storage. Moreover, the implementation need not allocate storage for such an object if its address is

never used.

104) This applies to those objects that behave as if they were defined with qualified types, even if they are

never actually defined as objects in the program (such as an object at a memory-mapped input/output

address).

105) A volatile declaration may be used to describe an object corresponding to a memory-mapped

input/output port or an object accessed by an asynchronously interrupting function. Actions on

objects so declared shall not be ‘‘optimized out’’ by an implementation or reordered except as

permitted by the rules for evaluating expressions.

6.7.3 Language 6.7.3

WG14/N869 Committee Draft — January 18, 1999 109

7 An object that is accessed through a restrict-qualified pointer has a special association
with that pointer. This association, defined in 6.7.3.1 below, requires that all accesses to
that object use, directly or indirectly, the value of that particular pointer.106) The intended
use of therestrict qualifier (like the register storage class) is to promote
optimization, and deleting all instances of the qualifier from a conforming program does
not change its meaning (i.e., observable behavior).

8 If the specification of an array type includes any type qualifiers, the element type is so-
qualified, not the array type. If the specification of a function type includes any type
qualifiers, the behavior is undefined.107)

9 For two qualified types to be compatible, both shall have the identically qualified version
of a compatible type; the order of type qualifiers within a list of specifiers or qualifiers
does not affect the specified type.

10 EXAMPLE 1 An object declared

extern const volatile int real_time_clock;

may be modifiable by hardware, but cannot be assigned to, incremented, or decremented.

11 EXAMPLE 2 The following declarations and expressions illustrate the behavior when type qualifiers
modify an aggregate type:

const struct s { int mem; } cs = { 1 };
struct s ncs; // the objectncs is modifiable
typedef int A[2][3];
const A a = {{4, 5, 6}, {7, 8, 9}}; // array of array of

// const int
int *pi;
const int *pci;

ncs = cs; // valid
cs = ncs; // violates modifiable lvalue constraint for=
pi = &ncs.mem; // valid
pi = &cs.mem; // violates type constraints for=
pci = &cs.mem; // valid
pi = a[0]; // invalid: a[0] has type ‘‘const int * ’’

6.7.3.1 Formal definition ofrestrict

1 Let D be a declaration of an ordinary identifier that provides a means of designating an
objectP as a restrict-qualified pointer.

2 If D appears inside a block and does not have storage classextern , let B denote the
block. If D appears in the list of parameter declarations of a function definition, letB
denote the associated block. Otherwise, letB denote the block ofmain (or the block of

106) For example, a statement that assigns a value returned bymalloc to a single pointer establishes this

association between the allocated object and the pointer.

107) Both of these can occur through the use oftypedef s.

6.7.3 Language 6.7.3.1

110 Committee Draft — January 18, 1999 WG14/N869

whatever function is called at program startup in a freestanding environment).

3 In what follows, a pointer expressionE is said to bebasedon objectP if (at some
sequence point in the execution ofB prior to the evaluation ofE) modifying P to point to
a copy of the array object into which it formerly pointed would change the value ofE.108)

Note that ‘‘based’’ is defined only for expressions with pointer types.

4 During each execution ofB, let A be the array object that is determined dynamically by
all accesses through pointer expressions based onP. Thenall accesses to values ofA shall
be through pointer expressions based onP. Furthermore, ifP is assigned the value of a
pointer expressionE that is based on another restricted pointer objectP2, associated with
block B2, then either the execution ofB2 shall begin before the execution ofB, or the
execution ofB2 shall end prior to the assignment. If these requirements are not met, then
the behavior is undefined.

5 Here an execution ofB means that portion of the execution of the program during which
storage is guaranteed to be reserved for an instance of an object that is associated withB
and that has automatic storage duration. An access to a value means either fetching it or
modifying it; expressions that are not evaluated do not access values.

6 A translator is free to ignore any or all aliasing implications of uses ofrestrict .

7 EXAMPLE 1 The file scope declarations

int * restrict a;
int * restrict b;
extern int c[];

assert that if an object is accessed using the value of one ofa, b, or c , then it is never accessed using the
value of either of the other two.

8 EXAMPLE 2 The function parameter declarations in the following example

void f(int n, int * restrict p, int * restrict q)
{

while (n-- > 0)
*p++ = *q++;

}

assert that, during each execution of the function, if an object is accessed through one of the pointer
parameters, then it is not also accessed through the other.

9 The benefit of therestrict qualifiers is that they enable a translator to make an effective dependence
analysis of functionf without examining any of the calls off in the program. The cost is that the
programmer has to examine all of those calls to ensure that none give undefined behavior. For example, the
second call off in g has undefined behavior because each ofd[1] throughd[49] is accessed through

108) In other words,E depends on the value ofP itself rather than on the value of an object referenced

indirectly throughP. For example, if identifierp has type(int **restrict) , then the pointer

expressionsp and p+1 are based on the restricted pointer object designated byp, but the pointer

expressions*p andp[1] are not.

6.7.3.1 Language 6.7.3.1

WG14/N869 Committee Draft — January 18, 1999 111

bothp andq.

void g(void)
{

extern int d[100];
f(50, d + 50, d); // ok
f(50, d + 1, d); // undefined behavior

}

10 EXAMPLE 3 The function parameter declarations

void h(int n, int * const restrict p,
int * const q, int * const r)

{
int i;
for (i = 0; i < n; i++)

p[i] = q[i] + r[i];
}

show howconst can be used in conjunction withrestrict . Theconst qualifiers imply, without the
need to examine the body ofh, thatq andr cannot become based onp. The fact thatp is restrict-qualified
therefore implies that an object accessed throughp is never accessed through either ofq or r . This is the
precise assertion required to optimize the loop. Note that a call of the formh(100, a, b, b) has
defined behavior, which would not be true if all three ofp, q, andr were restrict-qualified.

11 EXAMPLE 4 The rule limiting assignments between restricted pointers does not distinguish between a
function call and an equivalent nested block. With one exception, only ‘‘outer-to-inner’’ assignments
between restricted pointers declared in nested blocks have defined behavior.

{
int * restrict p1;
int * restrict q1;
p1 = q1; // undefined behavior
{

int * restrict p2 = p1; // ok
int * restrict q2 = q1; // ok
p1 = q2; // undefined behavior
p2 = q2; // undefined behavior

}
}

The exception allows the value of a restricted pointer to be carried out of the block in which it (or, more
precisely, the ordinary identifier used to designate it) is declared when that block finishes execution. For
example, this permitsnew_vector to return avector .

typedef struct { int n; float * restrict v; } vector;
vector new_vector(int n)
{

vector t;
t.n = n;
t.v = malloc(n * sizeof (float));
return t;

}

6.7.3.1 Language 6.7.3.1

112 Committee Draft — January 18, 1999 WG14/N869

6.7.4 Function specifiers
Syntax

1 function-specifier:
inline

Constraints

2 Function specifiers shall be used only in the declaration of an identifier for a function.

3 An inline definition of a function with external linkage shall not contain a definition of a
modifiable object with static storage duration, and shall not contain a reference to an
identifier with internal linkage.

4 Theinline function specifier shall not appear in a declaration ofmain .

Semantics

5 A function declared with aninline function specifier is aninline function. The
function specifier may appear more than once; the behavior is the same as if it appeared
only once. Making a function an inline function suggests that calls to the function be as
fast as possible.109) The extent to which such suggestions are effective is
implementation-defined.110)

6 Any function with internal linkage can be an inline function. For a function with external
linkage, the following restrictions apply: If a function is declared with aninline
function specifier, then it shall also be defined in the same translation unit. If all of the
file scope declarations for a function in a translation unit include theinline function
specifier withoutextern , then the definition in that translation unit is aninline
definition. An inline definition does not provide an external definition for the function,
and does not forbid an external definition in another translation unit. An inline definition
provides an alternative to an external definition, which a translator may use to implement
any call to the function in the same translation unit. It is unspecified whether a call to the
function uses the inline definition or the external definition.111)

109) By using, for example, an alternative to the usual function call mechanism, such as ‘‘inline

substitution’’.

Inline substitution is not textual substitution, nor does it create a new function. Therefore, for

example, the expansion of a macro used within the body of the function uses the definition it had at

the point the function body appears, and not where the function is called; and identifiers refer to the

declarations in scope where the body occurs. Similarly, the address of the function is not affected by

the function’s being inlined.

110) For example, an implementation might never perform inline substitution, or might only perform inline

substitutions to calls in the scope of aninline declaration.

6.7.4 Language 6.7.4

WG14/N869 Committee Draft — January 18, 1999 113

7 EXAMPLE The declaration of an inline function with external linkage can result in either an external
definition, or a definition available for use only within the translation unit. A file scope declaration with
extern creates an external definition. The following example shows an entire translation unit.

inline double fahr(double t)
{

return (9.0 * t) / 5.0 + 32.0;
}

inline double cels(double t)
{

return (5.0 * (t - 32.0)) / 9.0;
}

extern double fahr(double); // creates an external definition

double convert(int is_fahr, double temp)
{

/* A translator may perform inline substitutions.*/
return is_fahr ? cels(temp) : fahr(temp);

}

8 Note that the definition offahr is an external definition becausefahr is also declared withextern , but
the definition ofcels is an inline definition. Becausecels has external linkage and is referenced, an
external definition has to appear in another translation unit (see 6.9); the inline definition and the external
definition are distinct and either may be used for the call.

6.7.5 Declarators
Syntax

1 declarator:
pointeropt direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [assignment-expressionopt]
direct-declarator [*]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

111) Since an inline definition is distinct from the corresponding external definition and from any other

corresponding inline definitions in other translation units, all corresponding objects with static storage

duration are also distinct in each of the definitions.

6.7.4 Language 6.7.5

114 Committee Draft — January 18, 1999 WG14/N869

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list , ...

parameter-list:
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

identifier-list:
identifier
identifier-list , identifier

Semantics

2 Each declarator declares one identifier, and asserts that when an operand of the same
form as the declarator appears in an expression, it designates a function or object with the
scope, storage duration, and type indicated by the declaration specifiers.

3 A full declarator is a declarator that is not part of another declarator. The end of a full
declarator is a sequence point. If the nested sequence of declarators in a full declarator
contains a variable length array type, the type specified by the full declarator is said to be
variably modified.

4 In the following subclauses, consider a declaration

T D1

whereT contains the declaration specifiers that specify a typeT (such asint) andD1 is
a declarator that contains an identifierident. The type specified for the identifierident in
the various forms of declarator is described inductively using this notation.

5 If, in the declaration ‘‘T D1’’, D1 has the form

identifier

then the type specified forident is T.

6 If, in the declaration ‘‘T D1’’, D1 has the form

(D)

then ident has the type specified by the declaration ‘‘T D’’. Thus, a declarator in
parentheses is identical to the unparenthesized declarator, but the binding of complicated

6.7.5 Language 6.7.5

WG14/N869 Committee Draft — January 18, 1999 115

declarators may be altered by parentheses.

Implementation limits

7 As discussed in 5.2.4.1, an implementation may limit the number of pointer, array, and
function declarators that modify an arithmetic, structure, union, or incomplete type, either
directly or via one or moretypedef s.

Forward references: array declarators (6.7.5.2), type definitions (6.7.7).

6.7.5.1 Pointer declarators

Semantics

1 If, in the declaration ‘‘T D1’’, D1 has the form

* type-qualifier-listopt D

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-list type-qualifier-list
pointer toT ’’. For each type qualifier in the list,ident is a so-qualified pointer.

2 For two pointer types to be compatible, both shall be identically qualified and both shall
be pointers to compatible types.

3 EXAMPLE The following pair of declarations demonstrates the difference between a ‘‘variable pointer
to a constant value’’ and a ‘‘constant pointer to a variable value’’.

const int *ptr_to_constant;
int *const constant_ptr;

The contents of any object pointed to byptr_to_constant shall not be modified through that pointer,
but ptr_to_constant itself may be changed to point to another object. Similarly, the contents of the
int pointed to byconstant_ptr may be modified, butconstant_ptr itself shall always point to the
same location.

4 The declaration of the constant pointerconstant_ptr may be clarified by including a definition for the
type ‘‘pointer toint ’’.

typedef int *int_ptr;
const int_ptr constant_ptr;

declaresconstant_ptr as an object that has type ‘‘const-qualified pointer toint ’’.

6.7.5.2 Array declarators

Constraints

1 The [and] may delimit an expression or* . If [and] delimit an expression (which
specifies the size of an array), it shall have an integer type. If the expression is a constant
expression then it shall have a value greater than zero. The element type shall not be an
incomplete or function type.

2 Only ordinary identifiers (as defined in 6.2.3) with both block scope or function prototype
scope and no linkage shall have a variably modified type. If an identifier is declared to be

6.7.5 Language 6.7.5.2

116 Committee Draft — January 18, 1999 WG14/N869

an object with static storage duration, it shall not have a variable length array type.

Semantics

3 If, in the declaration ‘‘T D1’’, D1 has the form

D[assignment-expressionopt]

or

D[*]

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-listarray ofT ’’. 112) If
the size is not present, the array type is an incomplete type. If* is used instead of a size
expression, the array type is a variable length array type of unspecified size, which can
only be used in declarations with function prototype scope.113) If the size expression is
an integer constant expression and the element type has a known constant size, the array
type is not a variable length array type; otherwise, the array type is a variable length array
type. If the size expression is not a constant expression, and it is evaluated at program
execution time, it shall evaluate to a value greater than zero. It is unspecified whether
side effects are produced when the size expression is evaluated. The size of each instance
of a variable length array type does not change during its lifetime.

4 For two array types to be compatible, both shall have compatible element types, and if
both size specifiers are present, and are integer constant expressions, then both size
specifiers shall have the same constant value. If the two array types are used in a context
which requires them to be compatible, it is undefined behavior if the two size specifiers
evaluate to unequal values.

5 EXAMPLE 1

float fa[11], *afp[17];

declares an array offloat numbers and an array of pointers tofloat numbers.

6 EXAMPLE 2 Note the distinction between the declarations

extern int *x;
extern int y[];

The first declaresx to be a pointer toint ; the second declaresy to be an array ofint of unspecified size
(an incomplete type), the storage for which is defined elsewhere.

7 EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

112) When several ‘‘array of’’ specifications are adjacent, a multidimensional array is declared.

113) Thus,* can be used only in function declarations that are not definitions (see 6.7.5.3).

6.7.5.2 Language 6.7.5.2

WG14/N869 Committee Draft — January 18, 1999 117

extern int n;
extern int m;
void fcompat(void)
{

int a[n][6][m];
int (*p)[4][n+1];
int c[n][n][6][m];
int (*r)[n][n][n+1];
p = a; // Error - not compatible because4 != 6 .
r = c; // Compatible, but defined behavior

// only if n == 6 andm == n+1.
}

8 EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or
function prototype scope. Array objects declared with thestatic or extern storage class specifier
cannot have a variable length array (VLA) type. However, an object declared with thestatic storage
class specifier can have a VM type (that is, a pointer to a VLA type). Finally, all identifiers declared with a
VM type have to be ordinary identifiers and cannot, therefore, be members of structures or unions.

extern int n;
int A[n]; // Error - file scope VLA.
extern int (*p2)[n]; // Error - file scope VM.
int B[100]; // OK - file scope but not VM.

void fvla(int m, int C[m][m]) // OK - VLA with prototype scope.
{

typedef int VLA[m][m] // OK - block scope typedef VLA.

struct tag {
int (*y)[n]; // Error - y not ordinary identifier.
int z[n]; // Error - z not ordinary identifier.

};
int D[m]; // OK - auto VLA.
static int E[m]; // Error - static block scope VLA.
extern int F[m]; // Error - F has linkage and is VLA.
int (*s)[m]; // OK - auto pointer to VLA.
extern int (*r)[m]; // Error - r had linkage and is

// a pointer to VLA.
static int (*q)[m] = &B; // OK - q is a static block

// pointer to VLA.
}

Forward references: function declarators (6.7.5.3), function definitions (6.9.1),
initialization (6.7.8).

6.7.5.2 Language 6.7.5.2

118 Committee Draft — January 18, 1999 WG14/N869

6.7.5.3 Function declarators (including prototypes)

Constraints

1 A function declarator shall not specify a return type that is a function type or an array
type.

2 The only storage-class specifier that shall occur in a parameter declaration isregister .

3 An identifier list in a function declarator that is not part of a definition of that function
shall be empty.

4 After adjustment, the parameters in a parameter type list in a function declarator that is
part of a definition of that function shall not have incomplete type. ∗

Semantics

5 If, in the declaration ‘‘T D1’’, D1 has the form

D(parameter-type-list)
or

D(identifier-listopt)

and the type specified forident in the declaration ‘‘T D’’ is ‘‘ derived-declarator-type-list
T ’’, then the type specified forident is ‘‘ derived-declarator-type-listfunction returning
T ’’.

6 A parameter type list specifies the types of, and may declare identifiers for, the
parameters of the function. A declaration of a parameter as ‘‘array oftype’’ shall be
adjusted to ‘‘pointer totype’’, and a declaration of a parameter as ‘‘function returning
type’’ shall be adjusted to ‘‘pointer to function returningtype’’, as in 6.3.2.1. If the list
terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.114) The special case of an unnamed parameter of
typevoid as the only item in the list specifies that the function has no parameters.

7 In a parameter declaration, a single typedef name in parentheses is taken to be an abstract
declarator that specifies a function with a single parameter, not as redundant parentheses
around the identifier for a declarator.

8 If the function declarator is not part of a definition of that function, parameters may have
incomplete type and may use the[*] notation in their sequences of declarator specifiers
to specify variable length array types.

9 The storage-class specifier in the declaration specifiers for a parameter declaration, if
present, is ignored unless the declared parameter is one of the members of the parameter
type list for a function definition.

114) The macros defined in the<stdarg.h> header (7.15) may be used to access arguments that

correspond to the ellipsis.

6.7.5.3 Language 6.7.5.3

WG14/N869 Committee Draft — January 18, 1999 119

10 An identifier list declares only the identifiers of the parameters of the function. An empty
list in a function declarator that is part of a definition of that function specifies that the
function has no parameters. The empty list in a function declarator that is not part of a
definition of that function specifies that no information about the number or types of the
parameters is supplied.115)

11 For two function types to be compatible, both shall specify compatible return types.116)

Moreover, the parameter type lists, if both are present, shall agree in the number of
parameters and in use of the ellipsis terminator; corresponding parameters shall have
compatible types. If one type has a parameter type list and the other type is specified by a
function declarator that is not part of a function definition and that contains an empty
identifier list, the parameter list shall not have an ellipsis terminator and the type of each
parameter shall be compatible with the type that results from the application of the
default argument promotions. If one type has a parameter type list and the other type is
specified by a function definition that contains a (possibly empty) identifier list, both shall
agree in the number of parameters, and the type of each prototype parameter shall be
compatible with the type that results from the application of the default argument
promotions to the type of the corresponding identifier. (In the determination of type
compatibility and of a composite type, each parameter declared with function or array
type is taken as having the adjusted type and each parameter declared with qualified type
is taken as having the unqualified version of its declared type.)

12 EXAMPLE 1 The declaration

int f(void), *fip(), (*pfi)();

declares a functionf with no parameters returning anint , a functionfip with no parameter specification
returning a pointer to anint , and a pointerpfi to a function with no parameter specification returning an
int . It is especially useful to compare the last two. The binding of*fip() is *(fip()) , so that the
declaration suggests, and the same construction in an expression requires, the calling of a functionfip ,
and then using indirection through the pointer result to yield anint . In the declarator(*pfi)() , the
extra parentheses are necessary to indicate that indirection through a pointer to a function yields a function
designator, which is then used to call the function; it returns anint .

13 If the declaration occurs outside of any function, the identifiers have file scope and external linkage. If the
declaration occurs inside a function, the identifiers of the functionsf andfip have block scope and either
internal or external linkage (depending on what file scope declarations for these identifiers are visible), and
the identifier of the pointerpfi has block scope and no linkage.

14 EXAMPLE 2 The declaration

int (*apfi[3])(int *x, int *y);

declares an arrayapfi of three pointers to functions returningint . Each of these functions has two
parameters that are pointers toint . The identifiersx andy are declared for descriptive purposes only and
go out of scope at the end of the declaration ofapfi .

115) See ‘‘future language directions’’ (6.11.4).

116) If both function types are ‘‘old style’’, parameter types are not compared.

6.7.5.3 Language 6.7.5.3

120 Committee Draft — January 18, 1999 WG14/N869

15 EXAMPLE 3 The declaration

int (*fpfi(int (*)(long), int))(int, ...);

declares a functionfpfi that returns a pointer to a function returning anint . The functionfpfi has two
parameters: a pointer to a function returning anint (with one parameter of typelong int), and anint .
The pointer returned byfpfi points to a function that has oneint parameter and accepts zero or more
additional arguments of any type.

16 EXAMPLE 4 The following prototype has a variably modified parameter.

void addscalar(int n, int m,
double a[n][n*m+300], double x);

int main()
{

double b[4][308];
addscalar(4, 2, b, 2.17);
return 0;

}

void addscalar(int n, int m,
double a[n][n*m+300], double x)

{
for (int i = 0; i < n; i++)

for (int j = 0, k = n*m+300; j < k; j++)
// a is a pointer to a VLA
// with n*m+300 elements
a[i][j] += x;

}

17 EXAMPLE 5 The following are all compatible function prototype declarators.

double maximum(int n, int m, double a[n][m]);
double maximum(int n, int m, double a[*][*]);
double maximum(int n, int m, double a[][*]);
double maximum(int n, int m, double a[][m]);

Forward references: function definitions (6.9.1), type names (6.7.6).

6.7.6 Type names
Syntax

1 type-name:
specifier-qualifier-list abstract-declaratoropt

abstract-declarator:
pointer
pointeropt direct-abstract-declarator

6.7.5.3 Language 6.7.6

WG14/N869 Committee Draft — January 18, 1999 121

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [assignment-expressionopt]
direct-abstract-declaratoropt [*]
direct-abstract-declaratoropt (parameter-type-listopt)

Semantics

2 In several contexts, it is necessary to specify a type. This is accomplished using atype
name, which is syntactically a declaration for a function or an object of that type that
omits the identifier.117)

3 EXAMPLE The constructions

(a) int
(b) int *
(c) int *[3]
(d) int (*)[3]
(e) int (*)[*]
(f) int *()
(g) int (*)(void)
(h) int (*const [])(unsigned int, ...)

name respectively the types (a)int , (b) pointer toint , (c) array of three pointers toint , (d) pointer to an
array of threeint s, (e) pointer to a variable length array of an unspecified number ofint s, (f) function
with no parameter specification returning a pointer toint , (g) pointer to function with no parameters
returning anint , and (h) array of an unspecified number of constant pointers to functions, each with one
parameter that has typeunsigned int and an unspecified number of other parameters, returning an
int .

6.7.7 Type definitions
Syntax

1 typedef-name:
identifier

Constraints

2 If a typedef name specifies a variably modified type then it shall have block scope.

Semantics

3 In a declaration whose storage-class specifier istypedef , each declarator defines an
identifier to be a typedef name that denotes the type specified for the identifier in the way
described in 6.7.5. Any array size expressions associated with variable length array
declarators are evaluated each time the declaration of the typedef name is reached in the
order of execution. Atypedef declaration does not introduce a new type, only a

117) As indicated by the syntax, empty parentheses in a type name are interpreted as ‘‘function with no

parameter specification’’, rather than redundant parentheses around the omitted identifier.

6.7.6 Language 6.7.7

122 Committee Draft — January 18, 1999 WG14/N869

synonym for the type so specified. That is, in the following declarations:

typedef T type_ident;
type_ident D;

type_ident is defined as a typedef name with the type specified by the declaration
specifiers inT (known asT), and the identifier inD has the type ‘‘derived-declarator-
type-list T’’ where thederived-declarator-type-listis specified by the declarators ofD. A
typedef name shares the same name space as other identifiers declared in ordinary
declarators.

4 EXAMPLE 1 After

typedef int MILES, KLICKSP();
typedef struct { double hi, lo; } range;

the constructions

MILES distance;
extern KLICKSP *metricp;
range x;
range z, *zp;

are all valid declarations. The type ofdistance is int , that ofmetricp is ‘‘pointer to function with no
parameter specification returningint ’’, and that ofx andz is the specified structure;zp is a pointer to
such a structure. The objectdistance has a type compatible with any otherint object.

5 EXAMPLE 2 After the declarations

typedef struct s1 { int x; } t1, *tp1;
typedef struct s2 { int x; } t2, *tp2;

type t1 and the type pointed to bytp1 are compatible. Typet1 is also compatible with typestruct
s1 , but not compatible with the typesstruct s2 , t2 , the type pointed to bytp2 , or int .

6 EXAMPLE 3 The following obscure constructions

typedef signed int t;
typedef int plain;
struct tag {

unsigned t:4;
const t:5;
plain r:5;

};

declare a typedef namet with typesigned int , a typedef nameplain with type int , and a structure
with three bit-field members, one namedt that contains values in the range [0, 15], an unnamed const-
qualified bit-field which (if it could be accessed) would contain values in at least the range [−15, +15], and
one namedr that contains values in the range [0, 31] or values in at least the range [−15, +15]. (The choice
of range is implementation-defined.) The first two bit-field declarations differ in thatunsigned is a type
specifier (which forcest to be the name of a structure member), whileconst is a type qualifier (which
modifiest which is still visible as a typedef name). If these declarations are followed in an inner scope by

t f(t (t));
long t;

then a functionf is declared with type ‘‘function returningsigned int with one unnamed parameter

6.7.7 Language 6.7.7

WG14/N869 Committee Draft — January 18, 1999 123

with type pointer to function returningsigned int with one unnamed parameter with typesigned
int ’’, and an identifiert with typelong int .

7 EXAMPLE 4 On the other hand, typedef names can be used to improve code readability. All three of the
following declarations of thesignal function specify exactly the same type, the first without making use
of any typedef names.

typedef void fv(int), (*pfv)(int);

void (*signal(int, void (*)(int)))(int);
fv *signal(int, fv *);
pfv signal(int, pfv);

8 EXAMPLE 5 If a typedef name denotes a variable length array type, the length of the array is fixed at the
time the typedef name is defined, not each time it is used:

void copyt(int n)
{

typedef int B[n]; // B is n ints,n evaluated now.
n += 1;
B a; // a is n ints,n without+= 1 .
int b[n]; // a andb are different sizes
for (int i = 1; i < n; i++)

a[i-1] = b[i];
}

Forward references: thesignal function (7.14.1.1).

6.7.8 Initialization
Syntax

1 initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

initializer-list:
designationopt initializer
initializer-list , designationopt initializer

designation:
designator-list =

designator-list:
designator
designator-list designator

designator:
[constant-expression]
. identifier

6.7.7 Language 6.7.8

124 Committee Draft — January 18, 1999 WG14/N869

Constraints

2 No initializer shall attempt to provide a value for an object not contained within the entity
being initialized.

3 The type of the entity to be initialized shall be an array of unknown size or an object type
that is not a variable length array type.

4 All the expressions in an initializer for an object that has static storage duration shall be
constant expressions or string literals.

5 If the declaration of an identifier has block scope, and the identifier has external or
internal linkage, the declaration shall have no initializer for the identifier.

6 If a designator has the form

[constant-expression]

then the current object (defined below) shall have array type and the expression shall be
an integer constant expression. If the array is of unknown size, any nonnegative value is
valid.

7 If a designator has the form

. identifier

then the current object (defined below) shall have structure or union type and the
identifier shall be the name of a member of that type.

Semantics

8 An initializer specifies the initial value stored in an object.

9 Except where explicitly stated otherwise, for the purposes of this subclause unnamed
members of objects of structure and union type do not participate in initialization.
Unnamed members of structure objects have indeterminate value even after initialization.

10 If an object that has automatic storage duration is not initialized explicitly, its value is
indeterminate. If an object that has static storage duration is not initialized explicitly,
then:

— if it has pointer type, it is initialized to a null pointer;

— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if it is an aggregate, every member is initialized (recursively) according to these rules;

— if it is a union, the first named member is initialized (recursively) according to these
rules.

11 The initializer for a scalar shall be a single expression, optionally enclosed in braces. The
initial value of the object is that of the expression (after conversion); the same type
constraints and conversions as for simple assignment apply, taking the type of the scalar

6.7.8 Language 6.7.8

WG14/N869 Committee Draft — January 18, 1999 125

to be the unqualified version of its declared type.

12 The rest of this subclause deals with initializers for objects that have aggregate or union
type.

13 The initializer for a structure or union object that has automatic storage duration shall be
either an initializer list as described below, or a single expression that has compatible
structure or union type. In the latter case, the initial value of the object, including
unnamed members, is that of the expression.

14 An array of character type may be initialized by a character string literal, optionally
enclosed in braces. Successive characters of the character string literal (including the
terminating null character if there is room or if the array is of unknown size) initialize the
elements of the array.

15 An array with element type compatible withwchar_t may be initialized by a wide
string literal, optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of
unknown size) initialize the elements of the array.

16 Otherwise, the initializer for an object that has aggregate or union type shall be a brace-
enclosed list of initializers for the elements or named members.

17 Each brace-enclosed initializer list has an associatedcurrent object. When no
designations are present, subobjects of the current object are initialized in order according
to the type of the current object: array elements in increasing subscript order, structure
members in declaration order, and the first named member of a union.118) In contrast, a
designation causes the following initializer to begin initialization of the subobject
described by the designator. Initialization then continues forward in order, beginning
with the next subobject after that described by the designator.119)

18 Each designator list begins its description with the current object associated with the
closest surrounding brace pair. Each item in the designator list (in order) specifies a
particular member of its current object and changes the current object for the next
designator (if any) to be that member.120) The current object that results at the end of the
designator list is the subobject to be initialized by the following initializer.

118) If the initializer list for a subaggregate or contained union does not begin with a left brace, its

subobjects are initialized as usual, but the subaggregate or contained union does not become the

current object: current objects are associated only with brace-enclosed initializer lists.

119) After a union member is initialized, the next object is not the next member of the union; instead, it is

the next subobject of an object containing the union.

120) Thus, a designator can only specify a strict subobject of the aggregate or union that is associated with

the surrounding brace pair. Note, too, that each separate designator list is independent.

6.7.8 Language 6.7.8

126 Committee Draft — January 18, 1999 WG14/N869

19 The initialization shall occur in initializer list order, each initializer provided for a
particular subobject overriding any previously listed initializer for the same subobject; all
subobjects that are not initialized explicitly shall be initialized implicitly the same as
objects that have static storage duration.

20 If the aggregate or union contains elements or members that are aggregates or unions,
these rules apply recursively to the subaggregates or contained unions. If the initializer of
a subaggregate or contained union begins with a left brace, the initializers enclosed by
that brace and its matching right brace initialize the elements or members of the
subaggregate or the contained union.Otherwise, only enough initializers from the list are
taken to account for the elements or members of the subaggregate or the first member of
the contained union; any remaining initializers are left to initialize the next element or
member of the aggregate of which the current subaggregate or contained union is a part.

21 If there are fewer initializers in a brace-enclosed list than there are elements or members
of an aggregate, or fewer characters in a string literal used to initialize an array of known
size than there are elements in the array, the remainder of the aggregate shall be
initialized implicitly the same as objects that have static storage duration.

22 If an array of unknown size is initialized, its size is determined by the largest indexed
element with an explicit initializer. At the end of its initializer list, the array no longer
has incomplete type.

23 The order in which any side effects occur among the initialization list expressions is
unspecified.121)

24 EXAMPLE 1 Provided that<complex.h> has been#include d, the declarations

int i = 3.5;
complex c = 5 + 3 * I;

define and initializei with the value 3 andc with the value5. 0+ 3. 0i .

25 EXAMPLE 2 The declaration

int x[] = { 1, 3, 5 };

defines and initializesx as a one-dimensional array object that has three elements, as no size was specified
and there are three initializers.

26 EXAMPLE 3 The declaration

int y[4][3] = {
{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 },

};

is a definition with a fully bracketed initialization: 1, 3, and 5 initialize the first row ofy (the array object
y[0]), namelyy[0][0] , y[0][1] , and y[0][2] . Likewise the next two lines initializey[1] and

121) In particular, the evaluation order need not be the same as the order of subobject initialization.

6.7.8 Language 6.7.8

WG14/N869 Committee Draft — January 18, 1999 127

y[2] . The initializer ends early, soy[3] is initialized with zeros. Precisely the same effect could have
been achieved by

int y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7

};

The initializer fory[0] does not begin with a left brace, so three items from the list are used. Likewise the
next three are taken successively fory[1] andy[2] .

27 EXAMPLE 4 The declaration

int z[4][3] = {
{ 1 }, { 2 }, { 3 }, { 4 }

};

initializes the first column ofz as specified and initializes the rest with zeros.

28 EXAMPLE 5 The declaration

struct { int a[3], b; } w[] = { { 1 }, 2 };

is a definition with an inconsistently bracketed initialization. It defines an array with two element
structures:w[0].a[0] is 1 andw[1].a[0] is 2; all the other elements are zero.

29 EXAMPLE 6 The declaration

short q[4][3][2] = {
{ 1 },
{ 2, 3 },
{ 4, 5, 6 }

};

contains an incompletely but consistently bracketed initialization. It defines a three-dimensional array
object: q[0][0][0] is 1, q[1][0][0] is 2, q[1][0][1] is 3, and 4, 5, and 6 initialize
q[2][0][0] , q[2][0][1] , andq[2][1][0] , respectively; all the rest are zero. The initializer for
q[0][0] does not begin with a left brace, so up to six items from the current list may be used. There is
only one, so the values for the remaining five elements are initialized with zero. Likewise, the initializers
for q[1][0] andq[2][0] do not begin with a left brace, so each uses up to six items, initializing their
respective two-dimensional subaggregates. If there had been more than six items in any of the lists, a
diagnostic message would have been issued. The same initialization result could have been achieved by:

short q[4][3][2] = {
1, 0, 0, 0, 0, 0,
2, 3, 0, 0, 0, 0,
4, 5, 6

};

or by:

6.7.8 Language 6.7.8

128 Committee Draft — January 18, 1999 WG14/N869

short q[4][3][2] = {
{

{ 1 },
},
{

{ 2, 3 },
},
{

{ 4, 5 },
{ 6 },

}
};

in a fully bracketed form.

30 Note that the fully bracketed and minimally bracketed forms of initialization are, in general, less likely to
cause confusion.

31 EXAMPLE 7 One form of initialization that completes array types involves typedef names. Given the
declaration

typedef int A[]; // OK - declared with block scope

the declaration

A a = { 1, 2 }, b = { 3, 4, 5 };

is identical to

int a[] = { 1, 2 }, b[] = { 3, 4, 5 };

due to the rules for incomplete types.

32 EXAMPLE 8 The declaration

char s[] = "abc", t[3] = "abc";

defines ‘‘plain’’ char array objectss and t whose elements are initialized with character string literals.
This declaration is identical to

char s[] = { ’a’, ’b’, ’c’, ’\0’ },
t[] = { ’a’, ’b’, ’c’ };

The contents of the arrays are modifiable. On the other hand, the declaration

char *p = "abc";

definesp with type ‘‘pointer tochar ’’ and initializes it to point to an object with type ‘‘array ofchar ’’
with length 4 whose elements are initialized with a character string literal. If an attempt is made to usep to
modify the contents of the array, the behavior is undefined.

33 EXAMPLE 9 Arrays can be initialized to correspond to the elements of an enumeration by using
designators:

enum { member_one, member_two };
const char *nm[] = {

[member_two] = "member two",
[member_one] = "member one",

};

6.7.8 Language 6.7.8

WG14/N869 Committee Draft — January 18, 1999 129

34 EXAMPLE 10 Structure members can be initialized to nonzero values without depending on their order:

div_t answer = { .quot = 2, .rem = -1 };

35 EXAMPLE 11 Designators can be used to provide explicit initialization when unadorned initializer lists
might be misunderstood:

struct { int a[3], b; } w[] =
{ [0].a = {1}, [1].a[0] = 2 };

36 EXAMPLE 12 Space can be ‘‘allocated’’ from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

37 In the above, ifMAXis greater than ten, there will be some zero-valued elements in the middle; if it is less
than ten, some of the values provided by the first five initializers will be overridden by the second five.

38 EXAMPLE 13 Any member of a union can be initialized:

union { /* ... */ } u = { .any_member = 42 };

Forward references: common definitions<stddef.h> (7.17).

6.7.8 Language 6.7.8

130 Committee Draft — January 18, 1999 WG14/N869

6.8 Statements
Syntax

1 statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

2 A statementspecifies an action to be performed. Except as indicated, statements are
executed in sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit.
The initializers of objects that have automatic storage duration, and the variable length
array declarators of ordinary identifiers with block scope, are evaluated and the values are
stored in the objects (including storing an indeterminate value in objects without an
initializer) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

4 A full expressionis an expression that is not part of another expression or declarator.
Each of the following is a full expression: an initializer; the expression in an expression
statement; the controlling expression of a selection statement (if or switch); the
controlling expression of awhile or do statement; each of the (optional) expressions of
a for statement; the (optional) expression in areturn statement. The end of a full
expression is a sequence point.

Forward references: expression and null statements (6.8.3), selection statements
(6.8.4), iteration statements (6.8.5), thereturn statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

1 labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

Constraints

2 A case or default label shall appear only in aswitch statement. Further
constraints on such labels are discussed under theswitch statement.

6.8 Language 6.8.1

WG14/N869 Committee Draft — January 18, 1999 131

3 Label names shall be unique within a function.

Semantics

4 Any statement may be preceded by a prefix that declares an identifier as a label name.
Labels in themselves do not alter the flow of control, which continues unimpeded across
them.

Forward references: thegoto statement (6.8.6.1), theswitch statement (6.8.4.2).

6.8.2 Compound statement, or block
Syntax

1 compound-statement:
{ block-item-listopt }

block-item-list:
block-item
block-item-list block-item

block-item:
declaration
statement

Semantics

2 A compound statementis a block.

6.8.3 Expression and null statements
Syntax

1 expression-statement:
expressionopt ;

Semantics

2 The expression in an expression statement is evaluated as a void expression for its side
effects.122)

3 A null statement(consisting of just a semicolon) performs no operations.

4 EXAMPLE 1 If a function call is evaluated as an expression statement for its side effects only, the
discarding of its value may be made explicit by converting the expression to a void expression by means of
a cast:

int p(int);
/* ... */
(void)p(0);

122) Such as assignments, and function calls which have side effects.

6.8.1 Language 6.8.3

132 Committee Draft — January 18, 1999 WG14/N869

5 EXAMPLE 2 In the program fragment

char *s;
/* ... */
while (*s++ != ’\0’)

;

a null statement is used to supply an empty loop body to the iteration statement.

6 EXAMPLE 3 A null statement may also be used to carry a label just before the closing} of a compound
statement.

while (loop1) {
/* ... */
while (loop2) {

/* ... */
if (want_out)

goto end_loop1;
/* ... */

}
/* ... */

end_loop1: ;
}

Forward references: iteration statements (6.8.5).

6.8.4 Selection statements
Syntax

1 selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

Semantics

2 A selection statement selects among a set of statements depending on the value of a
controlling expression.

3 A selection statement is a block whose scope is a strict subset of the scope of its
enclosing block.Each associated substatement is also a block whose scope is a strict
subset of the scope of the selection statement.

6.8.3 Language 6.8.4

WG14/N869 Committee Draft — January 18, 1999 133

6.8.4.1 Theif statement

Constraints

1 The controlling expression of anif statement shall have scalar type.

Semantics

2 In both forms, the first substatement is executed if the expression compares unequal to 0.
In theelse form, the second substatement is executed if the expression compares equal
to 0. If the first substatement is reached via a label, the second substatement is not
executed.

3 An else is associated with the lexically nearest precedingif that is allowed by the
syntax.

6.8.4.2 Theswitch statement

Constraints

1 The controlling expression of aswitch statement shall have integer type.

2 If a switch statement has an accessiblecase or default label within the scope of an
identifier with a variably modified type, the entireswitch statement shall be within the
scope of that identifier.123)

3 The expression of eachcase label shall be an integer constant expression and no two of
thecase constant expressions in the sameswitch statement shall have the same value
after conversion. There may be at most onedefault label in aswitch statement.
(Any enclosedswitch statement may have adefault label or case constant
expressions with values that duplicatecase constant expressions in the enclosing
switch statement.)

Semantics

4 A switch statement causes control to jump to, into, or past the statement that is the
switch body, depending on the value of a controlling expression, and on the presence of a
default label and the values of anycase labels on or in the switch body. Acase or
default label is accessible only within the closest enclosingswitch statement.

5 The integer promotions are performed on the controlling expression. The constant
expression in eachcase label is converted to the promoted type of the controlling
expression. If a converted value matches that of the promoted controlling expression,
control jumps to the statement following the matchedcase label. Otherwise, if there is
a default label, control jumps to the labeled statement. If no convertedcase constant
expression matches and there is nodefault label, no part of the switch body is

123) That is, the declaration either precedes theswitch statement, or it follows the lastcase or

default label associated with theswitch that is in the block containing the declaration.

6.8.4 Language 6.8.4.2

134 Committee Draft — January 18, 1999 WG14/N869

executed.

Implementation limits

6 As discussed in 5.2.4.1, the implementation may limit the number ofcase values in a
switch statement.

7 EXAMPLE In the artificial program fragment

switch (expr)
{

int i = 4;
f(i);

case 0:
i = 17;
/* falls through intodefault code */

default:
printf("%d\n", i);

}

the object whose identifier isi exists with automatic storage duration (within the block) but is never
initialized, and thus if the controlling expression has a nonzero value, the call to theprintf function will
access an indeterminate value. Similarly, the call to the functionf cannot be reached.

6.8.5 Iteration statements
Syntax

1 iteration-statement:
while (expression) statement
do statementwhile (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

Constraints

2 The controlling expression of an iteration statement shall have scalar type.

3 The declaration part of afor statement shall only declare identifiers for objects having
storage classauto or register .

Semantics

4 An iteration statement causes a statement called theloop bodyto be executed repeatedly
until the controlling expression compares equal to 0.

5 An iteration statement is a block whose scope is a strict subset of the scope of its
enclosing block.The loop body is also a block whose scope is a strict subset of the scope
of the iteration statement.

6.8.4.2 Language 6.8.5

WG14/N869 Committee Draft — January 18, 1999 135

6.8.5.1 Thewhile statement

1 The evaluation of the controlling expression takes place before each execution of the loop
body.

6.8.5.2 Thedo statement

1 The evaluation of the controlling expression takes place after each execution of the loop
body.

6.8.5.3 Thefor statement

1 The statement

for (clause-1 ; expression-2; expression-3) statement

behaves as follows: The expressionexpression-2is the controlling expression that is
evaluated before each execution of the loop body. The expressionexpression-3is
evaluated as a void expression after each execution of the loop body. Ifclause-1is an
expression, it is evaluated as a void expression before the first evaluation of the
controlling expression.124) ∗

2 Bothclause-1andexpression-3can be omitted. An omittedexpression-2is replaced by a∗
nonzero constant. ∗

6.8.6 Jump statements
Syntax

1 jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

Semantics

2 A jump statement causes an unconditional jump to another place.

124) Thus,clause-1specifies initialization for the loop, possibly declaring one or more variables for use in

the loop; the controlling expression,expression-2, specifies an evaluation made before each iteration,

such that execution of the loop continues until the expression compares equal to 0; andexpression-3

specifies an operation (such as incrementing) that is performed after each iteration. Ifclause-1is a

declaration, then the scope of any variable it declares is the remainder of the declaration and the entire

loop, including the other two expressions.

6.8.5 Language 6.8.6

136 Committee Draft — January 18, 1999 WG14/N869

6.8.6.1 Thegoto statement

Constraints

1 The identifier in agoto statement shall name a label located somewhere in the enclosing
function. Agoto statement shall not jump from outside the scope of an identifier having
a variably modified type to inside the scope of that identifier.

Semantics

2 A goto statement causes an unconditional jump to the statement prefixed by the named
label in the enclosing function.

3 EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The
following outline presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by
continue statements, for example.)

/* ... */
goto first_time;
for (;;) {

// determine next operation
/* ... */
if (need to reinitialize) {

// reinitialize-only code
/* ... */

first_time:
// general initialization code
/* ... */
continue;

}
// handle other operations
/* ... */

}

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably
modified types. A jump within the scope, however, is permitted.

6.8.6 Language 6.8.6.1

WG14/N869 Committee Draft — January 18, 1999 137

goto lab3; // Error: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // OK, going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // Error: going INTO scope of VLA.

6.8.6.2 Thecontinue statement

Constraints

1 A continue statement shall appear only in or as a loop body.

Semantics

2 A continue statement causes a jump to the loop-continuation portion of the smallest
enclosing iteration statement; that is, to the end of the loop body. More precisely, in each
of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin: ;
}

do {
/* ... */
continue;
/* ... */

contin: ;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin: ;
}

unless thecontinue statement shown is in an enclosed iteration statement (in which
case it is interpreted within that statement), it is equivalent togoto contin; .125)

125) Following thecontin: label is a null statement.

6.8.6.1 Language 6.8.6.2

138 Committee Draft — January 18, 1999 WG14/N869

6.8.6.3 Thebreak statement

Constraints

1 A break statement shall appear only in or as a switch body or loop body.

Semantics

2 A break statement terminates execution of the smallest enclosingswitch or iteration
statement.

6.8.6.4 Thereturn statement

Constraints

1 A return statement with an expression shall not appear in a function whose return type
is void . A return statement without an expression shall only appear in a function
whose return type isvoid .

Semantics

2 A return statement terminates execution of the current function and returns control to
its caller. A function may have any number ofreturn statements.

3 If a return statement with an expression is executed, the value of the expression is
returned to the caller as the value of the function call expression. If the expression has a
type different from the return type of the function in which it appears, the value is
converted as if by assignment to an object having the return type of the function.126)

4 EXAMPLE In:

126) Thereturn statement is not an assignment. The overlap restriction of subclause 6.5.16.1 does not

apply to the case of function return.

6.8.6.2 Language 6.8.6.4

WG14/N869 Committee Draft — January 18, 1999 139

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using
a function call to fetch the value).

6.8.6.4 Language 6.8.6.4

140 Committee Draft — January 18, 1999 WG14/N869

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

2 The storage-class specifiersauto and register shall not appear in the declaration
specifiers in an external declaration.

3 There shall be no more than one external definition for each identifier declared with
internal linkage in a translation unit. Moreover, if an identifier declared with internal
linkage is used in an expression (other than as a part of the operand of asizeof
operator), there shall be exactly one external definition for the identifier in the translation
unit.

Semantics

4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit,
which consists of a sequence of external declarations. These are described as ‘‘external’’
because they appear outside any function (and hence have file scope). As discussed in
6.7, a declaration that also causes storage to be reserved for an object or a function named
by the identifier is a definition.

5 An external definitionis an external declaration that is also a definition of a function or an
object. If an identifier declared with external linkage is used in an expression (other than
as part of the operand of asizeof operator), somewhere in the entire program there
shall be exactly one external definition for the identifier; otherwise, there shall be no more
than one.127)

127) Thus, if an identifier declared with external linkage is not used in an expression, there need be no

external definition for it.

6.9 Language 6.9

WG14/N869 Committee Draft — January 18, 1999 141

6.9.1 Function definitions
Syntax

1 function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

2 The identifier declared in a function definition (which is the name of the function) shall
have a function type, as specified by the declarator portion of the function definition.128)

3 The return type of a function shall bevoid or an object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be eitherextern or
static .

5 If the declarator includes a parameter type list, the declaration of each parameter shall
include an identifier, except for the special case of a parameter list consisting of a single
parameter of typevoid , in which case there shall not be an identifier. No declaration list
shall follow.

6 If the declarator includes an identifier list, each declaration in the declaration list shall
have at least one declarator, those declarators shall declare only identifiers from the
identifier list, and every identifier in the identifier list shall be declared. An identifier
declared as a typedef name shall not be redeclared as a parameter. The declarations in the
declaration list shall contain no storage-class specifier other thanregister and no
initializations.

128) The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); /* typeF is ‘‘function of no arguments returningint ’’ */

F f, g; /* f andg both have type compatible withF */

F f { /* ... */ } /* WRONG: syntax/constraint error*/

F g() { /* ... */ } /* WRONG: declares thatg returns a function*/

int f(void) { /* ... */ } /* RIGHT: f has type compatible withF */

int g() { /* ... */ } /* RIGHT:g has type compatible withF */

F *e(void) { /* ... */ } /* e returns a pointer to a function*/

F *((e))(void) { /* ... */ } /* same: parentheses irrelevant*/

int (*fp)(void); /* fp points to a function that has typeF */

F *Fp; /* Fp points to a function that has typeF */

6.9.1 Language 6.9.1

142 Committee Draft — January 18, 1999 WG14/N869

Semantics

7 The declarator in a function definition specifies the name of the function being defined
and the identifiers of its parameters. If the declarator includes a parameter type list, the
list also specifies the types of all the parameters; such a declarator also serves as a
function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,129) the types of the parameters shall be declared in a
following declaration list. In either case, the type of each parameter is adjusted as
described in 6.7.5.3 for a parameter type list; the resulting type shall be an object type.

8 If a function that accepts a variable number of arguments is defined without a parameter
type list that ends with the ellipsis notation, the behavior is undefined.

9 Each parameter has automatic storage duration. Its identifier is an lvalue, which is in
effect declared at the head of the compound statement that constitutes the function body
(and therefore cannot be redeclared in the function body except in an enclosed block).
The layout of the storage for parameters is unspecified.

10 On entry to the function, the size expressions of each variably modified parameter are
evaluated and the value of each argument expression is converted to the type of the
corresponding parameter as if by assignment. (Array expressions and function
designators as arguments were converted to pointers before the call.)

11 After all parameters have been assigned, the compound statement that constitutes the
body of the function definition is executed.

12 If the} that terminates a function is reached, and the value of the function call is used by
the caller, the behavior is undefined.

13 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a : b;
}

extern is the storage-class specifier andint is the type specifier;max(int a, int b) is the
function declarator; and

{ return a > b ? a : b; }

is the function body. The following similar definition uses the identifier-list form for the parameter
declarations:

129) See ‘‘future language directions’’ (6.11.5).

6.9.1 Language 6.9.1

WG14/N869 Committee Draft — January 18, 1999 143

extern int max(a, b)
int a, b;
{

return a > b ? a : b;
}

Hereint a, b; is the declaration list for the parameters. The difference between these two definitions is
that the first form acts as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function, whereas the second form does not.

14 EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... */
g(f);

Then the definition ofg might read

void g(int (*funcp)(void))
{

/* ... */ (*funcp)() /* or funcp() ... */
}

or, equivalently,

void g(int func(void))
{

/* ... */ func() /* or (*func)() ... */
}

6.9.2 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, the
declaration is an external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and
without a storage-class specifier or with the storage-class specifierstatic , constitutes a
tentative definition. If a translation unit contains one or more tentative definitions for an
identifier, and the translation unit contains no external definition for that identifier, then
the behavior is exactly as if the translation unit contains a file scope declaration of that
identifier, with the composite type as of the end of the translation unit, with an initializer
equal to 0.

3 If the declaration of an identifier for an object is a tentative definition and has internal
linkage, the declared type shall not be an incomplete type.

4 EXAMPLE 1

6.9.1 Language 6.9.2

144 Committee Draft — January 18, 1999 WG14/N869

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to pre vious
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to pre vious
int i4; // valid tentative definition, refers to pre vious
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to pre vious, whose linkage is external
extern int i2; // refers to pre vious, whose linkage is internal
extern int i3; // refers to pre vious, whose linkage is external
extern int i4; // refers to pre vious, whose linkage is external
extern int i5; // refers to pre vious, whose linkage is internal

5 EXAMPLE 2 If at the end of the translation unit containing

int i[];

the arrayi still has incomplete type, the implicit initializer causes it to have one element, which is set to
zero on program startup.

6.9.2 Language 6.9.2

WG14/N869 Committee Draft — January 18, 1999 145

6.10 Preprocessing directives
Syntax

1 preprocessing-file:
groupopt

group:
group-part
group group-part

group-part:
pp-tokensopt new-line
if-section
control-line

if-section:
if-group elif-groupsopt else-groupopt endif-line

if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

elif-groups:
elif-group
elif-groups elif-group

elif-group:
elif constant-expression new-line groupopt

else-group:
else new-line groupopt

endif-line:
endif new-line

6.10 Language 6.10

146 Committee Draft — January 18, 1999 WG14/N869

control-line:
include pp-tokens new-line
define identifier replacement-list new-line
define identifier lparen identifier-listopt)

replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...)

replacement-list new-line
undef identifier new-line
line pp-tokens new-line
error pp-tokensopt new-line
pragma pp-tokensopt new-line
new-line

lparen:
a (character not immediately preceded by white-space

replacement-list:
pp-tokensopt

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

new-line:
the new-line character

Description

2 A preprocessing directive consists of a sequence of preprocessing tokens that begins with
a # preprocessing token that (at the start of translation phase 4) is either the first character
in the source file (optionally after white space containing no new-line characters) or that
follows white space containing at least one new-line character, and is ended by the next
new-line character.130) A new-line character ends the preprocessing directive even if it
occurs within what would otherwise be an invocation of a function-like macro.

Constraints

3 The only white-space characters that shall appear between preprocessing tokens within a
preprocessing directive (from just after the introducing# preprocessing token through
just before the terminating new-line character) are space and horizontal-tab (including
spaces that have replaced comments or possibly other white-space characters in

130) Thus, preprocessing directives are commonly called ‘‘lines’’. These ‘‘lines’’ hav e no other syntactic

significance, as all white space is equivalent except in certain situations during preprocessing (see the

character string literal creation operator in 6.10.3.2, for example).

6.10 Language 6.10

WG14/N869 Committee Draft — January 18, 1999 147

translation phase 3).

Semantics

4 The implementation can process and skip sections of source files conditionally, include
other source files, and replace macros. These capabilities are calledpreprocessing,
because conceptually they occur before translation of the resulting translation unit.

5 The preprocessing tokens within a preprocessing directive are not subject to macro
expansion unless otherwise stated.

6 EXAMPLE In:

#define EMPTY
EMPTY # include <file.h>

the sequence of preprocessing tokens on the second line isnot a preprocessing directive, because it does not
begin with a# at the start of translation phase 4, even though it will do so after the macroEMPTYhas been
replaced.

6.10.1 Conditional inclusion
Constraints

1 The expression that controls conditional inclusion shall be an integer constant expression
except that: it shall not contain a cast; identifiers (including those lexically identical to
keywords) are interpreted as described below;131) and it may contain unary operator
expressions of the form

defined identifier
or

defined (identifier)

which evaluate to 1 if the identifier is currently defined as a macro name (that is, if it is
predefined or if it has been the subject of a#define preprocessing directive without an
intervening#undef directive with the same subject identifier), 0 if it is not.

Semantics

2 Preprocessing directives of the forms

if constant-expression new-line groupopt
elif constant-expression new-line groupopt

check whether the controlling constant expression evaluates to nonzero.

3 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become
the controlling constant expression are replaced (except for those macro names modified
by the defined unary operator), just as in normal text. If the tokendefined is

131) Because the controlling constant expression is evaluated during translation phase 4, all identifiers

either are or are not macro names — there simply are no keywords, enumeration constants, etc.

6.10 Language 6.10.1

148 Committee Draft — January 18, 1999 WG14/N869

generated as a result of this replacement process or use of thedefined unary operator
does not match one of the two specified forms prior to macro replacement, the behavior is
undefined. After all replacements due to macro expansion and thedefined unary
operator have been performed, all remaining identifiers are replaced with the pp-number
0, and then each preprocessing token is converted into a token. The resulting tokens
compose the controlling constant expression which is evaluated according to the rules of
6.6, except that all signed integer types and all unsigned integer types act as if they hav e
the same representation as, respectively, the typesintmax_t anduintmax_t defined
in the header<stdint.h> . This includes interpreting character constants, which may
involve converting escape sequences into execution character set members. Whether the
numeric value for these character constants matches the value obtained when an identical
character constant occurs in an expression (other than within a#if or #elif directive)
is implementation-defined.132) Also, whether a single-character character constant may
have a neg ative value is implementation-defined.

4 Preprocessing directives of the forms

ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

check whether the identifier is or is not currently defined as a macro name. Their
conditions are equivalent to#if defined identifier and #if !defined identifier
respectively.

5 Each directive’s condition is checked in order. If it evaluates to false (zero), the group
that it controls is skipped: directives are processed only through the name that determines
the directive in order to keep track of the level of nested conditionals; the rest of the
directives’ preprocessing tokens are ignored, as are the other preprocessing tokens in the
group. Only the first group whose control condition evaluates to true (nonzero) is
processed. If none of the conditions evaluates to true, and there is a#else directive, the
group controlled by the#else is processed; lacking a#else directive, all the groups
until the#endif are skipped.133)

132) Thus, the constant expression in the following#if directive andif statement is not guaranteed to

evaluate to the same value in these two contexts.

#if ’z’ - ’a’ == 25

if (’z’ - ’a’ == 25)

133) As indicated by the syntax, a preprocessing token shall not follow a#else or #endif directive

before the terminating new-line character. Howev er, comments may appear anywhere in a source file,

including within a preprocessing directive.

6.10.1 Language 6.10.1

WG14/N869 Committee Draft — January 18, 1999 149

Forward references: macro replacement (6.10.3), source file inclusion (6.10.2), largest
integer types (7.18.1.5).

6.10.2 Source file inclusion
Constraints

1 A #include directive shall identify a header or source file that can be processed by the
implementation.

Semantics

2 A preprocessing directive of the form

include < h-char-sequence> new-line

searches a sequence of implementation-defined places for a header identified uniquely by
the specified sequence between the< and> delimiters, and causes the replacement of that
directive by the entire contents of the header. How the places are specified or the header
identified is implementation-defined.

3 A preprocessing directive of the form

include " q-char-sequence" new-line

causes the replacement of that directive by the entire contents of the source file identified
by the specified sequence between the" delimiters. The named source file is searched
for in an implementation-defined manner. If this search is not supported, or if the search
fails, the directive is reprocessed as if it read

include < h-char-sequence> new-line

with the identical contained sequence (including> characters, if any) from the original
directive.

4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterinclude in the directive are processed just as in normal text. (Each
identifier currently defined as a macro name is replaced by its replacement list of
preprocessing tokens.) The directive resulting after all replacements shall match one of
the two previous forms.134) The method by which a sequence of preprocessing tokens
between a< and a> preprocessing token pair or a pair of" characters is combined into a
single header name preprocessing token is implementation-defined.

134) Note that adjacent string literals are not concatenated into a single string literal (see the translation

phases in 5.1.1.2); thus, an expansion that results in two string literals is an invalid directive.

6.10.1 Language 6.10.2

150 Committee Draft — January 18, 1999 WG14/N869

5 The implementation shall provide unique mappings for sequences consisting of one or
more letters or digits (as defined in 5.2.1) followed by a period (.) and a single letter.
The first character shall be a letter. The implementation may ignore the distinctions of
alphabetical case and restrict the mapping to eight significant characters before the
period.

6 A #include preprocessing directive may appear in a source file that has been read
because of a#include directive in another file, up to an implementation-defined
nesting limit (see 5.2.4.1).

7 EXAMPLE 1 The most common uses of#include preprocessing directives are as in the following:

#include <stdio.h>
#include "myprog.h"

8 EXAMPLE 2 This illustrates macro-replaced#include directives:

#if VERSION == 1
#define INCFILE "vers1.h"

#elif VERSION == 2
#define INCFILE "vers2.h" // and so on

#else
#define INCFILE "versN.h"

#endif
#include INCFILE

Forward references: macro replacement (6.10.3).

6.10.3 Macro replacement
Constraints

1 Tw o replacement lists are identical if and only if the preprocessing tokens in both have
the same number, ordering, spelling, and white-space separation, where all white-space
separations are considered identical.

2 An identifier currently defined as a macro without use oflparen (an object-like macro)
shall not be redefined by another#define preprocessing directive unless the second
definition is an object-like macro definition and the two replacement lists are identical.

3 An identifier currently defined as a macro usinglparen (a function-like macro) shall not
be redefined by another#define preprocessing directive unless the second definition is
a function-like macro definition that has the same number and spelling of parameters, and
the two replacement lists are identical.

4 If the identifier-list in the macro definition does not end with an ellipsis, the number of
arguments, including those arguments consisting of no preprocessing tokens, in an
invocation of a function-like macro shall agree with the number of parameters in the
macro definition. Otherwise, there shall be more arguments in the invocation than there
are parameters in the macro definition (excluding the...). There shall exist a)
preprocessing token that terminates the invocation.

6.10.2 Language 6.10.3

WG14/N869 Committee Draft — January 18, 1999 151

5 The identifier_ _VA_ARGS_ _ shall only occur in the replacement-list of a#define
preprocessing directive using the ellipsis notation in the arguments.

6 A parameter identifier in a function-like macro shall be uniquely declared within its
scope.

Semantics

7 The identifier immediately following thedefine is called themacro name. There is one
name space for macro names. Any white-space characters preceding or following the
replacement list of preprocessing tokens are not considered part of the replacement list
for either form of macro.

8 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which
a preprocessing directive could begin, the identifier is not subject to macro replacement.

9 A preprocessing directive of the form

define identifier replacement-list new-line

defines an object-like macro that causes each subsequent instance of the macro name135)

to be replaced by the replacement list of preprocessing tokens that constitute the
remainder of the directive.

10 A preprocessing directive of the form

define identifier lparen identifier-listopt) replacement-list new-line
define identifier lparen ...) replacement-list new-line
define identifier lparen identifier-list, ...) replacement-list new-line

defines a function-like macro with arguments, similar syntactically to a function call. The
parameters are specified by the optional list of identifiers, whose scope extends from their
declaration in the identifier list until the new-line character that terminates the#define
preprocessing directive. Each subsequent instance of the function-like macro name
followed by a(as the next preprocessing token introduces the sequence of preprocessing
tokens that is replaced by the replacement list in the definition (an invocation of the
macro). The replaced sequence of preprocessing tokens is terminated by the matching)
preprocessing token, skipping intervening matched pairs of left and right parenthesis
preprocessing tokens. Within the sequence of preprocessing tokens making up an
invocation of a function-like macro, new-line is considered a normal white-space
character.

135) Since, by macro-replacement time, all character constants and string literals are preprocessing tokens,

not sequences possibly containing identifier-like subsequences (see 5.1.1.2, translation phases), they

are never scanned for macro names or parameters.

6.10.3 Language 6.10.3

152 Committee Draft — January 18, 1999 WG14/N869

11 The sequence of preprocessing tokens bounded by the outside-most matching parentheses
forms the list of arguments for the function-like macro. The individual arguments within
the list are separated by comma preprocessing tokens, but comma preprocessing tokens
between matching inner parentheses do not separate arguments. If there are sequences of
preprocessing tokens within the list of arguments that would otherwise act as
preprocessing directives, the behavior is undefined.

12 If there is a... in the identifier-list in the macro definition, then the trailing arguments,
including any separating comma preprocessing tokens, are merged to form a single item:
the variable arguments. The number of arguments so combined is such that, following
merger, the number of arguments is one more than the number of parameters in the macro
definition (excluding the...).

6.10.3.1 Argument substitution

1 After the arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A parameter in the replacement list, unless preceded
by a# or ## preprocessing token or followed by a## preprocessing token (see below), is
replaced by the corresponding argument after all macros contained therein have been
expanded. Before being substituted, each argument’s preprocessing tokens are
completely macro replaced as if they formed the rest of the preprocessing file; no other
preprocessing tokens are available.

2 An identifier_ _VA_ARGS_ _ that occurs in the replacement list shall be treated as if it
were a parameter, and the variable arguments shall form the preprocessing tokens used to
replace it.

6.10.3.2 The# operator

Constraints

1 Each# preprocessing token in the replacement list for a function-like macro shall be
followed by a parameter as the next preprocessing token in the replacement list.

Semantics

2 If, in the replacement list, a parameter is immediately preceded by a# preprocessing
token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding
argument. Each occurrence of white space between the argument’s preprocessing tokens
becomes a single space character in the character string literal. White space before the
first preprocessing token and after the last preprocessing token composing the argument
is deleted. Otherwise, the original spelling of each preprocessing token in the argument
is retained in the character string literal, except for special handling for producing the
spelling of string literals and character constants: a\ character is inserted before each"
and \ character of a character constant or string literal (including the delimiting"
characters), except that it is unspecified whether a\ character is inserted before the\

6.10.3 Language 6.10.3.2

WG14/N869 Committee Draft — January 18, 1999 153

character beginning a universal character name. If the replacement that results is not a
valid character string literal, the behavior is undefined. The character string literal
corresponding to an empty argument is"" . The order of evaluation of# and## operators
is unspecified.

6.10.3.3 The## operator

Constraints

1 A ## preprocessing token shall not occur at the beginning or at the end of a replacement
list for either form of macro definition.

Semantics

2 If, in the replacement list of a function-like macro, a parameter is immediately preceded
or followed by a## preprocessing token, the parameter is replaced by the corresponding
argument’s preprocessing token sequence; however, if an argument consists of no
preprocessing tokens, the parameter is replaced by aplacemarkerpreprocessing token
instead.

3 For both object-like and function-like macro invocations, before the replacement list is
reexamined for more macro names to replace, each instance of a## preprocessing token
in the replacement list (not from an argument) is deleted and the preceding preprocessing
token is concatenated with the following preprocessing token. Placemarker
preprocessing tokens are handled specially: concatenation of two placemarkers results in
a single placemarker preprocessing token, and concatenation of a placemarker with a
non−placemarker preprocessing token results in the non−placemarker preprocessing
token. If the result is not a valid preprocessing token, the behavior is undefined. The
resulting token is available for further macro replacement. The order of evaluation of##
operators is unspecified.

4 EXAMPLE In the following fragment:

#define hash_hash # ## #
#define mkstr(a) # a
#define in_between(a) mkstr(a)
#define join(c, d) in_between(c hash_hash d)

char p[] = join(x, y); // equivalent to
// char p[] = "x ## y";

The expansion produces, at various stages:

6.10.3.2 Language 6.10.3.3

154 Committee Draft — January 18, 1999 WG14/N869

join(x, y)

in_between(x hash_hash y)

in_between(x ## y)

mkstr(x ## y)

"x ## y"

In other words, expandinghash_hash produces a new token, consisting of two adjacent sharp signs, but
this new token is not the## operator.

6.10.3.4 Rescanning and further replacement

1 After all parameters in the replacement list have been substituted and# and ##
processing has taken place, all placemarker preprocessing tokens are removed. Then, the
resulting preprocessing token sequence is rescanned, along with all subsequent
preprocessing tokens of the source file, for more macro names to replace.

2 If the name of the macro being replaced is found during this scan of the replacement list
(not including the rest of the source file’s preprocessing tokens), it is not replaced.
Further, if any nested replacements encounter the name of the macro being replaced, it is
not replaced. These nonreplaced macro name preprocessing tokens are no longer
available for further replacement even if they are later (re)examined in contexts in which
that macro name preprocessing token would otherwise have been replaced.

3 The resulting completely macro-replaced preprocessing token sequence is not processed
as a preprocessing directive even if it resembles one, but all pragma unary operator
expressions within it are then processed as specified in 6.10.9 below.

6.10.3.5 Scope of macro definitions

1 A macro definition lasts (independent of block structure) until a corresponding#undef
directive is encountered or (if none is encountered) until the end of the preprocessing
translation unit. Macro definitions have no significance after translation phase 4.

2 A preprocessing directive of the form

undef identifier new-line

causes the specified identifier no longer to be defined as a macro name. It is ignored if
the specified identifier is not currently defined as a macro name.

3 EXAMPLE 1 The simplest use of this facility is to define a ‘‘manifest constant’’, as in

#define TABSIZE 100

int table[TABSIZE];

4 EXAMPLE 2 The following defines a function-like macro whose value is the maximum of its arguments.
It has the advantages of working for any compatible types of the arguments and of generating in-line code
without the overhead of function calling. It has the disadvantages of evaluating one or the other of its

6.10.3.3 Language 6.10.3.5

WG14/N869 Committee Draft — January 18, 1999 155

arguments a second time (including side effects) and generating more code than a function if invoked
several times. It also cannot have its address taken, as it has none.

#define max(a, b) ((a) > (b) ? (a) : (b))

The parentheses ensure that the arguments and the resulting expression are bound properly.

5 EXAMPLE 3 To illustrate the rules for redefinition and reexamination, the sequence

#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z[0]
#define h g(˜
#define m(a) a(w)
#define w 0,1
#define t(a) a
#define p() int
#define q(x) x
#define r(x,y) x ## y
#define str(x) # x

f(y+1) + f(f(z)) % t(t(g)(0) + t)(1);
g(x+(3,4)-w) | h 5) & m

(f)ˆm(m);
p() i[q()] = { q(1), r(2,3), r(4,), r(,5), r(,) };
char c[2][6] = { str(hello), str() };

results in

f(2 * (y+1)) + f(2 * (f(2 * (z[0])))) % f(2 * (0)) + t(1);
f(2 * (2+(3,4)-0,1)) | f(2 * (˜ 5)) & f(2 * (0,1))ˆm(0,1);
int i[] = { 1, 23, 4, 5, };
char c[2][6] = { "hello", "" };

6 EXAMPLE 4 To illustrate the rules for creating character string literals and concatenating tokens, the
sequence

#define str(s) # s
#define xstr(s) str(s)
#define debug(s, t) printf("x" # s "= %d, x" # t "= %s", \

x ## s, x ## t)
#define INCFILE(n) vers ## n // from previous#include example
#define glue(a, b) a ## b
#define xglue(a, b) glue(a, b)
#define HIGHLOW "hello"
#define LOW LOW ", world"

6.10.3.5 Language 6.10.3.5

156 Committee Draft — January 18, 1999 WG14/N869

debug(1, 2);
fputs(str(strncmp("abc\0d", "abc", ’\4’) // this goes away

== 0) str(: @\n), s);
#include xstr(INCFILE(2).h)
glue(HIGH, LOW);
xglue(HIGH, LOW)

results in

printf("x" "1" "= %d, x" "2" "= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0" ": @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello" ", world"

or, after concatenation of the character string literals,

printf("x1= %d, x2= %s", x1, x2);
fputs(

"strncmp(\"abc\\0d\", \"abc\", ’\\4’) == 0: @\n",
s);

#include "vers2.h" (after macro replacement, before file access)
"hello";
"hello, world"

Space around the# and## tokens in the macro definition is optional.

7 EXAMPLE 5 To illustrate the rules for

placemarker ## placemarker

the sequence

#define t(x,y,z) x ## y ## z
int j[] = { t(1,2,3), t(,4,5), t(6,,7), t(8,9,),

t(10,,), t(,11,), t(,,12), t(,,) };

results in

int j[] = { 123, 45, 67, 89,
10, 11, 12, };

8 EXAMPLE 6 To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space*/ (1-1) /* other */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* note the white space*/ \

a /* other stuff on this line
*/)

But the following redefinitions are invalid:

6.10.3.5 Language 6.10.3.5

WG14/N869 Committee Draft — January 18, 1999 157

#define OBJ_LIKE (0) /* different token sequence*/
#define OBJ_LIKE (1 - 1) /* different white space*/
#define FUNC_LIKE(b) (a) /* different parameter usage*/
#define FUNC_LIKE(b) (b) /* different parameter spelling*/

9 EXAMPLE 7 Finally, to show the variable argument list macro facilities:

#define debug(...) fprintf(stderr, _ _VA_ARGS_ _)
#define showlist(...) puts(#_ _VA_ARGS_ _)
#define report(test, ...) ((test)?puts(#test):\

printf(_ _VA_ARGS_ _))
debug("Flag");
debug("X = %d\n", x);
showlist(The first, second, and third items.);
report(x>y, "x is %d but y is %d", x, y);

results in

fprintf(stderr, "Flag");
fprintf(stderr, "X = %d\n", x);
puts("The first, second, and third items.");
((x>y)?puts("x>y"):

printf("x is %d but y is %d", x, y));

6.10.4 Line control
Constraints

1 The string literal of a#line directive, if present, shall be a character string literal.

Semantics

2 The line numberof the current source line is one greater than the number of new-line
characters read or introduced in translation phase 1 (5.1.1.2) while processing the source
file to the current token.

3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins
with a source line that has a line number as specified by the digit sequence (interpreted as
a decimal integer). The digit sequence shall not specify zero, nor a number greater than
2147483647.

4 A preprocessing directive of the form

line digit-sequence" s-char-sequenceopt" new-line

sets the presumed line number similarly and changes the presumed name of the source
file to be the contents of the character string literal.

5 A preprocessing directive of the form

6.10.3.5 Language 6.10.4

158 Committee Draft — January 18, 1999 WG14/N869

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing
tokens afterline on the directive are processed just as in normal text (each identifier
currently defined as a macro name is replaced by its replacement list of preprocessing
tokens). The directive resulting after all replacements shall match one of the two
previous forms and is then processed as appropriate.

6.10.5 Error directive
Semantics

1 A preprocessing directive of the form

error pp-tokensopt new-line

causes the implementation to produce a diagnostic message that includes the specified
sequence of preprocessing tokens.

6.10.6 Pragma directive
Semantics

1 A preprocessing directive of the form

pragma pp-tokensopt new-line

where the preprocessing tokenSTDC does not immediately followpragma in the
directive (prior to any macro replacement)136) causes the implementation to behave in an
implementation-defined manner. The behavior might cause translation to fail or cause the
translator or the resulting program to behave in a non-conforming manner. Any such
pragma that is not recognized by the implementation is ignored.

2 If the preprocessing tokenSTDCdoes immediately followpragma in the directive (prior
to any macro replacement), then no macro replacement is performed on the directive, and
the directive shall have one of the following forms whose meanings are described
elsewhere:

136) An implementation is not required to perform macro replacement in pragmas, but it is permitted

except for in standard pragmas (whereSTDCimmediately followspragma). If the result of macro

replacement in a non-standard pragma has the same form as a standard pragma, the behavior is still

implementation-defined; an implementation is permitted to behave as if it were the standard pragma,

but is not required to.

6.10.4 Language 6.10.6

WG14/N869 Committee Draft — January 18, 1999 159

#pragma STDC FP_CONTRACT on-off-switch
#pragma STDC FENV_ACCESS on-off-switch
#pragma STDC CX_LIMITED_RANGE on-off-switch

on-off-switch: one of
ON OFF DEFAULT

Forward references: theFP_CONTRACTpragma (7.12.2), theFENV_ACCESSpragma
(7.6.1), theCX_LIMITED_RANGEpragma (7.3.4).

6.10.7 Null directive
Semantics

1 A preprocessing directive of the form

new-line

has no effect.

6.10.8 Predefined macro names

1 The following macro names shall be defined by the implementation:

_ _LINE_ _ The presumed line number (within the current source file) of the current
source line (a decimal constant).137)

_ _FILE_ _ The presumed name of the current source file (a character string literal).137)

_ _DATE_ _ The date of translation of the source file: a character string literal of the
form "Mmm dd yyyy" , where the names of the months are the same as
those generated by theasctime function, and the first character ofdd is
a space character if the value is less than 10. If the date of translation is not
available, an implementation-defined valid date shall be supplied.

_ _TIME_ _ The time of translation of the source file: a character string literal of the
form "hh:mm:ss" as in the time generated by theasctime function. If
the time of translation is not available, an implementation-defined valid
time shall be supplied.

_ _STDC_ _ The decimal constant 1, intended to indicate a conforming implementation.

_ _STDC_VERSION_ _ The decimal constant199901L .138)

137) The presumed line number and source file name can be changed by the#line directive.

138) This macro was not specified in ISO/IEC 9899:1990 and was specified as199409L in ISO/IEC

9899/AMD1:1995

6.10.6 Language 6.10.8

160 Committee Draft — January 18, 1999 WG14/N869

2 The following macro names are conditionally defined by the implementation:

_ _STDC_ISO_10646_ _ A decimal constant of the formyyyymmL (for example,
199712L), intended to indicate that values of type
wchar_t are the coded representations of the characters
defined by ISO/IEC 10646, along with all amendments and
technical corrigenda as of the specified year and month.

_ _STDC_IEC_559_ _ The decimal constant 1, intended to indicate conformance to
the specifications in annex F (IEC 60559 floating-point
arithmetic).

_ _STDC_IEC_559_COMPLEX_ _ The decimal constant 1, intended to indicate
adherence to the specifications in informative annex G (IEC
60559 compatible complex arithmetic).

3 The values of the predefined macros (except for_ _LINE_ _ and_ _FILE_ _) remain
constant throughout the translation unit.

4 None of these macro names, nor the identifierdefined , shall be the subject of a
#define or a #undef preprocessing directive. Any other predefined macro names
shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

Forward references: theasctime function (7.23.3.1).

6.10.9 Pragma operator
Semantics

1 A unary operator expression of the form:

_Pragma (string-literal)

is processed as follows: The string literal isdestringizedby deleting theL prefix, if
present, deleting the leading and trailing double-quotes, replacing each escape sequence
\" by a double-quote, and replacing each escape sequence\\ by a single backslash. The
resulting sequence of characters is processed through translation phase 3 to produce
preprocessing tokens that are executed as if they were thepp-tokensin a pragma
directive. The original four preprocessing tokens in the unary operator expression are
removed.

2 EXAMPLE A directive of the form:

#pragma listing on "..\listing.dir"

can also be expressed as:

_Pragma ("listing on \"..\\listing.dir\"")

The latter form is processed in the same way whether it appears literally as shown, or results from macro
replacement, as in:

6.10.8 Language 6.10.9

WG14/N869 Committee Draft — January 18, 1999 161

#define LISTING(x) PRAGMA(listing on #x)
#define PRAGMA(x) _Pragma(#x)

LISTING (..\listing.dir)

6.10.9 Language 6.10.9

162 Committee Draft — January 18, 1999 WG14/N869

6.11 Future language directions

6.11.1 Floating Types

1 Future standardization may include additional floating-point types, including those with
greater range, precision, or both thanlong double .

6.11.2 Character escape sequences

1 Lowercase letters as escape sequences are reserved for future standardization. Other
characters may be used in extensions.

6.11.3 Storage-class specifiers

1 The placement of a storage-class specifier other than at the beginning of the declaration
specifiers in a declaration is an obsolescent feature.

6.11.4 Function declarators

1 The use of function declarators with empty parentheses (not prototype-format parameter
type declarators) is an obsolescent feature.

6.11.5 Function definitions

1 The use of function definitions with separate parameter identifier and declaration lists
(not prototype-format parameter type and identifier declarators) is an obsolescent feature.

6.11.6 Pragma directives

1 Pragmas whose firstpp-tokenis STDCare reserved for future standardization.

6.11 Language 6.11.6

WG14/N869 Committee Draft — January 18, 1999 163

7. Library

7.1 Introduction

7.1.1 Definitions of terms

1 A string is a contiguous sequence of characters terminated by and including the first null
character. The termmultibyte stringis sometimes used instead to emphasize special
processing given to multibyte characters contained in the string or to avoid confusion
with a wide string. Apointer to a stringis a pointer to its initial (lowest addressed)
character. Thelength of a stringis the number of characters preceding the null character
and thevalue of a stringis the sequence of the values of the contained characters, in
order.

2 A letter is a printing character in the execution character set corresponding to any of the
52 required lowercase and uppercase letters in the source character set, listed in 5.2.1.

3 Thedecimal-point characteris the character used by functions that convert floating-point
numbers to or from character sequences to denote the beginning of the fractional part of
such character sequences.139) It is represented in the text and examples by a period, but
may be changed by thesetlocale function.

4 A wide character is a code value (a binary encoded integer) of an object of type
wchar_t that corresponds to a member of the extended character set.140)

5 A null wide characteris a wide character with code value zero.

6 A wide stringis a contiguous sequence of wide characters terminated by and including
the first null wide character. Apointer to a wide stringis a pointer to its initial (lowest
addressed) wide character. Thelength of a wide stringis the number of wide characters
preceding the null wide character and thevalue of a wide stringis the sequence of code
values of the contained wide characters, in order.

7 A shift sequenceis a contiguous sequence of bytes within a multibyte string that
(potentially) causes a change in shift state (see 5.2.1.2). A shift sequence shall not have a
corresponding wide character; it is instead taken to be an adjunct to an adjacent multibyte
character.141)

139) The functions that make use of the decimal-point character are the string conversion functions

(7.20.1), the wide-string numeric conversion functions (7.24.4.1), the formatted input/output functions

(7.19.6), and the formatted wide-character input/output functions (7.24.2).

140) An equivalent definition can be found in 6.4.4.4.

7 Library 7.1.1

164 Committee Draft — January 18, 1999 WG14/N869

Forward references: character handling (7.4), thesetlocale function (7.11.1.1).

7.1.2 Standard headers

1 Each library function is declared, with a type that includes a prototype, in aheader,142)

whose contents are made available by the#include preprocessing directive. The
header declares a set of related functions, plus any necessary types and additional macros
needed to facilitate their use. Declarations of types described in this clause shall not
include type qualifiers, unless explicitly stated otherwise.

2 The standard headers are

<assert.h>
<complex.h>
<ctype.h>
<errno.h>
<fenv.h>
<float.h>

<inttypes.h>
<iso646.h>
<limits.h>
<locale.h>
<math.h>
<setjmp.h>

<signal.h>
<stdarg.h>
<stdbool.h>
<stddef.h>
<stdint.h>
<stdio.h>

<stdlib.h>
<string.h>
<tgmath.h>
<time.h>
<wchar.h>
<wctype.h>

3 If a file with the same name as one of the above< and > delimited sequences, not
provided as part of the implementation, is placed in any of the standard places that are
searched for included source files, the behavior is undefined.

4 Standard headers may be included in any order; each may be included more than once in
a giv en scope, with no effect different from being included only once, except that the
effect of including<assert.h> depends on the definition ofNDEBUG(see 7.2). If
used, a header shall be included outside of any external declaration or definition, and it
shall first be included before the first reference to any of the functions or objects it
declares, or to any of the types or macros it defines. However, if an identifier is declared
or defined in more than one header, the second and subsequent associated headers may be
included after the initial reference to the identifier. The program shall not have any
macros with names lexically identical to keywords currently defined prior to the
inclusion.

5 Any definition of an object-like macro described in this clause shall expand to code that is
fully protected by parentheses where necessary, so that it groups in an arbitrary
expression as if it were a single identifier.

141) For state-dependent encodings, the values forMB_CUR_MAXandMB_LEN_MAXshall thus be large

enough to count all the bytes in any complete multibyte character plus at least one adjacent shift

sequence of maximum length. Whether these counts provide for more than one shift sequence is the

implementation’s choice.

142) A header is not necessarily a source file, nor are the< and> delimited sequences in header names

necessarily valid source file names.

7.1.1 Library 7.1.2

WG14/N869 Committee Draft — January 18, 1999 165

6 Any declaration of a library function shall have external linkage.

7 A summary of the contents of the standard headers is given in annex B.

Forward references: diagnostics (7.2).

7.1.3 Reserved identifiers

1 Each header declares or defines all identifiers listed in its associated subclause, and
optionally declares or defines identifiers listed in its associated future library directions
subclause and identifiers which are always reserved either for any use or for use as file
scope identifiers.

— All identifiers that begin with an underscore and either an uppercase letter or another
underscore are always reserved for any use.

— All identifiers that begin with an underscore are always reserved for use as identifiers
with file scope in both the ordinary and tag name spaces.

— Each macro name in any of the following subclauses (including the future library
directions) is reserved for use as specified if any of its associated headers is included;
unless explicitly stated otherwise (see 7.1.4).

— All identifiers with external linkage in any of the following subclauses (including the
future library directions) are always reserved for use as identifiers with external
linkage.143)

— Each identifier with file scope listed in any of the following subclauses (including the
future library directions) is reserved for use as macro and as an identifier with file
scope in the same name space if any of its associated headers is included.

2 No other identifiers are reserved. If the program declares or defines an identifier in a
context in which it is reserved (other than as allowed by 7.1.4), or defines a reserved
identifier as a macro name, the behavior is undefined.

3 If the program removes (with#undef) any macro definition of an identifier in the first
group listed above, the behavior is undefined.

143) The list of reserved identifiers with external linkage includeserrno , setjmp , andva_end .

7.1.2 Library 7.1.3

166 Committee Draft — January 18, 1999 WG14/N869

7.1.4 Use of library functions

1 Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow: If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program,
or a null pointer) or a type (after promotion) not expected by a function with variable
number of arguments, the behavior is undefined. If a function argument is described as
being an array, the pointer actually passed to the function shall have a value such that all
address computations and accesses to objects (that would be valid if the pointer did point
to the first element of such an array) are in fact valid. Any function declared in a header
may be additionally implemented as a function-like macro defined in the header, so if a
library function is declared explicitly when its header is included, one of the techniques
shown below can be used to ensure the declaration is not affected by such a macro. Any
macro definition of a function can be suppressed locally by enclosing the name of the
function in parentheses, because the name is then not followed by the left parenthesis that
indicates expansion of a macro function name. For the same syntactic reason, it is
permitted to take the address of a library function even if it is also defined as a macro.144)

The use of#undef to remove any macro definition will also ensure that an actual
function is referred to. Any inv ocation of a library function that is implemented as a
macro shall expand to code that evaluates each of its arguments exactly once, fully
protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments.145) Likewise, those function-like macros described in the
following subclauses may be invoked in an expression anywhere a function with a
compatible return type could be called.146) All object-like macros listed as expanding to
integer constant expressions shall additionally be suitable for use in#if preprocessing
directives.

2 Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function and use it without including its
associated header.

3 There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify
objects with static storage duration.147)

5 EXAMPLE The functionatoi may be used in any of sev eral ways:

— by use of its associated header (possibly generating a macro expansion)

144) This means that an implementation shall provide an actual function for each library function, even if it

also provides a macro for that function.

145) Such macros might not contain the sequence points that the corresponding function calls do.

7.1.4 Library 7.1.4

WG14/N869 Committee Draft — January 18, 1999 167

#include <stdlib.h>
const char *str;
/* ... */
i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi
const char *str;
/* ... */
i = atoi(str);

or
#include <stdlib.h>
const char *str;
/* ... */
i = (atoi)(str);

— by explicit declaration

extern int atoi(const char *);
const char *str;
/* ... */
i = atoi(str);

146) Because external identifiers and some macro names beginning with an underscore are reserved,

implementations may provide special semantics for such names. For example, the identifier

_BUILTIN_abs could be used to indicate generation of in-line code for theabs function. Thus, the

appropriate header could specify

#define abs(x) _BUILTIN_abs(x)

for a compiler whose code generator will accept it.

In this manner, a user desiring to guarantee that a given library function such asabs will be a genuine

function may write

#undef abs

whether the implementation’s header provides a macro implementation ofabs or a built-in

implementation. The prototype for the function, which precedes and is hidden by any macro

definition, is thereby revealed also.

147) Thus, a signal handler cannot, in general, call standard library functions.

7.1.4 Library 7.1.4

168 Committee Draft — January 18, 1999 WG14/N869

7.2 Diagnostics<assert.h>

1 The header<assert.h> defines theassert macro and refers to another macro,

NDEBUG

which is not defined by<assert.h> . If NDEBUGis defined as a macro name at the
point in the source file where<assert.h> is included, theassert macro is defined
simply as

#define assert(ignore) ((void)0)

Theassert macro is redefined according to the current state ofNDEBUGeach time that
<assert.h> is included.

2 Theassert macro shall be implemented as a macro, not as an actual function. If the
macro definition is suppressed in order to access an actual function, the behavior is
undefined.

7.2.1 Program diagnostics

7.2.1.1 Theassert macro

Synopsis

1 #include <assert.h>
void assert(scalar expression);

Description

2 Theassert macro puts diagnostic tests into programs; it expands to a void expression.
When it is executed, ifexpression (which shall have a scalar type) is false (that is,
compares equal to 0), theassert macro writes information about the particular call that
failed (including the text of the argument, the name of the source file, the source line
number, and the name of the enclosing function — the latter are respectively the values of
the preprocessing macros_ _FILE_ _ and _ _LINE_ _ and of the identifier
_ _func_ _) on the standard error file in an implementation-defined format.148) It then
calls theabort function.

Returns

3 Theassert macro returns no value.

Forward references: theabort function (7.20.4.1).

148)The message written might be of the form:

Assertion failed: expression, function abc, file xyz, line nnn.

7.2 Library 7.2.1.1

WG14/N869 Committee Draft — January 18, 1999 169

7.3 Complex arithmetic<complex.h>

7.3.1 Introduction

1 The header<complex.h> defines macros and declares functions that support complex
arithmetic.149) Each synopsis specifies a family of functions consisting of a principal
function with one or moredouble complex parameters and adouble complex or
double return value; and other functions with the same name but withf and l suffixes
which are corresponding functions withfloat and long double parameters and
return values.

2 The macro

complex

expands to_Complex ; the macro

_Complex_I

expands to a constant expression of typeconst float _Complex , with the value of
the imaginary unit.150)

3 The macros

imaginary

and

_Imaginary_I

are defined if and only if the implementation supports imaginary types;151) if defined,
they expand to_Imaginary and a constant expression of typeconst float
_Imaginary with the value of the imaginary unit.

4 The macro

I

expands to either_Imaginary_I or _Complex_I . If _Imaginary_I is not
defined,I shall expand to_Complex_I .

5 Notwithstanding the provisions of 7.1.3, a program is permitted to undefine and perhaps
then redefine the macroscomplex , imaginary , andI .

149) See ‘‘future library directions’’ (7.26.1).

150)The imaginary unit is a numberi such thati2 = − 1.

151) A specification for imaginary types is in informative annex G.

7.3 Library 7.3.1

170 Committee Draft — January 18, 1999 WG14/N869

Forward references: IEC 60559-compatible complex arithmetic (annex G).

7.3.2 Conventions

1 Values are interpreted as radians, not degrees. An implementation may seterrno but is
not required to.

7.3.3 Branch cuts

1 Some of the functions below hav e branch cuts, across which the function is
discontinuous. For implementations with a signed zero (including all IEC 60559
implementations) that follow the specification of annex G, the sign of zero distinguishes
one side of a cut from another so the function is continuous (except for format
limitations) as the cut is approached from either side. For example, for the square root
function, which has a branch cut along the negative real axis, the top of the cut, with
imaginary part +0, maps to the positive imaginary axis, and the bottom of the cut, with
imaginary part −0, maps to the negative imaginary axis.

2 Implementations that do not support a signed zero (see annex F) cannot distinguish the
sides of branch cuts. These implementations shall map a cut so the function is continuous
as the cut is approached coming around the finite endpoint of the cut in a counter
clockwise direction. (Branch cuts for the functions specified here have just one finite
endpoint.) For example, for the square root function, coming counter clockwise around
the finite endpoint of the cut along the negative real axis approaches the cut from above,
so the cut maps to the positive imaginary axis.

7.3.4 TheCX_LIMITED_RANGEpragma
Synopsis

1 #include <complex.h>
#pragma STDC CX_LIMITED_RANGE on-off-switch

Description

2 The usual mathematical formula for complex multiply, divide, and absolute value are
problematic because of their treatment of infinities and because of undue overflow and
underflow. The CX_LIMITED_RANGE pragma can be used to inform the
implementation that (where the state ison) the usual mathematical formulas are
acceptable.152) The pragma can occur either outside external declarations or preceding all
explicit declarations and statements inside a compound statement. When outside external
declarations, the pragma takes effect from its occurrence until another
CX_LIMITED_RANGEpragma is encountered, or until the end of the translation unit.
When inside a compound statement, the pragma takes effect from its occurrence until
another CX_LIMITED_RANGE pragma is encountered (including within a nested
compound statement), or until the end of the compound statement; at the end of a
compound statement the state for the pragma is restored to its condition just before the

7.3.1 Library 7.3.4

WG14/N869 Committee Draft — January 18, 1999 171

compound statement. If this pragma is used in any other context, the behavior is
undefined. The default state for the pragma isoff .

7.3.5 Trigonometric functions

7.3.5.1 Thecacos functions

Synopsis

1 #include <complex.h>
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

Description

2 Thecacos functions compute the complex arc cosine ofz , with branch cuts outside the
interval [−1, 1] along the real axis.

Returns

3 The cacos functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0,π] along the
real axis.

152) The purpose of the pragma is to allow the implementation to use the formulas:

(x + iy) × (u + iv) = (xu − yv) + i(yu + xv)

(x + iy) / (u + iv) = [(xu + yv) + i(yu − xv)] / (u2 + v2)

|x + iy| = √ x2 + y2

where the programmer can determine they are safe.

7.3.4 Library 7.3.5.1

172 Committee Draft — January 18, 1999 WG14/N869

7.3.5.2 Thecasin functions

Synopsis

1 #include <complex.h>
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

Description

2 Thecasin functions compute the complex arc sine ofz , with branch cuts outside the
interval [−1, 1] along the real axis.

Returns

3 The casin functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, π/2] along
the real axis.

7.3.5.3 Thecatan functions

Synopsis

1 #include <complex.h>
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

Description

2 Thecatan functions compute the complex arc tangent ofz , with branch cuts outside the
interval [−i, i] along the imaginary axis.

Returns

3 The catan functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, π/2] along
the real axis.

7.3.5.1 Library 7.3.5.3

WG14/N869 Committee Draft — January 18, 1999 173

7.3.5.4 Theccos functions

Synopsis

1 #include <complex.h>
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

Description

2 Theccos functions compute the complex cosine ofz .

Returns

3 Theccos functions return the complex cosine value.

7.3.5.5 Thecsin functions

Synopsis

1 #include <complex.h>
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

Description

2 Thecsin functions compute the complex sine ofz .

Returns

3 Thecsin functions return the complex sine value.

7.3.5.6 Thectan functions

Synopsis

1 #include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

Description

2 Thectan functions compute the complex tangent ofz .

Returns

3 Thectan functions return the complex tangent value.

7.3.5.3 Library 7.3.5.6

174 Committee Draft — January 18, 1999 WG14/N869

7.3.6 Hyperbolic functions

7.3.6.1 Thecacosh functions

Synopsis

1 #include <complex.h>
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

Description

2 Thecacosh functions compute the complex arc hyperbolic cosine ofz , with a branch
cut at values less than 1 along the real axis.

Returns

3 Thecacosh functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the interval [−iπ, iπ] along the
imaginary axis.

7.3.6.2 Thecasinh functions

Synopsis

1 #include <complex.h>
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

Description

2 Thecasinh functions compute the complex arc hyperbolic sine ofz , with branch cuts
outside the interval [−i, i] along the imaginary axis.

Returns

3 The casinh functions return the complex arc hyperbolic sine value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−iπ/2, iπ/2] along
the imaginary axis.

7.3.6 Library 7.3.6.2

WG14/N869 Committee Draft — January 18, 1999 175

7.3.6.3 Thecatanh functions

Synopsis

1 #include <complex.h>
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

Description

2 The catanh functions compute the complex arc hyperbolic tangent ofz , with branch
cuts outside the interval [−1, 1] along the real axis.

Returns

3 Thecatanh functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−iπ/2, iπ/2] along
the imaginary axis.

7.3.6.4 Theccosh functions

Synopsis

1 #include <complex.h>
double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

Description

2 Theccosh functions compute the complex hyperbolic cosine ofz .

Returns

3 Theccosh functions return the complex hyperbolic cosine value.

7.3.6.2 Library 7.3.6.4

176 Committee Draft — January 18, 1999 WG14/N869

7.3.6.5 Thecsinh functions

Synopsis

1 #include <complex.h>
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

Description

2 Thecsinh functions compute the complex hyperbolic sine ofz .

Returns

3 Thecsinh functions return the complex hyperbolic sine value.

7.3.6.6 Thectanh functions

Synopsis

1 #include <complex.h>
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

Description

2 Thectanh functions compute the complex hyperbolic tangent ofz .

Returns

3 Thectanh functions return the complex hyperbolic tangent value.

7.3.7 Exponential and logarithmic functions

7.3.6.4 Library 7.3.7

WG14/N869 Committee Draft — January 18, 1999 177

7.3.7.1 Thecexp functions

Synopsis

1 #include <complex.h>
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

Description

2 Thecexp functions compute the complex base-eexponential ofz .

Returns

3 Thecexp functions return the complex base-eexponential value.

7.3.7.2 Theclog functions

Synopsis

1 #include <complex.h>
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

Description

2 Theclog functions compute the complex natural (base-e) logarithm ofz , with a branch
cut along the negative real axis.

Returns

3 Theclog functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ, iπ] along the
imaginary axis.

7.3.8 Power and absolute-value functions

7.3.7 Library 7.3.8

178 Committee Draft — January 18, 1999 WG14/N869

7.3.8.1 Thecabs functions

Synopsis

1 #include <complex.h>
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

Description

2 Thecabs functions compute the complex absolute value (also called norm, modulus, or
magnitude) ofz .

Returns

3 Thecabs functions return the complex absolute value.

7.3.8.2 Thecpow functions

Synopsis

1 #include <complex.h>
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);

Description

2 Thecpow functions compute the complex power functionxy , with a branch cut for the
first parameter along the negative real axis.

Returns

3 Thecpow functions return the complex power function value.

7.3.8 Library 7.3.8.2

WG14/N869 Committee Draft — January 18, 1999 179

7.3.8.3 Thecsqrt functions

Synopsis

1 #include <complex.h>
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

Description

2 Thecsqrt functions compute the complex square root ofz , with a branch cut along the
negative real axis.

Returns

3 Thecsqrt functions return the complex square root value, in the range of the right half-
plane (including the imaginary axis).

7.3.9 Manipulation functions

7.3.9.1 Thecarg functions

Synopsis

1 #include <complex.h>
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

Description

2 Thecarg functions compute the argument (also called phase angle) ofz , with a branch
cut along the negative real axis.

Returns

3 Thecarg functions return the value of the argument in the range [−π, π].

7.3.8.2 Library 7.3.9.1

180 Committee Draft — January 18, 1999 WG14/N869

7.3.9.2 Thecimag functions

Synopsis

1 #include <complex.h>
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

Description

2 Thecimag functions compute the imaginary part ofz .153)

Returns

3 Thecimag functions return the imaginary part value (as a real).

7.3.9.3 Theconj functions

Synopsis

1 #include <complex.h>
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

Description

2 The conj functions compute the complex conjugate ofz , by rev ersing the sign of its
imaginary part.

Returns

3 Theconj functions return the complex conjugate value.

153) For a variablez of complex type,z == creal(z) + cimag(z)*I .

7.3.9.1 Library 7.3.9.3

WG14/N869 Committee Draft — January 18, 1999 181

7.3.9.4 Thecproj functions

Synopsis

1 #include <complex.h>
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

Description

2 Thecproj functions compute a projection ofz onto the Riemann sphere:z projects to
z except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. Ifz has an infinite part, thencproj(z) is
equivalent to

INFINITY + I * copysign(0.0, cimag(z))

Returns

3 Thecproj functions return the value of the projection onto the Riemann sphere.

7.3.9.5 Thecreal functions

Synopsis

1 #include <complex.h>
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

Description

2 Thecreal functions compute the real part ofz .154)

Returns

3 Thecreal functions return the real part value.

154) For a variablez of complex type,z == creal(z) + cimag(z)*I .

7.3.9.3 Library 7.3.9.5

182 Committee Draft — January 18, 1999 WG14/N869

7.4 Character handling<ctype.h>

1 The header<ctype.h> declares several functions useful for testing and mapping
characters.155) In all cases the argument is anint , the value of which shall be
representable as anunsigned char or shall equal the value of the macroEOF. If the
argument has any other value, the behavior is undefined.

2 The behavior of these functions is affected by the current locale. Those functions that
have locale-specific aspects only when not in the"C" locale are noted below.

3 The termprinting characterrefers to a member of a locale-specific set of characters, each
of which occupies one printing position on a display device; the termcontrol character
refers to a member of a locale-specific set of characters that are not printing
characters.156)

Forward references: EOF(7.19.1), localization (7.11).

7.4.1 Character testing functions

1 The functions in this subclause return nonzero (true) if and only if the value of the
argumentc conforms to that in the description of the function.

7.4.1.1 Theisalnum function

Synopsis

1 #include <ctype.h>
int isalnum(int c);

Description

2 Theisalnum function tests for any character for whichisalpha or isdigit is true.

155) See ‘‘future library directions’’ (7.26.2).

156) In an implementation that uses the seven-bit US ASCII character set, the printing characters are those

whose values lie from 0x20 (space) through 0x7E (tilde); the control characters are those whose

values lie from 0 (NUL) through 0x1F (US), and the character 0x7F (DEL).

7.4 Library 7.4.1.1

WG14/N869 Committee Draft — January 18, 1999 183

7.4.1.2 Theisalpha function

Synopsis

1 #include <ctype.h>
int isalpha(int c);

Description

2 Theisalpha function tests for any character for whichisupper or islower is true,
or any character that is one of a locale-specific set of alphabetic characters for which
none ofiscntrl , isdigit , ispunct , or isspace is true.157) In the "C" locale,
isalpha returns true only for the characters for whichisupper or islower is true.

7.4.1.3 Theiscntrl function

Synopsis

1 #include <ctype.h>
int iscntrl(int c);

Description

2 Theiscntrl function tests for any control character.

7.4.1.4 Theisdigit function

Synopsis

1 #include <ctype.h>
int isdigit(int c);

Description

2 Theisdigit function tests for any decimal-digit character (as defined in 5.2.1).

157) The functionsislower and isupper test true or false separately for each of these additional

characters; all four combinations are possible.

7.4.1.1 Library 7.4.1.4

184 Committee Draft — January 18, 1999 WG14/N869

7.4.1.5 Theisgraph function

Synopsis

1 #include <ctype.h>
int isgraph(int c);

Description

2 Theisgraph function tests for any printing character except space (’ ’).

7.4.1.6 Theislower function

Synopsis

1 #include <ctype.h>
int islower(int c);

Description

2 The islower function tests for any character that is a lowercase letter or is one of a
locale-specific set of characters for which none ofiscntrl , isdigit , ispunct , or
isspace is true. In the"C" locale, islower returns true only for the characters
defined as lowercase letters (as defined in 5.2.1).

7.4.1.7 Theisprint function

Synopsis

1 #include <ctype.h>
int isprint(int c);

Description

2 Theisprint function tests for any printing character including space (’ ’).

7.4.1.4 Library 7.4.1.7

WG14/N869 Committee Draft — January 18, 1999 185

7.4.1.8 Theispunct function

Synopsis

1 #include <ctype.h>
int ispunct(int c);

Description

2 Theispunct function tests for any printing character that is one of a locale-specific set
of punctuation characters for which neitherisspace nor isalnum is true. In the"C"
locale, ispunct returns true for every printing character for which neitherisspace
nor isalnum is true.

7.4.1.9 Theisspace function

Synopsis

1 #include <ctype.h>
int isspace(int c);

Description

2 Theisspace function tests for any character that is a standard white-space character or
is one of a locale-specific set of characters for whichisalnum is false. The standard
white-space characters are the following: space (’ ’), form feed (’\f’), new-line
(’\n’), carriage return (’\r’), horizontal tab (’\t’), and vertical tab (’\v’). In the
"C" locale,isspace returns true only for the standard white-space characters.

7.4.1.10 Theisupper function

Synopsis

1 #include <ctype.h>
int isupper(int c);

Description

2 The isupper function tests for any character that is an uppercase letter or is one of a
locale-specific set of characters for which none ofiscntrl , isdigit , ispunct , or
isspace is true. In the"C" locale, isupper returns true only for the characters
defined as uppercase letters (as defined in 5.2.1).

7.4.1.7 Library 7.4.1.10

186 Committee Draft — January 18, 1999 WG14/N869

7.4.1.11 Theisxdigit function

Synopsis

1 #include <ctype.h>
int isxdigit(int c);

Description

2 Theisxdigit function tests for any hexadecimal-digit character (as defined in 6.4.4.2).

7.4.2 Character case mapping functions

7.4.2.1 Thetolower function

Synopsis

1 #include <ctype.h>
int tolower(int c);

Description

2 Thetolower function converts an uppercase letter to a corresponding lowercase letter.

Returns

3 If the argument is a character for whichisupper is true and there are one or more
corresponding characters, as specified by the current locale, for whichislower is true,
the tolower function returns one of the corresponding characters (always the same one
for any giv en locale); otherwise, the argument is returned unchanged.

7.4.2.2 Thetoupper function

Synopsis

1 #include <ctype.h>
int toupper(int c);

Description

2 Thetoupper function converts a lowercase letter to a corresponding uppercase letter.

Returns

3 If the argument is a character for whichislower is true and there are one or more
corresponding characters, as specified by the current locale, for whichisupper is true,
the toupper function returns one of the corresponding characters (always the same one
for any giv en locale); otherwise, the argument is returned unchanged.

7.4.1.10 Library 7.4.2.2

WG14/N869 Committee Draft — January 18, 1999 187

7.5 Errors <errno.h>

1 The header<errno.h> defines several macros, all relating to the reporting of error
conditions.

2 The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with typeint , distinct positive values, and
which are suitable for use in#if preprocessing directives; and

errno

which expands to a modifiable lvalue158) that has typeint , the value of which is set to a
positive error number by several library functions. It is unspecified whethererrno is a
macro or an identifier declared with external linkage. If a macro definition is suppressed
in order to access an actual object, or a program defines an identifier with the name
errno , the behavior is undefined.

3 The value oferrno is zero at program startup, but is never set to zero by any library
function.159) The value oferrno may be set to nonzero by a library function call
whether or not there is an error, provided the use oferrno is not documented in the
description of the function in this International Standard.

4 Additional macro definitions, beginning withE and a digit orE and an uppercase
letter,160) may also be specified by the implementation.

158) The macroerrno need not be the identifier of an object. It might expand to a modifiable lvalue

resulting from a function call (for example,*errno()).

159) Thus, a program that useserrno for error checking should set it to zero before a library function call,

then inspect it before a subsequent library function call. Of course, a library function can save the

value oferrno on entry and then set it to zero, as long as the original value is restored iferrno ’s

value is still zero just before the return.

160) See ‘‘future library directions’’ (7.26.3).

7.5 Library 7.5

188 Committee Draft — January 18, 1999 WG14/N869

7.6 Floating-point environment<fenv.h>

1 The header<fenv.h> declares two types and several macros and functions to provide
access to the floating-point environment. Thefloating-point environmentrefers
collectively to any floating-point status flags and control modes supported by the
implementation.161) A floating-point status flagis a system variable whose value is set
(but never cleared) as a side effect of floating-point arithmetic to provide auxiliary
information. Afloating-point control modeis a system variable whose value may be set
by the user to affect the subsequent behavior of floating-point arithmetic.

2 Certain programming conventions support the intended model of use for the floating-
point environment:162)

— a function call does not alter its caller’s modes, clear its caller’s flags, nor depend on
the state of its caller’s flags unless the function is so documented;

— a function call is assumed to require default modes, unless its documentation
promises otherwise or unless the function is known not to use floating-point;

— a function call is assumed to have the potential for raising floating-point exceptions,
unless its documentation promises otherwise, or unless the function is known not to
use floating-point.

3 The type

fenv_t

represents the entire floating-point environment.

4 The type

fexcept_t

represents the floating-point exception flags collectively, including any status the
implementation associates with the flags.

5 Each of the macros

161) This header is designed to support the exception status flags and directed-rounding control modes

required by IEC 60559, and other similar floating-point state information. Also it is designed to

facilitate code portability among all systems.

162) With these conventions, a programmer can safely assume default modes (or be unaware of them). The

responsibilities associated with accessing the floating-point environment fall on the programmer or

program that does so explicitly.

7.6 Library 7.6

WG14/N869 Committee Draft — January 18, 1999 189

FE_DIVBYZERO
FE_INEXACT
FE_INVALID
FE_OVERFLOW
FE_UNDERFLOW

is defined if and only if the implementation supports the exception by means of the
functions in 7.6.2. Additional floating-point exceptions, with macro definitions beginning
with FE_ and an uppercase letter, may also be specified by the implementation. The
defined macros expand to integer constant expressions with values such that bitwise ORs
of all combinations of the macros result in distinct values.

6 The macro

FE_ALL_EXCEPT

is simply the bitwise OR of all exception macros defined by the implementation.

7 Each of the macros

FE_DOWNWARD
FE_TONEAREST
FE_TOWARDZERO
FE_UPWARD

is defined if and only if the implementation supports getting and setting the represented
rounding direction by means of thefegetround and fesetround functions.
Additional rounding directions, with macro definitions beginning withFE_ and an
uppercase letter, may also be specified by the implementation. The defined macros
expand to integer constant expressions whose values are distinct nonnegative values.163)

8 The macro

FE_DFL_ENV

represents the default floating-point environment — the one installed at program startup
— and has typepointer to const-qualifiedfenv_t . It can be used as an argument to
<fenv.h> functions that manage the floating-point environment.

9 Additional macro definitions, beginning withFE_ and having typepointer to const-
qualifiedfenv_t , may also be specified by the implementation.

163) Even though the rounding direction macros may expand to constants corresponding to the values of

FLT_ROUNDS, they are not required to do so.

7.6 Library 7.6

190 Committee Draft — January 18, 1999 WG14/N869

7.6.1 TheFENV_ACCESSpragma
Synopsis

1 #include <fenv.h>
#pragma STDC FENV_ACCESS on-off-switch

Description

2 The FENV_ACCESSpragma provides a means to inform the implementation when a
program might access the floating-point environment to test flags or run under non-
default modes.164) The pragma shall occur either outside external declarations or
preceding all explicit declarations and statements inside a compound statement. When
outside external declarations, the pragma takes effect from its occurrence until another
FENV_ACCESSpragma is encountered, or until the end of the translation unit. When
inside a compound statement, the pragma takes effect from its occurrence until another
FENV_ACCESSpragma is encountered (including within a nested compound statement),
or until the end of the compound statement; at the end of a compound statement the state
for the pragma is restored to its condition just before the compound statement. If this
pragma is used in any other context, the behavior is undefined. If part of a program tests
flags or runs under non-default mode settings, but was translated with the state for the
FENV_ACCESSpragmaoff , then the behavior is undefined. The default state (on or off)
for the pragma is implementation-defined.

3 EXAMPLE

#include <fenv.h>
void f(double x)
{

#pragma STDC FENV_ACCESS ON
void g(double);
void h(double);
/* ... */
g(x + 1);
h(x + 1);
/* ... */

}

4 If the functiong might depend on status flags set as a side effect of the firstx + 1 , or if the second
x + 1 might depend on control modes set as a side effect of the call to functiong, then the program shall
contain an appropriately placed invocation of#pragma STDC FENV_ACCESS ON.165)

164) The purpose of theFENV_ACCESSpragma is to allow certain optimizations, for exampleglobal

common subexpression elimination, code motion, andconstant folding, that could subvert flag tests

and mode changes. In general, if the state ofFENV_ACCESSis off then the translator can assume that

default modes are in effect and the flags are not tested.

7.6 Library 7.6.1

WG14/N869 Committee Draft — January 18, 1999 191

7.6.2 Exceptions

1 The following functions provide access to the exception flags.166) The int input
argument for the functions represents a subset of floating-point exceptions, and can be
zero or the bitwise OR of one or more exception macros, for exampleFE_OVERFLOW |
FE_INEXACT. For other argument values the behavior of these functions is undefined.

7.6.2.1 Thefeclearexcept function

Synopsis

1 #include <fenv.h>
void feclearexcept(int excepts);

Description

2 The feclearexcept function clears the supported exceptions represented by its
argument.

7.6.2.2 Thefegetexceptflag function

Synopsis

1 #include <fenv.h>
void fegetexceptflag(fexcept_t *flagp,

int excepts);

Description

2 The fegetexceptflag function stores an implementation-defined representation of
the exception flags indicated by the argumentexcepts in the object pointed to by the
argumentflagp .

165) The side effects impose a temporal ordering that requires two evaluations ofx + 1 . On the other

hand, without the#pragma STDC FENV_ACCESS ON pragma, and assuming the default state is

off , just one evaluation ofx + 1 would suffice.

166) The functionsfetestexcept , feraiseexcept , and feclearexcept support the basic

abstraction of flags that are either set or clear. An implementation may endow exception flags with

more information — for example, the address of the code which first raised the exception; the

functionsfegetexceptflag andfesetexceptflag deal with the full content of flags.

7.6.2 Library 7.6.2.2

192 Committee Draft — January 18, 1999 WG14/N869

7.6.2.3 Theferaiseexcept function

Synopsis

1 #include <fenv.h>
void feraiseexcept(int excepts);

Description

2 The feraiseexcept function raises the supported exceptions represented by its
argument.167) The order in which these exceptions are raised is unspecified, except as
stated in F.7.6. Whether theferaiseexcept function additionally raises theinexact
exception whenever it raises theoverflow or underflow exception is implementation-
defined.

7.6.2.4 Thefesetexceptflag function

Synopsis

1 #include <fenv.h>
void fesetexceptflag(const fexcept_t *flagp,

int excepts);

Description

2 The fesetexceptflag function sets the complete status for those exception flags
indicated by the argumentexcepts , according to the representation in the object
pointed to byflagp . The value of*flagp shall have been set by a previous call to
fegetexceptflag whose second argument represented at least those exceptions
represented by the argumentexcepts . This function does not raise exceptions, but only
sets the state of the flags.

167) The effect is intended to be similar to that of exceptions raised by arithmetic operations. Hence,

enabled traps for exceptions raised by this function are taken. The specification in F.7.6 is in the same

spirit.

7.6.2.2 Library 7.6.2.4

WG14/N869 Committee Draft — January 18, 1999 193

7.6.2.5 Thefetestexcept function

Synopsis

1 #include <fenv.h>
int fetestexcept(int excepts);

Description

2 The fetestexcept function determines which of a specified subset of the exception
flags are currently set. Theexcepts argument specifies the exception flags to be
queried.168)

Returns

3 The fetestexcept function returns the value of the bitwise OR of the exception
macros corresponding to the currently set exceptions included inexcepts .

4 EXAMPLE Call f if invalid is set, theng if overflowis set:

#include <fenv.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts =

fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

7.6.3 Rounding

1 The fegetround and fesetround functions provide control of rounding direction
modes.

168) This mechanism allows testing several exceptions with just one function call.

7.6.2.4 Library 7.6.3

194 Committee Draft — January 18, 1999 WG14/N869

7.6.3.1 Thefegetround function

Synopsis

1 #include <fenv.h>
int fegetround(void);

Description

2 Thefegetround function gets the current rounding direction.

Returns

3 The fegetround function returns the value of the rounding direction macro
representing the current rounding direction.

7.6.3.2 Thefesetround function

Synopsis

1 #include <fenv.h>
int fesetround(int round);

Description

2 The fesetround function establishes the rounding direction represented by its
argumentround . If the argument is not equal to the value of a rounding direction macro,
the rounding direction is not changed.

Returns

3 Thefesetround function returns a zero value if and only if the argument is equal to a
rounding direction macro (that is, if and only if the requested rounding direction was
established).

4 EXAMPLE 1 Save, set, and restore the rounding direction. Report an error and abort if setting the
rounding direction fails.

#include <fenv.h>
#include <assert.h>
/* ... */
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(FE_UPWARD);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

7.6.3 Library 7.6.3.2

WG14/N869 Committee Draft — January 18, 1999 195

7.6.4 Environment

1 The functions in this section manage the floating-point environment — status flags and
control modes — as one entity.

7.6.4.1 Thefegetenv function

Synopsis

1 #include <fenv.h>
void fegetenv(fenv_t *envp);

Description

2 The fegetenv function stores the current floating-point environment in the object
pointed to byenvp .

7.6.4.2 Thefeholdexcept function

Synopsis

1 #include <fenv.h>
int feholdexcept(fenv_t *envp);

Description

2 Thefeholdexcept function saves the current floating-point environment in the object
pointed to byenvp , clears the exception flags, and then installs anon-stop(continue on
exceptions) mode, if available, for all exceptions.169)

Returns

3 The feholdexcept function returns zero if and only if non-stop exception handling
was successfully installed.

169) IEC 60559 systems have a default non-stop mode, and typically at least one other mode for trap

handling or aborting; if the system provides only the non-stop mode then installing it is trivial. For

such systems, thefeholdexcept function can be used in conjunction with thefeupdateenv

function to write routines that hide spurious exceptions from their callers.

7.6.4 Library 7.6.4.2

196 Committee Draft — January 18, 1999 WG14/N869

7.6.4.3 Thefesetenv function

Synopsis

1 #include <fenv.h>
void fesetenv(const fenv_t *envp);

Description

2 The fesetenv function establishes the floating-point environment represented by the
object pointed to byenvp . The argumentenvp shall point to an object set by a call to
fegetenv or feholdexcept , or equal the macroFE_DFL_ENV or an
implementation-defined environment macro. Note thatfesetenv merely installs the
state of the exception flags represented through its argument, and does not raise these
exceptions.

7.6.4.4 Thefeupdateenv function

Synopsis

1 #include <fenv.h>
void feupdateenv(const fenv_t *envp);

Description

2 The feupdateenv function saves the currently raised exceptions in its automatic
storage, installs the floating-point environment represented by the object pointed to by
envp , and then raises the saved exceptions. The argumentenvp shall point to an object
set by a call tofeholdexcept or fegetenv , or equal the macroFE_DFL_ENVor an
implementation-defined environment macro.

3 EXAMPLE 1 Hide spurious underflow exceptions:

#include <fenv.h>
double f(double x)
{

#pragma STDC FENV_ACCESS ON
double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow*/)

feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

7.6.4.2 Library 7.6.4.4

WG14/N869 Committee Draft — January 18, 1999 197

7.7 Characteristics of floating types<float.h>

1 The header<float.h> defines several macros that expand to various limits and
parameters of the standard floating-point types.

2 The macros, their meanings, and the constraints (or restrictions) on their values are listed
in 5.2.4.2.2.

7.7 Library 7.7

198 Committee Draft — January 18, 1999 WG14/N869

7.8 Format conversion of integer types<inttypes.h>

1 The header<inttypes.h> includes the header<stdint.h> and extends it with
additional facilities provided by hosted implementations.

2 It declares four functions for converting numeric character strings to greatest-width
integers and, for each type declared in<stdint.h> , it defines corresponding macros
for conversion specifiers for use with the formatted input/output functions.170)

Forward references: integer types<stdint.h> (7.18).

7.8.1 Macros for format specifiers

1 Each of the following object-like macros171) expands to a character string literal
containing a conversion specifier, possibly modified by a length modifier, suitable for use
within the format argument of a formatted input/output function when converting the
corresponding integer type. These macro names have the general form ofPRI (character
string literals for thefprintf family) or SCN(character string literals for thefscanf
family),172) followed by the conversion specifier, followed by a name corresponding to a
similar type name in 7.18.1. In these names,N represents the width of the type as
described in 7.18.1. For example,PRIdFAST32 can be used in a format string to print
the value of an integer of typeint_fast32_t .

2 Thefprintf macros for signed integers are:

PRId N PRIdLEASTN PRIdFASTN PRIdMAX PRIdPTR
PRIi N PRIiLEAST N PRIiFAST N PRIiMAX PRIiPTR

3 Thefprintf macros for unsigned integers are:

PRIo N PRIoLEASTN PRIoFASTN PRIoMAX PRIoPTR
PRIu N PRIuLEASTN PRIuFASTN PRIuMAX PRIuPTR
PRIx N PRIxLEASTN PRIxFASTN PRIxMAX PRIxPTR
PRIXN PRIXLEASTN PRIXFASTN PRIXMAX PRIXPTR

4 Thefscanf macros for signed integers are:

SCNdN SCNdLEASTN SCNdFASTN SCNdMAX SCNdPTR
SCNiN SCNiLEASTN SCNiFASTN SCNiMAX SCNiPTR

170) See ‘‘future library directions’’ (7.26.4).

171) C++ implementations should define these macros only when_ _STDC_FORMAT_MACROSis defined

before<inttypes.h> is included.

172) Separate macros are given for use withfprintf andfscanf functions because, in the general case,

different format specifiers may be required forfprintf and fscanf , even when the type is the

same.

7.8 Library 7.8.1

WG14/N869 Committee Draft — January 18, 1999 199

5 Thefscanf macros for unsigned integers are:

SCNoN SCNoLEASTN SCNoFASTN SCNoMAX SCNoPTR
SCNuN SCNuLEASTN SCNuFASTN SCNuMAX SCNuPTR
SCNxN SCNxLEASTN SCNxFASTN SCNxMAX SCNxPTR

6 For each type that the implementation provides in<stdint.h> , the corresponding
fprintf macros shall be defined and the correspondingfscanf macros shall be
defined unless the implementation does not have a suitablefscanf length modifier for
the type.

7 EXAMPLE

#include <inttypes.h>
#include <wchar.h>
int main(void)
{

uintmax_t i = UINTMAX_MAX; // this type always exists
wprintf(L"The largest integer value is %020"

PRIxMAX "\n", i);
return 0;

}

7.8.2 Conversion functions for greatest-width integer types

7.8.2.1 Thestrtoimax and strtoumax functions

Synopsis

1 #include <inttypes.h>
intmax_t strtoimax(const char * restrict nptr,

char ** restrict endptr, int base);
uintmax_t strtoumax(const char * restrict nptr,

char ** restrict endptr, int base);

Description

2 Thestrtoimax andstrtoumax functions are equivalent to thestrtol , strtoll ,
strtoul , and strtoull functions, except that the initial portion of the string is
converted tointmax_t anduintmax_t representation, respectively.

Returns

3 The strtoimax and strtoumax functions return the converted value, if any. If no
conversion could be performed, zero is returned. If the correct value is outside the range
of representable values,INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAXis returned
(according to the return type and sign of the value, if any), and the value of the macro
ERANGEis stored inerrno .

7.8.1 Library 7.8.2.1

200 Committee Draft — January 18, 1999 WG14/N869

7.8.2.2 Thewcstoimax and wcstoumax functions

Synopsis

1 #include <stddef.h> // for wchar_t
#include <inttypes.h>
intmax_t wcstoimax(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
uintmax_t wcstoumax(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);

Description

2 Thewcstoimax andwcstoumax functions are equivalent to thewcstol , wcstoll ,
wcstoul , andwcstoull functions except that the initial portion of the wide string is
converted tointmax_t anduintmax_t representation, respectively.

Returns

3 Thewcstoimax function returns the converted value, if any. If no conversion could be
performed, zero is returned. If the correct value is outside the range of representable
values,INTMAX_MAX, INTMAX_MIN, or UINTMAX_MAXis returned (according to the
return type and sign of the value, if any), and the value of the macroERANGEis stored in
errno .

7.8.2.2 Library 7.8.2.2

WG14/N869 Committee Draft — January 18, 1999 201

7.9 Alternative spellings<iso646.h>

1 The header<iso646.h> defines the following eleven macros (on the left) that expand
to the corresponding tokens (on the right):

and &&
and_eq &=
bitand &
bitor |
compl ˜
not !
not_eq !=
or ||
or_eq |=
xor ˆ
xor_eq ˆ=

7.9 Library 7.9

202 Committee Draft — January 18, 1999 WG14/N869

7.10 Sizes of integer types<limits.h>

1 The header<limits.h> defines several macros that expand to various limits and
parameters of the standard integer types.

2 The macros, their meanings, and the constraints (or restrictions) on their values are listed
in 5.2.4.2.1.

7.10 Library 7.10

WG14/N869 Committee Draft — January 18, 1999 203

7.11 Localization<locale.h>

1 The header<locale.h> declares two functions, one type, and defines several macros.

2 The type is

struct lconv

which contains members related to the formatting of numeric values. The structure shall
contain at least the following members, in any order. The semantics of the members and
their normal ranges are explained in 7.11.2.1. In the"C" locale, the members shall have
the values specified in the comments.

char *decimal_point; // "."
char *thousands_sep; // ""
char *grouping; // ""
char *mon_decimal_point; // ""
char *mon_thousands_sep; // ""
char *mon_grouping; // ""
char *positive_sign; // ""
char *negative_sign; // ""
char *currency_symbol; // ""
char frac_digits; // CHAR_MAX
char p_cs_precedes; // CHAR_MAX
char n_cs_precedes; // CHAR_MAX
char p_sep_by_space; // CHAR_MAX
char n_sep_by_space; // CHAR_MAX
char p_sign_posn; // CHAR_MAX
char n_sign_posn; // CHAR_MAX
char *int_curr_symbol; // ""
char int_frac_digits; // CHAR_MAX
char int_p_cs_precedes; // CHAR_MAX
char int_n_cs_precedes; // CHAR_MAX
char int_p_sep_by_space; // CHAR_MAX
char int_n_sep_by_space; // CHAR_MAX
char int_p_sign_posn; // CHAR_MAX
char int_n_sign_posn; // CHAR_MAX

3 The macros defined areNULL(described in 7.17); and

7.11 Library 7.11

204 Committee Draft — January 18, 1999 WG14/N869

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

which expand to integer constant expressions with distinct values, suitable for use as the
first argument to thesetlocale function.173) Additional macro definitions, beginning
with the charactersLC_ and an uppercase letter,174) may also be specified by the
implementation.

7.11.1 Locale control

7.11.1.1 Thesetlocale function

Synopsis

1 #include <locale.h>
char *setlocale(int category, const char *locale);

Description

2 The setlocale function selects the appropriate portion of the program’s locale as
specified by thecategory andlocale arguments. Thesetlocale function may be
used to change or query the program’s entire current locale or portions thereof. The value
LC_ALL for category names the program’s entire locale; the other values for
category name only a portion of the program’s locale.LC_COLLATEaffects the
behavior of thestrcoll andstrxfrm functions. LC_CTYPEaffects the behavior of
the character handling functions175) and the multibyte and wide-character functions.
LC_MONETARYaffects the monetary formatting information returned by the
localeconv function. LC_NUMERICaffects the decimal-point character for the
formatted input/output functions and the string conversion functions, as well as the
nonmonetary formatting information returned by thelocaleconv function. LC_TIME
affects the behavior of thestrftime function.

3 A value of"C" for locale specifies the minimal environment for C translation; a value
of "" for locale specifies the locale-specific native environment. Other
implementation-defined strings may be passed as the second argument tosetlocale .

173) ISO/IEC 9945−2 specifies locale and charmap formats that may be used to specify locales for C.

174) See ‘‘future library directions’’ (7.26.5).

175) The only functions in 7.4 whose behavior is not affected by the current locale areisdigit and

isxdigit .

7.11 Library 7.11.1.1

WG14/N869 Committee Draft — January 18, 1999 205

4 At program startup, the equivalent of

setlocale(LC_ALL, "C");

is executed.

5 The implementation shall behave as if no library function calls thesetlocale function.

Returns

6 If a pointer to a string is given forlocale and the selection can be honored, the
setlocale function returns a pointer to the string associated with the specified
category for the new locale. If the selection cannot be honored, thesetlocale
function returns a null pointer and the program’s locale is not changed.

7 A null pointer for locale causes thesetlocale function to return a pointer to the
string associated with thecategory for the program’s current locale; the program’s
locale is not changed.176)

8 The pointer to string returned by thesetlocale function is such that a subsequent call
with that string value and its associated category will restore that part of the program’s
locale. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to thesetlocale function.

Forward references: formatted input/output functions (7.19.6), the multibyte character
functions (7.20.7), the multibyte string functions (7.20.8), string conversion functions
(7.20.1), thestrcoll function (7.21.4.3), thestrftime function (7.23.3.5), the∗
strxfrm function (7.21.4.5).

7.11.2 Numeric formatting convention inquiry

176) The implementation shall arrange to encode in a string the various categories due to a heterogeneous

locale whencategory has the valueLC_ALL.

7.11.1.1 Library 7.11.2

206 Committee Draft — January 18, 1999 WG14/N869

7.11.2.1 Thelocaleconv function

Synopsis

1 #include <locale.h>
struct lconv *localeconv(void);

Description

2 Thelocaleconv function sets the components of an object with typestruct lconv
with values appropriate for the formatting of numeric quantities (monetary and otherwise)
according to the rules of the current locale.

3 The members of the structure with typechar * are pointers to strings, any of which
(exceptdecimal_point) can point to"" , to indicate that the value is not available in
the current locale or is of zero length. Apart fromgrouping andmon_grouping , the
strings shall start and end in the initial shift state. The members with typechar are
nonnegative numbers, any of which can beCHAR_MAXto indicate that the value is not
available in the current locale. The members include the following:

char *decimal_point
The decimal-point character used to format nonmonetary quantities.

char *thousands_sep
The character used to separate groups of digits before the decimal-point
character in formatted nonmonetary quantities.

char *grouping
A string whose elements indicate the size of each group of digits in formatted
nonmonetary quantities.

char *mon_decimal_point
The decimal-point used to format monetary quantities.

char *mon_thousands_sep
The separator for groups of digits before the decimal-point in formatted
monetary quantities.

char *mon_grouping
A string whose elements indicate the size of each group of digits in formatted
monetary quantities.

char *positive_sign
The string used to indicate a nonnegative-valued formatted monetary quantity.

char *negative_sign
The string used to indicate a negative-valued formatted monetary quantity.

7.11.2 Library 7.11.2.1

WG14/N869 Committee Draft — January 18, 1999 207

char *currency_symbol
The local currency symbol applicable to the current locale.

char frac_digits
The number of fractional digits (those after the decimal-point) to be displayed
in a locally formatted monetary quantity.

char p_cs_precedes
Set to 1 or 0 if thecurrency_symbol respectively precedes or succeeds
the value for a nonnegative locally formatted monetary quantity.

char n_cs_precedes
Set to 1 or 0 if thecurrency_symbol respectively precedes or succeeds
the value for a negative locally formatted monetary quantity.

char p_sep_by_space
Set to a value indicating the separation of thecurrency_symbol , the sign
string, and the value for a nonnegative locally formatted monetary quantity.

char n_sep_by_space
Set to a value indicating the separation of thecurrency_symbol , the sign
string, and the value for a negative locally formatted monetary quantity.

char p_sign_posn
Set to a value indicating the positioning of thepositive_sign for a
nonnegative locally formatted monetary quantity.

char n_sign_posn
Set to a value indicating the positioning of thenegative_sign for a
negative locally formatted monetary quantity.

char *int_curr_symbol
The international currency symbol applicable to the current locale. The first
three characters contain the alphabetic international currency symbol in
accordance with those specified in ISO 4217:1995. The fourth character
(immediately preceding the null character) is the character used to separate the
international currency symbol from the monetary quantity.

char int_frac_digits
The number of fractional digits (those after the decimal-point) to be displayed
in an internationally formatted monetary quantity.

char int_p_cs_precedes
Set to 1 or 0 if theint_currency_symbol respectively precedes or
succeeds the value for a nonnegative internationally formatted monetary
quantity.

7.11.2.1 Library 7.11.2.1

208 Committee Draft — January 18, 1999 WG14/N869

char int_n_cs_precedes
Set to 1 or 0 if theint_currency_symbol respectively precedes or
succeeds the value for a negative internationally formatted monetary quantity.

char int_p_sep_by_space
Set to a value indicating the separation of theint_currency_symbol , the
sign string, and the value for a nonnegative internationally formatted monetary
quantity.

char int_n_sep_by_space
Set to a value indicating the separation of theint_currency_symbol , the
sign string, and the value for a negative internationally formatted monetary
quantity.

char int_p_sign_posn
Set to a value indicating the positioning of thepositive_sign for a
nonnegative internationally formatted monetary quantity.

char int_n_sign_posn
Set to a value indicating the positioning of thenegative_sign for a
negative internationally formatted monetary quantity.

4 The elements ofgrouping and mon_grouping are interpreted according to the
following:

CHAR_MAX No further grouping is to be performed.

0 The previous element is to be repeatedly used for the remainder of the
digits.

other The integer value is the number of digits that compose the current group.
The next element is examined to determine the size of the next group of
digits before the current group.

5 The values ofp_sep_by_space , n_sep_by_space , int_p_sep_by_space ,
andint_n_sep_by_space are interpreted according to the following:

0 No space separates the currency symbol and value.

1 If the currency symbol and sign string are adjacent, a space separates them from the
value; otherwise, a space separates the currency symbol from the value.

2 If the currency symbol and sign string are adjacent, a space separates them;
otherwise, a space separates the sign string from the value.

6 The values of p_sign_posn , n_sign_posn , int_p_sign_posn , and
int_n_sign_posn are interpreted according to the following:

7.11.2.1 Library 7.11.2.1

WG14/N869 Committee Draft — January 18, 1999 209

0 Parentheses surround the quantity and currency symbol.

1 The sign string precedes the quantity and currency symbol.

2 The sign string succeeds the quantity and currency symbol.

3 The sign string immediately precedes the currency symbol.

4 The sign string immediately succeeds the currency symbol.

7 The implementation shall behave as if no library function calls thelocaleconv
function.

Returns

8 The localeconv function returns a pointer to the filled-in object. The structure
pointed to by the return value shall not be modified by the program, but may be
overwritten by a subsequent call to thelocaleconv function. In addition, calls to the
setlocale function with categoriesLC_ALL, LC_MONETARY, or LC_NUMERICmay
overwrite the contents of the structure.

9 EXAMPLE 1 The following table illustrates the rules which may well be used by four countries to format
monetary quantities.

Local format International format

Country Positive Neg ative Positive Neg ative

Finland 1.234,56 mk -1.234,56 mk FIM 1.234,56 FIM -1.234,56
Italy L.1.234 -L.1.234 ITL 1.234 -ITL 1.234
Netherlands ƒ 1.234,56 ƒ -1.234,56 NLG 1.234,56 NLG -1.234,56
Switzerland SFrs.1,234.56 SFrs.1,234.56C CHF 1,234.56 CHF 1,234.56C

10 For these four countries, the respective values for the monetary members of the structure returned by
localeconv are:

7.11.2.1 Library 7.11.2.1

210 Committee Draft — January 18, 1999 WG14/N869

Finland Italy Netherlands Switzerland

mon_decimal_point "," "" "," "."
mon_thousands_sep "." "." "." ","
mon_grouping "\3" "\3" "\3" "\3"
positive_sign "" "" "" ""
negative_sign "-" "-" "-" "C"
currency_symbol "mk" "L." "\u0192" "SFrs."
frac_digits 2 0 2 2
p_cs_precedes 0 1 1 1
n_cs_precedes 0 1 1 1
p_sep_by_space 1 0 1 0
n_sep_by_space 1 0 1 0
p_sign_posn 1 1 1 1
n_sign_posn 1 1 4 2
int_curr_symbol "FIM " "ITL " "NLG " "CHF "
int_frac_digits 2 0 2 2
int_p_cs_precedes 1 1 1 1
int_n_cs_precedes 1 1 1 1
int_p_sep_by_space 0 0 0 0
int_n_sep_by_space 0 0 0 0
int_p_sign_posn 1 1 1 1
int_n_sign_posn 4 1 4 2

11 EXAMPLE 2 The following table illustrates how the cs_precedes, sep_by_space, and sign_posn members
affect the formatted value.

p_sep_by_space

p_cs_precedes p_sign_posn 0 1 2

0 0 (1.25$) (1.25 $) (1.25$)
1 +1.25$ +1.25 $ + 1.25$
2 1.25$+ 1.25 $+ 1.25$ +
3 1.25+$ 1.25 +$ 1.25+ $
4 1.25$+ 1.25 $+ 1.25$ +

1 0 ($1.25) ($ 1.25) ($1.25)
1 +$1.25 +$ 1.25 + $1.25
2 $1.25+ $ 1.25+ $1.25 +
3 +$1.25 +$ 1.25 + $1.25
4 $+1.25 $+ 1.25 $ +1.25

7.11.2.1 Library 7.11.2.1

WG14/N869 Committee Draft — January 18, 1999 211

7.12 Mathematics<math.h>

1 The header<math.h> declares two types and several mathematical functions and
defines several macros. Most synopses specify a family of functions consisting of a
principal function with one or moredouble parameters, adouble return value, or
both; and other functions with the same name but withf and l suffixes which are
corresponding functions withfloat and long double parameters, return values, or
both.177) Integer arithmetic functions and conversion functions are discussed later.

2 The types

float_t
double_t

are floating types at least as wide asfloat and double , respectively, and such that
double_t is at least as wide asfloat_t . If FLT_EVAL_METHODequals 0,
float_t and double_t are float and double , respectively; if
FLT_EVAL_METHODequals 1, they are bothdouble ; if FLT_EVAL_METHODequals
2, they are bothlong double ; and for other values ofFLT_EVAL_METHOD, they are
otherwise implementation-defined.178)

3 The macro

HUGE_VAL

expands to a positivedouble constant expression, not necessarily representable as a
float . The macros

HUGE_VALF
HUGE_VALL

are respectivelyfloat andlong double analogs ofHUGE_VAL.179)

4 The macro

INFINITY

expands to a constant expression of typefloat representing positive or unsigned
infinity, if available; else to a positive constant of typefloat that overflows at
translation time.180)

177) Particularly on systems with wide expression evaluation, a<math.h> function might pass arguments

and return values in wider format than the synopsis prototype indicates.

178) The typesfloat_t anddouble_t are intended to be the implementation’s most efficient types at

least as wide asfloat anddouble , respectively. ForFLT_EVAL_METHODequal 0, 1, or 2, the

typefloat_t is the narrowest type used by the implementation to evaluate floating expressions.

179)HUGE_VAL, HUGE_VALF, and HUGE_VALLcan be positive infinities in an implementation that

supports infinities.

7.12 Library 7.12

212 Committee Draft — January 18, 1999 WG14/N869

5 The macro

NAN

is defined if and only if the implementation supports quiet NaNs for thefloat type. It
expands to a constant expression of typefloat representing a quiet NaN.

6 The macros

FP_INFINITE
FP_NAN
FP_NORMAL
FP_SUBNORMAL
FP_ZERO

are for number classification. They represent the mutually exclusive kinds of floating-
point values. They expand to integer constant expressions with distinct values.

7 The macro

FP_FAST_FMA

is optionally defined. If defined, it indicates that thefma function generally executes
about as fast as, or faster than, a multiply and an add ofdouble operands.181) The
macros

FP_FAST_FMAF
FP_FAST_FMAL

are, respectively,float andlong double analogs ofFP_FAST_FMA.

8 The macros

FP_ILOGB0
FP_ILOGBNAN

expand to integer constant expressions whose values are returned byilogb(x) if x is
zero or NaN, respectively. The value ofFP_ILOGB0 shall be eitherINT_MIN or
-INT_MAX . The value ofFP_ILOGBNANshall be eitherINT_MAXor INT_MIN .

Recommended practice

9 Conversion from (at least)double to decimal withDECIMAL_DIG digits and back
should be the identity function (which assures that conversion from the widest supported
IEC 60559 format to decimal withDECIMAL_DIG digits and back is the identity

180) In this case, usingINFINITY will violate the constraint in 6.4.4 and thus require a diagnostic.

181) Typically, theFP_FAST_FMAmacro is defined if and only if thefma function is implemented

directly with a hardware multiply-add instruction. Software implementations are expected to be

substantially slower.

7.12 Library 7.12

WG14/N869 Committee Draft — January 18, 1999 213

function).

7.12.1 Treatment of error conditions

1 The behavior of each of the functions in<math.h> is specified for all representable
values of its input arguments, except where stated otherwise.

2 For all functions, adomain erroroccurs if an input argument is outside the domain over
which the mathematical function is defined. The description of each function lists any
required domain errors; an implementation may define additional domain errors, provided
that such errors are consistent with the mathematical definition of the function.182) On a
domain error, the function returns an implementation-defined value; whether the integer
expressionerrno acquires the valueEDOMis implementation-defined.

3 Similarly, a range error occurs if the mathematical result of the function cannot be
represented in an object of the specified type, due to extreme magnitude. A floating
result overflows if the magnitude of the mathematical result is finite but so large that the
mathematical result cannot be represented, without extraordinary roundoff error, in an
object of the specified type. If a floating result overflows and default rounding is in
effect, or if the mathematical result is an exact infinity (for examplelog(0.0)), then
the function returns the value of the macroHUGE_VAL, HUGE_VALF, or HUGE_VALL
according to the return type, with the same sign as the correct value of the function;
whether errno acquires the valueERANGE when a range error occurs is
implementation-defined. The result underflows if the magnitude of the mathematical
result is so small that the mathematical result cannot be represented, without
extraordinary roundoff error, in an object of the specified type.183) If the result
underflows, the function returns a value whose magnitude is no greater than the smallest
normalized positive number in the specified type and is otherwise implementation-
defined; whethererrno acquires the valueERANGEis implementation-defined.

182) In an implementation that supports infinities, this allows an infinity as an argument to be a domain

error if the mathematical domain of the function does not include the infinity.

183) The term underflow here is intended to encompass bothgradual underflowas in IEC 60559 and also

flush-to-zerounderflow.

7.12 Library 7.12.1

214 Committee Draft — January 18, 1999 WG14/N869

7.12.2 TheFP_CONTRACTpragma
Synopsis

1 #include <math.h>
#pragma STDC FP_CONTRACT on-off-switch

Description

2 TheFP_CONTRACTpragma can be used to allow (if the state ison) or disallow (if the
state isoff) the implementation to contract expressions (6.5). Each pragma can occur
either outside external declarations or preceding all explicit declarations and statements
inside a compound statement. When outside external declarations, the pragma takes
effect from its occurrence until anotherFP_CONTRACTpragma is encountered, or until
the end of the translation unit. When inside a compound statement, the pragma takes
effect from its occurrence until anotherFP_CONTRACTpragma is encountered
(including within a nested compound statement), or until the end of the compound
statement; at the end of a compound statement the state for the pragma is restored to its
condition just before the compound statement. If this pragma is used in any other
context, the behavior is undefined. The default state (on or off) for the pragma is
implementation-defined.

7.12.3 Classification macros

1 In the synopses in this subclause,real-floating indicates that the argument shall be an
expression of real floating type. ∗

7.12.3.1 Thefpclassify macro

Synopsis

1 #include <math.h>
int fpclassify(real-floating x);

Description

2 The fpclassify macro classifies its argument value as NaN, infinite, normal,
subnormal, or zero. First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then classification is based on the type of the
argument.184)

Returns

184) Since an expression can be evaluated with more range and precision than its type has, it is important to

know the type that classification is based on. For example, a normallong double value might

become subnormal when converted todouble , and zero when converted tofloat .

7.12.1 Library 7.12.3.1

WG14/N869 Committee Draft — January 18, 1999 215

3 The fpclassify macro returns the value of the number classification macro
appropriate to the value of its argument.

4 EXAMPLE Thefpclassify macro might be implemented in terms of ordinary functions as

#define fpclassify(x) \
((sizeof (x) == sizeof (float)) ? \

_ _fpclassifyf(x) \
: (sizeof (x) == sizeof (double)) ? \

_ _fpclassifyd(x) \
: _ _fpclassifyl(x))

7.12.3.2 Theisfinite macro

Synopsis

1 #include <math.h>
int isfinite(real-floating x);

Description

2 The isfinite macro determines whether its argument has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then determination
is based on the type of the argument.

Returns

3 The isfinite macro returns a nonzero value if and only if its argument has a finite
value.

7.12.3.3 Theisinf macro

Synopsis

1 #include <math.h>
int isinf(real-floating x);

Description

2 The isinf macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the argument.

Returns

3 The isinf macro returns a nonzero value if and only if its argument has an infinite
value.

7.12.3.1 Library 7.12.3.3

216 Committee Draft — January 18, 1999 WG14/N869

7.12.3.4 Theisnan macro

Synopsis

1 #include <math.h>
int isnan(real-floating x);

Description

2 The isnan macro determines whether its argument value is a NaN. First, an argument
represented in a format wider than its semantic type is converted to its semantic type.
Then determination is based on the type of the argument.185)

Returns

3 Theisnan macro returns a nonzero value if and only if its argument has a NaN value.

7.12.3.5 Theisnormal macro

Synopsis

1 #include <math.h>
int isnormal(real-floating x);

Description

2 The isnormal macro determines whether its argument value is normal (neither zero,
subnormal, infinite, nor NaN). First, an argument represented in a format wider than its
semantic type is converted to its semantic type. Then determination is based on the type
of the argument.

Returns

3 The isnormal macro returns a nonzero value if and only if its argument has a normal
value.

185) For theisnan macro, the type for determination does not matter unless the implementation supports

NaNs in the evaluation type but not in the semantic type.

7.12.3.3 Library 7.12.3.5

WG14/N869 Committee Draft — January 18, 1999 217

7.12.3.6 Thesignbit macro

Synopsis

1 #include <math.h>
int signbit(real-floating x);

Description

2 Thesignbit macro determines whether the sign of its argument value is negative.186)

Returns

3 Thesignbit macro returns a nonzero value if and only if the sign of its argument value
is negative.

7.12.4 Trigonometric functions

7.12.4.1 Theacos functions

Synopsis

1 #include <math.h>
double acos(double x);
float acosf(float x);
long double acosl(long double x);

Description

2 Theacos functions compute the principal value of the arc cosine ofx . A domain error
occurs for arguments not in the range [−1, +1].

Returns

3 Theacos functions return the arc cosine in the range [0,π] radians.

186) Thesignbit macro reports the sign of all values, including infinities, zeros, and NaNs.

7.12.3.5 Library 7.12.4.1

218 Committee Draft — January 18, 1999 WG14/N869

7.12.4.2 Theasin functions

Synopsis

1 #include <math.h>
double asin(double x);
float asinf(float x);
long double asinl(long double x);

Description

2 The asin functions compute the principal value of the arc sine ofx . A domain error
occurs for arguments not in the range [−1, +1].

Returns

3 Theasin functions return the arc sine in the range [−π/2, +π/2] radians.

7.12.4.3 Theatan functions

Synopsis

1 #include <math.h>
double atan(double x);
float atanf(float x);
long double atanl(long double x);

Description

2 Theatan functions compute the principal value of the arc tangent ofx .

Returns

3 Theatan functions return the arc tangent in the range [−π/2, +π/2] radians.

7.12.4.4 Theatan2 functions

Synopsis

1 #include <math.h>
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

Description

2 Theatan2 functions compute the principal value of the arc tangent ofy / x , using the
signs of both arguments to determine the quadrant of the return value. A domain error
may occur if both arguments are zero.

Returns

7.12.4.1 Library 7.12.4.4

WG14/N869 Committee Draft — January 18, 1999 219

3 Theatan2 functions return the arc tangent ofy / x , in the range [−π, +π] radians.

7.12.4.5 Thecos functions

Synopsis

1 #include <math.h>
double cos(double x);
float cosf(float x);
long double cosl(long double x);

Description

2 Thecos functions compute the cosine ofx (measured in radians).

Returns

3 Thecos functions return the cosine value.

7.12.4.6 Thesin functions

Synopsis

1 #include <math.h>
double sin(double x);
float sinf(float x);
long double sinl(long double x);

Description

2 Thesin functions compute the sine ofx (measured in radians).

Returns

3 Thesin functions return the sine value.

7.12.4.4 Library 7.12.4.6

220 Committee Draft — January 18, 1999 WG14/N869

7.12.4.7 Thetan functions

Synopsis

1 #include <math.h>
double tan(double x);
float tanf(float x);
long double tanl(long double x);

Description

2 Thetan functions return the tangent ofx (measured in radians).

Returns

3 Thetan functions return the tangent value.

7.12.5 Hyperbolic functions

7.12.5.1 Theacosh functions

Synopsis

1 #include <math.h>
double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Description

2 Theacosh functions compute the (nonnegative) arc hyperbolic cosine ofx . A domain
error occurs for arguments less than 1.

Returns

3 Theacosh functions return the arc hyperbolic cosine in the range [0, +∞].

7.12.4.6 Library 7.12.5.1

WG14/N869 Committee Draft — January 18, 1999 221

7.12.5.2 Theasinh functions

Synopsis

1 #include <math.h>
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Description

2 Theasinh functions compute the arc hyperbolic sine ofx .

Returns

3 Theasinh functions return the arc hyperbolic sine value.

7.12.5.3 Theatanh functions

Synopsis

1 #include <math.h>
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Description

2 Theatanh functions compute the arc hyperbolic tangent ofx . A domain error occurs
for arguments not in the range [−1, +1]. A range error may occur if the argument equals
−1 or +1.

Returns

3 Theatanh functions return the arc hyperbolic tangent value.

7.12.5.1 Library 7.12.5.3

222 Committee Draft — January 18, 1999 WG14/N869

7.12.5.4 Thecosh functions

Synopsis

1 #include <math.h>
double cosh(double x);
float coshf(float x);
long double coshl(long double x);

Description

2 The cosh functions compute the hyperbolic cosine ofx . A range error occurs if the
magnitude ofx is too large.

Returns

3 Thecosh functions return the hyperbolic cosine value.

7.12.5.5 Thesinh functions

Synopsis

1 #include <math.h>
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

Description

2 The sinh functions compute the hyperbolic sine ofx . A range error occurs if the
magnitude ofx is too large.

Returns

3 Thesinh functions return the hyperbolic sine value.

7.12.5.3 Library 7.12.5.5

WG14/N869 Committee Draft — January 18, 1999 223

7.12.5.6 Thetanh functions

Synopsis

1 #include <math.h>
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

Description

2 Thetanh functions compute the hyperbolic tangent ofx .

Returns

3 Thetanh functions return the hyperbolic tangent value.

7.12.6 Exponential and logarithmic functions

7.12.6.1 Theexp functions

Synopsis

1 #include <math.h>
double exp(double x);
float expf(float x);
long double expl(long double x);

Description

2 Theexp functions compute the base-e exponential ofx : ex . A range error occurs if the
magnitude ofx is too large.

Returns

3 Theexp functions return the exponential value.

7.12.5.5 Library 7.12.6.1

224 Committee Draft — January 18, 1999 WG14/N869

7.12.6.2 Theexp2 functions

Synopsis

1 #include <math.h>
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

Description

2 Theexp2 functions compute the base-2 exponential ofx : 2x . A range error occurs if the
magnitude ofx is too large.

Returns

3 Theexp2 functions return the base-2 exponential value.

7.12.6.3 Theexpm1 functions

Synopsis

1 #include <math.h>
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

Description

2 Theexpm1 functions compute the base-e exponential of the argument, minus 1:ex − 1.
A range error occurs ifx is too large.187)

Returns

3 Theexpm1 functions return the value ofex − 1.

187) For small magnitudex , expm1(x) is expected to be more accurate thanexp(x) - 1 .

7.12.6.1 Library 7.12.6.3

WG14/N869 Committee Draft — January 18, 1999 225

7.12.6.4 Thefrexp functions

Synopsis

1 #include <math.h>
double frexp(double value, int *exp);
float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);

Description

2 The frexp functions break a floating-point number into a normalized fraction and an
integral power of 2. They store the integer in theint object pointed to byexp .

Returns

3 Thefrexp functions return the valuex , such thatx has a magnitude in the interval [1/2,
1) or zero, andvalue equalsx × 2*exp . If value is zero, both parts of the result are
zero.

7.12.6.5 Theilogb functions

Synopsis

1 #include <math.h>
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

Description

2 The ilogb functions extract the exponent ofx as a signedint value. Ifx is zero they
compute the valueFP_ILOGB0; if x is infinite they compute the valueINT_MAX; if x is
a NaN they compute the valueFP_ILOGBNAN; otherwise, they are equivalent to calling
the correspondinglogb function and casting the returned value to typeint . A range
error may occur ifx is 0.

Returns

3 Theilogb functions return the exponent ofx as a signedint value.

Forward references: the logb functions (7.12.6.11).

7.12.6.3 Library 7.12.6.5

226 Committee Draft — January 18, 1999 WG14/N869

7.12.6.6 Theldexp functions

Synopsis

1 #include <math.h>
double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);

Description

2 The ldexp functions multiply a floating-point number by an integral power of 2. A
range error may occur.

Returns

3 Theldexp functions return the value ofx × 2exp .

7.12.6.7 Thelog functions

Synopsis

1 #include <math.h>
double log(double x);
float logf(float x);
long double logl(long double x);

Description

2 Thelog functions compute the base-e (natural) logarithm ofx . A domain error occurs if
the argument is negative. A range error may occur if the argument is zero.

Returns

3 Thelog functions return the base-e logarithm value.

7.12.6.5 Library 7.12.6.7

WG14/N869 Committee Draft — January 18, 1999 227

7.12.6.8 Thelog10 functions

Synopsis

1 #include <math.h>
double log10(double x);
float log10f(float x);
long double log10l(long double x);

Description

2 The log10 functions compute the base-10 (common) logarithm ofx . A domain error
occurs if the argument is negative. A range error may occur if the argument is zero.

Returns

3 Thelog10 functions return the base-10 logarithm value.

7.12.6.9 Thelog1p functions

Synopsis

1 #include <math.h>
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Description

2 Thelog1p functions compute the base-e (natural) logarithm of 1 plus the argument.188)

A domain error occurs if the argument is less than −1. A range error may occur if the
argument equals −1.

Returns

3 Thelog1p functions return the value of the base-e logarithm of 1 plus the argument.

188) For small magnitudex , log1p(x) is expected to be more accurate thanlog(1 + x) .

7.12.6.7 Library 7.12.6.9

228 Committee Draft — January 18, 1999 WG14/N869

7.12.6.10 Thelog2 functions

Synopsis

1 #include <math.h>
double log2(double x);
float log2f(float x);
long double log2l(long double x);

Description

2 The log2 functions compute the base-2 logarithm ofx . A domain error occurs if the
argument is less than zero. A range error may occur if the argument is zero.

Returns

3 Thelog2 functions return the base-2 logarithm value.

7.12.6.11 Thelogb functions

Synopsis

1 #include <math.h>
double logb(double x);
float logbf(float x);
long double logbl(long double x);

Description

2 Thelogb functions extract the exponent ofx , as a signed integer value in floating-point
format. If x is subnormal it is treated as though it were normalized; thus, for positive
finite x ,

1 ≤ x × FLT_RADIX−logb (x) < FLT_RADIX

A domain error may occur if the argument is zero.

Returns

3 Thelogb functions return the signed exponent ofx .

7.12.6.9 Library 7.12.6.11

WG14/N869 Committee Draft — January 18, 1999 229

7.12.6.12 Themodf functions

Synopsis

1 #include <math.h>
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);

Description

2 Themodf functions break the argumentvalue into integral and fractional parts, each of
which has the same type and sign as the argument. They store the integral part (in
floating-point format) in the object pointed to byiptr .

Returns

3 Themodf functions return the value of the signed fractional part ofvalue .

7.12.6.13 Thescalbn and scalbln functions

Synopsis

1 #include <math.h>
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);

Description

2 The scalbn and scalbln functions computex × FLT_RADIXn efficiently, not
normally by computingFLT_RADIXn explicitly. A range error may occur.

Returns

3 Thescalbn andscalbln functions return the value ofx × FLT_RADIXn.

7.12.7 Power and absolute-value functions

7.12.6.11 Library 7.12.7

230 Committee Draft — January 18, 1999 WG14/N869

7.12.7.1 Thecbrt functions

Synopsis

1 #include <math.h>
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Description

2 Thecbrt functions compute the real cube root ofx .

Returns

3 Thecbrt functions return the value of the cube root.

7.12.7.2 Thefabs functions

Synopsis

1 #include <math.h>
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

Description

2 Thefabs functions compute the absolute value of a floating-point numberx .

Returns

3 Thefabs functions return the absolute value ofx .

7.12.7.3 Thehypot functions

Synopsis

1 #include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

Description

2 The hypot functions compute the square root of the sum of the squares ofx and y ,
without undue overflow or underflow. A range error may occur.

3 Returns

4 Thehypot functions return the value of the square root of the sum of the squares.

7.12.7 Library 7.12.7.3

WG14/N869 Committee Draft — January 18, 1999 231

7.12.7.4 Thepow functions

Synopsis

1 #include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

Description

2 The pow functions computex raised to the powery . A domain error occurs ifx is
negative andy is finite and not an integer value. A domain error occurs if the result
cannot be represented whenx is zero andy is less than or equal to zero. A range error
may occur.

Returns

3 Thepow functions return the value ofx raised to the powery .

7.12.7.5 Thesqrt functions

Synopsis

1 #include <math.h>
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

Description

2 Thesqrt functions compute the nonnegative square root ofx . A domain error occurs if
the argument is less than zero.

Returns

3 Thesqrt functions return the value of the square root.

7.12.8 Error and gamma functions

7.12.7.3 Library 7.12.8

232 Committee Draft — January 18, 1999 WG14/N869

7.12.8.1 Theerf functions

Synopsis

1 #include <math.h>
double erf(double x);
float erff(float x);
long double erfl(long double x);

Description

2 Theerf functions compute the error function ofx :
2

√ π ∫
x

0
e−t2

dt.

Returns

3 Theerf functions return the error function value.

7.12.8.2 Theerfc functions

Synopsis

1 #include <math.h>
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

Description

2 The erfc functions compute the complementary error function ofx :
2

√ π ∫
∞
x

e−t2
dt. A

range error occurs ifx is too large.

Returns

3 Theerfc functions return the complementary error function value.

7.12.8 Library 7.12.8.2

WG14/N869 Committee Draft — January 18, 1999 233

7.12.8.3 Thelgamma functions

Synopsis

1 #include <math.h>
double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

Description

2 Thelgamma functions compute the natural logarithm of the absolute value of gamma of
x : loge | Γ(x) |. A range error occurs ifx is too large or ifx is a negative integer or zero.

Returns

3 The lgamma functions return the value of the natural logarithm of the absolute value of
gamma ofx .

7.12.8.4 Thetgamma functions

Synopsis

1 #include <math.h>
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Description

2 Thetgamma functions compute the gamma function ofx : Γ(x). A domain error occurs
if x is a negative integer or zero. A range error may occur if the magnitude ofx is too
large or too small.

Returns

3 Thetgamma functions return the gamma function value.

7.12.9 Nearest integer functions

7.12.8.2 Library 7.12.9

234 Committee Draft — January 18, 1999 WG14/N869

7.12.9.1 Theceil functions

Synopsis

1 #include <math.h>
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

Description

2 Theceil functions compute the smallest integer value not less thanx : x.

Returns

3 The ceil functions return the smallest integer value not less thanx , expressed as a
floating-point number.

7.12.9.2 Thefloor functions

Synopsis

1 #include <math.h>
double floor(double x);
float floorf(float x);
long double floorl(long double x);

Description

2 Thefloor functions compute the largest integer value not greater thanx : x.

Returns

3 The floor functions return the largest integer value not greater thanx , expressed as a
floating-point number.

7.12.9 Library 7.12.9.2

WG14/N869 Committee Draft — January 18, 1999 235

7.12.9.3 Thenearbyint functions

Synopsis

1 #include <math.h>
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

Description

2 The nearbyint functions round their argument to an integer value in floating-point
format, using the current rounding direction and without raising theinexactexception.

Returns

3 Thenearbyint functions return the rounded integer value.

7.12.9.4 Therint functions

Synopsis

1 #include <math.h>
double rint(double x);
float rintf(float x);
long double rintl(long double x);

Description

2 The rint functions differ from thenearbyint functions (7.12.9.3) only in that the
rint functions may raise the inexact exception if the result differs in value from the
argument (see F.9.6.3 and F.9.6.4).

Returns

3 Therint functions return the rounded integer value.

7.12.9.5 Thelrint and llrint functions

Synopsis

1 #include <math.h>
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);

Description

7.12.9.2 Library 7.12.9.5

236 Committee Draft — January 18, 1999 WG14/N869

2 The lrint and llrint functions round their argument to the nearest integer value,
rounding according to the current rounding direction. If the rounded value is outside the
range of the return type, the numeric result is unspecified. A range error may occur if the
magnitude ofx is too large.

Returns

3 Thelrint andllrint functions return the rounded integer value.

7.12.9.6 Theround functions

Synopsis

1 #include <math.h>
double round(double x);
float roundf(float x);
long double roundl(long double x);

Description

2 Theround functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from zero, regardless of the current rounding
direction.

Returns

3 Theround functions return the rounded integer value.

7.12.9.7 Thelround and llround functions

Synopsis

1 #include <math.h>
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);

Description

2 The lround and llround functions round their argument to the nearest integer value,
rounding halfway cases away from zero, regardless of the current rounding direction. If
the rounded value is outside the range of the return type, the numeric result is unspecified.
A range error may occur if the magnitude ofx is too large.

Returns

7.12.9.5 Library 7.12.9.7

WG14/N869 Committee Draft — January 18, 1999 237

3 Thelround andllround functions return the rounded integer value.

7.12.9.8 Thetrunc functions

Synopsis

1 #include <math.h>
double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Description

2 The trunc functions round their argument to the integer value, in floating format,
nearest to but no larger in magnitude than the argument.

Returns

3 Thetrunc functions return the truncated integer value.

7.12.10 Remainder functions

7.12.10.1 Thefmod functions

Synopsis

1 #include <math.h>
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

Description

2 Thefmod functions compute the floating-point remainder ofx / y .

Returns

3 Thefmod functions return the valuex − ny , for some integern such that, ify is nonzero,
the result has the same sign asx and magnitude less than the magnitude ofy . If y is zero,
whether a domain error occurs or thefmod functions return zero is implementation-
defined.

7.12.9.7 Library 7.12.10.1

238 Committee Draft — January 18, 1999 WG14/N869

7.12.10.2 Theremainder functions

Synopsis

1 #include <math.h>
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

Description

2 Theremainder functions compute the remainderx REM y required by IEC 60559.189)

Returns

3 Theremainder functions return the value ofx REM y .

7.12.10.3 Theremquo functions

Synopsis

1 #include <math.h>
double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y,

int *quo);

Description

2 The remquo functions compute the same remainder as theremainder functions. In
the object pointed to byquo they store a value whose sign is the sign ofx / y and whose
magnitude is congruent modulo 2n to the magnitude of the integral quotient ofx / y ,
wheren is an implementation-defined integer greater than or equal to 3.

Returns

3 Theremquo functions return the value ofx REM y .

189) ‘‘When y ≠ 0, the remainderr = x REM y is defined regardless of the rounding mode by the

mathematical relationr = x − ny, wheren is the integer nearest the exact value ofx / y; whenever

| n − x / y | = 1/2, thenn is even. Thus, the remainder is always exact. Ifr = 0, its sign shall be that

of x.’’ This definition is applicable for all implementations.

7.12.10.1 Library 7.12.10.3

WG14/N869 Committee Draft — January 18, 1999 239

7.12.11 Manipulation functions

7.12.11.1 Thecopysign functions

Synopsis

1 #include <math.h>
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

Description

2 Thecopysign functions produce a value with the magnitude ofx and the sign ofy .
They produce a NaN (with the sign ofy) if x is a NaN. On implementations that
represent a signed zero but do not treat negative zero consistently in arithmetic
operations, thecopysign functions regard the sign of zero as positive.

Returns

3 Thecopysign functions return a value with the magnitude ofx and the sign ofy .

7.12.11.2 Thenan functions

Synopsis

1 #include <math.h>
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

Description

2 The call nan(" n-char-sequence") is equivalent to strtod("NAN(n-char-
sequence)", (char**) NULL) ; the call nan("") is equivalent to
strtod("NAN()", (char**) NULL) . If tagp does not point to an n-char
sequence or an empty string, the call is equivalent tostrtod("NAN", (char**)
NULL) . Calls tonanf andnanl are equivalent to the corresponding calls tostrtof
andstrtold .

Returns

3 Thenan functions return a quiet NaN, if available, with content indicated throughtagp .
If the implementation does not support quiet NaNs, the functions return zero.

Forward references: thestrtod , strtof , andstrtold functions (7.20.1.3).

7.12.11 Library 7.12.11.2

240 Committee Draft — January 18, 1999 WG14/N869

7.12.11.3 Thenextafter functions

Synopsis

1 #include <math.h>
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

Description

2 The nextafter functions determine the next representable value, in the type of the
function, afterx in the direction ofy , wherex andy are first converted to the type of the
function.190) Thenextafter functions returny if x equalsy . A range error may occur
if the magnitude of x is the largest finite value representable in the type and the result is
infinite or not representable in the type.

Returns

3 The nextafter functions return the next representable value in the specified format
afterx in the direction ofy .

7.12.11.4 Thenexttoward functions

Synopsis

1 #include <math.h>
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

Description

2 Thenexttoward functions are equivalent to thenextafter functions except that the
second parameter has typelong double .191)

190) The argument values are converted to the type of the function, even by a macro implementation of the

function.

191) The result of thenexttoward functions is determined in the type of the function, without loss of

range or precision in a floating second argument.

7.12.11.2 Library 7.12.11.4

WG14/N869 Committee Draft — January 18, 1999 241

7.12.12 Maximum, minimum, and positive difference functions

7.12.12.1 Thefdim functions

Synopsis

1 #include <math.h>
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

Description

2 Thefdim functions determine thepositive differencebetween their arguments:

x − y

+0

if x > y

if x ≤ y

A range error may occur.

Returns

3 Thefdim functions return the positive difference value.

7.12.12.2 Thefmax functions

Synopsis

1 #include <math.h>
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

Description

2 Thefmax functions determine the maximum numeric value of their arguments.192)

Returns

3 Thefmax functions return the maximum numeric value of their arguments.

192) NaN arguments are treated as missing data: if one argument is a NaN and the other numeric, then the

fmax functions choose the numeric value. See F.9.9.2.

7.12.12 Library 7.12.12.2

242 Committee Draft — January 18, 1999 WG14/N869

7.12.12.3 Thefmin functions

Synopsis

1 #include <math.h>
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

Description

2 Thefmin functions determine the minimum numeric value of their arguments.193)

Returns

3 Thefmin functions return the minimum numeric value of their arguments.

7.12.13 Floating multiply-add

7.12.13.1 Thefma functions

Synopsis

1 #include <math.h>
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y,

long double z);

Description

2 Thefma functions compute the sumz plus the productx timesy , rounded as one ternary
operation: they computes the sumz plus the productx timesy (as if) to infinite precision
and round once to the result format, according to the rounding mode characterized by the
value ofFLT_ROUNDS.

Returns

3 The fma functions return the sumz plus the productx timesy , rounded as one ternary
operation.

193) Thefmin functions are analogous to thefmax functions in their treatment of NaNs.

7.12.12.2 Library 7.12.13.1

WG14/N869 Committee Draft — January 18, 1999 243

7.12.14 Comparison macros

1 The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values exactly one of the
relationships —less, greater, andequal — is true. Relational operators may raise the
invalid exception when argument values are NaNs. For a NaN and a numeric value, or
for two NaNs, just theunordered relationship is true.194) The following subclauses
provide macros that arequiet (non exception raising) versions of the relational operators,
and other comparison macros that facilitate writing efficient code that accounts for NaNs
without suffering theinvalid exception. In the synopses in this subclause,real-floating
indicates that the argument shall be an expression of real floating type.

7.12.14.1 Theisgreater macro

Synopsis

1 #include <math.h>
int isgreater(real-floating x, real-floating y);

Description

2 The isgreater macro determines whether its first argument is greater than its second
argument. The value ofisgreater(x,y) is always equal to(x) > (y) ; howev er,
unlike (x) > (y) , isgreater(x,y) does not raise theinvalid exception whenx
andy are unordered.

Returns

3 Theisgreater macro returns the value of(x) > (y) .

194) IEC 60559 requires that the built-in relational operators raise theinvalid exception if the operands

compare unordered, as an error indicator for programs written without consideration of NaNs; the

result in these cases is false.

7.12.14 Library 7.12.14.1

244 Committee Draft — January 18, 1999 WG14/N869

7.12.14.2 Theisgreaterequal macro

Synopsis

1 #include <math.h>
int isgreaterequal(real-floating x, real-floating y);

Description

2 The isgreaterequal macro determines whether its first argument is greater than or
equal to its second argument. The value ofisgreaterequal(x,y) is always equal
to (x) >= (y) ; howev er, unlike(x) >= (y) , isgreaterequal(x,y) does not
raise theinvalid exception whenx andy are unordered.

Returns

3 Theisgreaterequal macro returns the value of(x) >= (y) .

7.12.14.3 Theisless macro

Synopsis

1 #include <math.h>
int isless(real-floating x, real-floating y);

Description

2 The isless macro determines whether its first argument is less than its second
argument. The value ofisless(x,y) is always equal to(x) < (y) ; howev er,
unlike (x) < (y) , isless(x,y) does not raise theinvalid exception whenx andy
are unordered.

Returns

3 Theisless macro returns the value of(x) < (y) .

7.12.14.1 Library 7.12.14.3

WG14/N869 Committee Draft — January 18, 1999 245

7.12.14.4 Theislessequal macro

Synopsis

1 #include <math.h>
int islessequal(real-floating x, real-floating y);

Description

2 The islessequal macro determines whether its first argument is less than or equal to
its second argument. The value ofislessequal(x,y) is always equal to
(x) <= (y) ; howev er, unlike(x) <= (y) , islessequal(x,y) does not raise
the invalid exception whenx andy are unordered.

Returns

3 Theislessequal macro returns the value of(x) <= (y) .

7.12.14.5 Theislessgreater macro

Synopsis

1 #include <math.h>
int islessgreater(real-floating x, real-floating y);

Description

2 The islessgreater macro determines whether its first argument is less than or
greater than its second argument. Theislessgreater(x,y) macro is similar to
(x) < (y) || (x) > (y) ; howev er,islessgreater(x,y) does not raise the
invalid exception whenx andy are unordered (nor does it evaluatex andy twice).

Returns

3 Theislessgreater macro returns the value of(x) < (y) || (x) > (y) .

7.12.14.3 Library 7.12.14.5

246 Committee Draft — January 18, 1999 WG14/N869

7.12.14.6 Theisunordered macro

Synopsis

1 #include <math.h>
int isunordered(real-floating x, real-floating y);

Description

2 Theisunordered macro determines whether its arguments are unordered.

Returns

3 Theisunordered macro returns 1 if its arguments are unordered and 0 otherwise.

7.12.14.5 Library 7.12.14.6

WG14/N869 Committee Draft — January 18, 1999 247

7.13 Nonlocal jumps<setjmp.h>

1 The header<setjmp.h> defines the macrosetjmp , and declares one function and
one type, for bypassing the normal function call and return discipline.195)

2 The type declared is

jmp_buf

which is an array type suitable for holding the information needed to restore a calling
environment.

3 It is unspecified whethersetjmp is a macro or an identifier declared with external
linkage. If a macro definition is suppressed in order to access an actual function, or a
program defines an external identifier with the namesetjmp , the behavior is undefined.

7.13.1 Save calling environment

7.13.1.1 Thesetjmp macro

Synopsis

1 #include <setjmp.h>
int setjmp(jmp_buf env);

Description

2 Thesetjmp macro saves its calling environment in itsjmp_buf argument for later use
by thelongjmp function.

Returns

3 If the return is from a direct invocation, thesetjmp macro returns the value zero. If the
return is from a call to thelongjmp function, thesetjmp macro returns a nonzero
value.

Environmental limits

4 An invocation of thesetjmp macro shall appear only in one of the following contexts:

— the entire controlling expression of a selection or iteration statement;

— one operand of a relational or equality operator with the other operand an integer
constant expression, with the resulting expression being the entire controlling
expression of a selection or iteration statement;

— the operand of a unary! operator with the resulting expression being the entire
controlling expression of a selection or iteration statement; or

195) These functions are useful for dealing with unusual conditions encountered in a low-level function of

a program.

7.13 Library 7.13.1.1

248 Committee Draft — January 18, 1999 WG14/N869

— the entire expression of an expression statement (possibly cast tovoid).

5 If the invocation appears in any other context, the behavior is undefined.

7.13.2 Restore calling environment

7.13.2.1 Thelongjmp function

Synopsis

1 #include <setjmp.h>
void longjmp(jmp_buf env, int val);

Description

2 The longjmp function restores the environment saved by the most recent invocation of
the setjmp macro in the same invocation of the program with the corresponding
jmp_buf argument. If there has been no such invocation, or if the function containing
the invocation of thesetjmp macro has terminated execution196) in the interim, or if the
invocation of thesetjmp macro was within the scope of an identifier with variably
modified type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values as of the timelongjmp was called, except that the
values of objects of automatic storage duration that are local to the function containing
the invocation of the correspondingsetjmp macro that do not have volatile-qualified
type and have been changed between thesetjmp invocation andlongjmp call are
indeterminate.

Returns

4 After longjmp is completed, program execution continues as if the corresponding
invocation of thesetjmp macro had just returned the value specified byval . The
longjmp function cannot cause thesetjmp macro to return the value 0; ifval is 0,
thesetjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of thesetjmp invocation
might cause memory associated with a variable length array object to be squandered.

196) For example, by executing areturn statement or because anotherlongjmp call has caused a

transfer to asetjmp invocation in a function earlier in the set of nested calls.

7.13.1.1 Library 7.13.2.1

WG14/N869 Committee Draft — January 18, 1999 249

#include <setjmp.h>
jmp_buf buf;
void g(int n);
void h(int n);
int n = 6;

void f(void)
{

int x[n]; // OK, f is not terminated.
setjmp(buf);
g(n);

}

void g(int n)
{

int a[n]; // a may remain allocated.
h(n);

}

void h(int n)
{

int b[n]; // b may remain allocated.
longjmp(buf,2); // might cause memory loss.

}

7.13.2.1 Library 7.13.2.1

250 Committee Draft — January 18, 1999 WG14/N869

7.14 Signal handling<signal.h>

1 The header<signal.h> declares a type and two functions and defines several macros,
for handling varioussignals(conditions that may be reported during program execution).

2 The type defined is

sig_atomic_t

which is the (possibly volatile-qualified) integer type of an object that can be accessed as
an atomic entity, even in the presence of asynchronous interrupts.

3 The macros defined are

SIG_DFL
SIG_ERR
SIG_IGN

which expand to constant expressions with distinct values that have type compatible with
the second argument to, and the return value of, thesignal function, and whose values
compare unequal to the address of any declarable function; and the following, which
expand to positive integer constant expressions with typeint and distinct values that are
the signal numbers, each corresponding to the specified condition:

SIGABRT abnormal termination, such as is initiated by theabort function

SIGFPE an erroneous arithmetic operation, such as zero divide or an operation
resulting in overflow

SIGILL detection of an invalid function image, such as an invalid instruction

SIGINT receipt of an interactive attention signal

SIGSEGV an invalid access to storage

SIGTERM a termination request sent to the program

4 An implementation need not generate any of these signals, except as a result of explicit
calls to theraise function. Additional signals and pointers to undeclarable functions,
with macro definitions beginning, respectively, with the lettersSIG and an uppercase
letter or with SIG_ and an uppercase letter,197) may also be specified by the
implementation. The complete set of signals, their semantics, and their default handling
is implementation-defined; all signal numbers shall be positive.

197) See ‘‘future library directions’’ (7.26.9). The names of the signal numbers reflect the following terms

(respectively): abort, floating-point exception, illegal instruction, interrupt, segmentation violation,

and termination.

7.14 Library 7.14

WG14/N869 Committee Draft — January 18, 1999 251

7.14.1 Specify signal handling

7.14.1.1 Thesignal function

Synopsis

1 #include <signal.h>
void (*signal(int sig, void (*func)(int)))(int);

Description

2 Thesignal function chooses one of three ways in which receipt of the signal number
sig is to be subsequently handled. If the value offunc is SIG_DFL, default handling
for that signal will occur. If the value offunc is SIG_IGN , the signal will be ignored.
Otherwise,func shall point to a function to be called when that signal occurs. An
invocation of such a function because of a signal, or (recursively) of any further functions
called by that invocation (other than functions in the standard library), is called asignal
handler.

3 When a signal occurs andfunc points to a function, it is implementation-defined
whether the equivalent ofsignal(sig, SIG_DFL); is executed or the
implementation prevents some implementation-defined set of signals (at least including
sig) from occurring until the current signal handling has completed; in the case of
SIGILL , the implementation may alternatively define that no action is taken. Then the
equivalent of(*func)(sig); is executed. If and when the function returns, if the
value of sig is SIGFPE, SIGILL , SIGSEGV, or any other implementation-defined
value corresponding to a computational exception, the behavior is undefined; otherwise
the program will resume execution at the point it was interrupted.

4 If the signal occurs as the result of calling theabort or raise function, the signal
handler shall not call theraise function.

5 If the signal occurs other than as the result of calling theabort or raise function, the
behavior is undefined if the signal handler refers to any object with static storage duration
other than by assigning a value to an object declared asvolatile sig_atomic_t , or
the signal handler calls any function in the standard library other than theabort
function or thesignal function with the first argument equal to the signal number
corresponding to the signal that caused the invocation of the handler. Furthermore, if
such a call to thesignal function results in aSIG_ERR return, the value oferrno is
indeterminate.198)

6 At program startup, the equivalent of

signal(sig, SIG_IGN);

may be executed for some signals selected in an implementation-defined manner; the

198) If any signal is generated by an asynchronous signal handler, the behavior is undefined.

7.14.1 Library 7.14.1.1

252 Committee Draft — January 18, 1999 WG14/N869

equivalent of

signal(sig, SIG_DFL);

is executed for all other signals defined by the implementation.

7 The implementation shall behave as if no library function calls thesignal function.

Returns

8 If the request can be honored, thesignal function returns the value offunc for the
most recent successful call tosignal for the specified signalsig . Otherwise, a value of
SIG_ERRis returned and a positive value is stored inerrno .

Forward references: theabort function (7.20.4.1), theexit function (7.20.4.3).

7.14.2 Send signal

7.14.2.1 Theraise function

Synopsis

1 #include <signal.h>
int raise(int sig);

Description

2 Theraise function carries out the actions described in 7.14.1.1 for the signalsig . If a
signal handler is called, theraise function shall not return until after the signal handler
does.

Returns

3 Theraise function returns zero if successful, nonzero if unsuccessful.

7.14.1.1 Library 7.14.2.1

WG14/N869 Committee Draft — January 18, 1999 253

7.15 Variable arguments<stdarg.h>

1 The header<stdarg.h> declares a type and defines four macros, for advancing
through a list of arguments whose number and types are not known to the called function
when it is translated.

2 A function may be called with a variable number of arguments of varying types. As
described in 6.9.1, its parameter list contains one or more parameters. The rightmost
parameter plays a special role in the access mechanism, and will be designatedparmNin
this description.

3 The type declared is

va_list

which is an object type suitable for holding information needed by the macros
va_start , va_arg , va_end , andva_copy . If access to the varying arguments is
desired, the called function shall declare an object (referred to asap in this subclause)
having typeva_list . The objectap may be passed as an argument to another function;
if that function invokes theva_arg macro with parameterap , the value ofap in the
calling function is indeterminate and shall be passed to theva_end macro prior to any
further reference toap .199)

7.15.1 Variable argument list access macros

1 The va_start , va_arg , andva_copy macros described in this subclause shall be
implemented as macros, not functions. It is unspecified whetherva_end is a macro or
an identifier declared with external linkage. If a macro definition is suppressed in order
to access an actual function, or a program defines an external identifier with the name
va_end , the behavior is undefined. Each invocation of theva_start or va_copy
macros shall be matched by a corresponding invocation of theva_end macro in the
function accepting a varying number of arguments.

199) It is permitted to create a pointer to ava_list and pass that pointer to another function, in which

case the original function may make further use of the original list after the other function returns.

7.15 Library 7.15.1

254 Committee Draft — January 18, 1999 WG14/N869

7.15.1.1 Theva_arg macro

Synopsis

1 #include <stdarg.h>
type va_arg(va_list ap, type);

Description

2 Theva_arg macro expands to an expression that has the specified type and the value of
the next argument in the call. The parameterap shall be the same as theva_list ap
initialized byva_start . Each invocation ofva_arg modifiesap so that the values of
successive arguments are returned in turn. The parametertype shall be a type name
specified such that the type of a pointer to an object that has the specified type can be
obtained simply by postfixing a* to type. If there is no actual next argument, or iftypeis
not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer
type, and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns

3 The first invocation of theva_arg macro after that of theva_start macro returns the
value of the argument after that specified byparmN. Successive inv ocations return the
values of the remaining arguments in succession.

7.15.1.2 Theva_copy macro

Synopsis

1 #include <stdarg.h>
void va_copy(va_list dest, va_list src);

Description

2 Theva_copy macro makes theva_list dest be a copy of theva_list src , as if
the va_start macro had been applied to it followed by the same sequence of uses of
theva_arg macro as had previously been used to reach the present state ofsrc .

Returns

3 Theva_copy macro returns no value.

7.15.1 Library 7.15.1.2

WG14/N869 Committee Draft — January 18, 1999 255

7.15.1.3 Theva_end macro

Synopsis

1 #include <stdarg.h>
void va_end(va_list ap);

Description

2 The va_end macro facilitates a normal return from the function whose variable
argument list was referred to by the expansion ofva_start that initialized the
va_list ap . Theva_end macro may modifyap so that it is no longer usable (without
an intervening invocation ofva_start). If there is no corresponding invocation of the
va_start macro, or if theva_end macro is not invoked before the return, the
behavior is undefined.

Returns

3 Theva_end macro returns no value.

7.15.1.4 Theva_start macro

Synopsis

1 #include <stdarg.h>
void va_start(va_list ap, parmN);

Description

2 Theva_start macro shall be invoked before any access to the unnamed arguments.

3 The va_start macro initializesap for subsequent use byva_arg and va_end .
va_start shall not be invoked again for the sameap without an intervening invocation
of va_end for the sameap .

4 The parameterparmN is the identifier of the rightmost parameter in the variable
parameter list in the function definition (the one just before the, ...). If the parameter
parmN is declared with theregister storage class, with a function or array type, or
with a type that is not compatible with the type that results after application of the default
argument promotions, the behavior is undefined.

Returns

5 Theva_start macro returns no value.

6 EXAMPLE The functionf1 gathers into an array a list of arguments that are pointers to strings (but not
more thanMAXARGSarguments), then passes the array as a single argument to functionf2 . The number of
pointers is specified by the first argument tof1 .

#include <stdarg.h>
#define MAXARGS 31

7.15.1.2 Library 7.15.1.4

256 Committee Draft — January 18, 1999 WG14/N869

void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char *);
va_end(ap);
f2(n_ptrs, array);

}

Each call tof1 shall have visible the definition of the function or a declaration such as

void f1(int, ...);

7 The functionf3 is similar, but saves the status of the variable argument list after the indicated number of
arguments; afterf2 has been called once with the whole list, the trailing part of the list is gathered again
and passed to functionf4 .

#include <stdarg.h>
#define MAXARGS 31

void f3(int n_ptrs, int f4_after, ...)
{

va_list ap, ap_save;
char *array[MAXARGS];
int ptr_no = 0;
if (n_ptrs > MAXARGS)

n_ptrs = MAXARGS;
va_start(ap, n_ptrs);
while (ptr_no < n_ptrs) {

array[ptr_no++] = va_arg(ap, char *);
if (ptr_no == f4_after)

va_copy(ap_save, ap);
}
va_end(ap);
f2(n_ptrs, array);

// Now process the saved copy.

n_ptrs -= f4_after;
ptr_no = 0;
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap_save, char *);
va_end(ap_save);
f4(n_ptrs, array);

}

7.15.1.4 Library 7.15.1.4

WG14/N869 Committee Draft — January 18, 1999 257

7.16 Boolean type and values<stdbool.h>

1 The header<stdbool.h> defines four macros.

2 The macro

bool

expands to_Bool .

3 The remaining three macros are suitable for use in#if preprocessing directives. They
are

true

which expands to the integer constant 1,

false

which expands to the integer constant 0, and

_ _bool_true_false_are_defined

which expands to the decimal constant 1.

4 Notwithstanding the provisions of 7.1.3, a program is permitted to undefine and perhaps
then redefine the macrosbool , true , andfalse .200)

200) See ‘‘future library directions’’ (7.26.7).

7.16 Library 7.16

258 Committee Draft — January 18, 1999 WG14/N869

7.17 Common definitions<stddef.h>

1 The following types and macros are defined in the standard header<stddef.h> . Some
are also defined in other headers, as noted in their respective subclauses.

2 The types are

ptrdiff_t

which is the signed integer type of the result of subtracting two pointers;

size_t

which is the unsigned integer type of the result of thesizeof operator; and

wchar_t

which is an integer type whose range of values can represent distinct codes for all
members of the largest extended character set specified among the supported locales; the
null character shall have the code value zero and each member of the basic character set
defined in 5.2.1 shall have a code value equal to its value when used as the lone character
in an integer character constant.

3 The macros are

NULL

which expands to an implementation-defined null pointer constant; and

offsetof(type, member-designator)

which expands to an integer constant expression that has typesize_t , the value of
which is the offset in bytes, to the structure member (designated bymember-designator),
from the beginning of its structure (designated bytype). The type and member designator
shall be such that given

static type t;

then the expression&(t. member-designator) evaluates to an address constant. (If the
specified member is a bit-field, the behavior is undefined.)

Forward references: localization (7.11).

7.17 Library 7.17

WG14/N869 Committee Draft — January 18, 1999 259

7.18 Integer types<stdint.h>

1 The header<stdint.h> declares sets of integer types having specified widths, and
defines corresponding sets of macros.201) It also defines macros that specify limits of
integer types corresponding to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;

— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)

3 Corresponding macros specify limits of the declared types and construct suitable
constants.

4 For each type described herein that the implementation provides,202) <stdint.h> shall
declare that typedef name and define the associated macros. Conversely, for each type
described herein that the implementation does not provide,<stdint.h> shall not
declare that typedef name nor shall it define the associated macros.An implementation
shall provide those types described as ‘‘required’’, but need not provide any of the others
(described as ‘‘optional’’).

7.18.1 Integer types

1 When typedef names differing only in the absence or presence of the initialu are defined,
they shall denote corresponding signed and unsigned types as described in 6.2.5; an
implementation shall not provide a type without also providing its corresponding type.

2 In the following descriptions, the symbolN represents an unsigned decimal integer with
no leading zeros (e.g., 8 or 24, but not 04 or 048).

7.18.1.1 Exact-width integer types

1 The typedef nameint N_t designates a signed integer type with widthN. Thus,
int8_t denotes a signed integer type with a width of exactly 8 bits.

2 The typedef nameuint N_t designates an unsigned integer type with widthN. Thus,
uint24_t denotes an unsigned integer type with a width of exactly 24 bits.

201) See ‘‘future library directions’’ (7.26.8).

202) Some of these types may denote implementation-defined extended integer types.

7.18 Library 7.18.1.1

260 Committee Draft — January 18, 1999 WG14/N869

3 These types are optional. However, if an implementation provides integer types with
widths of 8, 16, 32, or 64 bits, it shall define the corresponding typedef names.

7.18.1.2 Minimum-width integer types

1 The typedef nameint_least N_t designates a signed integer type with a width of at
leastN, such that no signed integer type with lesser size has at least the specified width.
Thus,int_least32_t denotes a signed integer type with a width of at least 32 bits.

2 The typedef nameuint_least N_t designates an unsigned integer type with a width
of at leastN, such that no unsigned integer type with lesser size has at least the specified
width. Thus,uint_least16_t denotes an unsigned integer type with a width of at
least 16 bits.

3 The following types are required:

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t ∗
uint_least16_t
uint_least32_t
uint_least64_t

All other types of this form are optional.

7.18.1.3 Fastest minimum-width integer types

1 Each of the following types designates an integer type that is usually fastest203) to operate
with among all integer types that have at least the specified width. ∗

2 The typedef nameint_fast N_t designates the fastest signed integer type with a width
of at leastN. The typedef nameuint_fast N_t designates the fastest unsigned integer
type with a width of at leastN.

3 The following types are required:

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t ∗
uint_fast16_t
uint_fast32_t
uint_fast64_t

All other types of this form are optional.

203) The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear

grounds for choosing one type over another, it will simply pick some integer type satisfying the

signedness and width requirements.

7.18.1.1 Library 7.18.1.3

WG14/N869 Committee Draft — January 18, 1999 261

7.18.1.4 Integer types capable of holding object pointers

1 The following type designates a signed integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to pointer tovoid ,
and the result will compare equal to the original pointer:

intptr_t

The following type designates an unsigned integer type with the property that any valid
pointer tovoid can be converted to this type, then converted back to pointer tovoid ,
and the result will compare equal to the original pointer:

uintptr_t

These types are optional.

7.18.1.5 Greatest-width integer types

1 The following type designates a signed integer type capable of representing any value of
any signed integer type:

intmax_t

The following type designates an unsigned integer type capable of representing any value
of any unsigned integer type:

uintmax_t

These types are required.

7.18.2 Limits of specified-width integer types

1 The following object-like macros204) specify the minimum and maximum limits of the
types declared in<stdint.h> . Each macro name corresponds to a similar type name in
7.18.1.

2 Each instance of any defined macro shall be replaced by a constant expression suitable
for use in#if preprocessing directives, and this expression shall have the same type as
would an expression that is an object of the corresponding type converted according to
the integer promotions. Its implementation-defined value shall be equal to or greater in
magnitude (absolute value) than the corresponding value given below, with the same sign,
except where stated to be exactly the given value.

204) C++ implementations should define these macros only when_ _STDC_LIMIT_MACROSis defined

before<stdint.h> is included.

7.18.1.4 Library 7.18.2

262 Committee Draft — January 18, 1999 WG14/N869

7.18.2.1 Limits of exact-width integer types

— minimum values of exact-width signed integer types

INT N_MIN exactly either 1− 2N−1 or −2N−1

— maximum values of exact-width signed integer types

INT N_MAX exactly 2N−1 − 1

— maximum values of exact-width unsigned integer types

UINTN_MAX exactly 2N − 1

7.18.2.2 Limits of minimum-width integer types

— minimum values of minimum-width signed integer types

INT_LEASTN_MIN 1 − 2N−1

— maximum values of minimum-width signed integer types

INT_LEASTN_MAX 2N−1 − 1

— maximum values of minimum-width unsigned integer types

UINT_LEASTN_MAX 2N − 1

7.18.2.3 Limits of fastest minimum-width integer types

— minimum values of fastest minimum-width signed integer types

INT_FASTN_MIN 1 − 2N−1

— maximum values of fastest minimum-width signed integer types

INT_FASTN_MAX 2N−1 − 1

— maximum values of fastest minimum-width unsigned integer types

UINT_FASTN_MAX 2N − 1

7.18.2.4 Limits of integer types capable of holding object pointers

— minimum value of pointer-holding signed integer type

INTPTR_MIN 1 − 215

— maximum value of pointer-holding signed integer type

INTPTR_MAX 215 − 1

— maximum value of pointer-holding unsigned integer type

UINTPTR_MAX 216 − 1

7.18.2.1 Library 7.18.2.4

WG14/N869 Committee Draft — January 18, 1999 263

7.18.2.5 Limits of greatest-width integer types

— minimum value of greatest-width signed integer type

INTMAX_MIN 1 − 263

— maximum value of greatest-width signed integer type

INTMAX_MAX 263 − 1

— maximum value of greatest-width unsigned integer type

UINTMAX_MAX 264 − 1

7.18.3 Limits of other integer types

1 The following object-like macros205) specify the minimum and maximum limits of
integer types corresponding to types defined in other standard headers.

2 Each instance of these macros shall be replaced by a constant expression suitable for use
in #if preprocessing directives, and this expression shall have the same type as would an
expression that is an object of the corresponding type converted according to the integer
promotions. Its implementation-defined value shall be equal to or greater in magnitude
(absolute value) than the corresponding value given below, with the same sign.

— limits of ptrdiff_t

PTRDIFF_MIN −65535
PTRDIFF_MAX +65535

— limits of sig_atomic_t

SIG_ATOMIC_MIN see below
SIG_ATOMIC_MAX see below

— limit of size_t

SIZE_MAX 65535

— limits of wchar_t

WCHAR_MIN see below
WCHAR_MAX see below

— limits of wint_t

WINT_MIN see below
WINT_MAX see below

205) C++ implementations should define these macros only when_ _STDC_LIMIT_MACROSis defined

before<stdint.h> is included.

7.18.2.5 Library 7.18.3

264 Committee Draft — January 18, 1999 WG14/N869

3 If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of
SIG_ATOMIC_MINshall be no greater than −127 and the value ofSIG_ATOMIC_MAX
shall be no less than 127; otherwise,sig_atomic_t is defined as an unsigned integer
type, and the value ofSIG_ATOMIC_MIN shall be 0 and the value of
SIG_ATOMIC_MAXshall be no less than 255.

4 If wchar_t is defined as a signed integer type, the value ofWCHAR_MINshall be no
greater than −127 and the value ofWCHAR_MAXshall be no less than 127; otherwise,
wchar_t is defined as an unsigned integer type, and the value ofWCHAR_MINshall be
0 and the value ofWCHAR_MAXshall be no less than 255.

5 If wint_t (see 7.25) is defined as a signed integer type, the value ofWINT_MIN shall
be no greater than −32767 and the value ofWINT_MAXshall be no less than 32767;
otherwise,wint_t is defined as an unsigned integer type, and the value ofWINT_MIN
shall be 0 and the value ofWINT_MAXshall be no less than 65535.

7.18.4 Macros for integer constants

1 The following function-like macros206) expand to integer constants suitable for
initializing objects that have integer types corresponding to types defined in
<stdint.h> . Each macro name corresponds to a similar type name in 7.18.1.2 or
7.18.1.5.

2 The argument in any instance of these macros shall be a decimal, octal, or hexadecimal
constant (as defined in 6.4.4.1) with a value that does not exceed the limits for the
corresponding type.

7.18.4.1 Macros for minimum-width integer constants

1 Each of the following macros expands to an integer constant having the value specified
by its argument and a type with at least the specified width.207)

2 The macroINT N_C(value) shall expand to a signed integer constant with the specified
value and typeint_least N_t . The macroUINTN_C(value) shall expand to an
unsigned integer constant with the specified value and typeuint_least N_t . For
example, ifuint_least64_t is a name for the typeunsigned long long int ,
thenUINT64_C(0x123) might expand to the integer constant0x123ULL . ∗

206) C++ implementations should define these macros only when_ _STDC_CONSTANT_MACROSis

defined before<stdint.h> is included.

207) For each name described in 7.18.1.2 that the implementation provides, the corresponding macro in

this subclause is required.

7.18.3 Library 7.18.4.1

WG14/N869 Committee Draft — January 18, 1999 265

7.18.4.2 Macros for greatest-width integer constants

1 The following macro expands to an integer constant having the value specified by its
argument and the typeintmax_t :

INTMAX_C(value)

The following macro expands to an integer constant having the value specified by its
argument and the typeuintmax_t :

UINTMAX_C(value)

7.18.4.2 Library 7.18.4.2

266 Committee Draft — January 18, 1999 WG14/N869

7.19 Input/output <stdio.h>

7.19.1 Introduction

1 The header<stdio.h> declares three types, several macros, and many functions for
performing input and output.

2 The types declared aresize_t (described in 7.17);

FILE

which is an object type capable of recording all the information needed to control a
stream, including its file position indicator, a pointer to its associated buffer (if any), an
error indicator that records whether a read/write error has occurred, and anend-of-file
indicator that records whether the end of the file has been reached; and

fpos_t

which is an object type other than an array type capable of recording all the information
needed to specify uniquely every position within a file.

3 The macros areNULL(described in 7.17);

_IOFBF
_IOLBF
_IONBF

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to thesetvbuf function;

BUFSIZ

which expands to an integer constant expression, which is the size of the buffer used by
thesetbuf function;

EOF

which expands to an integer constant expression, with typeint and a negative value, that
is returned by several functions to indicateend-of-file, that is, no more input from a
stream;

FOPEN_MAX

which expands to an integer constant expression that is the minimum number of files that
the implementation guarantees can be open simultaneously;

FILENAME_MAX

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold the longest file name string that the implementation
guarantees can be opened;208)

7.19 Library 7.19.1

WG14/N869 Committee Draft — January 18, 1999 267

L_tmpnam

which expands to an integer constant expression that is the size needed for an array of
char large enough to hold a temporary file name string generated by thetmpnam
function;

SEEK_CUR
SEEK_END
SEEK_SET

which expand to integer constant expressions with distinct values, suitable for use as the
third argument to thefseek function;

TMP_MAX

which expands to an integer constant expression that is the minimum number of unique
file names that can be generated by thetmpnam function;

stderr
stdin
stdout

which are expressions of type ‘‘pointer toFILE ’’ that point to the FILE objects
associated, respectively, with the standard error, input, and output streams.

4 The header<wchar.h> declares a number of functions useful for wide-character input
and output. The wide-character input/output functions described in that subclause
provide operations analogous to most of those described here, except that the
fundamental units internal to the program are wide characters. The external
representation (in the file) is a sequence of ‘‘generalized’’ multibyte characters, as
described further in 7.19.3.

5 The input/output functions are given the following collective terms:

— Thewide-character input functions— those functions described in 7.24 that perform
input into wide characters and wide strings:fgetwc , fgetws , getwc , getwchar ,
fwscanf , wscanf , vfwscanf , andvwscanf .

— The wide-character output functions— those functions described in 7.24 that
perform output from wide characters and wide strings:fputwc , fputws , putwc ,
putwchar , fwprintf , wprintf , vfwprintf , andvwprintf .

208) If the implementation imposes no practical limit on the length of file name strings, the value of

FILENAME_MAXshould instead be the recommended size of an array intended to hold a file name

string. Of course, file name string contents are subject to other system-specific constraints; therefore

all possible strings of lengthFILENAME_MAXcannot be expected to be opened successfully.

7.19.1 Library 7.19.1

268 Committee Draft — January 18, 1999 WG14/N869

— The wide-character input/output functions— the union of theungetwc function,
the wide-character input functions, and the wide-character output functions.

— The byte input/output functions— those functions described in this subclause that
perform input/output: fgetc , fgets , fprintf , fputc , fputs , fread ,
fscanf , fwrite , getc , getchar , gets , printf , putc , putchar , puts ,
scanf , ungetc , vfprintf , vfscanf , vprintf , andvscanf .

Forward references: files (7.19.3), thefseek function (7.19.9.2), streams (7.19.2), the
tmpnam function (7.19.4.4),<wchar.h> (7.24).

7.19.2 Streams

1 Input and output, whether to or from physical devices such as terminals and tape drives,
or whether to or from files supported on structured storage devices, are mapped into
logical datastreams, whose properties are more uniform than their various inputs and
outputs. Two forms of mapping are supported, fortext streamsand for binary
streams.209)

2 A text stream is an ordered sequence of characters composed intolines, each line
consisting of zero or more characters plus a terminating new-line character. Whether the
last line requires a terminating new-line character is implementation-defined. Characters
may have to be added, altered, or deleted on input and output to conform to differing
conventions for representing text in the host environment. Thus, there need not be a one-
to-one correspondence between the characters in a stream and those in the external
representation. Data read in from a text stream will necessarily compare equal to the data
that were earlier written out to that stream only if: the data consist only of printing
characters and the control characters horizontal tab and new-line; no new-line character is
immediately preceded by space characters; and the last character is a new-line character.
Whether space characters that are written out immediately before a new-line character
appear when read in is implementation-defined.

3 A binary stream is an ordered sequence of characters that can transparently record
internal data. Data read in from a binary stream shall compare equal to the data that were
earlier written out to that stream, under the same implementation. Such a stream may,
however, hav e an implementation-defined number of null characters appended to the end
of the stream.

4 Each stream has anorientation. After a stream is associated with an external file, but
before any operations are performed on it, the stream is without orientation. Once a
wide-character input/output function has been applied to a stream without orientation, the

209) An implementation need not distinguish between text streams and binary streams. In such an

implementation, there need be no new-line characters in a text stream nor any limit to the length of a

line.

7.19.1 Library 7.19.2

WG14/N869 Committee Draft — January 18, 1999 269

stream becomes awide-oriented stream. Similarly, once a byte input/output function has
been applied to a stream without orientation, the stream becomes abyte-oriented stream.
Only a call to thefreopen function or thefwide function can otherwise alter the
orientation of a stream. (A successful call tofreopen removes any orientation.)210)

5 Byte input/output functions shall not be applied to a wide-oriented stream and wide-
character input/output functions shall not be applied to a byte-oriented stream. The
remaining stream operations do not affect, and are not affected by, a stream’s orientation,
except for the following additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both
text and binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that
leaves the file position indicator prior to the end-of-file, a wide-character output
function can overwrite a partial multibyte character; any file contents beyond the
byte(s) written are henceforth indeterminate.

6 Each wide-oriented stream has an associatedmbstate_t object that stores the current
parse state of the stream. A successful call tofgetpos stores a representation of the
value of thismbstate_t object as part of the value of thefpos_t object. A later
successful call tofsetpos using the same storedfpos_t value restores the value of
the associatedmbstate_t object as well as the position within the controlled stream.

Environmental limits

7 An implementation shall support text files with lines containing at least 254 characters,
including the terminating new-line character. The value of the macroBUFSIZ shall be at
least 256.

Forward references: the freopen function (7.19.5.4), thefwide function (7.24.3.5),
mbstate_t (7.25.1), the fgetpos function (7.19.9.1), thefsetpos function
(7.19.9.3).

7.19.3 Files

1 A stream is associated with an external file (which may be a physical device) byopening
a file, which may involvecreatinga new file. Creating an existing file causes its former
contents to be discarded, if necessary. If a file can support positioning requests (such as a
disk file, as opposed to a terminal), then afile position indicatorassociated with the
stream is positioned at the start (character number zero) of the file, unless the file is
opened with append mode in which case it is implementation-defined whether the file
position indicator is initially positioned at the beginning or the end of the file. The file
position indicator is maintained by subsequent reads, writes, and positioning requests, to

210) The three predefined streamsstdin , stdout , andstderr are unoriented at program startup.

7.19.2 Library 7.19.3

270 Committee Draft — January 18, 1999 WG14/N869

facilitate an orderly progression through the file.

2 Binary files are not truncated, except as defined in 7.19.5.3. Whether a write on a text
stream causes the associated file to be truncated beyond that point is implementation-
defined.

3 When a stream isunbuffered, characters are intended to appear from the source or at the
destination as soon as possible. Otherwise characters may be accumulated and
transmitted to or from the host environment as a block. When a stream isfully buffered,
characters are intended to be transmitted to or from the host environment as a block when
a buffer is filled. When a stream isline buffered, characters are intended to be
transmitted to or from the host environment as a block when a new-line character is
encountered. Furthermore, characters are intended to be transmitted as a block to the host
environment when a buffer is filled, when input is requested on an unbuffered stream, or
when input is requested on a line buffered stream that requires the transmission of
characters from the host environment. Support for these characteristics is
implementation-defined, and may be affected via thesetbuf andsetvbuf functions.

4 A file may be disassociated from a controlling stream byclosingthe file. Output streams
are flushed (any unwritten buffer contents are transmitted to the host environment) before
the stream is disassociated from the file. The value of a pointer to aFILE object is
indeterminate after the associated file is closed (including the standard text streams).
Whether a file of zero length (on which no characters have been written by an output
stream) actually exists is implementation-defined.

5 The file may be subsequently reopened, by the same or another program execution, and
its contents reclaimed or modified (if it can be repositioned at its start). If themain
function returns to its original caller, or if theexit function is called, all open files are
closed (hence all output streams are flushed) before program termination. Other paths to
program termination, such as calling theabort function, need not close all files
properly.

6 The address of theFILE object used to control a stream may be significant; a copy of a
FILE object need not serve in place of the original.

7 At program startup, three text streams are predefined and need not be opened explicitly
— standard input (for reading conventional input),standard output (for writing
conventional output), andstandard error (for writing diagnostic output). As initially
opened, the standard error stream is not fully buffered; the standard input and standard
output streams are fully buffered if and only if the stream can be determined not to refer
to an interactive device.

8 Functions that open additional (nontemporary) files require afile name, which is a string.
The rules for composing valid file names are implementation-defined. Whether the same
file can be simultaneously open multiple times is also implementation-defined.

7.19.3 Library 7.19.3

WG14/N869 Committee Draft — January 18, 1999 271

9 Although both text and binary wide-oriented streams are conceptually sequences of wide
characters, the external file associated with a wide-oriented stream is a sequence of
multibyte characters, generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte
encodings valid for use internal to the program).

— A file need not begin nor end in the initial shift state.211)

10 Moreover, the encodings used for multibyte characters may differ among files. Both the
nature and choice of such encodings are implementation-defined.

11 The wide-character input functions read multibyte characters from the stream and convert
them to wide characters as if they were read by successive calls to thefgetwc function.
Each conversion occurs as if by a call to thembrtowc function, with the conversion state
described by the stream’s ownmbstate_t object. The byte input functions read
characters from the stream as if by successive calls to thefgetc function.

12 The wide-character output functions convert wide characters to multibyte characters and
write them to the stream as if they were written by successive calls to thefputwc
function. Each conversion occurs as if by a call to thewcrtomb function, with the
conversion state described by the stream’s ownmbstate_t object. The byte output
functions write characters to the stream as if by successive calls to thefputc function.

13 In some cases, some of the byte input/output functions also perform conversions between
multibyte characters and wide characters. These conversions also occur as if by calls to
thembrtowc andwcrtomb functions.

14 An encoding error occurs if the character sequence presented to the underlying
mbrtowc function does not form a valid (generalized) multibyte character, or if the code
value passed to the underlyingwcrtomb does not correspond to a valid (generalized)
multibyte character. The wide-character input/output functions and the byte input/output
functions store the value of the macroEILSEQ in errno if and only if an encoding error
occurs.

Environmental limits

15 The value ofFOPEN_MAXshall be at least eight, including the three standard text
streams.

Forward references: the exit function (7.20.4.3), thefgetc function (7.19.7.1), the
fopen function (7.19.5.3), thefputc function (7.19.7.3), thesetbuf function
(7.19.5.5), thesetvbuf function (7.19.5.6), thefgetwc function (7.24.3.1), the

211) Setting the file position indicator to end-of-file, as withfseek(file, 0, SEEK_END) , has

undefined behavior for a binary stream (because of possible trailing null characters) or for any stream

with state-dependent encoding that does not assuredly end in the initial shift state.

7.19.3 Library 7.19.3

272 Committee Draft — January 18, 1999 WG14/N869

fputwc function (7.24.3.3), conversion state (7.24.6), thembrtowc function
(7.24.6.3.2), thewcrtomb function (7.24.6.3.3).

7.19.4 Operations on files

7.19.4.1 Theremove function

Synopsis

1 #include <stdio.h>
int remove(const char *filename);

Description

2 Theremove function causes the file whose name is the string pointed to byfilename
to be no longer accessible by that name. A subsequent attempt to open that file using that
name will fail, unless it is created anew. If the file is open, the behavior of theremove
function is implementation-defined.

Returns

3 Theremove function returns zero if the operation succeeds, nonzero if it fails.

7.19.4.2 Therename function

Synopsis

1 #include <stdio.h>
int rename(const char *old, const char *new);

Description

2 The rename function causes the file whose name is the string pointed to byold to be
henceforth known by the name given by the string pointed to bynew. The file named
old is no longer accessible by that name. If a file named by the string pointed to bynew
exists prior to the call to therename function, the behavior is implementation-defined.

Returns

3 The rename function returns zero if the operation succeeds, nonzero if it fails,212) in
which case if the file existed previously it is still known by its original name.

212) Among the reasons the implementation may cause therename function to fail are that the file is open

or that it is necessary to copy its contents to effectuate its renaming.

7.19.3 Library 7.19.4.2

WG14/N869 Committee Draft — January 18, 1999 273

7.19.4.3 Thetmpfile function

Synopsis

1 #include <stdio.h>
FILE *tmpfile(void);

Description

2 The tmpfile function creates a temporary binary file that will automatically be
removed when it is closed or at program termination. If the program terminates
abnormally, whether an open temporary file is removed is implementation-defined. The
file is opened for update with"wb+" mode.

Returns

3 Thetmpfile function returns a pointer to the stream of the file that it created. If the file
cannot be created, thetmpfile function returns a null pointer.

Forward references: thefopen function (7.19.5.3).

7.19.4.4 Thetmpnam function

Synopsis

1 #include <stdio.h>
char *tmpnam(char *s);

Description

2 Thetmpnam function generates a string that is a valid file name and that is not the same
as the name of an existing file.213)

3 Thetmpnam function generates a different string each time it is called, up toTMP_MAX
times. If it is called more thanTMP_MAXtimes, the behavior is implementation-defined.

4 The implementation shall behave as if no library function calls thetmpnam function.

Returns

5 If the argument is a null pointer, thetmpnam function leaves its result in an internal
static object and returns a pointer to that object. Subsequent calls to thetmpnam
function may modify the same object. If the argument is not a null pointer, it is assumed
to point to an array of at leastL_tmpnam char s; thetmpnam function writes its result
in that array and returns the argument as its value.

213) Files created using strings generated by thetmpnam function are temporary only in the sense that

their names should not collide with those generated by conventional naming rules for the

implementation. It is still necessary to use theremove function to remove such files when their use

is ended, and before program termination.

7.19.4.2 Library 7.19.4.4

274 Committee Draft — January 18, 1999 WG14/N869

Environmental limits

6 The value of the macroTMP_MAXshall be at least 25.

7.19.5 File access functions

7.19.5.1 Thefclose function

Synopsis

1 #include <stdio.h>
int fclose(FILE *stream);

Description

2 The fclose function causes the stream pointed to bystream to be flushed and the
associated file to be closed. Any unwritten buffered data for the stream are delivered to
the host environment to be written to the file; any unread buffered data are discarded.
The stream is disassociated from the file. If the associated buffer was automatically
allocated, it is deallocated.

Returns

3 The fclose function returns zero if the stream was successfully closed, orEOF if any
errors were detected.

7.19.5.2 Thefflush function

Synopsis

1 #include <stdio.h>
int fflush(FILE *stream);

Description

2 If stream points to an output stream or an update stream in which the most recent
operation was not input, thefflush function causes any unwritten data for that stream
to be delivered to the host environment to be written to the file; otherwise, the behavior is
undefined.

3 If stream is a null pointer, thefflush function performs this flushing action on all
streams for which the behavior is defined above.

Returns

4 The fflush function sets the error indicator for the stream and returnsEOF if a write
error occurs, otherwise it returns zero.

Forward references: thefopen function (7.19.5.3).

7.19.4.4 Library 7.19.5.2

WG14/N869 Committee Draft — January 18, 1999 275

7.19.5.3 Thefopen function

Synopsis

1 #include <stdio.h>
FILE *fopen(const char * filename,

const char * mode);

Description

2 The fopen function opens the file whose name is the string pointed to byfilename ,
and associates a stream with it.

3 The argumentmode points to a string. If the string is one of the following, the file is
open in the indicated mode. Otherwise, the behavior is undefined.214)

r open text file for reading
w truncate to zero length or create text file for writing
a append; open or create text file for writing at end-of-file
rb open binary file for reading
wb truncate to zero length or create binary file for writing
ab append; open or create binary file for writing at end-of-file
r+ open text file for update (reading and writing)
w+ truncate to zero length or create text file for update
a+ append; open or create text file for update, writing at end-of-file
r+b or rb+ open binary file for update (reading and writing)
w+b or wb+ truncate to zero length or create binary file for update
a+b or ab+ append; open or create binary file for update, writing at end-of-file

4 Opening a file with read mode (’r’ as the first character in themode argument) fails if
the file does not exist or cannot be read.

5 Opening a file with append mode (’a’ as the first character in themode argument)
causes all subsequent writes to the file to be forced to the then current end-of-file,
regardless of intervening calls to thefseek function. In some implementations, opening
a binary file with append mode (’b’ as the second or third character in the above list of
mode argument values) may initially position the file position indicator for the stream
beyond the last data written, because of null character padding.

6 When a file is opened with update mode (’+’ as the second or third character in the
above list of mode argument values), both input and output may be performed on the
associated stream. However, output shall not be directly followed by input without an
intervening call to thefflush function or to a file positioning function (fseek ,

214) If the string begins with one of the above sequences, the implementation might choose to ignore the

remaining characters, or it might use them to select different kinds of a file (some of which might not

conform to the properties in 7.19.2).

7.19.5.2 Library 7.19.5.3

276 Committee Draft — January 18, 1999 WG14/N869

fsetpos , or rewind), and input shall not be directly followed by output without an
intervening call to a file positioning function, unless the input operation encounters end-
of-file. Opening (or creating) a text file with update mode may instead open (or create) a
binary stream in some implementations.

7 When opened, a stream is fully buffered if and only if it can be determined not to refer to
an interactive device. The error and end-of-file indicators for the stream are cleared.

Returns

8 The fopen function returns a pointer to the object controlling the stream. If the open
operation fails,fopen returns a null pointer.

Forward references: file positioning functions (7.19.9).

7.19.5.4 Thefreopen function

Synopsis

1 #include <stdio.h>
FILE *freopen(const char * filename,

const char * mode,
FILE * restrict stream);

Description

2 Thefreopen function opens the file whose name is the string pointed to byfilename
and associates the stream pointed to bystream with it. Themode argument is used just
as in thefopen function.215)

3 If filename is a null pointer, thefreopen function attempts to change the mode of
the stream to that specified bymode, as if the name of the file currently associated with
the stream had been used. It is implementation-defined which changes of mode are
permitted (if any), and under what circumstances.

4 Thefreopen function first attempts to close any file that is associated with the specified
stream. Failure to close the file is ignored. The error and end-of-file indicators for the
stream are cleared.

Returns

5 The freopen function returns a null pointer if the open operation fails. Otherwise,
freopen returns the value ofstream .

215) The primary use of thefreopen function is to change the file associated with a standard text stream

(stderr , stdin , or stdout), as those identifiers need not be modifiable lvalues to which the value

returned by thefopen function may be assigned.

7.19.5.3 Library 7.19.5.4

WG14/N869 Committee Draft — January 18, 1999 277

7.19.5.5 Thesetbuf function

Synopsis

1 #include <stdio.h>
void setbuf(FILE * restrict stream,

char * restrict buf);

Description

2 Except that it returns no value, thesetbuf function is equivalent to thesetvbuf
function invoked with the values_IOFBF for mode andBUFSIZ for size , or (if buf
is a null pointer), with the value_IONBF for mode.

Returns

3 Thesetbuf function returns no value.

Forward references: thesetvbuf function (7.19.5.6).

7.19.5.6 Thesetvbuf function

Synopsis

1 #include <stdio.h>
int setvbuf(FILE * restrict stream,

char * restrict buf,
int mode, size_t size);

Description

2 The setvbuf function may be used only after the stream pointed to bystream has
been associated with an open file and before any other operation (other than an
unsuccessful call tosetvbuf) is performed on the stream. The argumentmode
determines howstream will be buffered, as follows:_IOFBF causes input/output to be
fully buffered; _IOLBF causes input/output to be line buffered;_IONBF causes
input/output to be unbuffered. Ifbuf is not a null pointer, the array it points to may be
used instead of a buffer allocated by thesetvbuf function216) and the argumentsize
specifies the size of the array; otherwise,size may determine the size of a buffer
allocated by thesetvbuf function. The contents of the array at any time are
indeterminate.

Returns

3 Thesetvbuf function returns zero on success, or nonzero if an invalid value is given
for mode or if the request cannot be honored.

216) The buffer has to have a lifetime at least as great as the open stream, so the stream should be closed

before a buffer that has automatic storage duration is deallocated upon block exit.

7.19.5.4 Library 7.19.5.6

278 Committee Draft — January 18, 1999 WG14/N869

7.19.6 Formatted input/output functions

1 The formatted input/output functions217) shall behave as if there is a sequence point after
the actions associated with each specifier.

7.19.6.1 Thefprintf function

Synopsis

1 #include <stdio.h>
int fprintf(FILE * restrict stream,

const char * restrict format, ...);

Description

2 Thefprintf function writes output to the stream pointed to bystream , under control
of the string pointed to byformat that specifies how subsequent arguments are
converted for output. If there are insufficient arguments for the format, the behavior is
undefined. If the format is exhausted while arguments remain, the excess arguments are
evaluated (as always) but are otherwise ignored. Thefprintf function returns when
the end of the format string is encountered.

3 The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: ordinary multibyte
characters (not%), which are copied unchanged to the output stream; and conversion
specifications, each of which results in fetching zero or more subsequent arguments,
converting them, if applicable, according to the corresponding conversion specifier, and
then writing the result to the output stream.

4 Each conversion specification is introduced by the character%. After the%, the following
appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

— An optional minimumfield width. If the converted value has fewer characters than the
field width, it is padded with spaces (by default) on the left (or right, if the left
adjustment flag, described later, has been given) to the field width. The field width
takes the form of an asterisk* (described later) or a decimal integer.218)

— An optionalprecisionthat gives the minimum number of digits to appear for thed, i ,
o, u, x , and X conversions, the number of digits to appear after the decimal-point
character fora, A, e, E, f , andF conversions, the maximum number of significant
digits for theg and G conversions, or the maximum number of characters to be

217) Theprintf functions perform writes to memory for the%nspecifier.

218) Note that0 is taken as a flag, not as the beginning of a field width.

7.19.6 Library 7.19.6.1

WG14/N869 Committee Draft — January 18, 1999 279

written from a string ins conversions. The precision takes the form of a period (.)
followed either by an asterisk* (described later) or by an optional decimal integer; if
only the period is specified, the precision is taken as zero. If a precision appears with
any other conversion specifier, the behavior is undefined.

— An optionallength modifierthat specifies the size of the argument.

— A conversion specifiercharacter that specifies the type of conversion to be applied.

5 As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, anint argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken as a- flag
followed by a positive field width. A neg ative precision argument is taken as if the
precision were omitted.

6 The flag characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not
specified.)219)

space If the first character of a signed conversion is not a sign, or if a signed conversion
results in no characters, a space is prefixed to the result. If thespaceand+ flags
both appear, thespaceflag is ignored.

The result is converted to an ‘‘alternative form’’. Foro conversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed). Forx (or X)
conversion, a nonzero result has0x (or 0X) prefixed to it. Fora, A, e, E, f , F, g,
and G conversions, the result of converting a floating-point number always
contains a decimal-point character, even if no digits follow it. (Normally, a
decimal-point character appears in the result of these conversions only if a digit
follows it.) For g and G conversions, trailing zeros arenot removed from the
result. For other conversions, the behavior is undefined.

0 For d, i , o, u, x , X, a, A, e, E, f , F, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width rather
than performing space padding, except when converting an infinity or NaN. If the
0 and - flags both appear, the0 flag is ignored. Ford, i , o, u, x , and X

219) The results of all floating conversions of a negative zero, and of negative values that round to zero,

include a minus sign.

7.19.6.1 Library 7.19.6.1

280 Committee Draft — January 18, 1999 WG14/N869

conversions, if a precision is specified, the0 flag is ignored. For other
conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tosigned char or unsigned char before printing); or that
a following n conversion specifier applies to a pointer to asigned char
argument.

h Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted toshort int or unsigned short int before printing);
or that a followingn conversion specifier applies to a pointer to ashort
int argument.

l (ell) Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
long int or unsigned long int argument; that a followingn
conversion specifier applies to a pointer to along int argument; that a
following c conversion specifier applies to awint_t argument; that a
following s conversion specifier applies to a pointer to awchar_t
argument; or has no effect on a followinga, A, e, E, f , F, g, or Gconversion
specifier.

ll (ell-ell) Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer to along long int
argument.

j Specifies that a followingd, i , o, u, x , or X conversion specifier applies to
an intmax_t or uintmax_t argument; or that a followingn conversion
specifier applies to a pointer to anintmax_t argument.

z Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tosize_t argument.

t Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer to aptrdiff_t
argument.

7.19.6.1 Library 7.19.6.1

WG14/N869 Committee Draft — January 18, 1999 281

L Specifies that a followinga, A, e, E, f , F, g, or G conversion specifier
applies to along double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style[−]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no characters.

o,u,x,X Theunsigned int argument is converted to unsigned octal (o), unsigned
decimal (u), or unsigned hexadecimal notation (x or X) in the styledddd; the
letters abcdef are used forx conversion and the lettersABCDEFfor X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no characters.

f,F A double argument representing a floating-point number is converted to
decimal notation in the style[−]ddd. ddd, where the number of digits after
the decimal-point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero and the# flag is
not specified, no decimal-point character appears. If a decimal-point
character appears, at least one digit appears before it. The value is rounded to
the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[-] inf or [-] infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[-]nan or [-]nan(n-char-sequence) — which style, and the meaning of
any n-char-sequence, is implementation-defined. TheF conversion specifier
producesINF , INFINITY , or NAN instead ofinf , infinity , or nan ,
respectively.220)

e,E A double argument representing a floating-point number is converted in the
style [−]d. ddde±dd, where there is one digit (which is nonzero if the
argument is nonzero) before the decimal-point character and the number of
digits after it is equal to the precision; if the precision is missing, it is taken as

220) When applied to infinite and NaN values, the- , +, andspaceflag characters have their usual meaning;

the# and0 flag characters have no effect.

7.19.6.1 Library 7.19.6.1

282 Committee Draft — January 18, 1999 WG14/N869

6; if the precision is zero and the# flag is not specified, no decimal-point
character appears. The value is rounded to the appropriate number of digits.
The E conversion specifier produces a number withE instead of e
introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

g,G A double argument representing a floating-point number is converted in
style f or e (or in styleF or E in the case of aG conversion specifier), with
the precision specifying the number of significant digits. If the precision is
zero, it is taken as 1. The style used depends on the value converted; stylee
(or E) is used only if the exponent resulting from such a conversion is less
than −4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result unless the# flag is specified; a
decimal-point character appears only if it is followed by a digit.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

a,A A double argument representing a floating-point number is converted in the
style [−]0x h. hhhhp±d, where there is one hexadecimal digit (which is
nonzero if the argument is a normalized floating-point number and is
otherwise unspecified) before the decimal-point character221) and the number
of hexadecimal digits after it is equal to the precision; if the precision is
missing andFLT_RADIX is a power of 2, then the precision is sufficient for
an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguish222) values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and the# flag is not specified, no decimal-
point character appears. The lettersabcdef are used fora conversion and
the lettersABCDEFfor A conversion. TheA conversion specifier produces a
number withX and P instead ofx and p. The exponent always contains at
least one digit, and only as many more digits as necessary to represent the

221) Binary implementations can choose the hexadecimal digit to the left of the decimal-point character so

that subsequent digits align to nibble (4-bit) boundaries.

222)The precisionp is sufficient to distinguish values of the source type if16p−1 > bn where b is

FLT_RADIX andn is the number of base-b digits in the significand of the source type. A smallerp

might suffice depending on the implementation’s scheme for determining the digit to the left of the

decimal-point character.

7.19.6.1 Library 7.19.6.1

WG14/N869 Committee Draft — January 18, 1999 283

decimal exponent of 2. If the value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

c If no l length modifier is present, theint argument is converted to an
unsigned char , and the resulting character is written.

If an l length modifier is present, thewint_t argument is converted as if by
an ls conversion specification with no precision and an argument that points
to the initial element of a two-element array ofwchar_t , the first element
containing thewint_t argument to thelc conversion specification and the
second a null wide character.

s If no l length modifier is present, the argument shall be a pointer to the initial
element of an array of character type.223) Characters from the array are
written up to (but not including) the terminating null character. If the
precision is specified, no more than that many characters are written. If the
precision is not specified or is greater than the size of the array, the array shall
contain a null character.

If an l length modifier is present, the argument shall be a pointer to the initial
element of an array ofwchar_t type. Wide characters from the array are
converted to multibyte characters (each as if by a call to thewcrtomb
function, with the conversion state described by anmbstate_t object
initialized to zero before the first wide character is converted) up to and
including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null character
(byte). If no precision is specified, the array shall contain a null wide
character. If a precision is specified, no more than that many characters
(bytes) are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence
length given by the precision, the function would need to access a wide
character one past the end of the array. In no case is a partial multibyte
character written.224)

p The argument shall be a pointer tovoid . The value of the pointer is
converted to a sequence of printing characters, in an implementation-defined
manner.

223) No special provisions are made for multibyte characters.

224) Redundant shift sequences may result if multibyte characters have a state-dependent encoding.

7.19.6.1 Library 7.19.6.1

284 Committee Draft — January 18, 1999 WG14/N869

n The argument shall be a pointer to signed integer into which iswritten the
number of characters written to the output stream so far by this call to
fprintf . No argument is converted, but one is consumed. If the conversion
specification includes any flags, a field width, or a precision, the behavior is
undefined.

% A % character is written. No argument is converted. The complete
conversion specification shall be%%.

9 If a conversion specification is invalid, the behavior is undefined.225) If any argument is
not the correct type for the corresponding coversion specification, the behavior is
undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

11 Fora andA conversions, ifFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

12 If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

13 Fore, E, f , F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG, then the result should be correctly rounded.226) If the number of
significant decimal digits is more thanDECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal stringsL < U , both havingDECIMAL_DIGsignificant digits; the value
of the resultant decimal stringD should satisfyL ≤ D ≤ U , with the extra stipulation that
the error should have a correct sign for the current rounding direction.

Returns

14 Thefprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

225) See ‘‘future library directions’’ (7.26.9).

226) For binary-to-decimal conversion, the result format’s values are the numbers representable with the

given format specifier. The number of significant digits is determined by the format specifier, and in

the case of fixed-point conversion by the source value as well.

7.19.6.1 Library 7.19.6.1

WG14/N869 Committee Draft — January 18, 1999 285

Environmental limits

15 The number of characters that can be produced by any single conversion shall be at least
4095.

16 EXAMPLE 1 To print a date and time in the form ‘‘Sunday, July 3, 10:02’’ followed byπ to five decimal
places:

#include <math.h>
#include <stdio.h>
/* ... */
char *weekday, *month; // pointers to strings
int day, hour, min;
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

17 EXAMPLE 2 In this example, multibyte characters do not have a state-dependent encoding, and the
multibyte members of the extended character set each consist of two bytes, the first of which is denoted
here by a and the second by an uppercase letter.

18 Given the following wide string with length seven,

static wchar_t wstr[] = L" X Yabc Z W";

the seven calls

fprintf(stdout, "|1234567890123|\n");
fprintf(stdout, "|%13ls|\n", wstr);
fprintf(stdout, "|%-13.9ls|\n", wstr);
fprintf(stdout, "|%13.10ls|\n", wstr);
fprintf(stdout, "|%13.11ls|\n", wstr);
fprintf(stdout, "|%13.15ls|\n", &wstr[2]);
fprintf(stdout, "|%13lc|\n", wstr[5]);

will print the following seven lines:

|1234567890123|
| X Yabc Z W|
| X Y abc Z |
| X Yabc Z|
| X Yabc Z W|
| a bc Z W|
| Z|

Forward references: conversion state (7.24.6), thewcrtomb function (7.24.6.3.3).

7.19.6.1 Library 7.19.6.1

286 Committee Draft — January 18, 1999 WG14/N869

7.19.6.2 Thefscanf function

Synopsis

1 #include <stdio.h>
int fscanf(FILE * restrict stream,

const char * restrict format, ...);

Description

2 Thefscanf function reads input from the stream pointed to bystream , under control
of the string pointed to byformat that specifies the admissible input sequences and how
they are to be converted for assignment, using subsequent arguments as pointers to the
objects to receive the converted input. If there are insufficient arguments for the format,
the behavior is undefined. If the format is exhausted while arguments remain, the excess
arguments are evaluated (as always) but are otherwise ignored.

3 The format shall be a multibyte character sequence, beginning and ending in its initial
shift state. The format is composed of zero or more directives: one or more white-space
characters, an ordinary multibyte character (neither%nor a white-space character), or a
conversion specification. Each conversion specification is introduced by the character%.
After the%, the following appear in sequence:

— An optional assignment-suppressing character* .

— An optional nonzero decimal integer that specifies the maximum field width (in
characters).

— An optionallength modifierthat specifies the size of the receiving object.

— A conversion specifiercharacter that specifies the type of conversion to be applied.

4 Thefscanf function executes each directive of the format in turn. If a directive fails, as
detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

5 A directive composed of white-space character(s) is executed by reading input up to the
first non-white-space character (which remains unread), or until no more characters can
be read.

6 A directive that is an ordinary multibyte character is executed by reading the next
characters of the stream. If any of those characters differ from the ones composing the
directive, the directive fails and the differing and subsequent characters remain unread.

7 A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

7.19.6.1 Library 7.19.6.2

WG14/N869 Committee Draft — January 18, 1999 287

8 Input white-space characters (as specified by theisspace function) are skipped, unless
the specification includes a[, c , or n specifier.227)

9 An input item is read from the stream, unless the specification includes ann specifier. An
input item is defined as the longest sequence of input characters which does not exceed
any specified field width and which is, or is a prefix of, a matching input sequence. The
first character, if any, after the input item remains unread. If the length of the input item
is zero, the execution of the directive fails; this condition is a matching failure unless end-
of-file, an encoding error, or a read error prevented input from the stream, in which case it
is an input failure.

10 Except in the case of a%specifier, the input item (or, in the case of a%ndirective, the
count of input characters) is converted to a type appropriate to the conversion specifier. If
the input item is not a matching sequence, the execution of the directive fails: this
condition is a matching failure. Unless assignment suppression was indicated by a* , the
result of the conversion is placed in the object pointed to by the first argument following
the format argument that has not already received a conversion result. If this object
does not have an appropriate type, or if the result of the conversion cannot be represented
in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tosigned char or unsigned char .

h Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer toshort int or unsigned short
int .

l (ell) Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tolong int or unsigned long
int ; that a followinga, A, e, E, f , F, g, or Gconversion specifier applies to
an argument with type pointer todouble ; or that a followingc , s , or [
conversion specifier applies to an argument with type pointer towchar_t .

ll (ell-ell) Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tolong long int or unsigned
long long int .

j Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tointmax_t or uintmax_t .

227) These white-space characters are not counted against a specified field width.

7.19.6.2 Library 7.19.6.2

288 Committee Draft — January 18, 1999 WG14/N869

z Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tosize_t or the corresponding signed
integer type.

t Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer toptrdiff_t or the corresponding
unsigned integer type.

L Specifies that a followinga, A, e, E, f , F, g, or G conversion specifier
applies to an argument with type pointer tolong double .

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

12 The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of thestrtol function with the value 10
for the base argument. The corresponding argument shall be a pointer to
signed integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of thestrtol function with the value 0 for the
base argument. The corresponding argument shall be a pointer to signed
integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of thestrtoul function with the value 8
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of thestrtoul function with the value 10
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence of thestrtoul function with the value
16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence of thestrtod
function. The corresponding argument shall be a pointer to floating.

c Matches a sequence of characters of exactly the number specified by the field
width (1 if no field width is present in the directive).228)

7.19.6.2 Library 7.19.6.2

WG14/N869 Committee Draft — January 18, 1999 289

If no l length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence. No null character is added.

If an l length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character in the
sequence is converted to a wide character as if by a call to thembrtowc
function, with the conversion state described by anmbstate_t object
initialized to zero before the first multibyte character is converted. The
corresponding argument shall be a pointer to the initial element of an array of
wchar_t large enough to accept the resulting sequence of wide characters.
No null wide character is added.

s Matches a sequence of non-white-space characters.228)

If no l length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call to thembrtowc function, with
the conversion state described by anmbstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an array ofwchar_t large enough
to accept the sequence and the terminating null wide character, which will be
added automatically.

[Matches a nonempty sequence of characters from a set of expected characters
(thescanset).228)

If no l length modifier is present, the corresponding argument shall be a
pointer to the initial element of a character array large enough to accept the
sequence and a terminating null character, which will be added automatically.

If an l length modifier is present, the input shall be a sequence of multibyte
characters that begins in the initial shift state. Each multibyte character is
converted to a wide character as if by a call to thembrtowc function, with
the conversion state described by anmbstate_t object initialized to zero
before the first multibyte character is converted. The corresponding argument
shall be a pointer to the initial element of an array ofwchar_t large enough

228) No special provisions are made for multibyte characters in the matching rules used by thec , s , and[

conversion specifiers — the extent of the input field is still determined on a byte-by-byte basis. The

resulting field is nevertheless a sequence of multibyte characters that begins in the initial shift state.

7.19.6.2 Library 7.19.6.2

290 Committee Draft — January 18, 1999 WG14/N869

to accept the sequence and the terminating null wide character, which will be
added automatically.

The conversion specifier includes all subsequent characters in theformat
string, up to and including the matching right bracket (]). The characters
between the brackets (thescanlist) compose the scanset, unless the character
after the left bracket is a circumflex (ˆ), in which case the scanset contains all
characters that do not appear in the scanlist between the circumflex and the
right bracket. If the conversion specifier begins with[] or [ˆ] , the right
bracket character is in the scanlist and the next following right bracket
character is the matching right bracket that ends the specification; otherwise
the first following right bracket character is the one that ends the
specification. If a- character is in the scanlist and is not the first, nor the
second where the first character is aˆ , nor the last character, the behavior is
implementation-defined.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the%pconversion of
the fprintf function. The corresponding argument shall be a pointer to a
pointer to void . The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier
during the same program execution, the pointer that results shall compare
equal to that value; otherwise the behavior of the%pconversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of characters read from
the input stream so far by this call to thefscanf function. Execution of a
%n directive does not increment the assignment count returned at the
completion of execution of thefscanf function. No argument is converted,
but one is consumed. If the conversion specification includes an assignment-
suppressing character or a field width, the behavior is undefined.

% Matches a single% character; no conversion or assignment occurs. The
complete conversion specification shall be%%.

13 If a conversion specification is invalid, the behavior is undefined.229)

14 The conversion specifiersA, E, F, G, and X are also valid and behave the same as,
respectively,a, e, f , g, andx .

15 If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any characters matching the current directive hav e been read (other than leading
white space, where permitted), execution of the current directive terminates with an input

229) See ‘‘future library directions’’ (7.26.9).

7.19.6.2 Library 7.19.6.2

WG14/N869 Committee Draft — January 18, 1999 291

failure; otherwise, unless execution of the current directive is terminated with a matching
failure, execution of the following directive (other than%n, if any) is terminated with an
input failure.

16 Trailing white space (including new-line characters) is left unread unless matched by a
directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the%ndirective.

17 If conversion terminates on a conflicting input character, the offending input character is
left unread in the input stream.230)

Returns

18 The fscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

19 EXAMPLE 1 The call:

#include <stdio.h>
/* ... */
int n, i; float x; char name[50];
n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, toi the value 25, tox the value 5.432, and toname the sequence
thompson\0 .

20 EXAMPLE 2 The call:

#include <stdio.h>
/* ... */
int i; float x; char name[50];
fscanf(stdin, "%2d%f%*d %[0123456789]", &i, &x, name);

with input:

56789 0123 56a72

will assign to i the value 56 and tox the value 789.0, will skip0123 , and will assign toname the
sequence56\0 . The next character read from the input stream will bea.

21 EXAMPLE 3 To accept repeatedly fromstdin a quantity, a unit of measure, and an item name:

230) fscanf pushes back at most one input character onto the input stream. Therefore, some sequences

that are acceptable tostrtod , strtol , etc., are unacceptable tofscanf .

7.19.6.2 Library 7.19.6.2

292 Committee Draft — January 18, 1999 WG14/N869

#include <stdio.h>
/* ... */
int count; float quant; char units[21], item[21];
do {

count = fscanf(stdin, "%f%20s of %20s", &quant, units, item);
fscanf(stdin,"%*[ˆ\n]");

} while (!feof(stdin) && !ferror(stdin));

22 If the stdin stream contains the following lines:

2 quarts of oil
-12.8degrees Celsius
lots of luck
10.0LBS of
dirt
100ergs of energy

the execution of the above example will be analogous to the following assignments:

quant = 2; strcpy(units, "quarts"); strcpy(item, "oil");
count = 3;
quant = -12.8; strcpy(units, "degrees");
count = 2; // "C" fails to match "o"
count = 0; // "l" fails to match "%f"
quant = 10.0; strcpy(units, "LBS"); strcpy(item, "dirt");
count = 3;
count = 0; // "100e" fails to match "%f"
count = EOF;

23 EXAMPLE 4 In:

#include <stdio.h>
/* ... */
int d1, d2, n1, n2, i;
i = sscanf("123", "%d%n%n%d", &d1, &n1, &n2, &d2);

the value 123 is assigned tod1 and the value 3 ton1 . Because%ncan never get an input failure the value
of 3 is also assigned ton2 . The value ofd2 is not affected. The value 1 is assigned toi .

24 EXAMPLE 5 In these examples, multibyte characters do have a state-dependent encoding, and multibyte
members of the extended character set consist of two bytes, the first of which is denoted here by a and the
second by an uppercase letter, but are only recognized as such when in the alternate shift state. The shift
sequences are denoted by↑ and↓, in which the first causes entry into the alternate shift state.

25 After the call:

#include <stdio.h>
/* ... */
char str[50];
fscanf(stdin, "a%s", str);

with the input line:

a↑ X Y↓ bc

str will contain ↑ X Y↓\0 assuming that none of the bytes of the shift sequences (or of the multibyte
characters, in the more general case) appears to be a single-byte white-space character.

7.19.6.2 Library 7.19.6.2

WG14/N869 Committee Draft — January 18, 1999 293

26 In contrast, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a%ls", wstr);

with the same input line,wstr will contain the two wide characters that correspond toX and Y and a
terminating null wide character.

27 However, the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a ↑ X↓%ls", wstr);

with the same input line will return zero due to a matching failure against the↓ sequence in the format
string.

28 Assuming that the first byte of the multibyte characterX is the same as the first byte of the multibyte
character Y, after the call:

#include <stdio.h>
#include <stddef.h>
/* ... */
wchar_t wstr[50];
fscanf(stdin, "a ↑ Y↓%ls", wstr);

with the same input line, zero will again be returned, butstdin will be left with a partially consumed
multibyte character.

Forward references: the strtod , strtof , and strtold functions (7.20.1.3), the
strtol , strtoll , strtoul , andstrtoull functions (7.20.1.4), conversion state
(7.24.6), thewcrtomb function (7.24.6.3.3).

7.19.6.2 Library 7.19.6.2

294 Committee Draft — January 18, 1999 WG14/N869

7.19.6.3 Theprintf function

Synopsis

1 #include <stdio.h>
int printf(const char * restrict format, ...);

Description

2 Theprintf function is equivalent tofprintf with the argumentstdout interposed
before the arguments toprintf .

Returns

3 Theprintf function returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

7.19.6.4 Thescanf function

Synopsis

1 #include <stdio.h>
int scanf(const char * restrict format, ...);

Description

2 The scanf function is equivalent tofscanf with the argumentstdin interposed
before the arguments toscanf .

Returns

3 Thescanf function returns the value of the macroEOFif an input failure occurs before
any conversion. Otherwise, thescanf function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

7.19.6.2 Library 7.19.6.4

WG14/N869 Committee Draft — January 18, 1999 295

7.19.6.5 Thesnprintf function

Synopsis

1 #include <stdio.h>
int snprintf(char * restrict s, size_t n,

const char * restrict format, ...);

Description

2 Thesnprintf function is equivalent tofprintf , except that the output is written into
an array (specified by arguments) rather than to a stream. Ifn is zero, nothing is written,
and s may be a null pointer. Otherwise, output characters beyond then-1 st are
discarded rather than being written to the array, and a null character is written at the end
of the characters actually written into the array. If copying takes place between objects
that overlap, the behavior is undefined.

Returns

3 Thesnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a neg ative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less thann.

7.19.6.6 Thesprintf function

Synopsis

1 #include <stdio.h>
int sprintf(char * restrict s,

const char * restrict format, ...);

Description

2 Thesprintf function is equivalent tofprintf , except that the output is written into
an array (specified by the arguments) rather than to a stream. A null character is written
at the end of the characters written; it is not counted as part of the returned value. If
copying takes place between objects that overlap, the behavior is undefined.

Returns

3 The sprintf function returns the number of characters written in the array, not
counting the terminating null character, or a neg ative value if an encoding error occurred.

7.19.6.4 Library 7.19.6.6

296 Committee Draft — January 18, 1999 WG14/N869

7.19.6.7 Thesscanf function

Synopsis

1 #include <stdio.h>
int sscanf(const char * restrict s,

const char * restrict format, ...);

Description

2 The sscanf function is equivalent tofscanf , except that input is obtained from a
string (specified by the arguments) rather than from a stream. Reaching the end of the
string is equivalent to encountering end-of-file for thefscanf function. If copying
takes place between objects that overlap, the behavior is undefined.

Returns

3 The sscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thesscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.8 Thevfprintf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfprintf(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description

2 The vfprintf function is equivalent tofprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevfprintf function does not invoke the
va_end macro.231)

Returns

3 The vfprintf function returns the number of characters transmitted, or a negative
value if an output or encoding error occurred.

4 EXAMPLE The following shows the use of thevfprintf function in a general error-reporting routine.

231) As the functionsvfprintf , vfscanf , vprintf , vscanf , vsnprintf , vsprintf , and

vsscanf invoke theva_arg macro, the value ofarg after the return is indeterminate.

7.19.6.6 Library 7.19.6.8

WG14/N869 Committee Draft — January 18, 1999 297

#include <stdarg.h>
#include <stdio.h>

void error(char *function_name, char *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fprintf(stderr, "ERROR in %s: ", function_name);
// print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

7.19.6.9 Thevfscanf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vfscanf(FILE * restrict stream,

const char * restrict format,
va_list arg);

Description

2 The vfscanf function is equivalent tofscanf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). The vfscanf function does not invoke the
va_end macro.231)

Returns

3 The vfscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevfscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.8 Library 7.19.6.9

298 Committee Draft — January 18, 1999 WG14/N869

7.19.6.10 Thevprintf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vprintf(const char * restrict format,

va_list arg);

Description

2 The vprintf function is equivalent toprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). The vprintf function does not invoke the
va_end macro.231)

Returns

3 Thevprintf function returns the number of characters transmitted, or a negative value
if an output or encoding error occurred.

7.19.6.11 Thevscanf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vscanf(const char * restrict format,

va_list arg);

Description

2 Thevscanf function is equivalent toscanf , with the variable argument list replaced
by arg , which shall have been initialized by theva_start macro (and possibly
subsequentva_arg calls). The vscanf function does not invoke theva_end
macro.231)

Returns

3 The vscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.6.9 Library 7.19.6.11

WG14/N869 Committee Draft — January 18, 1999 299

7.19.6.12 Thevsnprintf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsprintf(char * restrict s, size_t n,

const char * restrict format,
va_list arg);

Description

2 Thevsnprintf function is equivalent tosnprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevsnprintf function does not invoke the
va_end macro.231) If copying takes place between objects that overlap, the behavior is
undefined.

Returns

3 Thevsnprintf function returns the number of characters that would have been written
hadn been sufficiently large, not counting the terminating null character, or a neg ative
value if an encoding error occurred. Thus, the null-terminated output has been
completely written if and only if the returned value is nonnegative and less thann.

7.19.6.13 Thevsprintf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsprintf(char * restrict s,

const char * restrict format,
va_list arg);

Description

2 The vsprintf function is equivalent tosprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevsprintf function does not invoke the
va_end macro.231) If copying takes place between objects that overlap, the behavior is
undefined.

Returns

3 The vsprintf function returns the number of characters written in the array, not
counting the terminating null character, or a neg ative value if an encoding error occurred.

7.19.6.11 Library 7.19.6.13

300 Committee Draft — January 18, 1999 WG14/N869

7.19.6.14 Thevsscanf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
int vsscanf(const char * restrict s,

const char * restrict format,
va_list arg);

Description

2 The vsscanf function is equivalent tosscanf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). The vsscanf function does not invoke the
va_end macro.231)

Returns

3 The vsscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.19.7 Character input/output functions

7.19.7.1 Thefgetc function

Synopsis

1 #include <stdio.h>
int fgetc(FILE *stream);

Description

2 If the end-of-file indicator for the input stream pointed to bystream is not set and a
next character is present, thefgetc function obtains that character as anunsigned
char converted to anint and advances the associated file position indicator for the
stream (if defined).

Returns

3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-
of-file indicator for the stream is set andfgetc returnsEOF. Otherwise, thefgetc
function returns the next character from the input stream pointed to bystream . If a read
error occurs, the error indicator for the stream is set andfgetc returnsEOF.232)

232) An end-of-file and a read error can be distinguished by use of thefeof andferror functions.

7.19.6.13 Library 7.19.7.1

WG14/N869 Committee Draft — January 18, 1999 301

7.19.7.2 Thefgets function

Synopsis

1 #include <stdio.h>
char *fgets(char * restrict s, int n,

FILE * restrict stream);

Description

2 Thefgets function reads at most one less than the number of characters specified byn
from the stream pointed to bystream into the array pointed to bys . No additional
characters are read after a new-line character (which is retained) or after end-of-file. A
null character is written immediately after the last character read into the array.

Returns

3 The fgets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

7.19.7.3 Thefputc function

Synopsis

1 #include <stdio.h>
int fputc(int c, FILE *stream);

Description

2 The fputc function writes the character specified byc (converted to anunsigned
char) to the output stream pointed to bystream , at the position indicated by the
associated file position indicator for the stream (if defined), and advances the indicator
appropriately. If the file cannot support positioning requests, or if the stream was opened
with append mode, the character is appended to the output stream.

Returns

3 The fputc function returns the character written. If a write error occurs, the error
indicator for the stream is set andfputc returnsEOF.

7.19.7.1 Library 7.19.7.3

302 Committee Draft — January 18, 1999 WG14/N869

7.19.7.4 Thefputs function

Synopsis

1 #include <stdio.h>
int fputs(const char * restrict s,

FILE * restrict stream);

Description

2 The fputs function writes the string pointed to bys to the stream pointed to by
stream . The terminating null character is not written.

Returns

3 The fputs function returnsEOF if a write error occurs; otherwise it returns a
nonnegative value.

7.19.7.5 Thegetc function

Synopsis

1 #include <stdio.h>
int getc(FILE *stream);

Description

2 Thegetc function is equivalent tofgetc , except that if it is implemented as a macro, it
may evaluatestream more than once, so the argument should never be an expression
with side effects.

Returns

3 The getc function returns the next character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getc returnsEOF. If a read error occurs, the error indicator for the stream is set and
getc returnsEOF.

7.19.7.3 Library 7.19.7.5

WG14/N869 Committee Draft — January 18, 1999 303

7.19.7.6 Thegetchar function

Synopsis

1 #include <stdio.h>
int getchar(void);

Description

2 Thegetchar function is equivalent togetc with the argumentstdin .

Returns

3 The getchar function returns the next character from the input stream pointed to by
stdin . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
getchar returnsEOF. If a read error occurs, the error indicator for the stream is set and
getchar returnsEOF.

7.19.7.7 Thegets function

Synopsis

1 #include <stdio.h>
char *gets(char *s);

Description

2 Thegets function reads characters from the input stream pointed to bystdin , into the
array pointed to bys , until end-of-file is encountered or a new-line character is read.
Any new-line character is discarded, and a null character is written immediately after the
last character read into the array.

Returns

3 The gets function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read error occurs during the operation, the array contents are
indeterminate and a null pointer is returned.

7.19.7.5 Library 7.19.7.7

304 Committee Draft — January 18, 1999 WG14/N869

7.19.7.8 Theputc function

Synopsis

1 #include <stdio.h>
int putc(int c, FILE *stream);

Description

2 Theputc function is equivalent tofputc , except that if it is implemented as a macro, it
may evaluatestream more than once, so that argument should never be an expression
with side effects.

Returns

3 The putc function returns the character written. If a write error occurs, the error
indicator for the stream is set andputc returnsEOF.

7.19.7.9 Theputchar function

Synopsis

1 #include <stdio.h>
int putchar(int c);

Description

2 Theputchar function is equivalent toputc with the second argumentstdout .

Returns

3 The putchar function returns the character written. If a write error occurs, the error
indicator for the stream is set andputchar returnsEOF.

7.19.7.10 Theputs function

Synopsis

1 #include <stdio.h>
int puts(const char *s);

Description

2 Theputs function writes the string pointed to bys to the stream pointed to bystdout ,
and appends a new-line character to the output. The terminating null character is not
written.

Returns

3 Theputs function returnsEOFif a write error occurs; otherwise it returns a nonnegative
value.

7.19.7.7 Library 7.19.7.10

WG14/N869 Committee Draft — January 18, 1999 305

7.19.7.11 Theungetc function

Synopsis

1 #include <stdio.h>
int ungetc(int c, FILE *stream);

Description

2 Theungetc function pushes the character specified byc (converted to anunsigned
char) back onto the input stream pointed to bystream . Pushed-back characters will be
returned by subsequent reads on that stream in the reverse order of their pushing. A
successful intervening call (with the stream pointed to bystream) to a file positioning
function (fseek , fsetpos , or rewind) discards any pushed-back characters for the
stream. The external storage corresponding to the stream is unchanged.

3 One character of pushback is guaranteed. If theungetc function is called too many
times on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

4 If the value ofc equals that of the macroEOF, the operation fails and the input stream is
unchanged.

5 A successful call to theungetc function clears the end-of-file indicator for the stream.
The value of the file position indicator for the stream after reading or discarding all
pushed-back characters shall be the same as it was before the characters were pushed
back. For a text stream, the value of its file position indicator after a successful call to the
ungetc function is unspecified until all pushed-back characters are read or discarded.
For a binary stream, its file position indicator is decremented by each successful call to
the ungetc function; if its value was zero before a call, it is indeterminate after the
call.233)

Returns

6 Theungetc function returns the character pushed back after conversion, orEOF if the
operation fails.

Forward references: file positioning functions (7.19.9).

233) See ‘‘future library directions’’ (7.26.9).

7.19.7.10 Library 7.19.7.11

306 Committee Draft — January 18, 1999 WG14/N869

7.19.8 Direct input/output functions

7.19.8.1 Thefread function

Synopsis

1 #include <stdio.h>
size_t fread(void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

Description

2 The fread function reads, into the array pointed to byptr , up to nmembelements
whose size is specified bysize , from the stream pointed to bystream . The file
position indicator for the stream (if defined) is advanced by the number of characters
successfully read. If an error occurs, the resulting value of the file position indicator for
the stream is indeterminate. If a partial element is read, its value is indeterminate.

Returns

3 The fread function returns the number of elements successfully read, which may be
less thannmembif a read error or end-of-file is encountered. Ifsize or nmembis zero,
fread returns zero and the contents of the array and the state of the stream remain
unchanged.

7.19.8.2 Thefwrite function

Synopsis

1 #include <stdio.h>
size_t fwrite(const void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

Description

2 The fwrite function writes, from the array pointed to byptr , up tonmembelements
whose size is specified bysize , to the stream pointed to bystream . The file position
indicator for the stream (if defined) is advanced by the number of characters successfully
written. If an error occurs, the resulting value of the file position indicator for the stream
is indeterminate.

Returns

3 Thefwrite function returns the number of elements successfully written, which will be
less thannmembonly if a write error is encountered.

7.19.8 Library 7.19.8.2

WG14/N869 Committee Draft — January 18, 1999 307

7.19.9 File positioning functions

7.19.9.1 Thefgetpos function

Synopsis

1 #include <stdio.h>
int fgetpos(FILE * restrict stream,

fpos_t * restrict pos);

Description

2 The fgetpos function stores the current values of the parse state (if any) and file
position indicator for the stream pointed to bystream in the object pointed to bypos .
The values stored contain unspecified information usable by thefsetpos function for
repositioning the stream to its position at the time of the call to thefgetpos function.

Returns

3 If successful, thefgetpos function returns zero; on failure, thefgetpos function
returns nonzero and stores an implementation-defined positive value inerrno .

Forward references: thefsetpos function (7.19.9.3).

7.19.9.2 Thefseek function

Synopsis

1 #include <stdio.h>
int fseek(FILE *stream, long int offset, int whence);

Description

2 Thefseek function sets the file position indicator for the stream pointed to bystream .
If a read or write error occurs, the error indicator for the stream is set andfseek fails.

3 For a binary stream, the new position, measured in characters from the beginning of the
file, is obtained by addingoffset to the position specified bywhence . The specified
position is the beginning of the file ifwhence is SEEK_SET, the current value of the file
position indicator ifSEEK_CUR, or end-of-file ifSEEK_END. A binary stream need not
meaningfully supportfseek calls with awhence value ofSEEK_END.

4 For a text stream, eitheroffset shall be zero, oroffset shall be a value returned by
an earlier successful call to theftell function on a stream associated with the same file
andwhence shall beSEEK_SET.

5 After determining the new position, a successful call to thefseek function undoes any
effects of theungetc function on the stream, clears the end-of-file indicator for the
stream, and then establishes the new position. After a successfulfseek call, the next
operation on an update stream may be either input or output.

7.19.9 Library 7.19.9.2

308 Committee Draft — January 18, 1999 WG14/N869

Returns

6 Thefseek function returns nonzero only for a request that cannot be satisfied.

Forward references: theftell function (7.19.9.4).

7.19.9.3 Thefsetpos function

Synopsis

1 #include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description

2 The fsetpos function sets thembstate_t object (if any) and file position indicator
for the stream pointed to bystream according to the value of the object pointed to by
pos , which shall be a value obtained from an earlier successful call to thefgetpos
function on a stream associated with the same file. If a read or write error occurs, the
error indicator for the stream is set andfsetpos fails.

3 A successful call to thefsetpos function undoes any effects of theungetc function
on the stream, clears the end-of-file indicator for the stream, and then establishes the new
parse state and position. After a successfulfsetpos call, the next operation on an
update stream may be either input or output.

Returns

4 If successful, thefsetpos function returns zero; on failure, thefsetpos function
returns nonzero and stores an implementation-defined positive value inerrno .

7.19.9.4 Theftell function

Synopsis

1 #include <stdio.h>
long int ftell(FILE *stream);

Description

2 Theftell function obtains the current value of the file position indicator for the stream
pointed to bystream . For a binary stream, the value is the number of characters from
the beginning of the file. For a text stream, its file position indicator contains unspecified
information, usable by thefseek function for returning the file position indicator for the
stream to its position at the time of theftell call; the difference between two such
return values is not necessarily a meaningful measure of the number of characters written
or read.

Returns

7.19.9.2 Library 7.19.9.4

WG14/N869 Committee Draft — January 18, 1999 309

3 If successful, theftell function returns the current value of the file position indicator
for the stream. On failure, theftell function returns −1L and stores an
implementation-defined positive value inerrno .

7.19.9.5 Therewind function

Synopsis

1 #include <stdio.h>
void rewind(FILE *stream);

Description

2 The rewind function sets the file position indicator for the stream pointed to by
stream to the beginning of the file. It is equivalent to

(void)fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared.

Returns

3 Therewind function returns no value.

7.19.10 Error-handling functions

7.19.10.1 Theclearerr function

Synopsis

1 #include <stdio.h>
void clearerr(FILE *stream);

Description

2 Theclearerr function clears the end-of-file and error indicators for the stream pointed
to bystream .

Returns

3 Theclearerr function returns no value.

7.19.9.4 Library 7.19.10.1

310 Committee Draft — January 18, 1999 WG14/N869

7.19.10.2 Thefeof function

Synopsis

1 #include <stdio.h>
int feof(FILE *stream);

Description

2 Thefeof function tests the end-of-file indicator for the stream pointed to bystream .

Returns

3 The feof function returns nonzero if and only if the end-of-file indicator is set for
stream .

7.19.10.3 Theferror function

Synopsis

1 #include <stdio.h>
int ferror(FILE *stream);

Description

2 Theferror function tests the error indicator for the stream pointed to bystream .

Returns

3 The ferror function returns nonzero if and only if the error indicator is set for
stream .

7.19.10.4 Theperror function

Synopsis

1 #include <stdio.h>
void perror(const char *s);

Description

2 The perror function maps the error number in the integer expressionerrno to an
error message. It writes a sequence of characters to the standard error stream thus: first
(if s is not a null pointer and the character pointed to bys is not the null character), the
string pointed to bys followed by a colon (:) and a space; then an appropriate error
message string followed by a new-line character. The contents of the error message
strings are the same as those returned by thestrerror function with argumenterrno .

Returns

3 Theperror function returns no value.

7.19.10.1 Library 7.19.10.4

WG14/N869 Committee Draft — January 18, 1999 311

Forward references: thestrerror function (7.21.6.2).

7.19.10.4 Library 7.19.10.4

312 Committee Draft — January 18, 1999 WG14/N869

7.20 General utilities<stdlib.h>

1 The header<stdlib.h> declares five types and several functions of general utility, and
defines several macros.234)

2 The types declared aresize_t andwchar_t (both described in 7.17),

div_t

which is a structure type that is the type of the value returned by thediv function,

ldiv_t

which is a structure type that is the type of the value returned by theldiv function, and

lldiv_t

which is a structure type that is the type of the value returned by thelldiv function.

3 The macros defined areNULL(described in 7.17);

EXIT_FAILURE

and

EXIT_SUCCESS

which expand to integer constant expressions that may be used as the argument to the
exit function to return unsuccessful or successful termination status, respectively, to the
host environment;

RAND_MAX

which expands to an integer constant expression, the value of which is the maximum
value returned by therand function; and

MB_CUR_MAX

which expands to a positive integer expression with typesize_t whose value is the
maximum number of bytes in a multibyte character for the extended character set
specified by the current locale (categoryLC_CTYPE), and whose value is never greater
thanMB_LEN_MAX.

234) See ‘‘future library directions’’ (7.26.10).

7.20 Library 7.20

WG14/N869 Committee Draft — January 18, 1999 313

7.20.1 String conversion functions

1 The functionsatof , atoi , atol , andatoll need not affect the value of the integer
expressionerrno on an error. If the value of the result cannot be represented, the
behavior is undefined.

7.20.1.1 Theatof function

Synopsis

1 #include <stdlib.h>
double atof(const char *nptr);

Description

2 The atof function converts the initial portion of the string pointed to bynptr to
double representation. Except for the behavior on error, it is equivalent to

strtod(nptr, (char **)NULL)

Returns

3 Theatof function returns the converted value.

Forward references: thestrtod , strtof , andstrtold functions (7.20.1.3).

7.20.1.2 Theatoi , atol , and atoll functions

Synopsis

1 #include <stdlib.h>
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);

Description

2 Theatoi , atol , andatoll functions convert the initial portion of the string pointed
to by nptr to int , long int , and long long int representation, respectively.
Except for the behavior on error, they are equivalent to

atoi: (int)strtol(nptr, (char **)NULL, 10)
atol: strtol(nptr, (char **)NULL, 10)
atoll: strtoll(nptr, (char **)NULL, 10)

Returns

3 Theatoi , atol , andatoll functions return the converted value.

Forward references: the strtol , strtoll , strtoul , and strtoull functions
(7.20.1.4).

7.20.1 Library 7.20.1.2

314 Committee Draft — January 18, 1999 WG14/N869

7.20.1.3 Thestrtod , strtof , and strtold functions

Synopsis

1 #include <stdlib.h>
double strtod(const char * restrict nptr,

char ** restrict endptr);
float strtof(const char * restrict nptr,

char ** restrict endptr);
long double strtold(const char * restrict nptr,

char ** restrict endptr);

Description

2 Thestrtod , strtof , andstrtold functions convert the initial portion of the string
pointed to by nptr to double , float , and long double representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space characters (as specified by theisspace function), a
subject sequence resembling a floating-point constant or representing an infinity or NaN;
and a final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to a
floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of
the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point
character, then an optional exponent part as defined in 6.4.4.2;

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a
decimal-point character, then an optional binary exponent part as defined in 6.4.4.2;

— one ofINF or INFINITY , ignoring case

— one ofNANor NAN(n-char-sequenceopt) , ignoring case in theNANpart, where:

n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is not of the expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of
characters starting with the first digit or the decimal-point character (whichever occurs
first) is interpreted as a floating constant according to the rules of 6.4.4.2, except that the

7.20.1.3 Library 7.20.1.3

WG14/N869 Committee Draft — January 18, 1999 315

decimal-point character is used in place of a period, and that if neither an exponent part
nor a decimal-point character appears in a decimal floating point number, or if a binary
exponent part does not appear in a binary floating point number, an exponent part of the
appropriate type with value zero is assumed to follow the last digit in the string.If the
subject sequence begins with a minus sign, the sequence is interpreted as negated.235) A
character sequenceINF or INFINITY is interpreted as an infinity, if representable in the
return type, else like a floating constant that is too large for the range of the return type.
A character sequenceNANor NAN(n-char-sequenceopt) , is interpreted as a quiet NaN, if
supported in the return type, else like a subject sequence part that does not have the
expected form; the meaning of the n-char sequences is implementation-defined.236) A ∗
pointer to the final string is stored in the object pointed to byendptr , provided that
endptr is not a null pointer.

5 If the subject sequence has the hexadecimal form andFLT_RADIX is a power of 2, the
value resulting from the conversion is correctly rounded.

6 In other than the"C" locale, additional locale-specific subject sequence forms may be
accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value ofnptr is stored in the object pointed to byendptr , provided
thatendptr is not a null pointer.

Recommended practice

8 If the subject sequence has the hexadecimal form andFLT_RADIX is not a power of 2,
the result should be one of the two numbers in the appropriate internal format that are
adjacent to the hexadecimal floating source value, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

9 If the subject sequence has the decimal form and at mostDECIMAL_DIG (defined in
<float.h>) significant digits, the result should be correctly rounded.If the subject
sequenceD has the decimal form and more thanDECIMAL_DIG significant digits,
consider the two bounding, adjacent decimal stringsL and U , both having
DECIMAL_DIGsignificant digits, such that the values ofL, D, andU satisfyL ≤ D ≤ U .
The result should be one of the (equal or adjacent) values that would be obtained by
correctly roundingL and U according to the current rounding direction, with the extra
stipulation that the error with respect toD should have a correct sign for the current

235) It is unspecified whether a minus-signed sequence is converted to a negative number directly or by

negating the value resulting from converting the corresponding unsigned sequence (see F.5); the two

methods may yield different results if rounding is toward positive or neg ative infinity. In either case,

the functions honor the sign of zero if floating-point arithmetic supports signed zeros.

236) An implementation may use then-char-sequenceto determine extra information to be represented in

the NaN’s significand.

7.20.1.3 Library 7.20.1.3

316 Committee Draft — January 18, 1999 WG14/N869

rounding direction.237)

Returns

10 The functions return the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL, HUGE_VALF, or HUGE_VALLis returned (according to the return
type and sign of the value), and the value of the macroERANGEis stored inerrno . If
the result underflows (7.12.1), the functions return a value whose magnitude is no greater
than the smallest normalized positive number in the return type; whethererrno acquires
the valueERANGEis implementation-defined.

7.20.1.4 Thestrtol , strtoll , strtoul , and strtoull functions

Synopsis

1 #include <stdlib.h>
long int strtol(

const char * restrict nptr,
char ** restrict endptr,
int base);

long long int strtoll(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long int strtoul(
const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long long int strtoull(
const char * restrict nptr,
char ** restrict endptr,
int base);

Description

2 The strtol , strtoll , strtoul , and strtoull functions convert the initial
portion of the string pointed to bynptr to long int , long long int , unsigned
long int , and unsigned long long int representation, respectively. First,
they decompose the input string into three parts: an initial, possibly empty, sequence of
white-space characters (as specified by theisspace function), a subject sequence
resembling an integer represented in some radix determined by the value ofbase , and a

237)DECIMAL_DIG, defined in<float.h> , should be sufficiently large thatL andU will usually round

to the same internal floating value, but if not will round to adjacent values.

7.20.1.3 Library 7.20.1.4

WG14/N869 Committee Draft — January 18, 1999 317

final string of one or more unrecognized characters, including the terminating null
character of the input string. Then, they attempt to convert the subject sequence to an
integer, and return the result.

3 If the value ofbase is zero, the expected form of the subject sequence is that of an
integer constant as described in 6.4.4.1, optionally preceded by a plus or minus sign, but
not including an integer suffix. If the value ofbase is between 2 and 36 (inclusive), the
expected form of the subject sequence is a sequence of letters and digits representing an
integer with the radix specified bybase , optionally preceded by a plus or minus sign,
but not including an integer suffix. The letters froma (or A) through z (or Z) are
ascribed the values 10 through 35; only letters and digits whose ascribed values are less
than that ofbase are permitted. If the value ofbase is 16, the characters0x or 0X may
optionally precede the sequence of letters and digits, following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input string,
starting with the first non-white-space character, that is of the expected form. The subject
sequence contains no characters if the input string is empty or consists entirely of white
space, or if the first non-white-space character is other than a sign or a permissible letter
or digit.

5 If the subject sequence has the expected form and the value ofbase is zero, the sequence
of characters starting with the first digit is interpreted as an integer constant according to
the rules of 6.4.4.1. If the subject sequence has the expected form and the value ofbase
is between 2 and 36, it is used as the base for conversion, ascribing to each letter its value
as given above. If the subject sequence begins with a minus sign, the value resulting from
the conversion is negated (in the return type). A pointer to the final string is stored in the
object pointed to byendptr , provided thatendptr is not a null pointer.

6 In other than the"C" locale, additional locale-specific subject sequence forms may be
accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value ofnptr is stored in the object pointed to byendptr , provided
thatendptr is not a null pointer.

Returns

8 The strtol , strtoll , strtoul , and strtoull functions return the converted
value, if any. If no conversion could be performed, zero is returned. If the correct value
is outside the range of representable values,LONG_MIN, LONG_MAX, LLONG_MIN,
LLONG_MAX, ULONG_MAX, or ULLONG_MAXis returned (according to the return type
and sign of the value, if any), and the value of the macroERANGEis stored inerrno .

7.20.1.4 Library 7.20.1.4

318 Committee Draft — January 18, 1999 WG14/N869

7.20.2 Pseudo-random sequence generation functions

7.20.2.1 Therand function

Synopsis

1 #include <stdlib.h>
int rand(void);

Description

2 The rand function computes a sequence of pseudo-random integers in the range 0 to
RAND_MAX.

3 The implementation shall behave as if no library function calls therand function.

Returns

4 Therand function returns a pseudo-random integer.

Environmental limits

5 The value of theRAND_MAXmacro shall be at least 32767.

7.20.2.2 Thesrand function

Synopsis

1 #include <stdlib.h>
void srand(unsigned int seed);

Description

2 Thesrand function uses the argument as a seed for a new sequence of pseudo-random
numbers to be returned by subsequent calls torand . If srand is then called with the
same seed value, the sequence of pseudo-random numbers shall be repeated. Ifrand is
called before any calls tosrand have been made, the same sequence shall be generated
as whensrand is first called with a seed value of 1.

3 The implementation shall behave as if no library function calls thesrand function.

Returns

4 Thesrand function returns no value.

5 EXAMPLE The following functions define a portable implementation ofrand andsrand .

7.20.2 Library 7.20.2.2

WG14/N869 Committee Draft — January 18, 1999 319

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767
{

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}

void srand(unsigned int seed)
{

next = seed;
}

7.20.3 Memory management functions

1 The order and contiguity of storage allocated by successive calls to thecalloc ,
malloc , andrealloc functions is unspecified. The pointer returned if the allocation
succeeds is suitably aligned so that it may be assigned to a pointer to any type of object
and then used to access such an object or an array of such objects in the space allocated
(until the space is explicitly freed or reallocated). Each such allocation shall yield a
pointer to an object disjoint from any other object. The pointer returned points to the
start (lowest byte address) of the allocated space. If the space cannot be allocated, a null
pointer is returned. If the size of the space requested is zero, the behavior is
implementation-defined: either a null pointer is returned, or the behavior is as if the size
were some nonzero value, except that the returned pointer shall not be used to access an
object. The value of a pointer that refers to freed space is indeterminate.

7.20.3.1 Thecalloc function

Synopsis

1 #include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description

2 Thecalloc function allocates space for an array ofnmembobjects, each of whose size
is size . The space is initialized to all bits zero.238)

Returns

3 Thecalloc function returns either a null pointer or a pointer to the allocated space.

238) Note that this need not be the same as the representation of floating-point zero or a null pointer

constant.

7.20.2.2 Library 7.20.3.1

320 Committee Draft — January 18, 1999 WG14/N869

7.20.3.2 Thefree function

Synopsis

1 #include <stdlib.h>
void free(void *ptr);

Description

2 The free function causes the space pointed to byptr to be deallocated, that is, made
available for further allocation. Ifptr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned by thecalloc , malloc , or
realloc function, or if the space has been deallocated by a call tofree or realloc ,
the behavior is undefined.

Returns

3 Thefree function returns no value.

7.20.3.3 Themalloc function

Synopsis

1 #include <stdlib.h>
void *malloc(size_t size);

Description

2 Themalloc function allocates space for an object whose size is specified bysize and
whose value is indeterminate.

Returns

3 Themalloc function returns either a null pointer or a pointer to the allocated space.

7.20.3.4 Therealloc function

Synopsis

1 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description

2 The realloc function deallocates the old object pointed to byptr and returns a
pointer to a new object that has the size specified bysize . The contents of the new
object shall be the same as that of the old object prior to deallocation, up to the lesser of
the new and old sizes. Any bytes in the new object beyond the size of the old object have
indeterminate values.

3 If ptr is a null pointer, therealloc function behaves like themalloc function for the
specified size. Otherwise, ifptr does not match a pointer earlier returned by the
calloc , malloc , or realloc function, or if the space has been deallocated by a call

7.20.3.1 Library 7.20.3.4

WG14/N869 Committee Draft — January 18, 1999 321

to the free or realloc function, the behavior is undefined. If memory for the new
object cannot be allocated, the old object is not deallocated and its value is unchanged.

Returns

4 The realloc function returns a pointer to the new object (which may have the same
value as a pointer to the old object), or a null pointer if the new object could not be
allocated.

7.20.4 Communication with the environment

7.20.4.1 Theabort function

Synopsis

1 #include <stdlib.h>
void abort(void);

Description

2 The abort function causes abnormal program termination to occur, unless the signal
SIGABRT is being caught and the signal handler does not return. Whether open output
streams are flushed or open streams closed or temporary files removed is implementation-
defined. An implementation-defined form of the statusunsuccessful terminationis
returned to the host environment by means of the function callraise(SIGABRT) .

Returns

3 Theabort function does not return to its caller.

7.20.4.2 Theatexit function

Synopsis

1 #include <stdlib.h>
int atexit(void (*func)(void));

Description

2 The atexit function registers the function pointed to byfunc , to be called without
arguments at normal program termination.

Environmental limits

3 The implementation shall support the registration of at least 32 functions.

Returns

4 Theatexit function returns zero if the registration succeeds, nonzero if it fails.

Forward references: theexit function (7.20.4.3).

7.20.3.4 Library 7.20.4.2

322 Committee Draft — January 18, 1999 WG14/N869

7.20.4.3 Theexit function

Synopsis

1 #include <stdlib.h>
void exit(int status);

Description

2 Theexit function causes normal program termination to occur. If more than one call to
theexit function is executed by a program, the behavior is undefined.

3 First, all functions registered by theatexit function are called, in the reverse order of
their registration.239)

4 Next, all open streams with unwritten buffered data are flushed, all open streams are
closed, and all files created by thetmpfile function are removed.

5 Finally, control is returned to the host environment. If the value ofstatus is zero or
EXIT_SUCCESS, an implementation-defined form of the statussuccessful terminationis
returned. If the value ofstatus is EXIT_FAILURE , an implementation-defined form
of the statusunsuccessful terminationis returned. Otherwise the status returned is
implementation-defined.

Returns

6 Theexit function cannot return to its caller.

7.20.4.4 Thegetenv function

Synopsis

1 #include <stdlib.h>
char *getenv(const char *name);

Description

2 The getenv function searches anenvironment list, provided by the host environment,
for a string that matches the string pointed to byname. The set of environment names
and the method for altering the environment list are implementation-defined.

3 The implementation shall behave as if no library function calls thegetenv function.

Returns

4 The getenv function returns a pointer to a string associated with the matched list
member. The string pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to thegetenv function. If the specifiedname cannot
be found, a null pointer is returned.

239) Each function is called as many times as it was registered.

7.20.4.2 Library 7.20.4.4

WG14/N869 Committee Draft — January 18, 1999 323

7.20.4.5 Thesystem function

Synopsis

1 #include <stdlib.h>
int system(const char *string);

Description

2 If string is a null pointer, thesystem function determines whether the host
environment has acommand processor. If string is not a null pointer, thesystem
function passes the string pointed to bystring to that command processor to be
executed in a manner which the implementation shall document; this might then cause the
program callingsystem to behave in a non-conforming manner or to terminate.

Returns

3 If the argument is a null pointer, thesystem function returns nonzero only if a
command processor is available. If the argument is not a null pointer, and thesystem
function does return, it returns an implementation-defined value.

7.20.5 Searching and sorting utilities

1 These utilities make use of a comparison function to search or sort arrays of unspecified
type. Where an argument declared assize_t nmemb specifies the length of the array
for a function,nmembcan have the value zero on a call to that function; the comparison
function is not called, a search finds no matching element, and sorting performs no
rearrangement. Pointer arguments on such a call shall still have valid values, as described
in 7.1.4.

2 The implementation shall ensure that the second argument of the comparison function
(when called frombsearch), or both arguments (when called fromqsort), are
pointers to elements of the array.240) The first argument when called frombsearch
shall equalkey .

3 The comparison function shall not alter the contents of the array. The implementation
may reorder elements of the array between calls to the comparison function, but shall not
alter the contents of any individual element.

4 When the same objects (consisting ofsize bytes, irrespective of their current positions
in the array) are passed more than once to the comparison function, the results shall be
consistent with one another. That is, forqsort they shall define a total ordering on the

240) That is, if the value passed isp, then the following expressions are always non-zero:

((char *)p - (char *)base) % size == 0

(char *)p >= (char *)base

(char *)p < (char *)base + nmemb * size

7.20.4.4 Library 7.20.5

324 Committee Draft — January 18, 1999 WG14/N869

array, and forbsearch the same object shall always compare the same way with the
key.

5 A sequence point occurs immediately before and immediately after each call to the
comparison function, and also between any call to the comparison function and any
movement of the objects passed as arguments to that call.

7.20.5.1 Thebsearch function

Synopsis

1 #include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

Description

2 Thebsearch function searches an array ofnmembobjects, the initial element of which
is pointed to bybase , for an element that matches the object pointed to bykey . The
size of each element of the array is specified bysize .

3 The comparison function pointed to bycompar is called with two arguments that point
to thekey object and to an array element, in that order. The function shall return an
integer less than, equal to, or greater than zero if thekey object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array
shall consist of: all the elements that compare less than, all the elements that compare
equal to, and all the elements that compare greater than thekey object, in that order.241)

Returns

4 The bsearch function returns a pointer to a matching element of the array, or a null
pointer if no match is found. If two elements compare as equal, which element is
matched is unspecified.

241) In practice, the entire array is sorted according to the comparison function.

7.20.5 Library 7.20.5.1

WG14/N869 Committee Draft — January 18, 1999 325

7.20.5.2 Theqsort function

Synopsis

1 #include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Description

2 The qsort function sorts an array ofnmembobjects, the initial element of which is
pointed to bybase . The size of each object is specified bysize .

3 The contents of the array are sorted into ascending order according to a comparison
function pointed to bycompar , which is called with two arguments that point to the
objects being compared. The function shall return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal to,
or greater than the second.

4 If two elements compare as equal, their order in the resulting sorted array is unspecified.

Returns

5 Theqsort function returns no value.

7.20.6 Integer arithmetic functions

7.20.6.1 Theabs , labs and llabs functions

Synopsis

1 #include <stdlib.h>
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);

Description

2 Theabs , labs , andllabs functions compute the absolute value of an integerj . If the
result cannot be represented, the behavior is undefined.242)

Returns

3 Theabs , labs , andllabs , functions return the absolute value.

242) The absolute value of the most negative number cannot be represented in two’s complement.

7.20.5.1 Library 7.20.6.1

326 Committee Draft — January 18, 1999 WG14/N869

7.20.6.2 Thediv , ldiv , and lldiv functions

Synopsis

1 #include <stdlib.h>
div_t div(int numer, int denom);
ldiv_t div(long int numer, long int denom);
lldiv_t div(long long int numer, long long int denom);

Description

2 The div , ldiv , and lldiv , functions computenumer / denom and numer %
denom in a single operation.

Returns

3 Thediv , ldiv , and lldiv functions return a structure of typediv_t , ldiv_t , and
lldiv_t , respectively, comprising both the quotient and the remainder. The structures
shall contain (in either order) the membersquot (the quotient) andrem (the remainder),
each of which have the same type as the argumentsnumer anddenom. If either part of
the result cannot be represented, the behavior is undefined.

7.20.7 Multibyte character functions

1 The behavior of the multibyte character functions is affected by theLC_CTYPEcategory
of the current locale. For a state-dependent encoding, each function is placed into its
initial state by a call for which its character pointer argument,s , is a null pointer.
Subsequent calls withs as other than a null pointer cause the internal state of the function
to be altered as necessary. A call withs as a null pointer causes these functions to return
a nonzero value if encodings have state dependency, and zero otherwise.243) Changing
theLC_CTYPEcategory causes the shift state of these functions to be indeterminate.

243) If the locale employs special bytes to change the shift state, these bytes do not produce separate wide

character codes, but are grouped with an adjacent multibyte character.

7.20.6.2 Library 7.20.7

WG14/N869 Committee Draft — January 18, 1999 327

7.20.7.1 Themblen function

1 #include <stdlib.h>
int mblen(const char *s, size_t n);

Description

2 If s is not a null pointer, themblen function determines the number of bytes contained
in the multibyte character pointed to bys . Except that the shift state of thembtowc
function is not affected, it is equivalent to

mbtowc((wchar_t *)0, s, n);

3 The implementation shall behave as if no library function calls themblen function.

Returns

4 If s is a null pointer, themblen function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. Ifs is
not a null pointer, themblen function either returns 0 (ifs points to the null character),
or returns the number of bytes that are contained in the multibyte character (if the nextn
or fewer bytes form a valid multibyte character), or returns −1 (if they do not form a valid
multibyte character).

Forward references: thembtowc function (7.20.7.2).

7.20.7.2 Thembtowc function

Synopsis

1 #include <stdlib.h>
int mbtowc(wchar_t * restrict pwc,

const char * restrict s,
size_t n);

Description

2 If s is not a null pointer, thembtowc function determines the number of bytes that are
contained in the multibyte character pointed to bys . It then determines the code for the
value of typewchar_t that corresponds to that multibyte character. (The value of the
code corresponding to the null character is zero.) If the multibyte character is valid and
pwc is not a null pointer, thembtowc function stores the code in the object pointed to by
pwc. At mostn bytes of the array pointed to bys will be examined.

3 The implementation shall behave as if no library function calls thembtowc function.

Returns

If s is a null pointer, thembtowc function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. Ifs is
not a null pointer, thembtowc function either returns 0 (ifs points to the null character),

7.20.7 Library 7.20.7.2

328 Committee Draft — January 18, 1999 WG14/N869

or returns the number of bytes that are contained in the converted multibyte character (if
the nextn or fewer bytes form a valid multibyte character), or returns −1 (if they do not
form a valid multibyte character).

4 In no case will the value returned be greater thann or the value of theMB_CUR_MAX
macro.

7.20.7.3 Thewctomb function

Synopsis

1 #include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

Description

2 Thewctomb function determines the number of bytes needed to represent the multibyte
character corresponding to the code whose value iswchar (including any change in shift
state). It stores the multibyte character representation in the array object pointed to bys
(if s is not a null pointer). At mostMB_CUR_MAXcharacters are stored. If the value of
wchar is zero, thewctomb function is left in the initial shift state.

3 The implementation shall behave as if no library function calls thewctomb function.

Returns

4 If s is a null pointer, thewctomb function returns a nonzero or zero value, if multibyte
character encodings, respectively, do or do not have state-dependent encodings. Ifs is
not a null pointer, thewctomb function returns −1 if the value ofwchar does not
correspond to a valid multibyte character, or returns the number of bytes that are
contained in the multibyte character corresponding to the value ofwchar .

5 In no case will the value returned be greater than the value of theMB_CUR_MAXmacro.

7.20.8 Multibyte string functions

1 The behavior of the multibyte string functions is affected by theLC_CTYPEcategory of
the current locale.

7.20.7.2 Library 7.20.8

WG14/N869 Committee Draft — January 18, 1999 329

7.20.8.1 Thembstowcs function

Synopsis

1 #include <stdlib.h>
size_t mbstowcs(wchar_t * restrict pwcs,

const char * restrict s,
size_t n);

Description

2 Thembstowcs function converts a sequence of multibyte characters that begins in the
initial shift state from the array pointed to bys into a sequence of corresponding codes
and stores not more thann codes into the array pointed to bypwcs . No multibyte
characters that follow a null character (which is converted into a code with value zero)
will be examined or converted. Each multibyte character is converted as if by a call to the
mbtowc function, except that the shift state of thembtowc function is not affected.

3 No more thann elements will be modified in the array pointed to bypwcs . If copying
takes place between objects that overlap, the behavior is undefined.

Returns

4 If an invalid multibyte character is encountered, thembstowcs function returns
(size_t)-1 . Otherwise, thembstowcs function returns the number of array elements
modified, not including a terminating zero code, if any.244)

7.20.8.2 Thewcstombs function

Synopsis

1 #include <stdlib.h>
size_t wcstombs(char * restrict s,

const wchar_t * restrict pwcs,
size_t n);

Description

2 The wcstombs function converts a sequence of codes that correspond to multibyte
characters from the array pointed to bypwcs into a sequence of multibyte characters that
begins in the initial shift state and stores these multibyte characters into the array pointed
to by s , stopping if a multibyte character would exceed the limit ofn total bytes or if a
null character is stored. Each code is converted as if by a call to thewctomb function,
except that the shift state of thewctomb function is not affected.

244) The array will not be null- or zero-terminated if the value returned isn.

7.20.8 Library 7.20.8.2

330 Committee Draft — January 18, 1999 WG14/N869

3 No more thann bytes will be modified in the array pointed to bys . If copying takes place
between objects that overlap, the behavior is undefined.

Returns

4 If a code is encountered that does not correspond to a valid multibyte character, the
wcstombs function returns(size_t)-1 . Otherwise, thewcstombs function returns
the number of bytes modified, not including a terminating null character, if any.244)

7.20.8.2 Library 7.20.8.2

WG14/N869 Committee Draft — January 18, 1999 331

7.21 String handling<string.h>

7.21.1 String function conventions

1 The header<string.h> declares one type and several functions, and defines one
macro useful for manipulating arrays of character type and other objects treated as arrays
of character type.245) The type issize_t and the macro isNULL (both described in
7.17). Various methods are used for determining the lengths of the arrays, but in all cases
a char * or void * argument points to the initial (lowest addressed) character of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

2 Where an argument declared assize_t n specifies the length of the array for a
function, n can have the value zero on a call to that function. Unless explicitly stated
otherwise in the description of a particular function in this subclause, pointer arguments
on such a call shall still have valid values, as described in 7.1.4. On such a call, a
function that locates a character finds no occurrence, a function that compares two
character sequences returns zero, and a function that copies characters copies zero
characters.

7.21.2 Copying functions

7.21.2.1 Thememcpyfunction

Synopsis

1 #include <string.h>
void *memcpy(void * restrict s1,

const void * restrict s2,
size_t n);

Description

2 The memcpy function copiesn characters from the object pointed to bys2 into the
object pointed to bys1 . If copying takes place between objects that overlap, the behavior
is undefined.

Returns

3 Thememcpyfunction returns the value ofs1 .

245) See ‘‘future library directions’’ (7.26.11).

7.21 Library 7.21.2.1

332 Committee Draft — January 18, 1999 WG14/N869

7.21.2.2 Thememmovefunction

Synopsis

1 #include <string.h>
void *memmove(void *s1, const void *s2, size_t n);

Description

2 The memmovefunction copiesn characters from the object pointed to bys2 into the
object pointed to bys1 . Copying takes place as if then characters from the object
pointed to bys2 are first copied into a temporary array ofn characters that does not
overlap the objects pointed to bys1 and s2 , and then then characters from the
temporary array are copied into the object pointed to bys1 .

Returns

3 Thememmovefunction returns the value ofs1 .

7.21.2.3 Thestrcpy function

Synopsis

1 #include <string.h>
char *strcpy(char * restrict s1,

const char * restrict s2);

Description

2 Thestrcpy function copies the string pointed to bys2 (including the terminating null
character) into the array pointed to bys1 . If copying takes place between objects that
overlap, the behavior is undefined.

Returns

3 Thestrcpy function returns the value ofs1 .

7.21.2.1 Library 7.21.2.3

WG14/N869 Committee Draft — January 18, 1999 333

7.21.2.4 Thestrncpy function

Synopsis

1 #include <string.h>
char *strncpy(char * restrict s1,

const char * restrict s2,
size_t n);

Description

2 Thestrncpy function copies not more thann characters (characters that follow a null
character are not copied) from the array pointed to bys2 to the array pointed to by
s1 .246) If copying takes place between objects that overlap, the behavior is undefined.

3 If the array pointed to bys2 is a string that is shorter thann characters, null characters
are appended to the copy in the array pointed to bys1 , until n characters in all have been
written.

Returns

4 Thestrncpy function returns the value ofs1 .

7.21.3 Concatenation functions

7.21.3.1 Thestrcat function

Synopsis

1 #include <string.h>
char *strcat(char * restrict s1,

const char * restrict s2);

Description

2 The strcat function appends a copy of the string pointed to bys2 (including the
terminating null character) to the end of the string pointed to bys1 . The initial character
of s2 overwrites the null character at the end ofs1 . If copying takes place between
objects that overlap, the behavior is undefined.

Returns

3 Thestrcat function returns the value ofs1 .

246) Thus, if there is no null character in the firstn characters of the array pointed to bys2 , the result will

not be null-terminated.

7.21.2.3 Library 7.21.3.1

334 Committee Draft — January 18, 1999 WG14/N869

7.21.3.2 Thestrncat function

Synopsis

1 #include <string.h>
char *strncat(char * restrict s1,

const char * restrict s2,
size_t n);

Description

2 The strncat function appends not more thann characters (a null character and
characters that follow it are not appended) from the array pointed to bys2 to the end of
the string pointed to bys1 . The initial character ofs2 overwrites the null character at the
end ofs1 . A terminating null character is always appended to the result.247) If copying
takes place between objects that overlap, the behavior is undefined.

Returns

3 Thestrncat function returns the value ofs1 .

Forward references: thestrlen function (7.21.6.3).

7.21.4 Comparison functions

1 The sign of a nonzero value returned by the comparison functionsmemcmp, strcmp ,
andstrncmp is determined by the sign of the difference between the values of the first
pair of characters (both interpreted asunsigned char) that differ in the objects being
compared.

247) Thus, the maximum number of characters that can end up in the array pointed to bys1 is

strlen(s1)+n+1 .

7.21.3.1 Library 7.21.4

WG14/N869 Committee Draft — January 18, 1999 335

7.21.4.1 Thememcmpfunction

Synopsis

1 #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

Description

2 Thememcmpfunction compares the firstn characters of the object pointed to bys1 to
the firstn characters of the object pointed to bys2 .248)

Returns

3 The memcmpfunction returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed to bys1 is greater than, equal to, or less than the object
pointed to bys2 .

7.21.4.2 Thestrcmp function

Synopsis

1 #include <string.h>
int strcmp(const char *s1, const char *s2);

Description

2 Thestrcmp function compares the string pointed to bys1 to the string pointed to by
s2 .

Returns

3 The strcmp function returns an integer greater than, equal to, or less than zero,
accordingly as the string pointed to bys1 is greater than, equal to, or less than the string
pointed to bys2 .

248) The contents of ‘‘holes’’ used as padding for purposes of alignment within structure objects are

indeterminate. Strings shorter than their allocated space and unions may also cause problems in

comparison.

7.21.4 Library 7.21.4.2

336 Committee Draft — January 18, 1999 WG14/N869

7.21.4.3 Thestrcoll function

Synopsis

1 #include <string.h>
int strcoll(const char *s1, const char *s2);

Description

Thestrcoll function compares the string pointed to bys1 to the string pointed to by
s2 , both interpreted as appropriate to theLC_COLLATEcategory of the current locale.

Returns

2 The strcoll function returns an integer greater than, equal to, or less than zero,
accordingly as the string pointed to bys1 is greater than, equal to, or less than the string
pointed to bys2 when both are interpreted as appropriate to the current locale.

7.21.4.4 Thestrncmp function

Synopsis

1 #include <string.h>
int strncmp(const char *s1, const char *s2, size_t n);

Description

2 The strncmp function compares not more thann characters (characters that follow a
null character are not compared) from the array pointed to bys1 to the array pointed to
by s2 .

Returns

3 The strncmp function returns an integer greater than, equal to, or less than zero,
accordingly as the possibly null-terminated array pointed to bys1 is greater than, equal
to, or less than the possibly null-terminated array pointed to bys2 .

7.21.4.2 Library 7.21.4.4

WG14/N869 Committee Draft — January 18, 1999 337

7.21.4.5 Thestrxfrm function

Synopsis

1 #include <string.h>
size_t strxfrm(char * restrict s1,

const char * restrict s2,
size_t n);

Description

2 Thestrxfrm function transforms the string pointed to bys2 and places the resulting
string into the array pointed to bys1 . The transformation is such that if thestrcmp
function is applied to two transformed strings, it returns a value greater than, equal to, or
less than zero, corresponding to the result of thestrcoll function applied to the same
two original strings. No more thann characters are placed into the resulting array
pointed to bys1 , including the terminating null character. Ifn is zero,s1 is permitted to
be a null pointer. If copying takes place between objects that overlap, the behavior is
undefined.

Returns

3 The strxfrm function returns the length of the transformed string (not including the
terminating null character). If the value returned isn or more, the contents of the array
pointed to bys1 are indeterminate.

4 EXAMPLE The value of the following expression is the size of the array needed to hold the
transformation of the string pointed to bys .

1 + strxfrm(NULL, s, 0)

7.21.5 Search functions

7.21.4.4 Library 7.21.5

338 Committee Draft — January 18, 1999 WG14/N869

7.21.5.1 Thememchr function

Synopsis

1 #include <string.h>
void *memchr(const void *s, int c, size_t n);

Description

2 The memchr function locates the first occurrence ofc (converted to anunsigned
char) in the initial n characters (each interpreted asunsigned char) of the object
pointed to bys .

Returns

3 Thememchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the object.

7.21.5.2 Thestrchr function

Synopsis

1 #include <string.h>
char *strchr(const char *s, int c);

Description

2 The strchr function locates the first occurrence ofc (converted to achar) in the
string pointed to bys . The terminating null character is considered to be part of the
string.

Returns

3 Thestrchr function returns a pointer to the located character, or a null pointer if the
character does not occur in the string.

7.21.5 Library 7.21.5.2

WG14/N869 Committee Draft — January 18, 1999 339

7.21.5.3 Thestrcspn function

Synopsis

1 #include <string.h>
size_t strcspn(const char *s1, const char *s2);

Description

2 Thestrcspn function computes the length of the maximum initial segment of the string
pointed to bys1 which consists entirely of charactersnot from the string pointed to by
s2 .

Returns

3 Thestrcspn function returns the length of the segment.

7.21.5.4 Thestrpbrk function

Synopsis

1 #include <string.h>
char *strpbrk(const char *s1, const char *s2);

Description

2 Thestrpbrk function locates the first occurrence in the string pointed to bys1 of any
character from the string pointed to bys2 .

Returns

3 Thestrpbrk function returns a pointer to the character, or a null pointer if no character
from s2 occurs ins1 .

7.21.5.5 Thestrrchr function

Synopsis

1 #include <string.h>
char *strrchr(const char *s, int c);

Description

2 The strrchr function locates the last occurrence ofc (converted to achar) in the
string pointed to bys . The terminating null character is considered to be part of the
string.

Returns

3 Thestrrchr function returns a pointer to the character, or a null pointer ifc does not
occur in the string.

7.21.5.2 Library 7.21.5.5

340 Committee Draft — January 18, 1999 WG14/N869

7.21.5.6 Thestrspn function

Synopsis

1 #include <string.h>
size_t strspn(const char *s1, const char *s2);

Description

2 Thestrspn function computes the length of the maximum initial segment of the string
pointed to bys1 which consists entirely of characters from the string pointed to bys2 .

Returns

3 Thestrspn function returns the length of the segment.

7.21.5.7 Thestrstr function

Synopsis

1 #include <string.h>
char *strstr(const char *s1, const char *s2);

Description

2 Thestrstr function locates the first occurrence in the string pointed to bys1 of the
sequence of characters (excluding the terminating null character) in the string pointed to
by s2 .

Returns

3 Thestrstr function returns a pointer to the located string, or a null pointer if the string
is not found. Ifs2 points to a string with zero length, the function returnss1 .

7.21.5.8 Thestrtok function

Synopsis

1 #include <string.h>
char *strtok(char * restrict s1,

const char * restrict s2);

Description

2 A sequence of calls to thestrtok function breaks the string pointed to bys1 into a
sequence of tokens, each of which is delimited by a character from the string pointed to
by s2 . The first call in the sequence has a non-null first argument; subsequent calls in the
sequence have a null first argument. The separator string pointed to bys2 may be
different from call to call.

3 The first call in the sequence searches the string pointed to bys1 for the first character
that isnot contained in the current separator string pointed to bys2 . If no such character
is found, then there are no tokens in the string pointed to bys1 and thestrtok function

7.21.5.5 Library 7.21.5.8

WG14/N869 Committee Draft — January 18, 1999 341

returns a null pointer. If such a character is found, it is the start of the first token.

4 The strtok function then searches from there for a character thatis contained in the
current separator string. If no such character is found, the current token extends to the
end of the string pointed to bys1 , and subsequent searches for a token will return a null
pointer. If such a character is found, it is overwritten by a null character, which
terminates the current token. Thestrtok function saves a pointer to the following
character, from which the next search for a token will start.

5 Each subsequent call, with a null pointer as the value of the first argument, starts
searching from the saved pointer and behaves as described above.

6 The implementation shall behave as if no library function calls thestrtok function.

Returns

7 Thestrtok function returns a pointer to the first character of a token, or a null pointer
if there is no token.

8 EXAMPLE 1

#include <string.h>
static char str[] = "?a???b,,,#c";
char *t;

t = strtok(str, "?"); // t points to the token"a"
t = strtok(NULL, ","); // t points to the token"??b"
t = strtok(NULL, "#,"); // t points to the token"c"
t = strtok(NULL, "?"); // t is a null pointer

7.21.6 Miscellaneous functions

7.21.6.1 Thememset function

Synopsis

1 #include <string.h>
void *memset(void *s, int c, size_t n);

Description

2 The memset function copies the value ofc (converted to anunsigned char) into
each of the firstn characters of the object pointed to bys .

Returns

3 Thememset function returns the value ofs .

7.21.5.8 Library 7.21.6.1

342 Committee Draft — January 18, 1999 WG14/N869

7.21.6.2 Thestrerror function

Synopsis

1 #include <string.h>
char *strerror(int errnum);

Description

2 Thestrerror function maps the number inerrnum to a message string. Typically,
the values forerrnum come fromerrno , but strerror shall map any value of type
int to a message.

3 The implementation shall behave as if no library function calls thestrerror function.

Returns

4 Thestrerror function returns a pointer to the string, the contents of which are locale-
specific. The array pointed to shall not be modified by the program, but may be
overwritten by a subsequent call to thestrerror function.

7.21.6.3 Thestrlen function

Synopsis

1 #include <string.h>
size_t strlen(const char *s);

Description

2 Thestrlen function computes the length of the string pointed to bys .

Returns

3 Thestrlen function returns the number of characters that precede the terminating null
character.

7.21.6.1 Library 7.21.6.3

WG14/N869 Committee Draft — January 18, 1999 343

7.22 Type-generic math<tgmath.h>

1 The header<tgmath.h> includes the headers<math.h> and <complex.h> and
defines severaltype-generic macros.

7.22.1 Type-generic macros

1 Of the <math.h> and <complex.h> functions without anf (float) or l (long
double) suffix, several have one or more parameters whose corresponding real type is
double . For each such function, exceptmodf , there is a correspondingtype-generic
macro.249) The parameters whose corresponding real type isdouble in the function
synopsis aregeneric parameters. Use of the macro invokes a function whose
corresponding real type and type domain are determined by the arguments for the generic
parameters.250)

2 Use of the macro invokes a function whose generic parameters have the corresponding
real type determined as follows:

— First, if any argument for generic parameters has typelong double , the type
determined islong double .

— Otherwise, if any argument for generic parameters has typedouble or is of integer
type, the type determined isdouble .

— Otherwise, the type determined isfloat .

3 For each unsuffixed function in<math.h> for which there is a function in
<complex.h> with the same name except for ac prefix, the corresponding type-
generic macro (for both functions) has the same name as the function in<math.h> . The
corresponding type-generic macro forfabs andcabs is fabs .

249) Like other function-like macros in Standard libraries, each type-generic macro can be suppressed to

make available the corresponding ordinary function.

250) If the type of the argument is incompatible with the type of the parameter for the selected function, the

behavior is undefined.

7.22 Library 7.22.1

344 Committee Draft — January 18, 1999 WG14/N869

<math.h> <complex.h> type-generic
function function macro

acos cacos acos
asin casin asin
atan catan atan
acosh cacosh acosh
asinh casinh asinh
atanh catanh atanh
cos ccos cos
sin csin sin
tan ctan tan
cosh ccosh cosh
sinh csinh sinh
tanh ctanh tanh
exp cexp exp
log clog log
pow cpow pow
sqrt csqrt sqrt
fabs cabs fabs

If at least one argument for a generic parameter is complex, then use of the macro invokes
a complex function; otherwise, use of the macro invokes a real function.

4 For each unsuffixed function in<math.h> without a c -prefixed counterpart in
<complex.h> , the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

atan2
cbrt
ceil
copysign
erf
erfc
exp2
expm1
fdim
floor

fma
fmax
fmin
fmod
frexp
hypot
ilogb
ldexp
lgamma
llrint

llround
log10
log1p
log2
logb
lrint
lround
nearbyint
nextafter
nexttoward

remainder
remquo
rint
round
scalbn
scalbln
tgamma
trunc

If all arguments for generic parameters are real, then use of the macro invokes a real
function; otherwise, use of the macro results in undefined behavior.

5 For each unsuffixed function in<complex.h> that is not ac -prefixed counterpart to a
function in<math.h> , the corresponding type-generic macro has the same name as the
function. These type-generic macros are:

7.22.1 Library 7.22.1

WG14/N869 Committee Draft — January 18, 1999 345

carg
cimag

conj
cproj

creal

Use of the macro with any real or complex argument invokes a complex function.

6 EXAMPLE With the declarations

#include <tgmath.h>
int n;
float f;
double d;
long double ld;
float complex fc;
double complex dc;
long double complex ldc;

functions invoked by use of type-generic macros are shown in the following table:

macro use invokes

exp(n) exp(n) , the function
acosh(f) acoshf(f)
sin(d) sin(d) , the function
atan(ld) atanl(ld)
log(fc) clogf(fc)
sqrt(dc) csqrt(dc)
pow(ldc, f) cpowl(ldc, f)
remainder(n, n) remainder(n, n) , the function
nextafter(d, f) nextafter(d, f) , the function
nexttoward(f, ld) nexttowardf(f, ld)
copysign(n, ld) copysignl(n, ld)
ceil(fc) undefined behavior
rint(dc) undefined behavior
fmax(ldc, ld) undefined behavior
carg(n) carg(n) , the function
cproj(f) cprojf(f)
creal(d) creal(d) , the function
cimag(ld) cimagl(ld)
cabs(fc) cabsf(fc)
carg(dc) carg(dc) , the function
cproj(ldc) cprojl(ldc)

7.22.1 Library 7.22.1

346 Committee Draft — January 18, 1999 WG14/N869

7.23 Date and time<time.h>

7.23.1 Components of time

1 The header<time.h> defines four macros, and declares several types and functions for
manipulating time. Many functions deal with acalendar timethat represents the current
date (according to the Gregorian calendar) and time. Some functions deal withlocal
time, which is the calendar time expressed for some specific time zone, and withDaylight
Saving Time, which is a temporary change in the algorithm for determining local time.
The local time zone and Daylight Saving Time are implementation-defined.

2 The macros defined areNULL(described in 7.17); and

CLOCKS_PER_SEC

which expands to a constant expression with the typeclock_t described below, and
which is the number per second of the value returned by theclock function.

3 The types declared aresize_t (described in 7.17);

clock_t

and

time_t

which are arithmetic types capable of representing times; and

struct tm

which holds the components of a calendar time, called thebroken-down time.

4 The tm structure shall contain at least the following members, in any order. The
semantics of the members and their normal ranges are expressed in the comments.251)

int tm_sec; // seconds after the minute — [0, 60]
int tm_min; // minutes after the hour — [0, 59]
int tm_hour; // hours since midnight — [0, 23]
int tm_mday; // day of the month — [1, 31]
int tm_mon; // months since January — [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday — [0, 6]
int tm_yday; // days since January 1 — [0, 365]
int tm_isdst; // Daylight Saving Time flag

The value oftm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight
Saving Time is not in effect, and negative if the information is not available. ∗

251) The range [0, 60] fortm_sec allows for a positive leap second.

7.23 Library 7.23.1

WG14/N869 Committee Draft — January 18, 1999 347

7.23.2 Time manipulation functions

7.23.2.1 Theclock function

Synopsis

1 #include <time.h>
clock_t clock(void);

Description

2 Theclock function determines the processor time used.

Returns

3 The clock function returns the implementation’s best approximation to the processor
time used by the program since the beginning of an implementation-defined era related
only to the program invocation. To determine the time in seconds, the value returned by
theclock function should be divided by the value of the macroCLOCKS_PER_SEC. If
the processor time used is not available or its value cannot be represented, the function
returns the value(clock_t)-1 .252)

7.23.2.2 Thedifftime function

Synopsis

1 #include <time.h>
double difftime(time_t time1, time_t time0);

Description

2 Thedifftime function computes the difference between two calendar times:time1 -
time0 .

Returns

3 Thedifftime function returns the difference expressed in seconds as adouble .

252) In order to measure the time spent in a program, theclock function should be called at the start of

the program and its return value subtracted from the value returned by subsequent calls.

7.23.2 Library 7.23.2.2

348 Committee Draft — January 18, 1999 WG14/N869

7.23.2.3 Themktime function

Synopsis

1 #include <time.h>
time_t mktime(struct tm *timeptr);

Description

2 The mktime function converts the broken-down time, expressed as local time, in the
structure pointed to bytimeptr into a calendar time value with the same encoding as
that of the values returned by thetime function. The original values of thetm_wday
and tm_yday components of the structure are ignored, and the original values of the
other components are not restricted to the ranges indicated above.253) On successful
completion, the values of thetm_wday and tm_yday components of the structure are
set appropriately, and the other components are set to represent the specified calendar
time, but with their values forced to the ranges indicated above; the final value of
tm_mday is not set untiltm_mon andtm_year are determined.

3 If the call is successful, a second call to themktime function with the resultingstruct ∗
tm value shall always leave it unchanged and return the same value as the first call.
Furthermore, if the normalized time is exactly representable as atime_t value, then the
normalized broken-down time and the broken-down time generated by converting the
result of themktime function by a call tolocaltime shall be identical.

Returns

4 The mktime function returns the specified calendar time encoded as a value of type
time_t . If the calendar time cannot be represented, the function returns the value
(time_t)-1 .

5 EXAMPLE What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};
struct tm time_str;
/* ... */

253) Thus, a positive or zero value fortm_isdst causes themktime function to presume initially that

Daylight Saving Time, respectively, is or is not in effect for the specified time. A neg ative value

causes it to attempt to determine whether Daylight Saving Time is in effect for the specified time.

7.23.2.2 Library 7.23.2.3

WG14/N869 Committee Draft — January 18, 1999 349

time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
if (mktime(&time_str) == (time_t)-1)

time_str.tm_wday = 7;
printf("%s\n", wday[time_str.tm_wday]);

7.23.2.4 Thetime function

Synopsis

1 #include <time.h>
time_t time(time_t *timer);

Description

2 The time function determines the current calendar time. The encoding of the value is
unspecified.

Returns

3 The time function returns the implementation’s best approximation to the current
calendar time. The value(time_t)-1 is returned if the calendar time is not available.
If timer is not a null pointer, the return value is also assigned to the object it points to.∗

7.23.3 Time conversion functions

1 Except for thestrftime function, these functions each return a pointer to one of two
types of static objects: a broken-down time structure or an array ofchar . Execution of
any of the functions that return a pointer to one of these object types may overwrite the
information in any object of the same type pointed to by the value returned from any
previous call to any of them. The implementation shall behave as if no other library
functions call these functions.

7.23.2.3 Library 7.23.3

350 Committee Draft — January 18, 1999 WG14/N869

7.23.3.1 Theasctime function

Synopsis

1 #include <time.h>
char *asctime(const struct tm *timeptr);

Description

2 The asctime function converts the broken-down time in the structure pointed to by
timeptr into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctime(const struct tm *timeptr)
{

static const char wday_name[7][3] = {
"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"

};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;
}

Returns

3 Theasctime function returns a pointer to the string.

7.23.3 Library 7.23.3.1

WG14/N869 Committee Draft — January 18, 1999 351

7.23.3.2 Thectime function

Synopsis

1 #include <time.h>
char *ctime(const time_t *timer);

Description

2 Thectime function converts the calendar time pointed to bytimer to local time in the
form of a string. It is equivalent to

asctime(localtime(timer))

Returns

3 The ctime function returns the pointer returned by theasctime function with that
broken-down time as argument.

Forward references: the localtime function (7.23.3.4).

7.23.3.3 Thegmtime function

Synopsis

1 #include <time.h>
struct tm *gmtime(const time_t *timer);

Description

2 The gmtime function converts the calendar time pointed to bytimer into a broken-
down time, expressed as UTC.

Returns

3 Thegmtime function returns a pointer to the broken-down time, or a null pointer if the
specified time cannot be converted to UTC.

7.23.3.1 Library 7.23.3.3

352 Committee Draft — January 18, 1999 WG14/N869

7.23.3.4 Thelocaltime function

Synopsis

1 #include <time.h>
struct tm *localtime(const time_t *timer);

Description

2 The localtime function converts the calendar time pointed to bytimer into a
broken-down time, expressed as local time.

Returns

3 Thelocaltime function returns a pointer to the broken-down time, or a null pointer if
the specified time cannot be converted to local time.

7.23.3.5 Thestrftime function

Synopsis

1 #include <time.h>
size_t strftime(char * restrict s,

size_t maxsize,
const char * restrict format,
const struct tm * restrict timeptr);

Description

2 Thestrftime function places characters into the array pointed to bys as controlled by
the string pointed to byformat . The format shall be a multibyte character sequence,
beginning and ending in its initial shift state. Theformat string consists of zero or
more conversion specifiers and ordinary multibyte characters. A conversion specifier
consists of a%character, possibly followed by anE or O modifier character (described
below), followed by a character that determines the behavior of the conversion specifier.
All ordinary multibyte characters (including the terminating null character) are copied
unchanged into the array. If copying takes place between objects that overlap, the
behavior is undefined. No more thanmaxsize characters are placed into the array.

3 Each conversion specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined using theLC_TIME category
of the current locale and by the values of zero or more members of the broken-down time
structure pointed to bytimeptr , as specified in brackets in the description. If any of
the specified values is outside the normal range, the characters stored are unspecified.

%a is replaced by the locale’s abbreviated weekday name. [tm_wday]
%A is replaced by the locale’s full weekday name. [tm_wday]
%b is replaced by the locale’s abbreviated month name. [tm_mon]
%B is replaced by the locale’s full month name. [tm_mon]
%c is replaced by the locale’s appropriate date and time representation. [all

7.23.3.3 Library 7.23.3.5

WG14/N869 Committee Draft — January 18, 1999 353

specified in 7.23.1]
%C is replaced by the year divided by 100 and truncated to an integer, as a decimal

number (00−99). [tm_year]
%d is replaced by the day of the month as a decimal number (01−31). [tm_mday]
%D is equivalent to ‘‘%m/%d/%y’’. [tm_mon, tm_mday , tm_year]
%e is replaced by the day of the month as a decimal number (1−31); a single digit

is preceded by a space. [tm_mday]
%F is equivalent to ‘‘%Y−%m−%d’’ (the ISO 8601 date format). [tm_year ,

tm_mon, tm_mday]
%g is replaced by the last 2 digits of the week-based year (see below) as a decimal

number (00−99). [tm_year , tm_wday , tm_yday]
%G is replaced by the week-based year (see below) as a decimal number (e.g.,

1997). [tm_year , tm_wday , tm_yday]
%h is equivalent to ‘‘%b’’. [tm_mon]
%H is replaced by the hour (24-hour clock) as a decimal number (00−23).

[tm_hour]
%I is replaced by the hour (12-hour clock) as a decimal number (01−12).

[tm_hour]
%j is replaced by the day of the year as a decimal number (001−366). [tm_yday]
%m is replaced by the month as a decimal number (01−12). [tm_mon]
%M is replaced by the minute as a decimal number (00−59). [tm_min]
%n is replaced by a new-line character.
%p is replaced by the locale’s equivalent of the AM/PM designations associated

with a 12-hour clock. [tm_hour]
%r is replaced by the locale’s 12-hour clock time. [tm_hour , tm_min , tm_sec]
%R is equivalent to ‘‘%H:%M’’. [tm_hour , tm_min]
%S is replaced by the second as a decimal number (00−60). [tm_sec]
%t is replaced by a horizontal-tab character.
%T is equivalent to ‘‘%H:%M:%S’’ (the ISO 8601 time format). [tm_hour ,

tm_min , tm_sec]
%u is replaced by the ISO 8601 weekday as a decimal number (1−7), where

Monday is 1. [tm_wday]
%U is replaced by the week number of the year (the first Sunday as the first day of

week 1) as a decimal number (00−53). [tm_year , tm_wday , tm_yday]
%V is replaced by the ISO 8601 week number (see below) as a decimal number

(01−53). [tm_year , tm_wday , tm_yday]
%w is replaced by the weekday as a decimal number (0−6), where Sunday is 0.

[tm_wday]
%W is replaced by the week number of the year (the first Monday as the first day of

week 1) as a decimal number (00−53). [tm_year , tm_wday , tm_yday]
%x is replaced by the locale’s appropriate date representation. [all specified in

7.23.3.5 Library 7.23.3.5

354 Committee Draft — January 18, 1999 WG14/N869

7.23.1]
%X is replaced by the locale’s appropriate time representation. [all specified in

7.23.1]
%y is replaced by the last 2 digits of the year as a decimal number (00−99).

[tm_year]
%Y is replaced by the year as a decimal number (e.g.,1997). [tm_year]
%z is replaced by the offset from UTC in the ISO 8601 format ‘‘−0430 ’’ (meaning

4 hours 30 minutes behind UTC, west of Greenwich), or by no characters if no
time zone is determinable. [tm_isdst]

%Z is replaced by the locale’s time zone name or abbreviation, or by no characters if
no time zone is determinable. [tm_isdst]

%% is replaced by%.

4 Some conversion specifiers can be modified by the inclusion of anE or O modifier
character to indicate an alternative format or specification. If the alternative format or
specification does not exist for the current locale, the modifier is ignored.

%Ec is replaced by the locale’s alternative date and time representation.
%EC is replaced by the name of the base year (period) in the locale’s alternative

representation.
%Ex is replaced by the locale’s alternative date representation.
%EX is replaced by the locale’s alternative time representation.
%Ey is replaced by the offset from%EC(year only) in the locale’s alternative

representation.
%EY is replaced by the locale’s full alternative year representation.
%Od is replaced by the day of the month, using the locale’s alternative numeric

symbols (filled as needed with leading zeros, or with leading spaces if there is
no alternative symbol for zero).

%Oe is replaced by the day of the month, using the locale’s alternative numeric
symbols (filled as needed with leading spaces).

%OHis replaced by the hour (24-hour clock), using the locale’s alternative numeric
symbols.

%OI is replaced by the hour (12-hour clock), using the locale’s alternative numeric
symbols.

%Omis replaced by the month, using the locale’s alternative numeric symbols.
%OMis replaced by the minutes, using the locale’s alternative numeric symbols.
%OSis replaced by the seconds, using the locale’s alternative numeric symbols.
%Ou is replaced by the ISO 8601 weekday as a number in the locale’s alternative

representation, where Monday is 1.
%OUis replaced by the week number, using the locale’s alternative numeric symbols.
%OVis replaced by the ISO 8601 week number, using the locale’s alternative numeric

symbols.
%Owis replaced by the weekday as a number, using the locale’s alternative numeric

7.23.3.5 Library 7.23.3.5

WG14/N869 Committee Draft — January 18, 1999 355

symbols.
%OWis replaced by the week number of the year, using the locale’s alternative

numeric symbols.
%Oy is replaced by the last 2 digits of the year, using the locale’s alternative numeric

symbols.

5 %g, %G, and%Vgive values according to the ISO 8601 week-based year. In this system,
weeks begin on a Monday and week 1 of the year is the week that includes January 4th,
which is also the week that includes the first Thursday of the year, and is also the first
week that contains at least four days in the year. If the first Monday of January is the
2nd, 3rd, or 4th, the preceding days are part of the last week of the preceding year; thus,
for Saturday 2nd January 1999,%Gis replaced by1998 and %Vis replaced by53 . If
December 29th, 30th, or 31st is a Monday, it and any following days are part of week 1 of
the following year. Thus, for Tuesday 30th December 1997,%Gis replaced by1998 and
%Vis replaced by1.

6 If a conversion specifier is not one of the above, the behavior is undefined.

7 In the"C" locale, theE andOmodifiers are ignored and the replacement strings for the
following specifiers are:

%a the first three characters of%A.
%A one of ‘‘Sunday ’’, ‘‘ Monday’’, ... , ‘‘ Saturday ’’.
%b the first three characters of%B.
%B one of ‘‘January ’’, ‘‘ February ’’, ... , ‘‘ December ’’.
%c equivalent to ‘‘%A %B %d %T %Y’’.
%p one of ‘‘am’’ or ‘‘ pm’’.
%r equivalent to ‘‘%I:%M:%S %p’’.
%x equivalent to ‘‘%A %B %d %Y’’.
%X equivalent to%T.
%Z implementation-defined.

Returns

8 If the total number of resulting characters including the terminating null character is not
more thanmaxsize , the strftime function returns the number of characters placed
into the array pointed to bys not including the terminating null character. Otherwise,
zero is returned and the contents of the array are indeterminate. ∗

7.23.3.5 Library 7.23.3.5

356 Committee Draft — January 18, 1999 WG14/N869

7.24 Extended multibyte and wide-character utilities<wchar.h>

7.24.1 Introduction

1 The header<wchar.h> declares four data types, one tag, four macros, and many
functions.254)

2 The types declared arewchar_t andsize_t (both described in 7.17);

mbstate_t

which is an object type other than an array type that can hold the conversion state
information necessary to convert between sequences of multibyte characters and wide
characters;

wint_t

described in 7.25.1; and

struct tm

which is declared as an incomplete structure type, the contents of which are described in
7.23.1.

3 The macros defined areNULL(described in 7.17);

WCHAR_MAX

which is the maximum value representable by an object of typewchar_t ;255)

WCHAR_MIN

which is the minimum value representable by an object of typewchar_t ; and

WEOF

described in 7.25.1.

4 The functions declared are grouped as follows:

— Functions that perform input and output of wide characters, or multibyte characters,
or both;

— Functions that provide wide-string numeric conversion;

— Functions that perform general wide-string manipulation;

254) See ‘‘future library directions’’ (7.26.12).

255) The valuesWCHAR_MAXandWCHAR_MINdo not necessarily correspond to members of the extended

character set.

7.24 Library 7.24.1

WG14/N869 Committee Draft — January 18, 1999 357

— Functions for wide-string date and time conversion; and

— Functions that provide extended capabilities for conversion between multibyte and
wide-character sequences.

5 Unless explicitly stated otherwise, if the execution of a function described in this
subclause causes copying to take place between objects that overlap, the behavior is
undefined.

7.24.2 Formatted wide-character input/output functions

1 The formatted wide-character input/output functions256) shall behave as if there is a
sequence point after the actions associated with each specifier.

7.24.2.1 Thefwprintf function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwprintf(FILE * restrict stream,

const wchar_t * restrict format, ...);

Description

2 The fwprintf function writes output to the stream pointed to bystream , under
control of the wide string pointed to byformat that specifies how subsequent arguments
are converted for output. If there are insufficient arguments for the format, the behavior
is undefined. If the format is exhausted while arguments remain, the excess arguments
are evaluated (as always) but are otherwise ignored. Thefwprintf function returns
when the end of the format string is encountered.

3 The format is composed of zero or more directives: ordinary wide characters (not%),
which are copied unchanged to the output stream; and conversion specifications, each of
which results in fetching zero or more subsequent arguments, converting them, if
applicable, according to the corresponding conversion specifier, and then writing the
result to the output stream.

4 Each conversion specification is introduced by the wide character%. After the %, the
following appear in sequence:

— Zero or moreflags (in any order) that modify the meaning of the conversion
specification.

— An optional minimumfield width. If the converted value has fewer wide characters
than the field width, it is padded with spaces (by default) on the left (or right, if the
left adjustment flag, described later, has been given) to the field width. The field

256) Thefwprintf functions perform writes to memory for the%nspecifier.

7.24.1 Library 7.24.2.1

358 Committee Draft — January 18, 1999 WG14/N869

width takes the form of an asterisk* (described later) or a decimal integer.257)

— An optionalprecisionthat gives the minimum number of digits to appear for thed, i ,
o, u, x , and X conversions, the number of digits to appear after the decimal-point
wide character fora, A, e, E, f , and F conversions, the maximum number of
significant digits for theg and G conversions, or the maximum number of wide
characters to be written from a string ins conversions. The precision takes the form
of a period (.) followed either by an asterisk* (described later) or by an optional
decimal integer; if only the period is specified, the precision is taken as zero. If a
precision appears with any other conversion specifier, the behavior is undefined.

— An optionallength modifierthat specifies the size of the argument.

— A conversion specifierwide character that specifies the type of conversion to be
applied.

5 As noted above, a field width, or precision, or both, may be indicated by an asterisk. In
this case, anint argument supplies the field width or precision. The arguments
specifying field width, or precision, or both, shall appear (in that order) before the
argument (if any) to be converted. A negative field width argument is taken as a- flag
followed by a positive field width. A neg ative precision argument is taken as if the
precision were omitted.

6 The flag wide characters and their meanings are:

- The result of the conversion is left-justified within the field. (It is right-justified if
this flag is not specified.)

+ The result of a signed conversion always begins with a plus or minus sign. (It
begins with a sign only when a negative value is converted if this flag is not
specified.)258)

space If the first wide character of a signed conversion is not a sign, or if a signed
conversion results in no wide characters, a space is prefixed to the result. If the
spaceand+ flags both appear, thespaceflag is ignored.

The result is converted to an ‘‘alternative form’’. Foro conversion, it increases
the precision, if and only if necessary, to force the first digit of the result to be a
zero (if the value and precision are both 0, a single 0 is printed). Forx (or X)
conversion, a nonzero result has0x (or 0X) prefixed to it. Fora, A, e, E, f , F, g,
and G conversions, the result of converting a floating-point number always
contains a decimal-point wide character, even if no digits follow it. (Normally, a

257) Note that0 is taken as a flag, not as the beginning of a field width.

258) The results of all floating conversions of a negative zero, and of negative values that round to zero,

include a minus sign.

7.24.2.1 Library 7.24.2.1

WG14/N869 Committee Draft — January 18, 1999 359

decimal-point wide character appears in the result of these conversions only if a
digit follows it.) Forg andGconversions, trailing zeros arenot removed from the
result. For other conversions, the behavior is undefined.

0 For d, i , o, u, x , X, a, A, e, E, f , F, g, and G conversions, leading zeros
(following any indication of sign or base) are used to pad to the field width rather
than performing space padding, except when converting an infinity or NaN. If the
0 and - flags both appear, the0 flag is ignored. Ford, i , o, u, x , and X
conversions, if a precision is specified, the0 flag is ignored. For other
conversions, the behavior is undefined.

7 The length modifiers and their meanings are:

hh Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
signed char or unsigned char argument (the argument will have
been promoted according to the integer promotions, but its value shall be
converted tosigned char or unsigned char before printing); or that
a following n conversion specifier applies to a pointer to asigned char
argument.

h Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
short int or unsigned short int argument (the argument will
have been promoted according to the integer promotions, but its value shall
be converted toshort int or unsigned short int before printing);
or that a followingn conversion specifier applies to a pointer to ashort
int argument.

l (ell) Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
long int or unsigned long int argument; that a followingn
conversion specifier applies to a pointer to along int argument; that a
following c conversion specifier applies to awint_t argument; that a
following s conversion specifier applies to a pointer to awchar_t
argument; or has no effect on a followinga, A, e, E, f , F, g, or Gconversion
specifier.

ll (ell-ell) Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
long long int or unsigned long long int argument; or that a
following n conversion specifier applies to a pointer to along long int
argument.

j Specifies that a followingd, i , o, u, x , or X conversion specifier applies to
an intmax_t or uintmax_t argument; or that a followingn conversion
specifier applies to a pointer to anintmax_t argument.

7.24.2.1 Library 7.24.2.1

360 Committee Draft — January 18, 1999 WG14/N869

z Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
size_t or the corresponding signed integer type argument; or that a
following n conversion specifier applies to a pointer to a signed integer type
corresponding tosize_t argument.

t Specifies that a followingd, i , o, u, x , or X conversion specifier applies to a
ptrdiff_t or the corresponding unsigned integer type argument; or that a
following n conversion specifier applies to a pointer to aptrdiff_t
argument.

L Specifies that a followinga, A, e, E, f , F, g, or G conversion specifier
applies to along double argument.

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

8 The conversion specifiers and their meanings are:

d,i The int argument is converted to signed decimal in the style[−]dddd. The
precision specifies the minimum number of digits to appear; if the value
being converted can be represented in fewer digits, it is expanded with
leading zeros. The default precision is 1. The result of converting a zero
value with a precision of zero is no wide characters.

o,u,x,X Theunsigned int argument is converted to unsigned octal (o), unsigned
decimal (u), or unsigned hexadecimal notation (x or X) in the styledddd; the
letters abcdef are used forx conversion and the lettersABCDEFfor X
conversion. The precision specifies the minimum number of digits to appear;
if the value being converted can be represented in fewer digits, it is expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is no wide characters.

f,F A double argument representing a floating-point number is converted to
decimal notation in the style[−]ddd. ddd, where the number of digits after
the decimal-point wide character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is zero and the# flag is
not specified, no decimal-point wide character appears. If a decimal-point
wide character appears, at least one digit appears before it. The value is
rounded to the appropriate number of digits.

A double argument representing an infinity is converted in one of the styles
[-] inf or [-] infinity — which style is implementation-defined. A
double argument representing a NaN is converted in one of the styles
[-]nan or [-]nan(n-wchar-sequence) — which style, and the meaning of
any n-wchar-sequence, is implementation-defined. TheF conversion
specifier producesINF , INFINITY , or NANinstead ofinf , infinity , or

7.24.2.1 Library 7.24.2.1

WG14/N869 Committee Draft — January 18, 1999 361

nan , respectively.259)

e,E A double argument representing a floating-point number is converted in the
style [−]d. ddde±dd, where there is one digit (which is nonzero if the
argument is nonzero) before the decimal-point wide character and the number
of digits after it is equal to the precision; if the precision is missing, it is taken
as 6; if the precision is zero and the# flag is not specified, no decimal-point
wide character appears. The value is rounded to the appropriate number of
digits. TheE conversion specifier produces a number withE instead ofe
introducing the exponent. The exponent always contains at least two digits,
and only as many more digits as necessary to represent the exponent. If the
value is zero, the exponent is zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

g,G A double argument representing a floating-point number is converted in
style f or e (or in styleF or E in the case of aG conversion specifier), with
the precision specifying the number of significant digits. If the precision is
zero, it is taken as 1. The style used depends on the value converted; stylee
(or E) is used only if the exponent resulting from such a conversion is less
than −4 or greater than or equal to the precision. Trailing zeros are removed
from the fractional portion of the result unless the# flag is specified; a
decimal-point wide character appears only if it is followed by a digit.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

a,A A double argument representing a floating-point number is converted in the
style [−]0x h. hhhhp±d, where there is one hexadecimal digit (which is
nonzero if the argument is a normalized floating-point number and is
otherwise unspecified) before the decimal-point wide character260) and the
number of hexadecimal digits after it is equal to the precision; if the precision
is missing andFLT_RADIX is a power of 2, then the precision is sufficient
for an exact representation of the value; if the precision is missing and
FLT_RADIX is not a power of 2, then the precision is sufficient to
distinguish261) values of typedouble , except that trailing zeros may be
omitted; if the precision is zero and the# flag is not specified, no decimal-
point wide character appears. The lettersabcdef are used fora conversion

259) When applied to infinite and NaN values, the- , +, andspaceflag wide characters have their usual

meaning; the# and0 flag wide characters have no effect.

260) Binary implementations can choose the hexadecimal digit to the left of the decimal-point wide

character so that subsequent digits align to nibble (4-bit) boundaries.

7.24.2.1 Library 7.24.2.1

362 Committee Draft — January 18, 1999 WG14/N869

and the lettersABCDEF for A conversion. TheA conversion specifier
produces a number withX and P instead ofx and p. The exponent always
contains at least one digit, and only as many more digits as necessary to
represent the decimal exponent of 2. If the value is zero, the exponent is
zero.

A double argument representing an infinity or NaN is converted in the style
of anf or F conversion specifier.

c If no l length modifier is present, theint argument is converted to a wide
character as if by callingbtowc and the resulting wide character is written.

If an l length modifier is present, thewint_t argument is converted to
wchar_t and written.

s If no l length modifier is present, the argument shall be a pointer to the initial
element of a character array containing a multibyte character sequence
beginning in the initial shift state. Characters from the array are converted as
if by repeated calls to thembrtowc function, with the conversion state
described by anmbstate_t object initialized to zero before the first
multibyte character is converted, and written up to (but not including) the
terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is
greater than the size of the converted array, the converted array shall contain a
null wide character.

If an l length modifier is present, the argument shall be a pointer to the initial
element of an array ofwchar_t type. Wide characters from the array are
written up to (but not including) a terminating null wide character. If the
precision is specified, no more than that many wide characters are written. If
the precision is not specified or is greater than the size of the array, the array
shall contain a null wide character.

p The argument shall be a pointer tovoid . The value of the pointer is
converted to a sequence of printing wide characters, in an implementation-
defined manner.

n The argument shall be a pointer to signed integer into which iswritten the
number of wide characters written to the output stream so far by this call to
fwprintf . No argument is converted, but one is consumed. If the

261)The precisionp is sufficient to distinguish values of the source type if16p−1 > bn where b is

FLT_RADIX andn is the number of base-b digits in the significand of the source type. A smallerp

might suffice depending on the implementation’s scheme for determining the digit to the left of the

decimal-point wide character.

7.24.2.1 Library 7.24.2.1

WG14/N869 Committee Draft — January 18, 1999 363

conversion specification includes any flags, a field width, or a precision, the
behavior is undefined.

% A % wide character is written. No argument is converted. The complete
conversion specification shall be%%.

9 If a conversion specification is invalid, the behavior is undefined.262) If any argument is
not the correct type for the corresponding coversion specification, the behavior is
undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result
of a conversion is wider than the field width, the field is expanded to contain the
conversion result.

11 Fora andA conversions, ifFLT_RADIX is a power of 2, the value is correctly rounded
to a hexadecimal floating number with the given precision.

Recommended practice

12 If FLT_RADIX is not a power of 2, the result should be one of the two adjacent numbers
in hexadecimal floating style with the given precision, with the extra stipulation that the
error should have a correct sign for the current rounding direction.

13 Fore, E, f , F, g, andGconversions, if the number of significant decimal digits is at most
DECIMAL_DIG, then the result should be correctly rounded.263) If the number of
significant decimal digits is more thanDECIMAL_DIG but the source value is exactly
representable withDECIMAL_DIG digits, then the result should be an exact
representation with trailing zeros. Otherwise, the source value is bounded by two
adjacent decimal stringsL < U , both havingDECIMAL_DIGsignificant digits; the value
of the resultant decimal stringD should satisfyL ≤ D ≤ U , with the extra stipulation that
the error should have a correct sign for the current rounding direction.

Returns

14 Thefwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

Environmental limits

15 The number of wide characters that can be produced by any single conversion shall be at
least 4095.

262) See ‘‘future library directions’’ (7.26.12).

263) For binary-to-decimal conversion, the result format’s values are the numbers representable with the

given format specifier. The number of significant digits is determined by the format specifier, and in

the case of fixed-point conversion by the source value as well.

7.24.2.1 Library 7.24.2.1

364 Committee Draft — January 18, 1999 WG14/N869

16 EXAMPLE To print a date and time in the form ‘‘Sunday, July 3, 10:02’’ followed byπ to five decimal
places:

#include <math.h>
#include <stdio.h>
#include <wchar.h>
/* ... */
wchar_t *weekday, *month; // pointers to wide strings
int day, hour, min;
fwprintf(stdout, L"%ls, %ls %d, %.2d:%.2d\n",

weekday, month, day, hour, min);
fwprintf(stdout, L"pi = %.5f\n", 4 * atan(1.0));

Forward references: the btowc function (7.24.6.1.1), thembrtowc function
(7.24.6.3.2).

7.24.2.2 Thefwscanf function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwscanf(FILE * restrict stream,

const wchar_t * restrict format, ...);

Description

2 The fwscanf function reads input from the stream pointed to bystream , under
control of the wide string pointed to byformat that specifies the admissible input
sequences and how they are to be converted for assignment, using subsequent arguments
as pointers to the objects to receive the converted input. If there are insufficient
arguments for the format, the behavior is undefined. If the format is exhausted while
arguments remain, the excess arguments are evaluated (as always) but are otherwise
ignored.

3 The format is composed of zero or more directives: one or more white-space wide
characters, an ordinary wide character (neither%nor a white-space wide character), or a
conversion specification. Each conversion specification is introduced by the wide
character%. After the%, the following appear in sequence:

— An optional assignment-suppressing wide character* .

— An optional nonzero decimal integer that specifies the maximum field width (in wide
characters).

— An optionallength modifierthat specifies the size of the receiving object.

— A conversion specifierwide character that specifies the type of conversion to be
applied.

7.24.2.1 Library 7.24.2.2

WG14/N869 Committee Draft — January 18, 1999 365

4 Thefwscanf function executes each directive of the format in turn. If a directive fails,
as detailed below, the function returns. Failures are described as input failures (due to the
occurrence of an encoding error or the unavailability of input characters), or matching
failures (due to inappropriate input).

5 A directive composed of white-space wide character(s) is executed by reading input up to
the first non-white-space wide character (which remains unread), or until no more wide
characters can be read.

6 A directive that is an ordinary wide character is executed by reading the next wide
character of the stream. If that wide character differs from the directive, the directive
fails and the differing and subsequent wide characters remain unread.

7 A directive that is a conversion specification defines a set of matching input sequences, as
described below for each specifier. A conversion specification is executed in the
following steps:

8 Input white-space wide characters (as specified by theiswspace function) are skipped,
unless the specification includes a[, c , or n specifier.264)

9 An input item is read from the stream, unless the specification includes ann specifier. An
input item is defined as the longest sequence of input wide characters which does not
exceed any specified field width and which is, or is a prefix of, a matching input
sequence. The first wide character, if any, after the input item remains unread. If the
length of the input item is zero, the execution of the directive fails; this condition is a
matching failure unless end-of-file, an encoding error, or a read error prevented input
from the stream, in which case it is an input failure.

10 Except in the case of a%specifier, the input item (or, in the case of a%ndirective, the
count of input wide characters) is converted to a type appropriate to the conversion
specifier. If the input item is not a matching sequence, the execution of the directive fails:
this condition is a matching failure. Unless assignment suppression was indicated by a* ,
the result of the conversion is placed in the object pointed to by the first argument
following theformat argument that has not already received a conversion result. If this
object does not have an appropriate type, or if the result of the conversion cannot be
represented in the object, the behavior is undefined.

11 The length modifiers and their meanings are:

hh Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tosigned char or unsigned char .

264) These white-space wide characters are not counted against a specified field width.

7.24.2.2 Library 7.24.2.2

366 Committee Draft — January 18, 1999 WG14/N869

h Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer toshort int or unsigned short
int .

l (ell) Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tolong int or unsigned long
int ; that a followinga, A, e, E, f , F, g, or Gconversion specifier applies to
an argument with type pointer todouble ; or that a followingc , s , or [
conversion specifier applies to an argument with type pointer towchar_t .

ll (ell-ell) Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tolong long int or unsigned
long long int .

j Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tointmax_t or uintmax_t .

z Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer tosize_t or the corresponding signed
integer type.

t Specifies that a followingd, i , o, u, x , X, or n conversion specifier applies
to an argument with type pointer toptrdiff_t or the corresponding
unsigned integer type.

L Specifies that a followinga, A, e, E, f , F, g, or G conversion specifier
applies to an argument with type pointer tolong double .

If a length modifier appears with any conversion specifier other than as specified above,
the behavior is undefined.

12 The conversion specifiers and their meanings are:

d Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of thewcstol function with the value 10
for the base argument. The corresponding argument shall be a pointer to
signed integer.

i Matches an optionally signed integer, whose format is the same as expected
for the subject sequence of thewcstol function with the value 0 for the
base argument. The corresponding argument shall be a pointer to signed
integer.

o Matches an optionally signed octal integer, whose format is the same as
expected for the subject sequence of thewcstoul function with the value 8
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

7.24.2.2 Library 7.24.2.2

WG14/N869 Committee Draft — January 18, 1999 367

u Matches an optionally signed decimal integer, whose format is the same as
expected for the subject sequence of thewcstoul function with the value 10
for the base argument. The corresponding argument shall be a pointer to
unsigned integer.

x Matches an optionally signed hexadecimal integer, whose format is the same
as expected for the subject sequence of thewcstoul function with the value
16 for thebase argument. The corresponding argument shall be a pointer to
unsigned integer.

a,e,f,g Matches an optionally signed floating-point number, infinity, or NaN, whose
format is the same as expected for the subject sequence of thewcstod
function. The corresponding argument shall be a pointer to floating.

c Matches a sequence of wide characters of exactly the number specified by the
field width (1 if no field width is present in the directive).

If no l length modifier is present, characters from the input field are
converted as if by repeated calls to thewcrtomb function, with the
conversion state described by anmbstate_t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence. No null character is added.

If an l length modifier is present, the corresponding argument shall be a
pointer to the initial element of an array ofwchar_t large enough to accept
the sequence. No null wide character is added.

s Matches a sequence of non-white-space wide characters.

If no l length modifier is present, characters from the input field are
converted as if by repeated calls to thewcrtomb function, with the
conversion state described by anmbstate_t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an l length modifier is present, the corresponding argument shall be a
pointer to the initial element of an array ofwchar_t large enough to accept
the sequence and the terminating null wide character, which will be added
automatically.

[Matches a nonempty sequence of wide characters from a set of expected
characters (thescanset).

If no l length modifier is present, characters from the input field are

7.24.2.2 Library 7.24.2.2

368 Committee Draft — January 18, 1999 WG14/N869

converted as if by repeated calls to thewcrtomb function, with the
conversion state described by anmbstate_t object initialized to zero
before the first wide character is converted. The corresponding argument
shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added
automatically.

If an l length modifier is present, the corresponding argument shall be a
pointer to the initial element of an array ofwchar_t large enough to accept
the sequence and the terminating null wide character, which will be added
automatically.

The conversion specifier includes all subsequent wide characters in the
format string, up to and including the matching right bracket (]). The wide
characters between the brackets (thescanlist) compose the scanset, unless the
wide character after the left bracket is a circumflex (ˆ), in which case the
scanset contains all wide characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with
[] or [ˆ] , the right bracket wide character is in the scanlist and the next
following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is
the one that ends the specification. If a- wide character is in the scanlist and
is not the first, nor the second where the first wide character is aˆ , nor the
last character, the behavior is implementation-defined.

p Matches an implementation-defined set of sequences, which should be the
same as the set of sequences that may be produced by the%pconversion of
the fwprintf function. The corresponding argument shall be a pointer to a
pointer to void . The input item is converted to a pointer value in an
implementation-defined manner. If the input item is a value converted earlier
during the same program execution, the pointer that results shall compare
equal to that value; otherwise the behavior of the%pconversion is undefined.

n No input is consumed. The corresponding argument shall be a pointer to
signed integer into which is to be written the number of wide characters read
from the input stream so far by this call to thefwscanf function. Execution
of a %n directive does not increment the assignment count returned at the
completion of execution of thefwscanf function. No argument is
converted, but one is consumed. If the conversion specification includes an
assignment-suppressing wide character or a field width, the behavior is
undefined.

7.24.2.2 Library 7.24.2.2

WG14/N869 Committee Draft — January 18, 1999 369

% Matches a single%wide character; no conversion or assignment occurs. The
complete conversion specification shall be%%.

13 If a conversion specification is invalid, the behavior is undefined.265)

14 The conversion specifiersA, E, F, G, and X are also valid and behave the same as,
respectively,a, e, f , g, andx .

15 If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs
before any wide characters matching the current directive hav e been read (other than
leading white space, where permitted), execution of the current directive terminates with
an input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (other than%n, if any) is terminated
with an input failure.

16 Trailing white space (including new-line wide characters) is left unread unless matched
by a directive. The success of literal matches and suppressed assignments is not directly
determinable other than via the%ndirective.

17 If conversion terminates on a conflicting input wide character, the offending input wide
character is left unread in the input stream.266)

Returns

18 The fwscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early
matching failure.

19 EXAMPLE 1 The call:

#include <stdio.h>
#include <wchar.h>
/* ... */
int n, i; float x; wchar_t name[50];
n = fwscanf(stdin, L"%d%f%ls", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign ton the value3, to i the value25 , to x the value5.432 , and toname the sequence
thompson\0 .

20 EXAMPLE 2 The call:

265) See ‘‘future library directions’’ (7.26.12).

266) fwscanf pushes back at most one input wide character onto the input stream. Therefore, some

sequences that are acceptable towcstod , wcstol , etc., are unacceptable tofwscanf .

7.24.2.2 Library 7.24.2.2

370 Committee Draft — January 18, 1999 WG14/N869

#include <stdio.h>
#include <wchar.h>
/* ... */
int i; float x; double y;
fwscanf(stdin, L"%2d%f%*d %lf", &i, &x, &y);

with input:

56789 0123 56a72

will assign toi the value56 and tox the value789.0 , will skip past0123 , and will assign toy the value
56.0 . The next wide character read from the input stream will bea.

Forward references: the wcstod , wcstof , andwcstold functions (7.24.4.1.1), the
wcstol , wcstoll , wcstoul , andwcstoull functions (7.24.4.1.2), thewcrtomb
function (7.24.6.3.3).

7.24.2.3 Theswprintf function

Synopsis

1 #include <wchar.h>
int swprintf(wchar_t * restrict s,

size_t n,
const wchar_t * restrict format, ...);

Description

2 The swprintf function is equivalent tofwprintf , except that the arguments
specifies an array of wide characters into which the generated output is to be written,
rather than written to a stream. No more thann wide characters are written, including a
terminating null wide character, which is always added (unlessn is zero).

Returns

3 Theswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a neg ative value if an encoding error
occurred or ifn or more wide characters were requested to be written.

7.24.2.2 Library 7.24.2.3

WG14/N869 Committee Draft — January 18, 1999 371

7.24.2.4 Theswscanf function

Synopsis

1 #include <wchar.h>
int swscanf(const wchar_t * restrict s,

const wchar_t * restrict format, ...);

Description

2 Theswscanf function is equivalent tofwscanf , except that the arguments specifies a
wide string from which the input is to be obtained, rather than from a stream. Reaching
the end of the wide string is equivalent to encountering end-of-file for thefwscanf
function.

Returns

3 The swscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, theswscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.5 Thevfwprintf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwprintf(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description

2 Thevfwprintf function is equivalent tofwprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevfwprintf function does not invoke the
va_end macro.267)

Returns

3 The vfwprintf function returns the number of wide characters transmitted, or a
negative value if an output or encoding error occurred.

267) As the functionsvfwprintf , vswprintf , vfwscanf , vwprintf , vwscanf , andvswscanf

invoke theva_arg macro, the value ofarg after the return is indeterminate.

7.24.2.3 Library 7.24.2.5

372 Committee Draft — January 18, 1999 WG14/N869

4 EXAMPLE The following shows the use of thevfwprintf function in a general error-reporting
routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char *function_name, wchar_t *format, ...)
{

va_list args;

va_start(args, format);
// print out name of function causing error
fwprintf(stderr, L"ERROR in %s: ", function_name);
// print out remainder of message
vfwprintf(stderr, format, args);
va_end(args);

}

7.24.2.6 Thevfwscanf function

Synopsis

1 #include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf(FILE * restrict stream,

const wchar_t * restrict format,
va_list arg);

Description

2 The vfwscanf function is equivalent tofwscanf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevfwscanf function does not invoke the
va_end macro.267)

Returns

3 Thevfwscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevfwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.5 Library 7.24.2.6

WG14/N869 Committee Draft — January 18, 1999 373

7.24.2.7 Thevswprintf function

Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswprintf(wchar_t * restrict s,

size_t n,
const wchar_t * restrict format,
va_list arg);

Description

2 Thevswprintf function is equivalent toswprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevswprintf function does not invoke the
va_end macro.267)

Returns

3 Thevswprintf function returns the number of wide characters written in the array, not
counting the terminating null wide character, or a neg ative value if an encoding error
occurred or ifn or more wide characters were requested to be generated.

7.24.2.8 Thevswscanf function

Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vswscanf(const wchar_t * restrict s,

const wchar_t * restrict format,
va_list arg);

Description

2 The vswscanf function is equivalent toswscanf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevswscanf function does not invoke the
va_end macro.267)

Returns

3 Thevswscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevswscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.6 Library 7.24.2.8

374 Committee Draft — January 18, 1999 WG14/N869

7.24.2.9 Thevwprintf function

Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwprintf(const wchar_t * restrict format,

va_list arg);

Description

2 The vwprintf function is equivalent towprintf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). Thevwprintf function does not invoke the
va_end macro.267)

Returns

3 Thevwprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

7.24.2.10 Thevwscanf function

Synopsis

1 #include <stdarg.h>
#include <wchar.h>
int vwscanf(const wchar_t * restrict format,

va_list arg);

Description

2 The vwscanf function is equivalent towscanf , with the variable argument list
replaced byarg , which shall have been initialized by theva_start macro (and
possibly subsequentva_arg calls). The vwscanf function does not invoke the
va_end macro.267)

Returns

3 The vwscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thevwscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.2.8 Library 7.24.2.10

WG14/N869 Committee Draft — January 18, 1999 375

7.24.2.11 Thewprintf function

Synopsis

1 #include <wchar.h>
int wprintf(const wchar_t * restrict format, ...);

Description

2 The wprintf function is equivalent tofwprintf with the argumentstdout
interposed before the arguments towprintf .

Returns

3 Thewprintf function returns the number of wide characters transmitted, or a negative
value if an output or encoding error occurred.

7.24.2.12 Thewscanf function

Synopsis

1 #include <wchar.h>
int wscanf(const wchar_t * restrict format, ...);

Description

2 Thewscanf function is equivalent tofwscanf with the argumentstdin interposed
before the arguments towscanf .

Returns

3 The wscanf function returns the value of the macroEOF if an input failure occurs
before any conversion. Otherwise, thewscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an
early matching failure.

7.24.3 Wide-character input/output functions

7.24.2.10 Library 7.24.3

376 Committee Draft — January 18, 1999 WG14/N869

7.24.3.1 Thefgetwc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fgetwc(FILE *stream);

Description

2 If a next wide character is present from the input stream pointed to bystream , the
fgetwc function obtains that wide character and advances the associated file position
indicator for the stream (if defined).

Returns

3 Thefgetwc function returns the next wide character from the input stream pointed to by
stream . If the stream is at end-of-file, the end-of-file indicator for the stream is set and
fgetwc returnsWEOF. If a read error occurs, the error indicator for the stream is set and
fgetwc returnsWEOF. If an encoding error occurs (including too few bytes), the value
of the macroEILSEQ is stored inerrno andfgetwc returnsWEOF.268)

7.24.3.2 Thefgetws function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wchar_t *fgetws(wchar_t * restrict s,

int n, FILE * restrict stream);

Description

2 The fgetws function reads at most one less than the number of wide characters
specified byn from the stream pointed to bystream into the array pointed to bys . No
additional wide characters are read after a new-line wide character (which is retained) or
after end-of-file. A null wide character is written immediately after the last wide
character read into the array.

Returns

3 The fgetws function returnss if successful. If end-of-file is encountered and no
characters have been read into the array, the contents of the array remain unchanged and a
null pointer is returned. If a read or encoding error occurs during the operation, the array
contents are indeterminate and a null pointer is returned.

268) An end-of-file and a read error can be distinguished by use of thefeof and ferror functions.

Also, errno will be set toEILSEQ by input/output functions only if an encoding error occurs.

7.24.3 Library 7.24.3.2

WG14/N869 Committee Draft — January 18, 1999 377

7.24.3.3 Thefputwc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE *stream);

Description

2 The fputwc function writes the wide character specified byc to the output stream
pointed to bystream , at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot
support positioning requests, or if the stream was opened with append mode, the
character is appended to the output stream.

Returns

3 The fputwc function returns the wide character written. If a write error occurs, the
error indicator for the stream is set andfputwc returnsWEOF. If an encoding error
occurs, the value of the macroEILSEQ is stored inerrno andfputwc returnsWEOF.

7.24.3.4 Thefputws function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fputws(const wchar_t * restrict s,

FILE * restrict stream);

Description

2 Thefputws function writes the wide string pointed to bys to the stream pointed to by
stream . The terminating null wide character is not written.

Returns

3 The fputws function returnsEOF if a write or encoding error occurs; otherwise, it
returns a nonnegative value.

7.24.3.2 Library 7.24.3.4

378 Committee Draft — January 18, 1999 WG14/N869

7.24.3.5 Thefwide function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int fwide(FILE *stream, int mode);

Description

2 The fwide function determines the orientation of the stream pointed to bystream . If
mode is greater than zero, the function first attempts to make the stream wide oriented. If
mode is less than zero, the function first attempts to make the stream byte oriented.269)

Otherwise,mode is zero and the function does not alter the orientation of the stream.

Returns

3 The fwide function returns a value greater than zero if, after the call, the stream has
wide orientation, a value less than zero if the stream has byte orientation, or zero if the
stream has no orientation.

7.24.3.6 Thegetwc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t getwc(FILE *stream);

Description

2 The getwc function is equivalent tofgetwc , except that if it is implemented as a
macro, it may evaluatestream more than once, so the argument should never be an
expression with side effects.

Returns

3 Thegetwc function returns the next wide character from the input stream pointed to by
stream , or WEOF.

269) If the orientation of the stream has already been determined,fwide does not change it.

7.24.3.4 Library 7.24.3.6

WG14/N869 Committee Draft — January 18, 1999 379

7.24.3.7 Thegetwchar function

Synopsis

1 #include <wchar.h>
wint_t getwchar(void);

Description

2 Thegetwchar function is equivalent togetwc with the argumentstdin .

Returns

3 Thegetwchar function returns the next wide character from the input stream pointed to
by stdin , or WEOF.

7.24.3.8 Theputwc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t putwc(wchar_t c, FILE *stream);

Description

2 The putwc function is equivalent tofputwc , except that if it is implemented as a
macro, it may evaluatestream more than once, so that argument should never be an
expression with side effects.

Returns

3 Theputwc function returns the wide character written, orWEOF.

7.24.3.9 Theputwchar function

Synopsis

1 #include <wchar.h>
wint_t putwchar(wchar_t c);

Description

2 Theputwchar function is equivalent toputwc with the second argumentstdout .

Returns

3 Theputwchar function returns the character written, orWEOF.

7.24.3.6 Library 7.24.3.9

380 Committee Draft — January 18, 1999 WG14/N869

7.24.3.10 Theungetwc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t ungetwc(wint_t c, FILE *stream);

Description

2 The ungetwc function pushes the wide character specified byc back onto the input
stream pointed to bystream . Pushed-back wide characters will be returned by
subsequent reads on that stream in the reverse order of their pushing. A successful
intervening call (with the stream pointed to bystream) to a file positioning function
(fseek , fsetpos , or rewind) discards any pushed-back wide characters for the
stream. The external storage corresponding to the stream is unchanged.

3 One wide character of pushback is guaranteed, even if the call to theungetwc function
follows just after a call to a formatted wide character input functionfwscanf ,
vfwscanf , vwscanf , or wscanf . If the ungetwc function is called too many times
on the same stream without an intervening read or file positioning operation on that
stream, the operation may fail.

4 If the value ofc equals that of the macroWEOF, the operation fails and the input stream is
unchanged.

5 A successful call to theungetwc function clears the end-of-file indicator for the stream.
The value of the file position indicator for the stream after reading or discarding all
pushed-back wide characters is the same as it was before the wide characters were pushed
back. For a text or binary stream, the value of its file position indicator after a successful
call to theungetwc function is unspecified until all pushed-back wide characters are
read or discarded.

Returns

6 Theungetwc function returns the wide character pushed back, orWEOFif the operation
fails.

7.24.3.9 Library 7.24.3.10

WG14/N869 Committee Draft — January 18, 1999 381

7.24.4 General wide-string utilities

1 The header<wchar.h> declares a number of functions useful for wide-string
manipulation. Various methods are used for determining the lengths of the arrays, but in
all cases awchar_t * argument points to the initial (lowest addressed) element of the
array. If an array is accessed beyond the end of an object, the behavior is undefined.

7.24.4.1 Wide-string numeric conversion functions

7.24.4.1.1 Thewcstod , wcstof , and wcstold functions

Synopsis

1 #include <wchar.h>
double wcstod(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);

Description

2 Thewcstod , wcstof , andwcstold functions convert the initial portion of the wide
string pointed to bynptr to double , float , and long double representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space wide characters (as specified by theiswspace
function), a subject sequence resembling a floating-point constant or representing an
infinity or NaN; and a final wide string of one or more unrecognized wide characters,
including the terminating null wide character of the input wide string. Then, they attempt
to convert the subject sequence to a floating-point number, and return the result.

3 The expected form of the subject sequence is an optional plus or minus sign, then one of
the following:

— a nonempty sequence of decimal digits optionally containing a decimal-point wide
character, then an optional exponent part as defined for the corresponding single-byte
characters in 6.4.4.2;

— a 0x or 0X, then a nonempty sequence of hexadecimal digits optionally containing a
decimal-point wide character, then an optional binary exponent part as defined in
6.4.4.2;

— one ofINF or INFINITY , or any other wide string equivalent except for case

— one of NAN or NAN(n-wchar-sequenceopt) , or any other wide string equivalent
except for case in theNANpart, where:

7.24.4 Library 7.24.4.1.1

382 Committee Draft — January 18, 1999 WG14/N869

n-wchar-sequence:
digit
nondigit
n-wchar-sequence digit
n-wchar-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input wide
string, starting with the first non-white-space wide character, that is of the expected form.
The subject sequence contains no wide characters if the input wide string is not of the
expected form.

4 If the subject sequence has the expected form for a floating-point number, the sequence of
wide characters starting with the first digit or the decimal-point wide character
(whichever occurs first) is interpreted as a floating constant according to the rules of
6.4.4.2, except that the decimal-point wide character is used in place of a period, and that
if neither an exponent part nor a decimal-point wide character appears in a decimal
floating point number, or if a binary exponent part does not appear in a binary floating
point number, an exponent part of the appropriate type with value zero is assumed to
follow the last digit in the string. If the subject sequence begins with a minus sign, the
sequence is interpreted as negated.270) A wide character sequenceINF or INFINITY is
interpreted as an infinity, if representable in the return type, else like a floating constant
that is too large for the range of the return type. A wide character sequenceNANor
NAN(n-wchar-sequenceopt) is interpreted as a quiet NaN, if supported in the return type,
else like a subject sequence part that does not have the expected form; the meaning of the
n-wchar sequences is implementation-defined.271) A pointer to the final wide string is∗
stored in the object pointed to byendptr , provided thatendptr is not a null pointer.

5 If the subject sequence has the hexadecimal form andFLT_RADIX is a power of 2, the
value resulting from the conversion is correctly rounded.

6 In other than the"C" locale, additional locale-specific subject sequence forms may be
accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value ofnptr is stored in the object pointed to byendptr , provided
thatendptr is not a null pointer.

270) It is unspecified whether a minus-signed sequence is converted to a negative number directly or by

negating the value resulting from converting the corresponding unsigned sequence (see F.5); the two

methods may yield different results if rounding is toward positive or neg ative infinity. In either case,

the functions honor the sign of zero if floating-point arithmetic supports signed zeros.

271) An implementation may use then-wchar-sequenceto determine extra information to be represented in

the NaN’s significand.

7.24.4.1.1 Library 7.24.4.1.1

WG14/N869 Committee Draft — January 18, 1999 383

Recommended practice

8 If the subject sequence has the hexadecimal form andFLT_RADIX is not a power of 2,
the result should be one of the two numbers in the appropriate internal format that are
adjacent to the hexadecimal floating source value, with the extra stipulation that the error
should have a correct sign for the current rounding direction.

9 If the subject sequence has the decimal form and at mostDECIMAL_DIG (defined in
<float.h>) significant digits, the result should be correctly rounded.If the subject
sequenceD has the decimal form and more thanDECIMAL_DIG significant digits,
consider the two bounding, adjacent decimal stringsL and U , both having
DECIMAL_DIGsignificant digits, such that the values ofL, D, andU satisfyL ≤ D ≤ U .
The result should be one of the (equal or adjacent) values that would be obtained by
correctly roundingL and U according to the current rounding direction, with the extra
stipulation that the error with respect toD should have a correct sign for the current
rounding direction.272)

Returns

10 The functions return the converted value, if any. If no conversion could be performed,
zero is returned. If the correct value is outside the range of representable values, plus or
minus HUGE_VAL, HUGE_VALF, or HUGE_VALLis returned (according to the return
type and sign of the value), and the value of the macroERANGEis stored inerrno . If
the result underflows (7.12.1), the functions return a value whose magnitude is no greater
than the smallest normalized positive number in the return type; whethererrno acquires
the valueERANGEis implementation-defined.

7.24.4.1.2 Thewcstol , wcstoll , wcstoul , and wcstoull functions

Synopsis

1

272)DECIMAL_DIG, defined in<float.h> , should be sufficiently large thatL andU will usually round

to the same internal floating value, but if not will round to adjacent values.

7.24.4.1.1 Library 7.24.4.1.2

384 Committee Draft — January 18, 1999 WG14/N869

#include <wchar.h>
long int wcstol(

const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

long long int wcstoll(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

unsigned long int wcstoul(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

unsigned long long int wcstoull(
const wchar_t * restrict nptr,
wchar_t ** restrict endptr,
int base);

Description

2 The wcstol , wcstoll , wcstoul , and wcstoull functions convert the initial
portion of the wide string pointed to bynptr to long int , long long int ,
unsigned long int , and unsigned long long int representation,
respectively. First, they decompose the input string into three parts: an initial, possibly
empty, sequence of white-space wide characters (as specified by theiswspace
function), a subject sequence resembling an integer represented in some radix determined
by the value ofbase , and a final wide string of one or more unrecognized wide
characters, including the terminating null wide character of the input wide string. Then,
they attempt to convert the subject sequence to an integer, and return the result.

3 If the value ofbase is zero, the expected form of the subject sequence is that of an
integer constant as described for the corresponding single-byte characters in 6.4.4.1,
optionally preceded by a plus or minus sign, but not including an integer suffix. If the
value ofbase is between 2 and 36 (inclusive), the expected form of the subject sequence
is a sequence of letters and digits representing an integer with the radix specified by
base , optionally preceded by a plus or minus sign, but not including an integer suffix.
The letters froma (or A) throughz (or Z) are ascribed the values 10 through 35; only
letters and digits whose ascribed values are less than that ofbase are permitted. If the
value ofbase is 16, the wide characters0x or 0X may optionally precede the sequence
of letters and digits, following the sign if present.

4 The subject sequence is defined as the longest initial subsequence of the input wide
string, starting with the first non-white-space wide character, that is of the expected form.
The subject sequence contains no wide characters if the input wide string is empty or

7.24.4.1.2 Library 7.24.4.1.2

WG14/N869 Committee Draft — January 18, 1999 385

consists entirely of white space, or if the first non-white-space wide character is other
than a sign or a permissible letter or digit.

5 If the subject sequence has the expected form and the value ofbase is zero, the sequence
of wide characters starting with the first digit is interpreted as an integer constant
according to the rules of 6.4.4.1. If the subject sequence has the expected form and the
value ofbase is between 2 and 36, it is used as the base for conversion, ascribing to each
letter its value as given above. If the subject sequence begins with a minus sign, the value
resulting from the conversion is negated (in the return type). A pointer to the final wide
string is stored in the object pointed to byendptr , provided thatendptr is not a null
pointer.

6 In other than the"C" locale, additional locale-specific subject sequence forms may be
accepted.

7 If the subject sequence is empty or does not have the expected form, no conversion is
performed; the value ofnptr is stored in the object pointed to byendptr , provided
thatendptr is not a null pointer.

Returns

8 The wcstol , wcstoll , wcstoul , and wcstoull functions return the converted
value, if any. If no conversion could be performed, zero is returned. If the correct value
is outside the range of representable values,LONG_MIN, LONG_MAX, LLONG_MIN,
LLONG_MAX, ULONG_MAX, or ULLONG_MAXis returned (according to the return type
sign of the value, if any), and the value of the macroERANGEis stored inerrno .

7.24.4.2 Wide-string copying functions

7.24.4.2.1 Thewcscpy function

Synopsis

1 #include <wchar.h>
wchar_t *wcscpy(wchar_t * restrict s1,

const wchar_t * restrict s2);

Description

2 Thewcscpy function copies the wide string pointed to bys2 (including the terminating
null wide character) into the array pointed to bys1 .

Returns

3 Thewcscpy function returns the value ofs1 .

7.24.4.1.2 Library 7.24.4.2.1

386 Committee Draft — January 18, 1999 WG14/N869

7.24.4.2.2 Thewcsncpy function

Synopsis

1 #include <wchar.h>
wchar_t *wcsncpy(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

Description

2 Thewcsncpy function copies not more thann wide characters (those that follow a null
wide character are not copied) from the array pointed to bys2 to the array pointed to by
s1 .273)

3 If the array pointed to bys2 is a wide string that is shorter thann wide characters, null
wide characters are appended to the copy in the array pointed to bys1 , until n wide
characters in all have been written.

Returns

4 Thewcsncpy function returns the value ofs1 .

7.24.4.3 Wide-string concatenation functions

7.24.4.3.1 Thewcscat function

Synopsis

1 #include <wchar.h>
wchar_t *wcscat(wchar_t * restrict s1,

const wchar_t * restrict s2);

Description

2 Thewcscat function appends a copy of the wide string pointed to bys2 (including the
terminating null wide character) to the end of the wide string pointed to bys1 . The initial
wide character ofs2 overwrites the null wide character at the end ofs1 .

Returns

3 Thewcscat function returns the value ofs1 .

273) Thus, if there is no null wide character in the firstn wide characters of the array pointed to bys2 , the

result will not be null-terminated.

7.24.4.2.1 Library 7.24.4.3.1

WG14/N869 Committee Draft — January 18, 1999 387

7.24.4.3.2 Thewcsncat function

Synopsis

1 #include <wchar.h>
wchar_t *wcsncat(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

Description

2 Thewcsncat function appends not more thann wide characters (a null wide character
and those that follow it are not appended) from the array pointed to bys2 to the end of
the wide string pointed to bys1 . The initial wide character ofs2 overwrites the null
wide character at the end ofs1 A terminating null wide character is always appended to
the result.274)

Returns

3 Thewcsncat function returns the value ofs1 .

7.24.4.4 Wide-string comparison functions

1 Unless explicitly stated otherwise, the functions described in this subclause order two
wide characters the same way as two integers of the underlying integer type designated
by wchar_t .

7.24.4.4.1 Thewcscmp function

Synopsis

1 #include <wchar.h>
int wcscmp(const wchar_t *s1, const wchar_t *s2);

Description

2 The wcscmp function compares the wide string pointed to bys1 to the wide string
pointed to bys2 .

Returns

3 The wcscmp function returns an integer greater than, equal to, or less than zero,
accordingly as the wide string pointed to bys1 is greater than, equal to, or less than the
wide string pointed to bys2 .

274) Thus, the maximum number of wide characters that can end up in the array pointed to bys1 is

wcslen(s1)+n+1 .

7.24.4.3.1 Library 7.24.4.4.1

388 Committee Draft — January 18, 1999 WG14/N869

7.24.4.4.2 Thewcscoll function

Synopsis

1 #include <wchar.h>
int wcscoll(const wchar_t *s1, const wchar_t *s2);

Description

2 The wcscoll function compares the wide string pointed to bys1 to the wide string
pointed to bys2 , both interpreted as appropriate to theLC_COLLATEcategory of the
current locale.

Returns

3 The wcscoll function returns an integer greater than, equal to, or less than zero,
accordingly as the wide string pointed to bys1 is greater than, equal to, or less than the
wide string pointed to bys2 when both are interpreted as appropriate to the current
locale.

7.24.4.4.3 Thewcsncmp function

Synopsis

1 #include <wchar.h>
int wcsncmp(const wchar_t *s1, const wchar_t *s2,

size_t n);

Description

2 Thewcsncmp function compares not more thann wide characters (those that follow a
null wide character are not compared) from the array pointed to bys1 to the array
pointed to bys2 .

Returns

3 The wcsncmp function returns an integer greater than, equal to, or less than zero,
accordingly as the possibly null-terminated array pointed to bys1 is greater than, equal
to, or less than the possibly null-terminated array pointed to bys2 .

7.24.4.4.1 Library 7.24.4.4.3

WG14/N869 Committee Draft — January 18, 1999 389

7.24.4.4.4 Thewcsxfrm function

Synopsis

1 #include <wchar.h>
size_t wcsxfrm(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

Description

2 The wcsxfrm function transforms the wide string pointed to bys2 and places the
resulting wide string into the array pointed to bys1 . The transformation is such that if
thewcscmp function is applied to two transformed wide strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result of thewcscoll function
applied to the same two original wide strings. No more thann wide characters are placed
into the resulting array pointed to bys1 , including the terminating null wide character. If
n is zero,s1 is permitted to be a null pointer.

Returns

3 Thewcsxfrm function returns the length of the transformed wide string (not including
the terminating null wide character). If the value returned isn or greater, the contents of
the array pointed to bys1 are indeterminate.

4 EXAMPLE The value of the following expression is the length of the array needed to hold the
transformation of the wide string pointed to bys :

1 + wcsxfrm(NULL, s, 0)

7.24.4.5 Wide-string search functions

7.24.4.5.1 Thewcschr function

Synopsis

1 #include <wchar.h>
wchar_t *wcschr(const wchar_t *s, wchar_t c);

Description

2 Thewcschr function locates the first occurrence ofc in the wide string pointed to bys .
The terminating null wide character is considered to be part of the wide string.

Returns

3 Thewcschr function returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the wide string.

7.24.4.4.3 Library 7.24.4.5.1

390 Committee Draft — January 18, 1999 WG14/N869

7.24.4.5.2 Thewcscspn function

Synopsis

1 #include <wchar.h>
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

Description

2 Thewcscspn function computes the length of the maximum initial segment of the wide
string pointed to bys1 which consists entirely of wide charactersnot from the wide
string pointed to bys2 .

Returns

3 Thewcscspn function returns the length of the segment.

7.24.4.5.3 Thewcslen function

Synopsis

1 #include <wchar.h>
size_t wcslen(const wchar_t *s);

Description

2 Thewcslen function computes the length of the wide string pointed to bys .

Returns

3 Thewcslen function returns the number of wide characters that precede the terminating
null wide character.

7.24.4.5.4 Thewcspbrk function

Synopsis

1 #include <wchar.h>
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

Description

2 Thewcspbrk function locates the first occurrence in the wide string pointed to bys1 of
any wide character from the wide string pointed to bys2 .

Returns

3 Thewcspbrk function returns a pointer to the wide character ins1 , or a null pointer if
no wide character froms2 occurs ins1 .

7.24.4.5.1 Library 7.24.4.5.4

WG14/N869 Committee Draft — January 18, 1999 391

7.24.4.5.5 Thewcsrchr function

Synopsis

1 #include <wchar.h>
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

Description

2 Thewcsrchr function locates the last occurrence ofc in the wide string pointed to by
s . The terminating null wide character is considered to be part of the wide string.

Returns

3 Thewcsrchr function returns a pointer to the wide character, or a null pointer ifc does
not occur in the wide string.

7.24.4.5.6 Thewcsspn function

Synopsis

1 #include <wchar.h>
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

Description

2 Thewcsspn function computes the length of the maximum initial segment of the wide
string pointed to bys1 which consists entirely of wide characters from the wide string
pointed to bys2 .

Returns

3 Thewcsspn function returns the length of the segment.

7.24.4.5.7 Thewcsstr function

Synopsis

1 #include <wchar.h>
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

Description

2 Thewcsstr function locates the first occurrence in the wide string pointed to bys1 of
the sequence of wide characters (excluding the terminating null wide character) in the
wide string pointed to bys2 .

Returns

3 Thewcsstr function returns a pointer to the located wide string, or a null pointer if the
wide string is not found. Ifs2 points to a wide string with zero length, the function
returnss1 .

7.24.4.5.4 Library 7.24.4.5.7

392 Committee Draft — January 18, 1999 WG14/N869

7.24.4.5.8 Thewcstok function

Synopsis

1 #include <wchar.h>
wchar_t *wcstok(wchar_t * restrict s1,

const wchar_t * restrict s2,
wchar_t ** restrict ptr);

Description

2 A sequence of calls to thewcstok function breaks the wide string pointed to bys1 into
a sequence of tokens, each of which is delimited by a wide character from the wide string
pointed to bys2 . The third argument points to a caller-providedwchar_t pointer into
which thewcstok function stores information necessary for it to continue scanning the
same wide string.

3 The first call in a sequence has a non-null first argument and stores an initial value in the
object pointed to byptr . Subsequent calls in the sequence have a null first argument and
the object pointed to byptr is required to have the value stored by the previous call in
the sequence, which is then updated. The separator wide string pointed to bys2 may be
different from call to call.

4 The first call in the sequence searches the wide string pointed to bys1 for the first wide
character that isnot contained in the current separator wide string pointed to bys2 . If no
such wide character is found, then there are no tokens in the wide string pointed to bys1
and thewcstok function returns a null pointer. If such a wide character is found, it is
the start of the first token.

5 Thewcstok function then searches from there for a wide character thatis contained in
the current separator wide string. If no such wide character is found, the current token
extends to the end of the wide string pointed to bys1 , and subsequent searches in the
same wide string for a token return a null pointer. If such a wide character is found, it is
overwritten by a null wide character, which terminates the current token.

6 In all cases, thewcstok function stores sufficient information in the pointer pointed to
by ptr so that subsequent calls, with a null pointer fors1 and the unmodified pointer
value for ptr , shall start searching just past the element overwritten by a null wide
character (if any).

Returns

7 Thewcstok function returns a pointer to the first wide character of a token, or a null
pointer if there is no token.

8 EXAMPLE

7.24.4.5.7 Library 7.24.4.5.8

WG14/N869 Committee Draft — January 18, 1999 393

#include <wchar.h>
static wchar_t str1[] = L"?a???b,,,#c";
static wchar_t str2[] = L"\t \t";
wchar_t *t, *ptr1, *ptr2;

// t points to the tokenL"a"
t = wcstok(str1, L"?", &ptr1);

// t points to the tokenL"??b"
t = wcstok(NULL, L",", &ptr1);

// t is a null pointer
t = wcstok(str2, L" \t", &ptr2);

// t points to the tokenL"c"
t = wcstok(NULL, L"#,", &ptr1);

// t is a null pointer
t = wcstok(NULL, L"?", &ptr1);

7.24.4.6 Wide-character array functions

1 These functions operate on arrays of typewchar_t whose size is specified by a separate
count argument. These functions are not affected by locale, and allwchar_t values are
treated identically. The null wide character andwchar_t values not corresponding to
valid multibyte characters are not treated specially.

2 Unless explicitly stated otherwise, the functions described in this subclause order two
wide characters the same way as two integers of the underlying integer type designated
by wchar_t .

3 Where an argument declared assize_t n determines the length of the array for a
function, n can have the value zero on a call to that function. Unless stated explicitly
otherwise in the description of a particular function in this subclause, pointer arguments
on such a call shall still have valid values, as described in 7.1.4. On such a call, a
function that locates a wide character finds no occurrence, a function that compares two
wide character sequences returns zero, and a function that copies wide characters copies
zero wide characters.

7.24.4.5.8 Library 7.24.4.6

394 Committee Draft — January 18, 1999 WG14/N869

7.24.4.6.1 Thewmemchr function

Synopsis

1 #include <wchar.h>
wchar_t *wmemchr(const wchar_t *s, wchar_t c,

size_t n);

Description

2 Thewmemchr function locates the first occurrence ofc in the initialn wide characters of
the object pointed to bys .

Returns

3 Thewmemchr function returns a pointer to the located wide character, or a null pointer if
the wide character does not occur in the object.

7.24.4.6.2 Thewmemcmpfunction

Synopsis

1 #include <wchar.h>
int wmemcmp(const wchar_t * s1, const wchar_t * s2,

size_t n);

Description

2 Thewmemcmpfunction compares the firstn wide characters of the object pointed to by
s1 to the firstn wide characters of the object pointed to bys2 .

Returns

3 The wmemcmpfunction returns an integer greater than, equal to, or less than zero,
accordingly as the object pointed to bys1 is greater than, equal to, or less than the object
pointed to bys2 .

7.24.4.6 Library 7.24.4.6.2

WG14/N869 Committee Draft — January 18, 1999 395

7.24.4.6.3 Thewmemcpyfunction

Synopsis

1 #include <wchar.h>
wchar_t *wmemcpy(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

Description

2 Thewmemcpyfunction copiesn wide characters from the object pointed to bys2 to the
object pointed to bys1 .

Returns

3 Thewmemcpyfunction returns the value ofs1 .

7.24.4.6.4 Thewmemmovefunction

Synopsis

1 #include <wchar.h>
wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,

size_t n);

Description

2 Thewmemmovefunction copiesn wide characters from the object pointed to bys2 to
the object pointed to bys1 . Copying takes place as if then wide characters from the
object pointed to bys2 are first copied into a temporary array ofn wide characters that
does not overlap the objects pointed to bys1 or s2 , and then then wide characters from
the temporary array are copied into the object pointed to bys1 .

Returns

3 Thewmemmovefunction returns the value ofs1 .

7.24.4.6.2 Library 7.24.4.6.4

396 Committee Draft — January 18, 1999 WG14/N869

7.24.4.6.5 Thewmemset function

Synopsis

1 #include <wchar.h>
wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

Description

2 Thewmemset function copies the value ofc into each of the firstn wide characters of
the object pointed to bys .

Returns

3 Thewmemset function returns the value ofs .

7.24.5 Wide-character time conversion functions

7.24.5.1 Thewcsftime function

Synopsis

1 #include <time.h>
#include <wchar.h>
size_t wcsftime(wchar_t * restrict s,

size_t maxsize,
const wchar_t * restrict format,
const struct tm * restrict timeptr);

Description

2 Thewcsftime function is equivalent to thestrftime function, except that:

— The arguments points to the initial element of an array of wide characters into which
the generated output is to be placed.

— The argumentmaxsize indicates the limiting number of wide characters.

— The argumentformat is a wide string and the conversion specifiers are replaced by
corresponding sequences of wide characters.

— The return value indicates the number of wide characters.

Returns

3 If the total number of resulting wide characters including the terminating null wide
character is not more thanmaxsize , the wcsftime function returns the number of
wide characters placed into the array pointed to bys not including the terminating null
wide character. Otherwise, zero is returned and the contents of the array are
indeterminate. ∗

7.24.4.6.4 Library 7.24.5.1

WG14/N869 Committee Draft — January 18, 1999 397

7.24.6 Extended multibyte and wide-character conversion utilities

1 The header<wchar.h> declares an extended set of functions useful for conversion
between multibyte characters and wide characters.

2 Most of the following functions — those that are listed as ‘‘restartable’’, 7.24.6.3 and
7.24.6.4 — take as a last argument a pointer to an object of typembstate_t that is used
to describe the currentconversion statefrom a particular multibyte character sequence to
a wide-character sequence (or the reverse) under the rules of a particular setting for the
LC_CTYPEcategory of the current locale.

3 The initial conversion state corresponds, for a conversion in either direction, to the
beginning of a new multibyte character in the initial shift state. A zero-valued
mbstate_t object is (at least) one way to describe an initial conversion state. A zero-
valuedmbstate_t object can be used to initiate conversion involving any multibyte
character sequence, in anyLC_CTYPEcategory setting. If anmbstate_t object has
been altered by any of the functions described in this subclause, and is then used with a
different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is
undefined.275)

4 On entry, each function takes the described conversion state (either internal or pointed to
by an argument) as current. The conversion state described by the pointed-to object is
altered as needed to track the shift state, and the position within a multibyte character, for
the associated multibyte character sequence.

7.24.6.1 Single-byte wide-character conversion functions

275) Thus, a particularmbstate_t object can be used, for example, with both thembrtowc and

mbsrtowcs functions as long as they are used to step sequentially through the same multibyte

character string.

7.24.6 Library 7.24.6.1

398 Committee Draft — January 18, 1999 WG14/N869

7.24.6.1.1 Thebtowc function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t btowc(int c);

Description

2 The btowc function determines whetherc constitutes a valid (one-byte) multibyte
character in the initial shift state.

Returns

3 Thebtowc returnsWEOFif c has the valueEOFor if (unsigned char)c does not
constitute a valid (one-byte) multibyte character in the initial shift state. Otherwise, it
returns the wide-character representation of that character.

7.24.6.1.2 Thewctob function

Synopsis

1 #include <stdio.h>
#include <wchar.h>
int wctob(wint_t c);

Description

2 The wctob function determines whetherc corresponds to a member of the extended
character set whose multibyte character representation is a single byte when in the initial
shift state.

Returns

3 The wctob returnsEOF if c does not correspond to a multibyte character with length
one in the initial shift state. Otherwise, it returns the single-byte representation of that
character as anunsigned char converted to anint .

7.24.6.1 Library 7.24.6.1.2

WG14/N869 Committee Draft — January 18, 1999 399

7.24.6.2 Thembsinit function

Synopsis

1 #include <wchar.h>
int mbsinit(const mbstate_t *ps);

Description

2 If ps is not a null pointer, thembsinit function determines whether the pointed-to
mbstate_t object describes an initial conversion state.

Returns

3 Thembsinit function returns nonzero ifps is a null pointer or if the pointed-to object
describes an initial conversion state; otherwise, it returns zero.

7.24.6.3 Restartable multibyte/wide-character conversion functions

1 These functions differ from the corresponding multibyte character functions of 7.20.7
(mblen , mbtowc , and wctomb) in that they hav e an extra parameter,ps , of type
pointer tombstate_t that points to an object that can completely describe the current
conversion state of the associated multibyte character sequence. Ifps is a null pointer,
each function uses its own internalmbstate_t object instead, which is initialized at
program startup to the initial conversion state. The implementation behaves as if no
library function calls these functions with a null pointer forps .

2 Also unlike their corresponding functions, the return value does not represent whether the
encoding is state-dependent.

7.24.6.3.1 Thembrlen function

Synopsis

1 #include <wchar.h>
size_t mbrlen(const char * restrict s,

size_t n,
mbstate_t * restrict ps);

Description

2 Thembrlen function is equivalent to the call:

mbrtowc(NULL, s, n, ps != NULL ? ps : &internal)

whereinternal is thembstate_t object for thembrlen function, except that the
expression designated byps is evaluated only once.

Returns

3 Thembrlen function returns a value between zero andn, inclusive,(size_t)-2 , or
(size_t)-1 .

7.24.6.1.2 Library 7.24.6.3.1

400 Committee Draft — January 18, 1999 WG14/N869

Forward references: thembrtowc function (7.24.6.3.2).

7.24.6.3.2 Thembrtowc function

Synopsis

1 #include <wchar.h>
size_t mbrtowc(wchar_t * restrict pwc,

const char * restrict s,
size_t n,
mbstate_t * restrict ps);

Description

2 If s is a null pointer, thembrtowc function is equivalent to the call:

mbrtowc(NULL, "", 1, ps)

In this case, the values of the parameterspwc andn are ignored.

3 If s is not a null pointer, thembrtowc function inspects at mostn bytes beginning with
the byte pointed to bys to determine the number of bytes needed to complete the next
multibyte character (including any shift sequences). If the function determines that the
next multibyte character is completed, it determines the value of the corresponding wide
character and then, ifpwc is not a null pointer, stores that value in the object pointed to
by pwc. If the corresponding wide character is the null wide character, the resulting state
described is the initial conversion state.

Returns

4 Thembrtowc function returns the first of the following that applies (given the current
conversion state):

0 if the next n or fewer bytes complete the multibyte character that
corresponds to the null wide character (which is the value stored).

positive if the nextn or fewer bytes complete a valid multibyte character (which
is the value stored); the value returned is the number of bytes that
complete the multibyte character.

(size_t)-2 if the next n bytes contribute to an incomplete (but potentially valid)
multibyte character, and alln bytes have been processed (no value is
stored).276)

(size_t)-1 if an encoding error occurs, in which case the nextn or fewer bytes do
not contribute to a complete and valid multibyte character (no value is
stored); the value of the macroEILSEQ is stored inerrno , and the

276) Whenn has at least the value of theMB_CUR_MAXmacro, this case can only occur ifs points at a

sequence of redundant shift sequences (for implementations with state-dependent encodings).

7.24.6.3.1 Library 7.24.6.3.2

WG14/N869 Committee Draft — January 18, 1999 401

conversion state is undefined.

7.24.6.3.3 Thewcrtomb function

Synopsis

1 #include <wchar.h>
size_t wcrtomb(char * restrict s,

wchar_t wc,
mbstate_t * restrict ps);

Description

2 If s is a null pointer, thewcrtomb function is equivalent to the call

wcrtomb(buf, L’\0’, ps)

wherebuf is an internal buffer.

3 If s is not a null pointer, thewcrtomb function determines the number of bytes needed
to represent the multibyte character that corresponds to the wide character given bywc
(including any shift sequences), and stores the resulting bytes in the array whose first
element is pointed to bys . At mostMB_CUR_MAXbytes are stored. Ifwc is a null wide
character, a null byte is stored, preceded by any shift sequence needed to restore the
initial shift state; the resulting state described is the initial conversion state.

Returns

4 Thewcrtomb function returns the number of bytes stored in the array object (including
any shift sequences). Whenwc is not a valid wide character, an encoding error occurs:
the function stores the value of the macroEILSEQ in errno and returns(size_t)-1 ;
the conversion state is undefined.

7.24.6.4 Restartable multibyte/wide-string conversion functions

1 These functions differ from the corresponding multibyte string functions of 7.20.8
(mbstowcs andwcstombs) in that they hav e an extra parameter,ps , of type pointer to
mbstate_t that points to an object that can completely describe the current conversion
state of the associated multibyte character sequence. Ifps is a null pointer, each function
uses its own internalmbstate_t object instead, which is initialized at program startup
to the initial conversion state. The implementation behaves as if no library function calls
these functions with a null pointer forps .

2 Also unlike their corresponding functions, the conversion source parameter,src , has a
pointer-to-pointer type. When the function is storing the results of conversions (that is,
whendst is not a null pointer), the pointer object pointed to by this parameter is updated
to reflect the amount of the source processed by that invocation.

7.24.6.3.2 Library 7.24.6.4

402 Committee Draft — January 18, 1999 WG14/N869

7.24.6.4.1 Thembsrtowcs function

Synopsis

1 #include <wchar.h>
size_t mbsrtowcs(wchar_t * restrict dst,

const char ** restrict src,
size_t len,
mbstate_t * restrict ps);

Description

2 Thembsrtowcs function converts a sequence of multibyte characters, beginning in the
conversion state described by the object pointed to byps , from the array indirectly
pointed to bysrc into a sequence of corresponding wide characters. Ifdst is not a null
pointer, the converted characters are stored into the array pointed to bydst . Conversion
continues up to and including a terminating null character, which is also stored.
Conversion stops earlier in two cases: when a sequence of bytes is encountered that does
not form a valid multibyte character, or (ifdst is not a null pointer) whenlen codes
have been stored into the array pointed to bydst .277) Each conversion takes place as if
by a call to thembrtowc function.

3 If dst is not a null pointer, the pointer object pointed to bysrc is assigned either a null
pointer (if conversion stopped due to reaching a terminating null character) or the address
just past the last multibyte character converted (if any). If conversion stopped due to
reaching a terminating null character and ifdst is not a null pointer, the resulting state
described is the initial conversion state.

Returns

4 If the input conversion encounters a sequence of bytes that do not form a valid multibyte
character, an encoding error occurs: thembsrtowcs function stores the value of the
macroEILSEQ in errno and returns(size_t)-1 ; the conversion state is undefined.
Otherwise, it returns the number of multibyte characters successfully converted, not
including the terminating null (if any).

277) Thus, the value oflen is ignored ifdst is a null pointer.

7.24.6.4 Library 7.24.6.4.1

WG14/N869 Committee Draft — January 18, 1999 403

7.24.6.4.2 Thewcsrtombs function

Synopsis

1 #include <wchar.h>
size_t wcsrtombs(char * restrict dst,

const wchar_t ** restrict src,
size_t len,
mbstate_t * restrict ps);

Description

2 The wcsrtombs function converts a sequence of wide characters from the array
indirectly pointed to bysrc into a sequence of corresponding multibyte characters,
beginning in the conversion state described by the object pointed to byps . If dst is not a
null pointer, the converted characters are then stored into the array pointed to bydst .
Conversion continues up to and including a terminating null wide character, which is also
stored. Conversion stops earlier in two cases: when a code is reached that does not
correspond to a valid multibyte character, or (ifdst is not a null pointer) when the next
multibyte character would exceed the limit oflen total bytes to be stored into the array
pointed to bydst . Each conversion takes place as if by a call to thewcrtomb
function.278)

3 If dst is not a null pointer, the pointer object pointed to bysrc is assigned either a null
pointer (if conversion stopped due to reaching a terminating null wide character) or the
address just past the last wide character converted (if any). If conversion stopped due to
reaching a terminating null wide character, the resulting state described is the initial
conversion state.

Returns

4 If conversion stops because a code is reached that does not correspond to a valid
multibyte character, an encoding error occurs: thewcsrtombs function stores the value
of the macroEILSEQ in errno and returns(size_t)-1 ; the conversion state is
undefined. Otherwise, it returns the number of bytes in the resulting multibyte character
sequence, not including the terminating null (if any).

278) If conversion stops because a terminating null wide character has been reached, the bytes stored

include those necessary to reach the initial shift state immediately before the null byte.

7.24.6.4.1 Library 7.24.6.4.2

404 Committee Draft — January 18, 1999 WG14/N869

7.25 Wide-character classification and mapping utilities<wctype.h>

7.25.1 Introduction

1 The header<wctype.h> declares three data types, one macro, and many functions.279)

2 The types declared are

wint_t

which is an integer type unchanged by default argument promotions that can hold any
value corresponding to members of the extended character set, as well as at least one
value that does not correspond to any member of the extended character set (seeWEOF
below);280)

wctrans_t

which is a scalar type that can hold values which represent locale-specific character
mappings; and

wctype_t

which is a scalar type that can hold values which represent locale-specific character
classifications.

3 The macro defined is

WEOF

which expands to a constant expression of typewint_t whose value does not
correspond to any member of the extended character set.281) It is accepted (and returned)
by several functions in this subclause to indicateend-of-file, that is, no more input from a
stream. It is also used as a wide-character value that does not correspond to any member
of the extended character set.

4 The functions declared are grouped as follows:

— Functions that provide wide-character classification;

— Extensible functions that provide wide-character classification;

— Functions that provide wide-character case mapping;

— Extensible functions that provide wide-character mapping.

279) See ‘‘future library directions’’ (7.26.13).

280)wchar_t andwint_t can be the same integer type.

281) The value of the macroWEOFmay differ from that ofEOFand need not be negative.

7.25 Library 7.25.1

WG14/N869 Committee Draft — January 18, 1999 405

5 For all functions described in this subclause that accept an argument of typewint_t , the
value shall be representable as awchar_t or shall equal the value of the macroWEOF. If
this argument has any other value, the behavior is undefined.

6 The behavior of these functions is affected by theLC_CTYPEcategory of the current
locale.

7.25.2 Wide-character classification utilities

1 The header<wctype.h> declares several functions useful for classifying wide
characters.

2 The termprinting wide characterrefers to a member of a locale-specific set of wide
characters, each of which occupies at least one printing position on a display device. The
termcontrol wide characterrefers to a member of a locale-specific set of wide characters
that are not printing wide characters.

7.25.2.1 Wide-character classification functions

1 The functions in this subclause return nonzero (true) if and only if the value of the
argumentwc conforms to that in the description of the function.

2 Except for theiswgraph and iswpunct functions with respect to printing, white-
space, wide characters other thanL’ ’ , each of the following functions returns true for
each wide character that corresponds (as if by a call to thewctob function) to a character
(byte) for which the corresponding character testing function from 7.4.1 returns true.282)

Forward references: thewctob function (7.24.6.1.2).

282) For example, if the expressionisalpha(wctob(wc)) evaluates to true, then the call

iswalpha(wc) also returns true. But, if the expressionisgraph(wctob(wc)) evaluates to true

(which cannot occur forwc == L’ ’ of course), then eitheriswgraph(wc) or iswprint(wc)

&& iswspace(wc) is true, but not both.

7.25.1 Library 7.25.2.1

406 Committee Draft — January 18, 1999 WG14/N869

7.25.2.1.1 Theiswalnum function

Synopsis

1 #include <wctype.h>
int iswalnum(wint_t wc);

Description

2 The iswalnum function tests for any wide character for whichiswalpha or
iswdigit is true.

7.25.2.1.2 Theiswalpha function

Synopsis

1 #include <wctype.h>
int iswalpha(wint_t wc);

Description

2 The iswalpha function tests for any wide character for whichiswupper or
iswlower is true, or any wide character that is one of a locale-specific set of alphabetic
wide characters for which none ofiswcntrl , iswdigit , iswpunct , or iswspace
is true.283)

7.25.2.1.3 Theiswcntrl function

Synopsis

1 #include <wctype.h>
int iswcntrl(wint_t wc);

Description

2 Theiswcntrl function tests for any control wide character.

283) The functionsiswlower and iswupper test true or false separately for each of these additional

wide characters; all four combinations are possible.

7.25.2.1 Library 7.25.2.1.3

WG14/N869 Committee Draft — January 18, 1999 407

7.25.2.1.4 Theiswdigit function

Synopsis

1 #include <wctype.h>
int iswdigit(wint_t wc);

Description

2 Theiswdigit function tests for any wide character that corresponds to a decimal-digit
character (as defined in 5.2.1).

7.25.2.1.5 Theiswgraph function

Synopsis

1 #include <wctype.h>
int iswgraph(wint_t wc);

Description

2 The iswgraph function tests for any wide character for whichiswprint is true and
iswspace is false.284)

7.25.2.1.6 Theiswlower function

Synopsis

1 #include <wctype.h>
int iswlower(wint_t wc);

Description

2 The iswlower function tests for any wide character that corresponds to a lowercase
letter or is one of a locale-specific set of wide characters for which none ofiswcntrl ,
iswdigit , iswpunct , or iswspace is true.

284) Note that the behavior of theiswgraph and iswpunct functions may differ from their

corresponding functions in 7.4.1 with respect to printing, white-space, basic execution characters other

than’ ’ .

7.25.2.1.3 Library 7.25.2.1.6

408 Committee Draft — January 18, 1999 WG14/N869

7.25.2.1.7 Theiswprint function

Synopsis

1 #include <wctype.h>
int iswprint(wint_t wc);

Description

2 Theiswprint function tests for any printing wide character.

7.25.2.1.8 Theiswpunct function

Synopsis

1 #include <wctype.h>
int iswpunct(wint_t wc);

Description

2 The iswpunct function tests for any printing wide character that is one of a locale-
specific set of punctuation wide characters for which neitheriswspace nor iswalnum
is true.284)

7.25.2.1.9 Theiswspace function

Synopsis

1 #include <wctype.h>
int iswspace(wint_t wc);

Description

2 Theiswspace function tests for any wide character that corresponds to a locale-specific
set of white-space wide characters for which none ofiswalnum , iswgraph , or
iswpunct is true.

7.25.2.1.6 Library 7.25.2.1.9

WG14/N869 Committee Draft — January 18, 1999 409

7.25.2.1.10 Theiswupper function

Synopsis

1 #include <wctype.h>
int iswupper(wint_t wc);

Description

2 The iswupper function tests for any wide character that corresponds to an uppercase
letter or is one of a locale-specific set of wide characters for which none ofiswcntrl ,
iswdigit , iswpunct , or iswspace is true.

7.25.2.1.11 Theiswxdigit function

Synopsis

1 #include <wctype.h>
int iswxdigit(wint_t wc);

Description

2 The iswxdigit function tests for any wide character that corresponds to a
hexadecimal-digit character (as defined in 6.4.4.1).

7.25.2.2 Extensible wide-character classification functions

1 The functionswctype and iswctype provide extensible wide-character classification
as well as testing equivalent to that performed by the functions described in the previous
subclause (7.25.2.1).

7.25.2.2.1 Theiswctype function

Synopsis

1 #include <wctype.h>
int iswctype(wint_t wc, wctype_t desc);

Description

2 The iswctype function determines whether the wide characterwc has the property
described bydesc . The current setting of theLC_CTYPEcategory shall be the same as
during the call towctype that returned the valuedesc .

3 Each of the following expressions has a truth-value equivalent to the call to the wide-
character classification function (7.25.2.1) in the comment that follows the expression:

7.25.2.1.9 Library 7.25.2.2.1

410 Committee Draft — January 18, 1999 WG14/N869

iswctype(wc, wctype("alnum")) // iswalnum(wc)
iswctype(wc, wctype("alpha")) // iswalpha(wc)
iswctype(wc, wctype("cntrl")) // iswcntrl(wc)
iswctype(wc, wctype("digit")) // iswdigit(wc)
iswctype(wc, wctype("graph")) // iswgraph(wc)
iswctype(wc, wctype("lower")) // iswlower(wc)
iswctype(wc, wctype("print")) // iswprint(wc)
iswctype(wc, wctype("punct")) // iswpunct(wc)
iswctype(wc, wctype("space")) // iswspace(wc)
iswctype(wc, wctype("upper")) // iswupper(wc)
iswctype(wc, wctype("xdigit")) // iswxdigit(wc)

Returns

4 The iswctype function returns nonzero (true) if and only if the value of the wide
characterwc has the property described bydesc .

7.25.2.2.2 Thewctype function

Synopsis

1 #include <wctype.h>
wctype_t wctype(const char *property);

Description

2 Thewctype function constructs a value with typewctype_t that describes a class of
wide characters identified by the string argumentproperty .

3 The strings listed in the description of theiswctype function shall be valid in all
locales asproperty arguments to thewctype function.

Returns

4 If property identifies a valid class of wide characters according to theLC_CTYPE
category of the current locale, thewctype function returns a nonzero value that is valid
as the second argument to theiswctype function; otherwise, it returns zero.

Forward references: the iswctype function (7.25.2.2.1).

7.25.2.2.1 Library 7.25.2.2.2

WG14/N869 Committee Draft — January 18, 1999 411

7.25.3 Wide-character mapping utilities

1 The header<wctype.h> declares several functions useful for mapping wide characters.

7.25.3.1 Wide-character case mapping functions

7.25.3.1.1 Thetowlower function

Synopsis

1 #include <wctype.h>
wint_t towlower(wint_t wc);

Description

2 Thetowlower function converts an uppercase letter to a corresponding lowercase letter.

Returns

3 If the argument is a wide character for whichiswupper is true and there are one or
more corresponding wide characters, as specified by the current locale, for which
iswlower is true, thetowlower function returns one of the corresponding wide
characters (always the same one for any giv en locale); otherwise, the argument is
returned unchanged.

7.25.3.1.2 Thetowupper function

Synopsis

1 #include <wctype.h>
wint_t towupper(wint_t wc);

Description

2 Thetowupper function converts a lowercase letter to a corresponding uppercase letter.

Returns

3 If the argument is a wide character for whichiswlower is true and there are one or
more corresponding wide characters, as specified by the current locale, for which
iswupper is true, thetowupper function returns one of the corresponding characters
(always the same one for any giv en locale); otherwise, the argument is returned
unchanged.

7.25.3.2 Extensible wide-character case mapping functions

1 The functionswctrans andtowctrans provide extensible wide-character mapping as
well as case mapping equivalent to that performed by the functions described in the
previous subclause (7.25.3.1).

7.25.3 Library 7.25.3.2

412 Committee Draft — January 18, 1999 WG14/N869

7.25.3.2.1 Thetowctrans function

Synopsis

1 #include <wctype.h>
wint_t towctrans(wint_t wc, wctrans_t desc);

Description

2 The towctrans function maps the wide characterwc using the mapping described by
desc . The current setting of theLC_CTYPEcategory shall be the same as during the call
to wctrans that returned the valuedesc .

3 Each of the following expressions behaves the same as the call to the wide-character
case-mapping function (7.25.3.1) in the comment that follows the expression:

towctrans(wc, wctrans("tolower")) /* towlower(wc) */
towctrans(wc, wctrans("toupper")) /* towupper(wc) */

Returns

4 Thetowctrans function returns the mapped value ofwc using the mapping described
by desc .

7.25.3.2.2 Thewctrans function

Synopsis

1 #include <wctype.h>
wctrans_t wctrans(const char *property);

Description

2 The wctrans function constructs a value with typewctrans_t that describes a
mapping between wide characters identified by the string argumentproperty .

3 The strings listed in the description of thetowctrans function shall be valid in all
locales asproperty arguments to thewctrans function.

Returns

4 If property identifies a valid mapping of wide characters according to theLC_CTYPE
category of the current locale, thewctrans function returns a nonzero value that is valid
as the second argument to thetowctrans function; otherwise, it returns zero.

7.25.3.2 Library 7.25.3.2.2

WG14/N869 Committee Draft — January 18, 1999 413

7.26 Future library directions

1 The following names are grouped under individual headers for convenience. All external
names described below are reserved no matter what headers are included by the program.

7.26.1 Complex arithmetic<complex.h>

1 The function names

cerf
cerfc
cexp2

cexpm1
clog10
clog1p

clog2
clgamma ∗
ctgamma

and the same names suffixed withf or l are reserved for the functions with complex
arguments and return values.

7.26.2 Character handling<ctype.h>

1 Function names that begin with eitheris or to , and a lowercase letter (possibly followed
by any combination of digits, letters, and underscore) may be added to the declarations in
the<ctype.h> header.

7.26.3 Errors<errno.h>

1 Macros that begin withE and a digit orE and an uppercase letter (possibly followed by
any combination of digits, letters, and underscore) may be added to the declarations in the
<errno.h> header.

7.26.4 Format conversion of integer types<inttypes.h>

1 Macro names beginning withPRI or SCNfollowed by any lowercase letter orX may be
added to the macros defined in the<inttypes.h> header.

7.26.5 Localization<locale.h>

1 Macros that begin withLC_ and an uppercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the definitions in the
<locale.h> header.

7.26.6 Signal handling<signal.h>

1 Macros that begin with eitherSIG and an uppercase letter orSIG_ and an uppercase
letter (possibly followed by any combination of digits, letters, and underscore) may be
added to the definitions in the<signal.h> header.

7.26 Library 7.26.6

414 Committee Draft — January 18, 1999 WG14/N869

7.26.7 Boolean type and values<stdbool.h>

1 The ability to undefine and perhaps then redefine the macrosbool , true , andfalse is
an obsolescent feature.

7.26.8 Integer types<stdint.h>

1 Typedef names beginning withint or uint and ending with_t may be added to the
types defined in the<stdint.h> header. Macro names beginning withINT or UINT
and ending with_MAX _MIN, or _C may be added to the macros defined in the
<stdint.h> header.

7.26.9 Input/output <stdio.h>

1 Lowercase letters may be added to the conversion specifiers and length modifiers in
fprintf andfscanf . Other characters may be used in extensions.

2 The use ofungetc on a binary stream where the file position indicator is zero prior to
the call is an obsolescent feature.

7.26.10 General utilities<stdlib.h>

1 Function names that begin withstr and a lowercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<stdlib.h> header.

7.26.11 String handling<string.h>

1 Function names that begin withstr , mem, or wcs and a lowercase letter (possibly
followed by any combination of digits, letters, and underscore) may be added to the
declarations in the<string.h> header.

7.26.12 Extended multibyte and wide-character utilities<wchar.h>

1 Function names that begin withwcs and a lowercase letter (possibly followed by any
combination of digits, letters, and underscore) may be added to the declarations in the
<wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in
fwprintf andfwscanf . Other characters may be used in extensions.

7.26.7 Library 7.26.12

WG14/N869 Committee Draft — January 18, 1999 415

7.26.13 Wide-character classification and mapping utilities
<wctype.h>

1 Function names that begin withis or to and a lowercase letter (possibly followed by
any combination of digits, letters, and underscore) may be added to the declarations in the
<wctype.h> header.

7.26.13 Library 7.26.13

416 Committee Draft — January 18, 1999 WG14/N869

Annex A
(informative)

Language syntax summary

1 NOTE The notation is described in the introduction to clause 6 (Language).

A.1 Lexical grammar

A.1.1 Lexical elements

(6.4) token:
keyword
identifier
constant
string-literal
punctuator

(6.4) preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
punctuator
eachuniversal-character-namethat cannot be one of the above
each non-white-space character that cannot be one of the above

A.1.2 Keywords

(6.4.1) keyword: one of
auto
break
case
char
const
continue
default
do
double
else

enum
extern
float
for
goto
if
inline
int
long
register

restrict
return
short
signed
sizeof
static
struct
switch
typedef
union

unsigned
void
volatile
while
_Bool
_Complex
_Imaginary

A Language syntax summary A.1.2

WG14/N869 Committee Draft — January 18, 1999 417

A.1.3 Identifiers

(6.4.2) identifier:
identifier-nondigit
identifier identifier-nondigit
identifier digit

(6.4.2) identifier-nondigit:
nondigit
universal-character-name
other implementation-defined characters

(6.4.2) nondigit: one of
universal-character-name
_ a b c d e f g h i j k l m

n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

(6.4.2) digit: one of
0 1 2 3 4 5 6 7 8 9

A.1.4 Universal character names

(6.4.3) universal-character-name:
\u hex-quad
\U hex-quad hex-quad

(6.4.3) hex-quad:
hexadecimal-digit hexadecimal-digit

hexadecimal-digit hexadecimal-digit

A.1.5 Constants

(6.4.4) constant:
integer-constant
floating-constant
enumeration-constant
character-constant

(6.4.4.1) integer-constant:
decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexadecimal-constant integer-suffixopt

A.1.3 Language syntax summary A.1.5

418 Committee Draft — January 18, 1999 WG14/N869

(6.4.4.1) decimal-constant:
nonzero-digit
decimal-constant digit

(6.4.4.1) octal-constant:
0
octal-constant octal-digit

(6.4.4.1) hexadecimal-constant:
hexadecimal-prefix hexadecimal-digit
hexadecimal-constant hexadecimal-digit

(6.4.4.1) hexadecimal-prefix:one of
0x 0X

(6.4.4.1) nonzero-digit: one of
1 2 3 4 5 6 7 8 9

(6.4.4.1) octal-digit: one of
0 1 2 3 4 5 6 7

(6.4.4.1) hexadecimal-digit:one of
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

(6.4.4.1) integer-suffix:
unsigned-suffix long-suffixopt
unsigned-suffix long-long-suffix
long-suffix unsigned-suffixopt
long-long-suffix unsigned-suffixopt

(6.4.4.1) unsigned-suffix:one of
u U

(6.4.4.1) long-suffix: one of
l L

(6.4.4.1) long-long-suffix: one of
ll LL

(6.4.4.2) floating-constant:
decimal-floating-constant
hexadecimal-floating-constant

A.1.5 Language syntax summary A.1.5

WG14/N869 Committee Draft — January 18, 1999 419

(6.4.4.2) decimal-floating-constant:
fractional-constant exponent-partopt floating-suffixopt
digit-sequence exponent-part floating-suffixopt

(6.4.4.2) hexadecimal-floating-constant:
hexadecimal-prefix hexadecimal-fractional-constant

binary-exponent-part floating-suffixopt
hexadecimal-prefix hexadecimal-digit-sequence

binary-exponent-part floating-suffixopt

(6.4.4.2) fractional-constant:
digit-sequenceopt . digit-sequence
digit-sequence.

(6.4.4.2) exponent-part:
e signopt digit-sequence
E signopt digit-sequence

(6.4.4.2) sign: one of
+ -

(6.4.4.2) digit-sequence:
digit
digit-sequence digit

(6.4.4.2) hexadecimal-fractional-constant:
hexadecimal-digit-sequenceopt .

hexadecimal-digit-sequence
hexadecimal-digit-sequence.

(6.4.4.2) binary-exponent-part:
p signopt digit-sequence
P signopt digit-sequence

(6.4.4.2) hexadecimal-digit-sequence:
hexadecimal-digit
hexadecimal-digit-sequence hexadecimal-digit

(6.4.4.2) floating-suffix: one of
f l F L

(6.4.4.3) enumeration-constant:
identifier

(6.4.4.4) character-constant:
’ c-char-sequence’
L’ c-char-sequence’

A.1.5 Language syntax summary A.1.5

420 Committee Draft — January 18, 1999 WG14/N869

(6.4.4.4) c-char-sequence:
c-char
c-char-sequence c-char

(6.4.4.4) c-char:
any member of the source character set except

the single-quote’ , backslash\ , or new-line character
escape-sequence

(6.4.4.4) escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
universal-character-name

(6.4.4.4) simple-escape-sequence:one of
\’ \" \? \\
\a \b \f \n \r \t \v

(6.4.4.4) octal-escape-sequence:
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

(6.4.4.4) hexadecimal-escape-sequence:
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

A.1.6 String literals

(6.4.5) string-literal:
" s-char-sequenceopt"
L" s-char-sequenceopt"

(6.4.5) s-char-sequence:
s-char
s-char-sequence s-char

(6.4.5) s-char:
any member of the source character set except

the double-quote" , backslash\ , or new-line character
escape-sequence

A.1.5 Language syntax summary A.1.6

WG14/N869 Committee Draft — January 18, 1999 421

A.1.7 Punctuators

(6.4.6) punctuator: one of
[] () { } . ->
++ -- & * + - ˜ !
/ % << >> < > <= >= == != ˆ | && ||
? : ; ...
= *= /= %= += -= <<= >>= &= ˆ= |=
, # ##
<: :> <% %> %: %:%:

A.1.8 Header names

(6.4.7) header-name:
<h-char-sequence>
" q-char-sequence"

(6.4.7) h-char-sequence:
h-char
h-char-sequence h-char

(6.4.7) h-char:
any member of the source character set except

the new-line character and>

(6.4.7) q-char-sequence:
q-char
q-char-sequence q-char

(6.4.7) q-char:
any member of the source character set except

the new-line character and"

A.1.9 Preprocessing numbers

(6.4.8) pp-number:
digit
. digit
pp-number digit
pp-number identifier-nondigit
pp-number e sign
pp-number E sign
pp-number p sign
pp-number P sign
pp-number .

A.1.7 Language syntax summary A.1.9

422 Committee Draft — January 18, 1999 WG14/N869

A.2 Phrase structure grammar

A.2.1 Expressions

(6.5.1) primary-expression:
identifier
constant
string-literal
(expression)

(6.5.2) postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(argument-expression-listopt)
postfix-expression. identifier
postfix-expression-> identifier
postfix-expression++
postfix-expression--
(type-name) { initializer-list }
(type-name) { initializer-list , }

(6.5.2) argument-expression-list:
assignment-expression
argument-expression-list, assignment-expression

(6.5.3) unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)

(6.5.3) unary-operator: one of
& * + - ˜ !

(6.5.4) cast-expression:
unary-expression
(type-name) cast-expression

(6.5.5) multiplicative-expression:
cast-expression
multiplicative-expression* cast-expression
multiplicative-expression/ cast-expression
multiplicative-expression%cast-expression

A.2 Language syntax summary A.2.1

WG14/N869 Committee Draft — January 18, 1999 423

(6.5.6) additive-expression:
multiplicative-expression
additive-expression+ multiplicative-expression
additive-expression- multiplicative-expression

(6.5.7) shift-expression:
additive-expression
shift-expression<< additive-expression
shift-expression>> additive-expression

(6.5.8) relational-expression:
shift-expression
relational-expression< shift-expression
relational-expression> shift-expression
relational-expression<= shift-expression
relational-expression>= shift-expression

(6.5.9) equality-expression:
relational-expression
equality-expression== relational-expression
equality-expression!= relational-expression

(6.5.10) AND-expression:
equality-expression
AND-expression& equality-expression

(6.5.11) exclusive-OR-expression:
AND-expression
exclusive-OR-expressionˆ AND-expression

(6.5.12) inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression| exclusive-OR-expression

(6.5.13) logical-AND-expression:
inclusive-OR-expression
logical-AND-expression&& inclusive-OR-expression

(6.5.14) logical-OR-expression:
logical-AND-expression
logical-OR-expression|| logical-AND-expression

(6.5.15) conditional-expression:
logical-OR-expression
logical-OR-expression? expression: conditional-expression

A.2.1 Language syntax summary A.2.1

424 Committee Draft — January 18, 1999 WG14/N869

(6.5.16) assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

(6.5.16) assignment-operator:one of
= *= /= %= += -= <<= >>= &= ˆ= |=

(6.5.17) expression:
assignment-expression
expression, assignment-expression

(6.6) constant-expression:
conditional-expression

A.2.2 Declarations

(6.7) declaration:
declaration-specifiers init-declarator-listopt ;

(6.7) declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifiersopt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersopt

(6.7) init-declarator-list:
init-declarator
init-declarator-list , init-declarator

(6.7) init-declarator:
declarator
declarator = initializer

(6.7.1) storage-class-specifier:
typedef
extern
static
auto
register

A.2.1 Language syntax summary A.2.2

WG14/N869 Committee Draft — January 18, 1999 425

(6.7.2) type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
_Imaginary
struct-or-union-specifier
enum-specifier
typedef-name

(6.7.2.1) struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

(6.7.2.1) struct-or-union:
struct
union

(6.7.2.1) struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

(6.7.2.1) struct-declaration:
specifier-qualifier-list struct-declarator-list;

(6.7.2.1) specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt

(6.7.2.1) struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

(6.7.2.1) struct-declarator:
declarator
declaratoropt : constant-expression

A.2.2 Language syntax summary A.2.2

426 Committee Draft — January 18, 1999 WG14/N869

(6.7.2.2) enum-specifier:
enum identifieropt { enumerator-list }
enum identifieropt { enumerator-list , }
enum identifier

(6.7.2.2) enumerator-list:
enumerator
enumerator-list , enumerator

(6.7.2.2) enumerator:
enumeration-constant
enumeration-constant= constant-expression

(6.7.3) type-qualifier:
const
restrict
volatile

(6.7.4) function-specifier:
inline

(6.7.5) declarator:
pointeropt direct-declarator

(6.7.5) direct-declarator:
identifier
(declarator)
direct-declarator [assignment-expressionopt]
direct-declarator [*]

direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

(6.7.5) pointer:
* type-qualifier-listopt
* type-qualifier-listopt pointer

(6.7.5) type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

(6.7.5) parameter-type-list:
parameter-list
parameter-list , ...

A.2.2 Language syntax summary A.2.2

WG14/N869 Committee Draft — January 18, 1999 427

(6.7.5) parameter-list:
parameter-declaration
parameter-list , parameter-declaration

(6.7.5) parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declaratoropt

(6.7.5) identifier-list:
identifier
identifier-list , identifier

(6.7.6) type-name:
specifier-qualifier-list abstract-declaratoropt

(6.7.6) abstract-declarator:
pointer
pointeropt direct-abstract-declarator

(6.7.6) direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declaratoropt [assignment-expressionopt]
direct-abstract-declarator[*]
direct-abstract-declaratoropt (parameter-type-listopt)

(6.7.7) typedef-name:
identifier

(6.7.8) initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }

(6.7.8) initializer-list:
designationopt initializer
initializer-list , designationopt initializer

(6.7.8) designation:
designator-list =

(6.7.8) designator-list:
designator
designator-list designator

(6.7.8) designator:
[constant-expression]
. identifier

A.2.2 Language syntax summary A.2.2

428 Committee Draft — January 18, 1999 WG14/N869

A.2.3 Statements

(6.8) statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

(6.8.1) labeled-statement:
identifier : statement
case constant-expression: statement
default : statement

(6.8.2) compound-statement:
{ block-item-listopt }

(6.8.2) block-item-list:
block-item
block-item-list block-item

(6.8.2) block-item:
declaration
statement

(6.8.3) expression-statement:
expressionopt ;

(6.8.4) selection-statement:
if (expression) statement
if (expression) statementelse statement
switch (expression) statement

(6.8.5) iteration-statement:
while (expression) statement
do statementwhile (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement
for (declaration expressionopt ; expressionopt) statement

(6.8.6) jump-statement:
goto identifier ;
continue ;
break ;
return expressionopt ;

A.2.2 Language syntax summary A.2.3

WG14/N869 Committee Draft — January 18, 1999 429

A.2.4 External definitions

(6.9) translation-unit:
external-declaration
translation-unit external-declaration

(6.9) external-declaration:
function-definition
declaration

(6.9.1) function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

(6.9.1)declaration-list:
declaration
declaration-list declaration

A.3 Preprocessing directives

(6.10) preprocessing-file:
groupopt

(6.10) group:
group-part
group group-part

(6.10) group-part:
pp-tokensopt new-line
if-section
control-line

(6.10.1) if-section:
if-group elif-groupsopt else-groupopt endif-line

(6.10.1) if-group:
if constant-expression new-line groupopt
ifdef identifier new-line groupopt
ifndef identifier new-line groupopt

(6.10.1) elif-groups:
elif-group
elif-groups elif-group

(6.10.1) elif-group:
elif constant-expression new-line groupopt

(6.10.1) else-group:
else new-line groupopt

A.2.4 Language syntax summary A.3

430 Committee Draft — January 18, 1999 WG14/N869

(6.10.1) endif-line:
endif new-line

control-line:
(6.10.2) # include pp-tokens new-line
(6.10.3) # define identifier replacement-list new-line
(6.10.3) # define identifier lparen identifier-listopt)

replacement-list new-line
(6.10.3) # define identifier lparen ...) replacement-list new-line
(6.10.3) # define identifier lparen identifier-list, ...)

replacement-list new-line
(6.10.3) # undef identifier new-line
(6.10.4) # line pp-tokens new-line
(6.10.5) # error pp-tokensopt new-line
(6.10.6) # pragma pp-tokensopt new-line
(6.10.7) # new-line

(6.10.3) lparen:
the left-parenthesis character without preceding white space

(6.10.3) replacement-list:
pp-tokensopt

(6.10) pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

(6.10) new-line:
the new-line character

A.3 Language syntax summary A.3

WG14/N869 Committee Draft — January 18, 1999 431

Annex B
(informative)

Library summary

B.1 Diagnostics<assert.h>

NDEBUG
void assert(scalar expression);

B.2 Complex<complex.h>

complex
_Complex_I

imaginary
_Imaginary_I

I

#pragma STDC CX_LIMITED_RANGE on-off-switch
double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);
double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);
double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);
double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);
double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);
double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);
double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);
double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

B Library summary B.2

432 Committee Draft — January 18, 1999 WG14/N869

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);
double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);
double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);
double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);
double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);
double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);
double complex cpow(double complex x, double complex y);
float complex cpowf(float complex x, float complex y);
long double complex cpowl(long double complex x,

long double complex y);
double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);
double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);
double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);
double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);
double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);
double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

B.2 Library summary B.2

WG14/N869 Committee Draft — January 18, 1999 433

B.3 Character handling<ctype.h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);
int tolower(int c);
int toupper(int c);

B.4 Errors <errno.h>

EDOM EILSEQ ERANGE errno

B.5 Floating-point environment<fenv.h>

fenv_t
fexcept_t
FE_DIVBYZERO
FE_INEXACT
FE_INVALID

FE_OVERFLOW
FE_UNDERFLOW
FE_ALL_EXCEPT
FE_DOWNWARD
FE_TONEAREST

FE_TOWARDZERO
FE_UPWARD
FE_DFL_ENV

#pragma STDC FENV_ACCESS on-off-switch
void feclearexcept(int excepts);
void fegetexceptflag(fexcept_t *flagp,

int excepts);
void feraiseexcept(int excepts);
void fesetexceptflag(const fexcept_t *flagp, int excepts);
int fetestexcept(int excepts);
int fegetround(void);
int fesetround(int round);
void fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
void fesetenv(const fenv_t *envp);
void feupdateenv(const fenv_t *envp);

B.3 Library summary B.5

434 Committee Draft — January 18, 1999 WG14/N869

B.6 Characteristics of floating types<float.h>

FLT_ROUNDS
FLT_EVAL_METHOD
FLT_RADIX
FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
DECIMAL_DIG
FLT_DIG
DBL_DIG
LDBL_DIG
FLT_MIN_EXP

DBL_MIN_EXP
LDBL_MIN_EXP
FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP
FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP
FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX
DBL_MAX
LDBL_MAX
FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON
FLT_MIN
DBL_MIN
LDBL_MIN

B.7 Format conversion of integer types<inttypes.h>

PRId8
PRId16
PRId32
PRId64
PRIdLEAST8
PRIdLEAST16
PRIdLEAST32
PRIdLEAST64
PRIdFAST8
PRIdFAST16
PRIdFAST32
PRIdFAST64
PRIdMAX
PRIdPTR
PRIi8
PRIi16
PRIi32
PRIi64
PRIiLEAST8
PRIiLEAST16
PRIiLEAST32
PRIiLEAST64
PRIiFAST8
PRIiFAST16
PRIiFAST32

PRIiFAST64
PRIiMAX
PRIiPTR
PRIo8
PRIo16
PRIo32
PRIo64
PRIoLEAST8
PRIoLEAST16
PRIoLEAST32
PRIoLEAST64
PRIoFAST8
PRIoFAST16
PRIoFAST32
PRIoFAST64
PRIoMAX
PRIoPTR
PRIu8
PRIu16
PRIu32
PRIu64
PRIuLEAST8
PRIuLEAST16
PRIuLEAST32
PRIuLEAST64

PRIuFAST8
PRIuFAST16
PRIuFAST32
PRIuFAST64
PRIuMAX
PRIuPTR
PRIx8
PRIx16
PRIx32
PRIx64
PRIxLEAST8
PRIxLEAST16
PRIxLEAST32
PRIxLEAST64
PRIxFAST8
PRIxFAST16
PRIxFAST32
PRIxFAST64
PRIxMAX
PRIxPTR
PRIX8
PRIX16
PRIX32
PRIX64
PRIXLEAST8

PRIXLEAST16
PRIXLEAST32
PRIXLEAST64
PRIXFAST8
PRIXFAST16
PRIXFAST32
PRIXFAST64
PRIXMAX
PRIXPTR
SCNd8
SCNd16
SCNd32
SCNd64
SCNdLEAST8
SCNdLEAST16
SCNdLEAST32
SCNdLEAST64
SCNdFAST8
SCNdFAST16
SCNdFAST32
SCNdFAST64
SCNdMAX
SCNdPTR
SCNi8
SCNi16

B.6 Library summary B.7

WG14/N869 Committee Draft — January 18, 1999 435

SCNi32
SCNi64
SCNiLEAST8
SCNiLEAST16
SCNiLEAST32
SCNiLEAST64
SCNiFAST8
SCNiFAST16
SCNiFAST32
SCNiFAST64
SCNiMAX
SCNiPTR
SCNo8
SCNo16

SCNo32
SCNo64
SCNoLEAST8
SCNoLEAST16
SCNoLEAST32
SCNoLEAST64
SCNoFAST8
SCNoFAST16
SCNoFAST32
SCNoFAST64
SCNoMAX
SCNoPTR
SCNu8
SCNu16

SCNu32
SCNu64
SCNuLEAST8
SCNuLEAST16
SCNuLEAST32
SCNuLEAST64
SCNuFAST8
SCNuFAST16
SCNuFAST32
SCNuFAST64
SCNuMAX
SCNuPTR
SCNx8
SCNx16

SCNx32
SCNx64
SCNxLEAST8
SCNxLEAST16
SCNxLEAST32
SCNxLEAST64
SCNxFAST8
SCNxFAST16
SCNxFAST32
SCNxFAST64
SCNxMAX
SCNxPTR

intmax_t strtoimax(const char * restrict nptr,
char ** restrict endptr, int base);

uintmax_t strtoumax(const char * restrict nptr,
char ** restrict endptr, int base);

intmax_t wcstoimax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

B.8 Alternative spellings<iso646.h>

and
and_eq
bitand

bitor
compl
not

not_eq
or
or_eq

xor
xor_eq

B.9 Sizes of integer types<limits.h>

CHAR_BIT
SCHAR_MIN
SCHAR_MAX
UCHAR_MAX
CHAR_MIN

CHAR_MAX
MB_LEN_MAX
SHRT_MIN
SHRT_MAX
USHRT_MAX

INT_MIN
INT_MAX
UINT_MAX
LONG_MIN
LONG_MAX

ULONG_MAX
LLONG_MIN
LLONG_MAX
ULLONG_MAX

B.7 Library summary B.9

436 Committee Draft — January 18, 1999 WG14/N869

B.10 Localization<locale.h>

struct lconv
NULL

LC_ALL
LC_COLLATE

LC_CTYPE
LC_MONETARY

LC_NUMERIC
LC_TIME

char *setlocale(int category, const char *locale);
struct lconv *localeconv(void);

B.11 Mathematics<math.h>

float_t
double_t
HUGE_VAL
HUGE_VALF
HUGE_VALL

INFINITY
NAN
FP_INFINITE
FP_NAN
FP_NORMAL

FP_SUBNORMAL
FP_ZERO
FP_FAST_FMA
FP_FAST_FMAF
FP_FAST_FMAL

FP_ILOGB0
FP_ILOGBNAN

#pragma STDC FP_CONTRACT on-off-switch
int fpclassify(real-floating x);
int isfinite(real-floating x);
int isinf(real-floating x);
int isnan(real-floating x);
int isnormal(real-floating x);
int signbit(real-floating x);
double acos(double x);
float acosf(float x);
long double acosl(long double x);
double asin(double x);
float asinf(float x);
long double asinl(long double x);
double atan(double x);
float atanf(float x);
long double atanl(long double x);
double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);
double cos(double x);
float cosf(float x);
long double cosl(long double x);
double sin(double x);
float sinf(float x);
long double sinl(long double x);
double tan(double x);
float tanf(float x);
long double tanl(long double x);

B.10 Library summary B.11

WG14/N869 Committee Draft — January 18, 1999 437

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);
double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);
double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);
double cosh(double x);
float coshf(float x);
long double coshl(long double x);
double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);
double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);
double exp(double x);
float expf(float x);
long double expl(long double x);
double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);
double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);
double frexp(double value, int *exp);
float frexpf(float value, int *exp);
long double frexpl(long double value, int *exp);
int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);
double ldexp(double x, int exp);
float ldexpf(float x, int exp);
long double ldexpl(long double x, int exp);
double log(double x);
float logf(float x);
long double logl(long double x);
double log10(double x);
float log10f(float x);

B.11 Library summary B.11

438 Committee Draft — January 18, 1999 WG14/N869

long double log10l(long double x);
double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);
double log2(double x);
float log2f(float x);
long double log2l(long double x);
double logb(double x);
float logbf(float x);
long double logbl(long double x);
double modf(double value, double *iptr);
float modff(float value, float *iptr);
long double modfl(long double value, long double *iptr);
double scalbn(double x, int n);
float scalbnf(float x, int n);
long double scalbnl(long double x, int n);
double scalbln(double x, long int n);
float scalblnf(float x, long int n);
long double scalblnl(long double x, long int n);
double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);
double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);
double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
double erf(double x);
float erff(float x);
long double erfl(long double x);
double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);
double lgamma(double x);

B.11 Library summary B.11

WG14/N869 Committee Draft — January 18, 1999 439

float lgammaf(float x);
long double lgammal(long double x);
double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);
double ceil(double x);
float ceilf(float x);
long double ceill(long double x);
double floor(double x);
float floorf(float x);
long double floorl(long double x);
double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);
double rint(double x);
float rintf(float x);
long double rintl(long double x);
long int lrint(double x);
long int lrintf(float x);
long int lrintl(long double x);
long long int llrint(double x);
long long int llrintf(float x);
long long int llrintl(long double x);
double round(double x);
float roundf(float x);
long double roundl(long double x);
long int lround(double x);
long int lroundf(float x);
long int lroundl(long double x);
long long int llround(double x);
long long int llroundf(float x);
long long int llroundl(long double x);
double trunc(double x);
float truncf(float x);
long double truncl(long double x);
double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);
double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

B.11 Library summary B.11

440 Committee Draft — January 18, 1999 WG14/N869

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y,

int *quo);
double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);
double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);
double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);
double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);
double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);
double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);
double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);
double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y,

long double z);
int isgreater(real-floating x, real-floating y);
int isgreaterequal(real-floating x, real-floating y);
int isless(real-floating x, real-floating y);
int islessequal(real-floating x, real-floating y);
int islessgreater(real-floating x, real-floating y);
int isunordered(real-floating x, real-floating y);

B.11 Library summary B.11

WG14/N869 Committee Draft — January 18, 1999 441

B.12 Nonlocal jumps<setjmp.h>

jmp_buf
int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);

B.13 Signal handling<signal.h>

sig_atomic_t
SIG_DFL
SIG_ERR

SIG_IGN
SIGABRT
SIGFPE

SIGILL
SIGINT
SIGSEGV

SIGTERM

void (*signal(int sig, void (*func)(int)))(int);
int raise(int sig);

B.14 Variable arguments<stdarg.h>

va_list
type va_arg(va_list ap, type);
void va_copy(va_list dest, va_list src);
void va_end(va_list ap);
void va_start(va_list ap, parmN);

B.15 Boolean type and values<stdbool.h>

bool
true
false
_ _bool_true_false_are_defined

B.16 Common definitions<stddef.h>

ptrdiff_t size_t wchar_t NULL

offsetof(type, member-designator)

B.12 Library summary B.16

442 Committee Draft — January 18, 1999 WG14/N869

B.17 Integer types<stdint.h>

int8_t
int16_t
int32_t
int64_t
uint8_t
uint16_t
uint32_t
uint64_t
int_least8_t
int_least16_t
int_least32_t
int_least64_t
uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t
int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t
uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t
intptr_t
uintptr_t
intmax_t
uintmax_t
INT8_MIN
INT16_MIN

INT32_MIN
INT64_MIN
INT8_MAX
INT16_MAX
INT32_MAX
INT64_MAX
UINT8_MAX
UINT16_MAX
UINT32_MAX
UINT64_MAX
INT_LEAST8_MIN
INT_LEAST16_MIN
INT_LEAST32_MIN
INT_LEAST64_MIN
INT_LEAST8_MAX
INT_LEAST16_MAX
INT_LEAST32_MAX
INT_LEAST64_MAX
UINT_LEAST8_MAX
UINT_LEAST16_MAX
UINT_LEAST32_MAX
UINT_LEAST64_MAX
INT_FAST8_MIN
INT_FAST16_MIN
INT_FAST32_MIN
INT_FAST64_MIN
INT_FAST8_MAX
INT_FAST16_MAX
INT_FAST32_MAX
INT_FAST64_MAX

UINT_FAST8_MAX
UINT_FAST16_MAX
UINT_FAST32_MAX
UINT_FAST64_MAX
INTPTR_MIN
INTPTR_MAX
UINTPTR_MAX
INTMAX_MIN
INTMAX_MAX
UINTMAX_MAX
PTRDIFF_MIN
PTRDIFF_MAX
SIG_ATOMIC_MIN
SIG_ATOMIC_MAX
SIZE_MAX
WCHAR_MIN
WCHAR_MAX
WINT_MIN
WINT_MAX
INT8_C(value)
INT16_C(value)
INT32_C(value)
INT64_C(value)
UINT8_C(value)
UINT16_C(value)
UINT32_C(value)
UINT64_C(value)
INTMAX_C(value)
UINTMAX_C(value)

B.17 Library summary B.17

WG14/N869 Committee Draft — January 18, 1999 443

B.18 Input/output <stdio.h>

size_t
FILE
fpos_t
NULL
_IOFBF

_IOLBF
_IONBF
BUFSIZ
EOF
FOPEN_MAX

FILENAME_MAX
L_tmpnam
SEEK_CUR
SEEK_END
SEEK_SET

TMP_MAX
stderr
stdin
stdout

int remove(const char *filename);
int rename(const char *old, const char *new);
FILE *tmpfile(void);
char *tmpnam(char *s);
int fclose(FILE *stream);
int fflush(FILE *stream);
FILE *fopen(const char * restrict filename,

const char * restrict mode);
FILE *freopen(const char * restrict filename,

const char * restrict mode,
FILE * restrict stream);

void setbuf(FILE * restrict stream,
char * restrict buf);

int setvbuf(FILE * restrict stream,
char * restrict buf,
int mode, size_t size);

int fprintf(FILE * restrict stream,
const char * restrict format, ...);

int fscanf(FILE * restrict stream,
const char * restrict format, ...);

int printf(const char * restrict format, ...);
int scanf(const char * restrict format, ...);
int snprintf(char * restrict s, size_t n,

const char * restrict format, ...);
int sprintf(char * restrict s,

const char * restrict format, ...);
int sscanf(const char * restrict s,

const char * restrict format, ...);
int vfprintf(FILE * restrict stream,

const char * restrict format,
va_list arg);

int vfscanf(FILE * restrict stream,
const char * restrict format,
va_list arg);

B.18 Library summary B.18

444 Committee Draft — January 18, 1999 WG14/N869

int vprintf(const char * restrict format,
va_list arg);

int vscanf(const char * restrict format,
va_list arg);

int vsnprintf(char * restrict s, size_t n,
const char * restrict format,
va_list arg);

int vsprintf(char * restrict s,
const char * restrict format,
va_list arg);

int vsscanf(const char * restrict s,
const char * restrict format,
va_list arg);

int fgetc(FILE *stream);
char *fgets(char * restrict s, int n,

FILE * restrict stream);
int fputc(int c, FILE *stream);
int fputs(const char * restrict s,

FILE * restrict stream);
int getc(FILE *stream);
int getchar(void);
char *gets(char *s);
int putc(int c, FILE *stream);
int putchar(int c);
int puts(const char *s);
int ungetc(int c, FILE *stream);
size_t fread(void * restrict ptr,

size_t size, size_t nmemb,
FILE * restrict stream);

size_t fwrite(const void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

int fgetpos(FILE * restrict stream,
fpos_t * restrict pos);

int fseek(FILE *stream, long int offset, int whence);
int fsetpos(FILE *stream, const fpos_t *pos);
long int ftell(FILE *stream);
void rewind(FILE *stream);
void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);

B.18 Library summary B.18

WG14/N869 Committee Draft — January 18, 1999 445

void perror(const char *s);

B.19 General utilities<stdlib.h>

size_t
wchar_t
div_t

ldiv_t
lldiv_t
NULL

EXIT_FAILURE
EXIT_SUCCESS
RAND_MAX

MB_CUR_MAX

double atof(const char *nptr);
int atoi(const char *nptr);
long int atol(const char *nptr);
long long int atoll(const char *nptr);
double strtod(const char * restrict nptr,

char ** restrict endptr);
float strtof(const char * restrict nptr,

char ** restrict endptr);
long double strtold(const char * restrict nptr,

char ** restrict endptr);
long int strtol(const char * restrict nptr,

char ** restrict endptr, int base);
long long int strtoll(const char * restrict nptr,

char ** restrict endptr, int base);
unsigned long int strtoul(

const char * restrict nptr,
char ** restrict endptr,
int base);

unsigned long long int strtoull(
const char * restrict nptr,
char ** restrict endptr,
int base);

int rand(void);
void srand(unsigned int seed);
void *calloc(size_t nmemb, size_t size);
void free(void *ptr);
void *malloc(size_t size);
void *realloc(void *ptr, size_t size);
void abort(void);
int atexit(void (*func)(void));
void exit(int status);
char *getenv(const char *name);
int system(const char *string);
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,

B.18 Library summary B.19

446 Committee Draft — January 18, 1999 WG14/N869

int (*compar)(const void *, const void *));
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));
int abs(int j);
long int labs(long int j);
long long int llabs(long long int j);
div_t div(int numer, int denom);
ldiv_t ldiv(long int numer, long int denom);
lldiv_t lldiv(long long int numer,

long long int denom);
int mblen(const char *s, size_t n);
int mbtowc(wchar_t * restrict pwc,

const char * restrict s,
size_t n);

int wctomb(char *s, wchar_t wchar);
size_t mbstowcs(wchar_t * restrict pwcs,

const char * restrict s,
size_t n);

size_t wcstombs(char * restrict s,
const wchar_t * restrict pwcs,
size_t n);

B.20 String handling<string.h>

size_t
NULL
void *memcpy(void * restrict s1,

const void * restrict s2,
size_t n);

void *memmove(void *s1, const void *s2, size_t n);
char *strcpy(char * restrict s1,

const char * restrict s2);
char *strncpy(char * restrict s1,

const char * restrict s2,
size_t n);

char *strcat(char * restrict s1,
const char * restrict s2);

char *strncat(char * restrict s1,
const char * restrict s2,
size_t n);

int memcmp(const void *s1, const void *s2, size_t n);
int strcmp(const char *s1, const char *s2);

B.19 Library summary B.20

WG14/N869 Committee Draft — January 18, 1999 447

int strcoll(const char *s1, const char *s2);
int strncmp(const char *s1, const char *s2, size_t n);
size_t strxfrm(char * restrict s1,

const char * restrict s2,
size_t n);

void *memchr(const void *s, int c, size_t n);
char *strchr(const char *s, int c);
size_t strcspn(const char *s1, const char *s2);
char *strpbrk(const char *s1, const char *s2);
char *strrchr(const char *s, int c);
size_t strspn(const char *s1, const char *s2);
char *strstr(const char *s1, const char *s2);
char *strtok(char * restrict s1,

const char * restrict s2);
void *memset(void *s, int c, size_t n);
char *strerror(int errnum);
size_t strlen(const char *s);

B.21 Type-generic math<tgmath.h>

acos
asin
atan
acosh
asinh
atanh
cos
sin
tan
cosh
sinh
tanh
exp
log
pow

sqrt
fabs
atan2
cbrt
ceil
copysign
erf
erfc
exp2
expm1
fdim
floor
fma
fmax
fmin

fmod
frexp
hypot ∗
ilogb
ldexp
lgamma
llrint
llround
log10
log1p
log2
logb
lrint
lround
nearbyint

nextafter
nexttoward
remainder
remquo
rint
round
scalbn
scalbln
tgamma
trunc
carg
cimag
conj
cproj
creal

B.20 Library summary B.21

448 Committee Draft — January 18, 1999 WG14/N869

B.22 Date and time<time.h>

NULL ∗
CLOCKS_PER_SEC

size_t ∗
clock_t

time_t
struct tm

clock_t clock(void);
double difftime(time_t time1, time_t time0);
time_t mktime(struct tm *timeptr);
time_t time(time_t *timer); ∗
char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timer);
struct tm *gmtime(const time_t *timer);
struct tm *localtime(const time_t *timer);
size_t strftime(char * restrict s,

size_t maxsize,
const char * restrict format,
const struct tm * restrict timeptr);

B.23 Extended multibyte and wide-character utilities<wchar.h>

wchar_t
size_t
mbstate_t

wint_t
struct tm
NULL ∗

WCHAR_MAX
WCHAR_MIN
WEOF

int fwprintf(FILE * restrict stream,
const wchar_t * restrict format, ...);

int fwscanf(FILE * restrict stream,
const wchar_t * restrict format, ...);

int swprintf(wchar_t * restrict s,
size_t n,
const wchar_t * restrict format, ...);

int swscanf(const wchar_t * restrict s,
const wchar_t * restrict format, ...);

int vfwprintf(FILE * restrict stream,
const wchar_t * restrict format,
va_list arg);

int vfwscanf(FILE * restrict stream,
const wchar_t * restrict format,
va_list arg);

int vswprintf(wchar_t * restrict s,
size_t n,
const wchar_t * restrict format,
va_list arg);

int vswscanf(const wchar_t * restrict s,

B.22 Library summary B.23

WG14/N869 Committee Draft — January 18, 1999 449

const wchar_t * restrict format,
va_list arg);

int vwprintf(const wchar_t * restrict format,
va_list arg);

int vwscanf(FILE * restrict stream,
const wchar_t * restrict format,
va_list arg);

int wprintf(const wchar_t * restrict format, ...);
int wscanf(const wchar_t * restrict format, ...);
wint_t fgetwc(FILE *stream);
wchar_t *fgetws(wchar_t * restrict s,

int n, FILE * restrict stream);
wint_t fputwc(wchar_t c, FILE *stream);
int fputws(const wchar_t * restrict s,

FILE * restrict stream);
int fwide(FILE *stream, int mode);
wint_t getwc(FILE *stream);
wint_t getwchar(void);
wint_t putwc(wchar_t c, FILE *stream);
wint_t putwchar(wchar_t c);
wint_t ungetwc(wint_t c, FILE *stream);
double wcstod(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);
float wcstof(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);
long double wcstold(const wchar_t * restrict nptr,

wchar_t ** restrict endptr);
long int wcstol(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
long long int wcstoll(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long int wcstoul(const wchar_t * restrict nptr,

wchar_t ** restrict endptr, int base);
unsigned long long int wcstoull(

const wchar_t * restrict nptr,
wchar_t ** restrict endptr, int base);

wchar_t *wcscpy(wchar_t * restrict s1,
const wchar_t * restrict s2);

wchar_t *wcsncpy(wchar_t * restrict s1,
const wchar_t * restrict s2, size_t n);

wchar_t *wcscat(wchar_t * restrict s1,

B.23 Library summary B.23

450 Committee Draft — January 18, 1999 WG14/N869

const wchar_t * restrict s2);
wchar_t *wcsncat(wchar_t * restrict s1,

const wchar_t * restrict s2, size_t n);
int wcscmp(const wchar_t *s1, const wchar_t *s2);
int wcscoll(const wchar_t *s1, const wchar_t *s2);
int wcsncmp(const wchar_t *s1, const wchar_t *s2,

size_t n);
size_t wcsxfrm(wchar_t * restrict s1,

const wchar_t * restrict s2, size_t n);
wchar_t *wcschr(const wchar_t *s, wchar_t c);
size_t wcscspn(const wchar_t *s1, const wchar_t *s2);
size_t wcslen(const wchar_t *s);
wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsrchr(const wchar_t *s, wchar_t c);
size_t wcsspn(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);
wchar_t *wcstok(wchar_t * restrict s1,

const wchar_t * restrict s2,
wchar_t ** restrict ptr);

wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);
int wmemcmp(wchar_t * restrict s1,

const wchar_t * restrict s2,
size_t n);

wchar_t *wmemcpy(wchar_t * restrict s1,
const wchar_t * restrict s2,
size_t n);

wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2,
size_t n);

wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);
size_t wcsftime(wchar_t *s, size_t maxsize,

const wchar_t *format, const struct tm *timeptr);
wint_t btowc(int c); ∗
int wctob(wint_t c);
int mbsinit(const mbstate_t *ps);
size_t mbrlen(const char * restrict s, size_t n,

mbstate_t * restrict ps);
size_t mbrtowc(wchar_t * restrict pwc,

const char * restrict s, size_t n,
mbstate_t * restrict ps);

size_t wcrtomb(char * restrict s, wchar_t wc,
mbstate_t * restrict ps);

B.23 Library summary B.23

WG14/N869 Committee Draft — January 18, 1999 451

size_t mbsrtowcs(wchar_t * restrict dst,
const char ** restrict src, size_t len,
mbstate_t * restrict ps);

size_t wcsrtombs(char * restrict dst,
const wchar_t ** restrict src, size_t len,
mbstate_t * restrict ps);

B.24 Wide-character classification and mapping utilities<wctype.h>

wint_t wctrans_t wctype_t WEOF

int iswalnum(wint_t wc);
int iswalpha(wint_t wc);
int iswcntrl(wint_t wc);
int iswdigit(wint_t wc);
int iswgraph(wint_t wc);
int iswlower(wint_t wc);
int iswprint(wint_t wc);
int iswpunct(wint_t wc);
int iswspace(wint_t wc);
int iswupper(wint_t wc);
int iswxdigit(wint_t wc);
int iswctype(wint_t wc, wctype_t desc);
wctype_t wctype(const char *property);
wint_t towlower(wint_t wc);
wint_t towupper(wint_t wc);
wint_t towctrans(wint_t wc, wctrans_t desc);
wctrans_t wctrans(const char *property);

B.23 Library summary B.24

452 Committee Draft — January 18, 1999 WG14/N869

Annex C
(informative)

Sequence points

1 The following are the sequence points described in 5.1.2.3:

— The call to a function, after the arguments have been evaluated (6.5.2.2).

— The end of the first operand of the following operators: logicalAND && (6.5.13);
logical OR || (6.5.14); conditional? (6.5.15); comma, (6.5.17).

— The end of a full declarator: declarators (6.7.5);

— The end of a full expression: an initializer (6.7.8); the expression in an expression
statement (6.8.3); the controlling expression of a selection statement (if or switch)
(6.8.4); the controlling expression of awhile or do statement (6.8.5); each of the
expressions of afor statement (6.8.5.3); the expression in areturn statement
(6.8.6.4).

— Immediately before a library function returns (7.1.4).

— After the actions associated with each formatted input/output function conversion
specifier (7.19.6, 7.24.2).

— Immediately before and immediately after each call to a comparison function, and
also between any call to a comparison function and any movement of the objects
passed as arguments to that call (7.20.5).

C Sequence points C

WG14/N869 Committee Draft — January 18, 1999 453

Annex D
(normative)

Universal character names for identifiers

1 This clause lists the hexadecimal code values that are valid in universal character names
in identifiers.

2 This table is reproduced unchanged from ISO/IEC TR 10176, produced by ISO/IEC
JTC1/SC22/WG20, except for the omission of ranges that are part of the required
character set.

Latin: 00AA, 00BA, 00C0−00D6, 00D8−00F6, 00F8−01F5, 01FA−0217,
0250−02A8, 1E00−1E9B, 1EA0−1EF9, 207F

Greek: 0386, 0388−038A, 038C, 038E−03A1, 03A3−03CE, 03D0−03D6,
03DA, 03DC, 03DE, 03E0, 03E2−03F3, 1F00−1F15, 1F18−1F1D,
1F20−1F45, 1F48−1F4D, 1F50−1F57, 1F59, 1F5B, 1F5D,
1F5F−1F7D, 1F80−1FB4, 1FB6−1FBC, 1FC2−1FC4, 1FC6−1FCC,
1FD0−1FD3, 1FD6−1FDB, 1FE0−1FEC, 1FF2−1FF4, 1FF6−1FFC

Cyrillic: 0401−040C, 040E−044F, 0451−045C, 045E−0481, 0490−04C4,
04C7−04C8, 04CB−04CC, 04D0−04EB, 04EE−04F5, 04F8−04F9

Armenian: 0531−0556, 0561−0587

Hebrew: 05B0−05B9, 05BB−05BD, 05BF, 05C1−05C2, 05D0−05EA,
05F0−05F2

Arabic: 0621−063A, 0640−0652, 0670−06B7, 06BA−06BE, 06C0−06CE,
06D0−06DC, 06E5−06E8, 06EA−06ED

Devanagari: 0901−0903, 0905−0939, 093E−094D, 0950−0952, 0958−0963

Bengali: 0981−0983, 0985−098C, 098F−0990, 0993−09A8, 09AA−09B0,
09B2, 09B6−09B9, 09BE−09C4, 09C7−09C8, 09CB−09CD,
09DC−09DD, 09DF−09E3, 09F0−09F1

Gurmukhi: 0A02, 0A05−0A0A, 0A0F−0A10, 0A13−0A28, 0A2A−0A30,
0A32−0A33, 0A35−0A36, 0A38−0A39, 0A3E−0A42, 0A47−0A48,
0A4B−0A4D, 0A59−0A5C, 0A5E, 0A74

Gujarati: 0A81−0A83, 0A85−0A8B, 0A8D, 0A8F−0A91, 0A93−0AA8,
0AAA−0AB0, 0AB2−0AB3, 0AB5−0AB9, 0ABD−0AC5,
0AC7−0AC9, 0ACB−0ACD, 0AD0, 0AE0

D Universal character names for identifiers D

454 Committee Draft — January 18, 1999 WG14/N869

Oriya: 0B01−0B03, 0B05−0B0C, 0B0F−0B10, 0B13−0B28, 0B2A−0B30,
0B32−0B33, 0B36−0B39, 0B3E−0B43, 0B47−0B48, 0B4B−0B4D,
0B5C−0B5D, 0B5F−0B61

Tamil: 0B82−0B83, 0B85−0B8A, 0B8E−0B90, 0B92−0B95, 0B99−0B9A,
0B9C, 0B9E−0B9F, 0BA3−0BA4, 0BA8−0BAA, 0BAE−0BB5,
0BB7−0BB9, 0BBE−0BC2, 0BC6−0BC8, 0BCA−0BCD

Telugu: 0C01−0C03, 0C05−0C0C, 0C0E−0C10, 0C12−0C28, 0C2A−0C33,
0C35−0C39, 0C3E−0C44, 0C46−0C48, 0C4A−0C4D, 0C60−0C61

Kannada: 0C82−0C83, 0C85−0C8C, 0C8E−0C90, 0C92−0CA8, 0CAA−0CB3,
0CB5−0CB9, 0CBE−0CC4, 0CC6−0CC8, 0CCA−0CCD, 0CDE,
0CE0−0CE1

Malayalam: 0D02−0D03, 0D05−0D0C, 0D0E−0D10, 0D12−0D28, 0D2A−0D39,
0D3E−0D43, 0D46−0D48, 0D4A−0D4D, 0D60−0D61

Thai: 0E01−0E3A, 0E40−0E5B

Lao: 0E81−0E82, 0E84, 0E87−0E88, 0E8A, 0E8D, 0E94−0E97,
0E99−0E9F, 0EA1−0EA3, 0EA5, 0EA7, 0EAA−0EAB,
0EAD−0EAE, 0EB0−0EB9, 0EBB−0EBD, 0EC0−0EC4, 0EC6,
0EC8−0ECD, 0EDC−0EDD

Tibetan: 0F00, 0F18−0F19, 0F35, 0F37, 0F39, 0F3E−0F47, 0F49−0F69,
0F71−0F84, 0F86−0F8B, 0F90−0F95, 0F97, 0F99−0FAD,
0FB1−0FB7, 0FB9

Georgian: 10A0−10C5, 10D0−10F6

Hiragana: 3041−3093, 309B−309C

Katakana: 30A1−30F6, 30FB−30FC

Bopomofo: 3105−312C

CJK Unified Ideographs: 4E00−9FA5

Hangul: AC00−D7A3

Digits: 0660−0669, 06F0−06F9, 0966−096F, 09E6−09EF, 0A66−0A6F,
0AE6−0AEF, 0B66−0B6F, 0BE7−0BEF, 0C66−0C6F, 0CE6−0CEF,
0D66−0D6F, 0E50−0E59, 0ED0−0ED9, 0F20−0F33

Special characters: 00B5, 00B7, 02B0−02B8, 02BB, 02BD−02C1, 02D0−02D1,
02E0−02E4, 037A, 0559, 093D, 0B3D, 1FBE, 203F−2040, 2102,
2107, 210A−2113, 2115, 2118−211D, 2124, 2126, 2128, 212A−2131,
2133−2138, 2160−2182, 3005−3007, 3021−3029

D Universal character names for identifiers D

WG14/N869 Committee Draft — January 18, 1999 455

Annex E
(informative)

Implementation limits

1 The contents of the header<limits.h> are given below, in alphabetical order. The
minimum magnitudes shown shall be replaced by implementation-defined magnitudes
with the same sign. The values shall all be constant expressions suitable for use in#if
preprocessing directives. The components are described further in 5.2.4.2.1.

#define CHAR_BIT 8
#define CHAR_MAX UCHAR_MAX or SCHAR_MAX
#define CHAR_MIN 0 or SCHAR_MIN
#define INT_MAX +32767
#define INT_MIN -32767
#define LONG_MAX +2147483647
#define LONG_MIN -2147483647
#define LLONG_MAX +9223372036854775807
#define LLONG_MIN -9223372036854775807
#define MB_LEN_MAX 1
#define SCHAR_MAX +127
#define SCHAR_MIN -127
#define SHRT_MAX +32767
#define SHRT_MIN -32767
#define UCHAR_MAX 255
#define USHRT_MAX 65535
#define UINT_MAX 65535
#define ULONG_MAX 4294967295
#define ULLONG_MAX 18446744073709551615

2 The contents of the header<float.h> are given below. All integer values, except
FLT_ROUNDS, shall be constant expressions suitable for use in#if preprocessing
directives; all floating values shall be constant expressions. The components are
described further in 5.2.4.2.2.

3 The values given in the following list shall be replaced by implementation-defined
expressions:

#define FLT_EVAL_METHOD
#define FLT_ROUNDS

E Implementation limits E

456 Committee Draft — January 18, 1999 WG14/N869

4 The values given in the following list shall be replaced by implementation-defined
constant expressions that are greater or equal in magnitude (absolute value) to those
shown, with the same sign:

#define DBL_DIG 10
#define DBL_MANT_DIG
#define DBL_MAX_10_EXP +37
#define DBL_MAX_EXP
#define DBL_MIN_10_EXP -37
#define DBL_MIN_EXP
#define DECIMAL_DIG 10
#define FLT_DIG 6
#define FLT_MANT_DIG
#define FLT_MAX_10_EXP +37
#define FLT_MAX_EXP
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP
#define FLT_RADIX 2
#define LDBL_DIG 10
#define LDBL_MANT_DIG
#define LDBL_MAX_10_EXP +37
#define LDBL_MAX_EXP
#define LDBL_MIN_10_EXP -37
#define LDBL_MIN_EXP

5 The values given in the following list shall be replaced by implementation-defined
constant expressions with values that are greater than or equal to those shown:

#define DBL_MAX 1E+37
#define FLT_MAX 1E+37
#define LDBL_MAX 1E+37

6 The values given in the following list shall be replaced by implementation-defined
constant expressions with (positive) values that are less than or equal to those shown:

#define DBL_EPSILON 1E-9
#define DBL_MIN 1E-37
#define FLT_EPSILON 1E-5
#define FLT_MIN 1E-37
#define LDBL_EPSILON 1E-9
#define LDBL_MIN 1E-37

E Implementation limits E

WG14/N869 Committee Draft — January 18, 1999 457

Annex F
(normative)

IEC 60559 floating-point arithmetic

F.1 Introduction

1 This annex specifies C language support for the IEC 60559 floating-point standard. The
IEC 60559 floating-point standardis specificallyBinary floating-point arithmetic for
microprocessor systems, second edition(IEC 60559:1989), previously designated IEC
559:1989 and asIEEE Standard for Binary Floating-Point Arithmetic(ANSI/IEEE
754−1985). IEEE Standard for Radix-Independent Floating-Point Arithmetic
(ANSI/IEEE 854−1987) generalizes the binary standard to remove dependencies on radix
and word length.IEC 60559generally refers to the floating-point standard, as in IEC
60559 operation, IEC 60559 format, etc. An implementation that defines
_ _STDC_IEC_559_ _ shall conform to the specifications in this annex. Wherea
binding between the C language and IEC 60559 is indicated, the IEC 60559-specified
behavior is adopted by reference, unless stated otherwise.

F.2 Types

1 The C floating types match the IEC 60559 formats as follows:

— Thefloat type matches the IEC 60559 single format.

— Thedouble type matches the IEC 60559 double format.

— The long double type matches an IEC 60559 extended format,285) else a non-
IEC 60559 extended format, else the IEC 60559double format.

Any non-IEC 60559 extended format used for thelong double type shall have more
precision than IEC 60559 double and at least the range of IEC 60559 double.286)

Recommended practice

2 Thelong double type should match an IEC 60559 extended format.

285)Extendedis IEC 60559’s double-extended data format. Extended refers to both the common 80-bit

and quadruple 128-bit IEC 60559 formats.

286) A non-IEC 60559long double type is required to provide infinity and NaNs, as its values include

all double values.

F IEC 60559 floating-point arithmetic F.2

458 Committee Draft — January 18, 1999 WG14/N869

F.2.1 Infinities, signed zeros, and NaNs

1 This specification does not define the behavior of signaling NaNs.287) It generally uses
the termNaN to denote quiet NaNs. TheNANand INFINITY macros and thenan
functions in<math.h> provide designations for IEC 60559 NaNs and infinities.

F.3 Operators and functions

1 C operators and functions provide IEC 60559 required and recommended facilities as
listed below.

— The +, −, * , and / operators provide the IEC 60559 add, subtract, multiply, and
divide operations.

— Thesqrt function in<math.h> provides the IEC 60559 square root operation.

— The remainder function in <math.h> provides the IEC 60559 remainder
operation. Theremquo function in <math.h> provides the same operation but
with additional information.

— The rint function in <math.h> provides the IEC 60559 operation that rounds a
floating-point number to an integer value (in the same precision). The C
nearbyint function in <math.h> provides the nearbyinteger function
recommended in the Appendix to IEEE standard 854.

— The conversions for floating types provide the IEC 60559 conversions between
floating-point precisions.

— The conversions from integer to floating types provide the IEC 60559 conversions
from integer to floating point.

— The conversions from floating to integer types provide IEC 60559-like conversions
but always round toward zero.

— The lrint and llrint functions in <math.h> provide the IEC 60559
conversions, which honor the directed rounding mode, from floating point to the
long int and long long int integer formats. Thelrint and llrint
functions can be used to implement IEC 60559 conversions from floating to other
integer formats.

— The translation time conversion of floating constants and thestrtod , fprintf ,
fscanf , and related library functions in<stdlib.h> , <stdio.h> , and
<wchar.h> provide IEC 60559 binary-decimal conversions. Thestrtold
function in<stdlib.h> provides the conv function recommended in the Appendix
to IEEE standard 854.

287) Since NaNs created by IEC 60559 operations are always quiet, quiet NaNs (along with infinities) are

sufficient for closure of the arithmetic.

F.2.1 IEC 60559 floating-point arithmetic F.3

WG14/N869 Committee Draft — January 18, 1999 459

— The relational and equality operators provide IEC 60559 comparisons. IEC 60559
identifies a need for additional comparison predicates to facilitate writing code that
accounts for NaNs. The comparison macros (isgreater , isgreaterequal ,
isless , islessequal , islessgreater , andisunordered) in <math.h>
supplement the language operators to address this need. Theislessgreater and
isunordered macros provide respectively a quiet version of the <> predicate and
the unordered predicate recommended in the Appendix to IEC 60559.

— The feclearexcept , feraiseexcept , and fetestexcept functions in
<fenv.h> provide the facility to test and alter the IEC 60559 floating-point
exception flags. Thefegetexceptflag and fesetexceptflag functions in
<fenv.h> provide the facility to save and restore all five status flags at one time.
These functions are used in conjunction with the typefexcept_t and the exception
macros (FE_INEXACT, FE_DIVBYZERO, FE_UNDERFLOW, FE_OVERFLOW,
FE_INVALID) also in<fenv.h> .

— The fegetround and fesetround functions in<fenv.h> provide the facility
to select among the IEC 60559 directed rounding modes represented by the rounding
direction macros (FE_TONEAREST, FE_UPWARD, FE_DOWNWARD,
FE_TOWARDZERO) also in<fenv.h> .

— The fegetenv , feholdexcept , fesetenv , and feupdateenv functions in
<fenv.h> provide a facility to manage the floating-point environment, comprising
the IEC 60559 status flags and control modes.

— The copysign function in <math.h> provides the copysign function
recommended in the Appendix to IEC 60559.

— The unary minus (−) operator provides the minus (−) operation recommended in the
Appendix to IEC 60559.

— The scalbn and scalbln functions in<math.h> provides the scalb function
recommended in the Appendix to IEC 60559.

— The logb function in <math.h> provides the logb function recommended in the
Appendix to IEC 60559, but following the newer specifications in IEEE 854.

— The nextafter andnexttoward functions in<math.h> provide the nextafter
function recommended in the Appendix to IEC 60559 (but with a minor change to
better handle signed zeros).

— The isfinite macro in<math.h> provides the finite function recommended in
the Appendix to IEC 60559.

— The isnan macro in<math.h> provides the isnan function recommended in the
Appendix to IEC 60559.

F.3 IEC 60559 floating-point arithmetic F.3

460 Committee Draft — January 18, 1999 WG14/N869

— The signbit macro and thefpclassify macro in <math.h> , used in
conjunction with the number classification macros (FP_NAN, FP_INFINITE ,
FP_NORMAL, FP_SUBNORMAL, FP_ZERO), provide the facility of the class
function recommended in the Appendix to IEC 60559 (except thatfpclassify
does not distinguish signaling from quiet NaNs).

F.4 Floating to integer conversion

1 If the floating value is infinite or NaN or if the integral part of the floating value exceeds
the range of the integer type, then theinvalid exception is raised and the resulting value is
unspecified. Whether conversion of non-integer floating values whose integral part is
within the range of the integer type raises the inexact exception is unspecified.288)

F.5 Binary-decimal conversion

1 Conversion from the widest supported IEC 60559 format to decimal with
DECIMAL_DIGdigits and back is the identity function.289)

2 Conversions involving IEC 60559 formats follow all pertinent recommended practice. In
particular, conversion between any supported IEC 60559 format and decimal with
DECIMAL_DIGor fewer significant digits is correctly rounded.

3 Functions such asstrtod that convert character sequences to floating types must honor
the rounding direction. Hence, if the rounding direction might be upward or downward,
the implementation cannot convert a minus-signed sequence by negating the converted
unsigned sequence.

288) ANSI/IEEE 854, but not IEC 60559 (ANSI/IEEE 754), directly specifies that floating-to-integer

conversions raise theinexact exception for non-integer in-range values. In those cases where it

matters, library functions can be used to effect such conversions with or without raising the inexact

exception. Seerint , lrint , llrint , andnearbyint in <math.h> .

289) If the minimum-width IEC 60559 extended format (64 bits of precision) is supported,

DECIMAL_DIG shall be at least 21. If IEC 60559 double (53 bits of precision) is the widest IEC

60559 format supported, thenDECIMAL_DIG shall be at least 17. (By contrast,LDBL_DIG and

DBL_DIG are 19 and 15, respectively, for these formats.)

F.3 IEC 60559 floating-point arithmetic F.5

WG14/N869 Committee Draft — January 18, 1999 461

F.6 Contracted expressions

1 A contracted expression treats infinities, NaNs, signed zeros, subnormals, and the
rounding directions in a manner consistent with the basic arithmetic operations covered
by IEC 60559.

Recommended practice

2 A contracted expression should raise exceptions in a manner generally consistent with the
basic arithmetic operations. A contracted expression should deliver the same value as its
uncontracted counterpart, else should be correctly rounded (once).

F.7 Environment

1 The floating-point environment defined in<fenv.h> includes the IEC 60559 exception
status flags and directed-rounding control modes. It includes also IEC 60559 dynamic
rounding precision and trap enablement modes, if the implementation supports them.290)

F.7.1 Environment management

1 IEC 60559 requires that floating-point operations implicitly raise exception status flags,
and that rounding control modes can be set explicitly to affect result values of floating-
point operations. When the state for theFENV_ACCESSpragma (defined in
<fenv.h>) is on, these changes to the floating-point state are treated as side effects
which respect sequence points.291)

F.7.2 Translation

1 During translation the IEC 60559 default modes are in effect:

— The rounding direction mode is rounding to nearest.

— The rounding precision mode (if supported) is set so that results are not shortened.

— Trapping or stopping (if supported) is disabled on all exceptions.

Recommended practice

2 The implementation should produce a diagnostic message for each translation-time
floating-point exception, other than inexact;292) the implementation should then proceed
with the translation of the program.

290) This specification does not require dynamic rounding precision nor trap enablement modes.

291) If the state for theFENV_ACCESSpragma isoff , the implementation is free to assume the modes will

be the default ones and the flags will not be tested, which allows certain optimizations (see F.8).

292) As floating constants are converted to appropriate internal representations at translation time, their

conversion is subject to default rounding modes and raises no execution-time exceptions (even where

the state of theFENV_ACCESSpragma ison). Library functions, for examplestrtod , provide

execution-time conversion of numeric strings.

F.6 IEC 60559 floating-point arithmetic F.7.2

462 Committee Draft — January 18, 1999 WG14/N869

F.7.3 Execution

1 At program startup the floating-point environment is initialized as prescribed by IEC
60559:

— All exception status flags are cleared.

— The rounding direction mode is rounding to nearest.

— The dynamic rounding precision mode (if supported) is set so that results are not
shortened.

— Trapping or stopping (if supported) is disabled on all exceptions.

F.7.4 Constant expressions

1 An arithmetic constant expression of floating type, other than one in an initializer for an
object that has static storage duration, is evaluated (as if) during execution; thus, it is
affected by any operative modes and raises exceptions as required by IEC 60559
(provided the state for theFENV_ACCESSpragma ison).293)

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

float w[] = { 0.0/0.0 }; // raises an exception
static float x = 0.0/0.0; // does not raise an exception
float y = 0.0/0.0; // raises an exception
double z = 0.0/0.0; // raises an exception
/* ... */

}

3 For the static initialization, the division is done at translation time, raising no (execution-time) exceptions.
On the other hand, for the three automatic initializations the invalid division occurs at execution time.

293) Where the state for theFENV_ACCESSpragma ison, results of inexact expressions like1.0/3.0

are affected by rounding modes set at execution time, and expressions such as0.0/0.0 and

1.0/0.0 generate execution-time exceptions. The programmer can achieve the efficiency of

translation-time evaluation through static initialization, such as

const static double one_third = 1.0/3.0;

F.7.2 IEC 60559 floating-point arithmetic F.7.4

WG14/N869 Committee Draft — January 18, 1999 463

F.7.5 Initialization

1 All computation for automatic initialization is done (as if) at execution time; thus, it is
affected by any operative modes and raises exceptions as required by IEC 60559
(provided the state for theFENV_ACCESSpragma is on). All computation for
initialization of objects that have static storage duration is done (as if) at translation time.

2 EXAMPLE

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(void)
{

float u[] = { 1.1e75 }; // raises exceptions
static float v = 1.1e75; // does not raise exceptions
float w = 1.1e75; // raises exceptions
double x = 1.1e75; // may raise exceptions
float y = 1.1e75f; // may raise exceptions
long double z = 1.1e75; // does not raise exceptions
/* ... */

}

3 The static initialization ofv raises no (execution-time) exceptions because its computation is done at
translation time. The automatic initialization ofu andw require an execution-time conversion tofloat of
the wider value1.1e75 , which raises exceptions. The automatic initializations ofx and y entail
execution-time conversion; however, in some expression evaluation methods, the conversions is not to a
narrower format, in which case no exception is raised.294) The automatic initialization ofz entails
execution-time conversion, but not to a narrower format, so no exception is raised. Note that the
conversions of the floating constants1.1e75 and 1.1e75f to their internal representations occur at
translation time in all cases.

F.7.6 Changing the environment

1 Operations defined in 6.5 and functions and macros defined for the standard libraries
change flags and modes just as indicated by their specifications (including conformance
to IEC 60559). They do not change flags or modes (so as to be detectable by the user) in
any other cases.

2 If the argument to theferaiseexcept function in<fenv.h> represents IEC 60559
valid coincident exceptions for atomic operations (namelyoverflow and inexact, or
underflowandinexact) thenoverflowor underflowis raised beforeinexact.

294) Use offloat_t anddouble_t variables increases the likelihood of translation-time computation.

For example, the automatic initialization

double_t x = 1.1e75;

could be done at translation time, regardless of the expression evaluation method.

F.7.5 IEC 60559 floating-point arithmetic F.7.6

464 Committee Draft — January 18, 1999 WG14/N869

F.8 Optimization

1 This section identifies code transformations that might subvert IEC 60559-specified
behavior, and others that do not.

F.8.1 Global transformations

1 Floating-point arithmetic operations and external function calls may entail side effects
which optimization shall honor, at least where the state of theFENV_ACCESSpragma is
on. The flags and modes in the floating-point environment may be regarded as global
variables; floating-point operations (+, * , etc.) implicitly read the modes and write the
flags.

2 Concern about side effects may inhibit code motion and removal of seemingly useless
code. For example, in

#include <fenv.h>
#pragma STDC FENV_ACCESS ON
void f(double x)
{

/* ... */
for (i = 0; i < n; i++) x + 1;
/* ... */

}

x + 1 might raise exceptions, so cannot be removed. And since the loop body might
not execute (maybe 0≥ n), x + 1 cannot be moved out of the loop. (Of course these
optimizations are valid if the implementation can rule out the nettlesome cases.)

3 This specification does not require support for trap handlers that maintain information
about the order or count of exceptions. Therefore, between function calls exceptions
need not be precise: the actual order and number of occurrences of exceptions (> 1) may
vary from what the source code expresses. Thus the preceding loop could be treated as

if (0 < n) x + 1;

F.8.2 Expression transformations

1 x / 2 ↔ x * 0.5 Although similar transformations involving inexact
constants generally do not yield numerically equivalent
expressions, if the constants are exact then such
transformations can be made on IEC 60559 machines
and others that round perfectly.

1 * x andx / 1 → x The expressions1 * x , x / 1 , andx are equivalent
(on IEC 60559 machines, among others).295)

F.8 IEC 60559 floating-point arithmetic F.8.2

WG14/N869 Committee Draft — January 18, 1999 465

x / x → 1.0 The expressionsx / x and1.0 are not equivalent ifx
can be zero, infinite, or NaN.

x − y ↔ x + (−y) The expressionsx − y , x + (−y) , and(−y) + x
are equivalent (on IEC 60559 machines, among others).

x − y ↔ −(y − x) The expressionsx − y and −(y − x) are not
equivalent because 1 − 1 is +0 but −(1 − 1) is −0 (in the
default rounding direction).296)

x − x → 0.0 The expressionsx − x and0.0 are not equivalent if
x is a NaN or infinite.

0 * x → 0.0 The expressions0 * x and0.0 are not equivalent if
x is a NaN, infinite, or −0.

x + 0 → x The expressionsx + 0 andx are not equivalent ifx is
−0, because (−0) + (+0) yields +0 (in the default
rounding direction), not −0.

x − 0 → x (+0) − (+0) yields −0 when rounding is downward
(toward −∞), but +0 otherwise, and (−0) − (+0) always
yields −0; so, if the state of theFENV_ACCESSpragma
is off , promising default rounding, then the
implementation can replacex − 0 by x , even if x
might be zero.

−x ↔ 0 − x The expressions−x and0 − x are not equivalent ifx
is +0, because −(+0) yields −0, but 0 − (+0) yields +0
(unless rounding is downward).

295) Strict support for signaling NaNs — not required by this specification — would invalidate these and

other transformations that remove arithmetic operators.

296) IEC 60559 prescribes a signed zero to preserve mathematical identities across certain discontinuities.

Examples include:

1/(1/± ∞) is ± ∞
and

conj(csqrt(z)) is csqrt(conj(z)),

for complexz.

F.8.2 IEC 60559 floating-point arithmetic F.8.2

466 Committee Draft — January 18, 1999 WG14/N869

F.8.3 Relational operators

1 x != x → false The statementx != x is true ifx is a NaN.

x == x → true The statementx == x is false ifx is a NaN.

x < y → isless(x,y) (and similarly for <=, >, >=) Though numerically
equal, these expressions are not equivalent because of
side effects whenx or y is a NaN and the state of the
FENV_ACCESSpragma ison. This transformation,
which would be desirable if extra code were required to
cause theinvalid exception for unordered cases, could
be performed provided the state of theFENV_ACCESS
pragma isoff .

The sense of relational operators shall be maintained. This includes handling unordered
cases as expressed by the source code.

2 EXAMPLE

// callsg and raises invalid
// if a andb are unordered
if (a < b)

f();
else

g();

is not equivalent to

// calls f and raises invalid
// if a andb are unordered
if (a >= b)

g();
else

f();

nor to

// calls f without raising invalid
// if a and b are unordered
if (isgreaterequal(a,b))

g();
else

f();

nor, unless the state of theFENV_ACCESSpragma isoff , to

// callsg without raising invalid
// if a andb are unordered
if (isless(a,b))

f();
else

g();

but is equivalent to

F.8.3 IEC 60559 floating-point arithmetic F.8.3

WG14/N869 Committee Draft — January 18, 1999 467

if (!(a < b))
g();

else
f();

F.8.4 Constant arithmetic

1 The implementation shall honor exceptions raised by execution-time constant arithmetic
wherever the state of theFENV_ACCESSpragma ison. (See F.7.4 and F.7.5.) An
operation on constants that raises no exception can be folded during translation, except, if
the state of theFENV_ACCESSpragma ison, a further check is required to assure that
changing the rounding direction to downward does not alter the sign of the result,297) and
implementations that support dynamic rounding precision modes shall assure further that
the result of the operation raises no exception when converted to the semantic type of the
operation.

F.9 Mathematics<math.h>

1 This subclause contains specifications of<math.h> facilities that are particularly suited
for IEC 60559 implementations.

2 The Standard C macroHUGE_VALand its float and long double analogs,
HUGE_VALFand HUGE_VALL, expand to expressions whose values are positive
infinities.

3 Special cases for functions in<math.h> are covered directly or indirectly by IEC
60559. The functions that IEC 60559 specifies directly are identified in F.3. The other
functions in<math.h> treat infinities, NaNs, signed zeros, subnormals, and (provided
the state of theFENV_ACCESSpragma ison) the exception flags in a manner consistent
with the basic arithmetic operations covered by IEC 60559.

4 Theinvalid anddivide-by-zeroexceptions are raised as specified in subsequent subclauses
of this annex.

5 The overflow exception is raised whenever an infinity — or, because of rounding
direction, a maximal-magnitude finite number — is returned in lieu of a value whose
magnitude is too large.

6 The underflowexception is raised whenever a result is tiny (essentially subnormal or
zero) and suffers loss of accuracy.298)

297)0 − 0 yields −0 instead of +0 just when the rounding direction is downward.

298) IEC 60559 allows different definitions of underflow. They all result in the same values, but differ on

when the exception is raised.

F.8.3 IEC 60559 floating-point arithmetic F.9

468 Committee Draft — January 18, 1999 WG14/N869

7 Whether or when the trigonometric, hyperbolic, base-e exponential, base-e logarithmic,
error, and log gamma functions raise theinexactexception is implementation-defined.
For other functions, theinexactexception is raised whenever the rounded result is not
identical to the mathematical result.

8 Whether theinexactexception may be raised when the rounded result actually does equal
the mathematical result is implementation-defined. Whether theunderflow(and inexact)
exception may be raised when a result is tiny but not inexact is
implementation-defined.299) Otherwise, as implied by F.7.6, the<math.h> functions do
not raise spurious exceptions (detectable by the user).

9 Whether the functions honor the rounding direction mode is implementation-defined.

10 Functions with a NaN argument return a NaN result and raise no exception, except where
stated otherwise.

11 The specifications in the following subclauses append to the definitions in<math.h> .
For families of functions, the specifications apply to all of the functions even though only
the principal function is shown.

Recommended practice

12 If a function with one or more NaN arguments returns a NaN result, the result should be
the same as one of the NaN arguments (after possible type conversion), except perhaps
for the sign.

F.9.1 Trigonometric functions

299) It is intended that undeservedunderflow and inexact exceptions are raised only if determining

inexactness would be too costly.

F.9 IEC 60559 floating-point arithmetic F.9.1

WG14/N869 Committee Draft — January 18, 1999 469

F.9.1.1 Theacos functions

1 — acos(1) returns +0.

— acos(x) returns a NaN and raises theinvalid exception for |x | > 1.

F.9.1.2 Theasin functions

1 — asin(±0) returns±0.

— asin(x) returns a NaN and raises theinvalid exception for |x | > 1.

F.9.1.3 Theatan functions

1 — atan(±0) returns±0.

— atan(±∞) returns±π/2.

F.9.1.4 Theatan2 functions

1 — atan2(±0, x) returns±0, forx > 0.

— atan2(±0, +0) returns±0.300)

— atan2(±0, x) returns±π, for x < 0.

— atan2(±0, −0) returns±π.

— atan2(y, ±0) returnsπ/2 for y > 0.

— atan2(y, ±0) returns −π/2 for y < 0.

— atan2(±y, ∞) returns±0, for finitey > 0.

— atan2(±∞, x) returns±π/2, for finitex .

— atan2(±y, − ∞) returns±π, for finitey > 0.

— atan2(±∞, ∞) returns±π/4.

— atan2(±∞, − ∞) returns±3π/4.

300)atan2(0, 0) does not raise theinvalid exception, nor doesatan2(y, 0) raise thedivide-by-

zeroexception.

F.9.1 IEC 60559 floating-point arithmetic F.9.1.4

470 Committee Draft — January 18, 1999 WG14/N869

F.9.1.5 Thecos functions

1 — cos(±0) returns 1.

— cos(±∞) returns a NaN and raises theinvalid exception.

F.9.1.6 Thesin functions

1 — sin(±0) returns±0.

— sin(±∞) returns a NaN and raises theinvalid exception.

F.9.1.7 Thetan functions

1 — tan(±0) returns±0.

— tan(±∞) returns a NaN and raises theinvalid exception.

F.9.2 Hyperbolic functions

F.9.2.1 Theacosh functions

1 — acosh(1) returns +0.

— acosh(+ ∞) returns +∞.

— acosh(x) returns a NaN and raises theinvalid exception ifx < 1.

F.9.2.2 Theasinh functions

1 — asinh(±0) returns±0.

— asinh(±∞) returns±∞.

F.9.2.3 Theatanh functions

1 — atanh(±0) returns±0.

— atanh(±1) returns±∞ and raises thedivide-by-zeroexception.

— atanh(x) returns a NaN and raises theinvalid exception if |x | > 1.

F.9.1.4 IEC 60559 floating-point arithmetic F.9.2.3

WG14/N869 Committee Draft — January 18, 1999 471

F.9.2.4 Thecosh functions

1 — cosh(±0) returns 1.

— cosh(±∞) returns +∞.

F.9.2.5 Thesinh functions

1 — sinh(±0) returns±0.

— sinh(±∞) returns±∞.

F.9.2.6 Thetanh functions

1 — tanh(±0) returns±0.

— tanh(±∞) returns±1.

F.9.3 Exponential and logarithmic functions

F.9.3.1 Theexp functions

1 — exp(±0) returns 1.

— exp(+ ∞) returns +∞.

— exp(− ∞) returns +0.

F.9.3.2 Theexp2 functions

1 — exp2(±0) returns 1.

— exp2(+ ∞) returns +∞.

— exp2(− ∞) returns +0.

F.9.3.3 Theexpm1 functions

1 — expm1(±0) returns±0.

— expm1(+ ∞) returns +∞.

— expm1(− ∞) returns −1.

F.9.2.3 IEC 60559 floating-point arithmetic F.9.3.3

472 Committee Draft — January 18, 1999 WG14/N869

F.9.3.4 Thefrexp functions

1 — frexp(±0, exp) returns±0, and stores 0 in the object pointed to byexp .

— frexp(±∞, exp) returns±∞, and stores an unspecified value in the object pointed
to byexp .

— frexp(x, exp) stores an unspecified value in the object pointed to byexp (and
returns a NaN) whenx is a NaN.

— frexp raises no exception.

2 On a binary system, the body of thefrexp function might be

{
*exp = (value == 0) ? 0 : (int)(1 + logb(value));
return scalbn(value, -(*exp));

}

F.9.3.5 Theilogb functions

1 No additional requirements.

F.9.3.6 Theldexp functions

1 On a binary system,ldexp(x, exp) is equivalent to

scalbn(x, exp)

F.9.3.7 Thelog functions

1 — log(±0) returns −∞ and raises thedivide-by-zeroexception.

— log(1) returns +0.

— log(x) returns a NaN and raises theinvalid exception ifx < 0.

— log(+ ∞) returns +∞.

F.9.3.3 IEC 60559 floating-point arithmetic F.9.3.7

WG14/N869 Committee Draft — January 18, 1999 473

F.9.3.8 Thelog10 functions

1 — log10(±0) returns −∞ and raises thedivide-by-zeroexception.

— log10(1) returns +0.

— log10(x) returns a NaN and raises theinvalid exception ifx < 0 .

— log10(+ ∞) returns +∞.

F.9.3.9 Thelog1p functions

1 — log1p(±0) returns±0.

— log1p(−1) returns −∞ and raises thedivide-by-zeroexception.

— log1p(x) returns a NaN and raises theinvalid exception ifx < − 1.

— log1p(+ ∞) returns +∞.

F.9.3.10 Thelog2 functions

1 — log2(±0) returns −∞ and raises thedivide-by-zeroexception.

— log2(x) returns a NaN and raises theinvalid exception ifx < 0.

— log2(+ ∞) returns +∞.

F.9.3.11 Thelogb functions

1 — logb(±∞) returns+∞.

— logb(±0) returns −∞ and raises thedivide-by-zeroexception.

F.9.3.12 Themodf functions

1 — modf(value, iptr) returns a result with the same sign as the argumentvalue .

— modf(±∞, iptr) returns±0 and stores±∞ in the object pointed to byiptr .

— modf of a NaN argument stores a NaN in the object pointed to byiptr (and returns
a NaN).

2 modf behaves as though implemented by

F.9.3.7 IEC 60559 floating-point arithmetic F.9.3.12

474 Committee Draft — January 18, 1999 WG14/N869

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double modf(double value, double *iptr)
{

int save_round = fegetround();
fesetround(FE_TOWARDZERO);
*iptr = nearbyint(value);
fesetround(save_round);
return copysign(

isinf(value) ? 0.0 :
value - (*iptr), value);

}

F.9.3.13 Thescalbn and scalbln functions

1 — scalbn(x, n) returnsx if x is infinite or zero.

— scalbn(x, 0) returnsx .

F.9.4 Power and absolute value functions

F.9.4.1 Thecbrt functions

1 — cbrt(±∞) returns±∞.

— cbrt(±0) returns±0.

F.9.4.2 Thefabs functions

1 — fabs(±0) returns +0.

— fabs(±∞) returns +∞.

F.9.3.12 IEC 60559 floating-point arithmetic F.9.4.2

WG14/N869 Committee Draft — January 18, 1999 475

F.9.4.3 Thehypot functions

1 — hypot(x, y) , hypot(y, x) , andhypot(x, −y) are equivalent.

— hypot(x, y) returns +∞ if x is infinite, even ify is a NaN.

— hypot(x, ±0) is equivalent tofabs(x) .

F.9.4.4 Thepow functions

1 — pow(x, ±0) returns 1 for anyx , even a NaN.

— pow(x, + ∞) returns +∞ for |x | > 1.

— pow(x, + ∞) returns +0 for |x | < 1.

— pow(x, − ∞) returns +0 for |x | > 1.

— pow(x, − ∞) returns +∞ for |x | < 1.

— pow(+ ∞, y) returns +∞ for y > 0.

— pow(+ ∞, y) returns +0 fory < 0.

— pow(− ∞, y) returns −∞ for y an odd integer > 0.

— pow(− ∞, y) returns +∞ for y > 0 and not an odd integer.

— pow(− ∞, y) returns −0 fory an odd integer < 0.

— pow(− ∞, y) returns +0 fory < 0 and not an odd integer.

— pow(±1, ±∞) returns a NaN and raises theinvalid exception.

— pow(x, y) returns a NaN and raises theinvalid exception for finitex < 0 and finite
non-integery .

— pow(±0, y) returns ±∞ and raises thedivide-by-zeroexception fory an odd
integer < 0.

— pow(±0, y) returns +∞ and raises thedivide-by-zeroexception fory < 0 and not
an odd integer.

— pow(±0, y) returns±0 for y an odd integer > 0.

— pow(±0, y) returns +0 fory > 0 and not an odd integer.

F.9.4.2 IEC 60559 floating-point arithmetic F.9.4.4

476 Committee Draft — January 18, 1999 WG14/N869

F.9.4.5 Thesqrt functions

1 sqrt is fully specified as a basic arithmetic operation in IEC 60559.

F.9.5 Error and gamma functions

F.9.5.1 Theerf functions

1 — erf(±0) returns±0.

— erf(±∞) returns±1.

F.9.5.2 Theerfc functions

1 — erfc(+ ∞) returns +0.

— erfc(− ∞) returns 2.

F.9.5.3 Thelgamma functions

1 — lgamma(+ ∞) returns+∞.

— lgamma(x) returns +∞ and raises thedivide-by-zeroexception ifx is a negative
integer or zero.

— lgamma(− ∞) returns+∞.

F.9.5.4 Thetgamma functions

1 — tgamma(+ ∞) returns +∞.

— tgamma(x) returns a NaN and raises theinvalid exception ifx is a negative integer
or zero.

— tgamma(− ∞) returns a NaN and raises theinvalid exception.

F.9.6 Nearest integer functions

F.9.4.4 IEC 60559 floating-point arithmetic F.9.6

WG14/N869 Committee Draft — January 18, 1999 477

F.9.6.1 Theceil functions

1 — ceil(x) returnsx if x is ±∞ or ±0.

Thedouble version ofceil behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double ceil(double x)
{

double result;
int save_round = fegetround();
fesetround(FE_UPWARD);
result = rint(x); // or nearbyint instead ofrint
fesetround(save_round);
return result;

}

F.9.6.2 Thefloor functions

1 — floor(x) returnsx if x is ±∞ or ±0.

See the sample implementation forceil in F.9.6.1.

F.9.6.3 Thenearbyint functions

1 Thenearbyint functions use IEC 60559 rounding according to the current rounding
direction. They do not raise theinexactexception if the result differs in value from the
argument.

F.9.6.4 Therint functions

1 Therint functions differ from thenearbyint functions only in that they do raise the
inexactexception if the result differs in value from the argument.

— rint(±0) returns±0 (for all rounding directions).

— rint(±∞) returns±∞ (for all rounding directions).

F.9.6.5 Thelrint and llrint functions

1 The lrint and llrint functions provide floating-to-integer conversion as prescribed
by IEC 60559. They round according to the current rounding direction. If the rounded
value is outside the range of the return type, the numeric result is unspecified and the
invalid exception is raised. When they raise no other exception and the result differs from
the argument, they raise theinexactexception.

F.9.6 IEC 60559 floating-point arithmetic F.9.6.5

478 Committee Draft — January 18, 1999 WG14/N869

F.9.6.6 Theround functions

1 Thedouble version ofround behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double round(double x)
{

double result;
fenv_t save_env;
feholdexcept(&save_env);
result = rint(x);
if (fetestexcept(FE_INEXACT)) {

fesetround(FE_TOWARDZERO);
result = rint(copysign(0.5 + fabs(x), x));

}
feupdateenv(&save_env);
return result;

}

The round functions may, but are not required to, raise theinexactexception for non-
integer numeric arguments, as this implementation does.

F.9.6.7 Thelround and llround functions

1 The lround and llround functions differ from thelrint and llrint functions
with the default rounding direction just in that thelround and llround functions
round halfway cases away from zero, and may (but need not) raise theinexactexception
for non-integer arguments that round to within the range of the return type.

F.9.6.5 IEC 60559 floating-point arithmetic F.9.6.7

WG14/N869 Committee Draft — January 18, 1999 479

F.9.6.8 Thetrunc functions

1 The trunc functions use IEC 60559 rounding toward zero (regardless of the current
rounding direction).

F.9.7 Remainder functions

F.9.7.1 Thefmod functions

1 — fmod(±0, y) returns±0 if y is not zero.

— fmod(x, y) returns a NaN and raises theinvalid exception ifx is infinite ory is
zero.

— fmod(x, ±∞) returnsx if x is not infinite.

Thedouble version offmod behaves as though implemented by

#include <math.h>
#include <fenv.h>
#pragma STDC FENV_ACCESS ON
double fmod(double x, double y)
{

double result;
result = remainder(fabs(x), (y = fabs(y)));
if (signbit(result)) result += y;
return copysign(result, x);

}

F.9.7.2 Theremainder functions

1 The remainder functions are fully specified as a basic arithmetic operation in IEC
60559.

F.9.6.7 IEC 60559 floating-point arithmetic F.9.7.2

480 Committee Draft — January 18, 1999 WG14/N869

F.9.7.3 Theremquo functions

1 The remquo functions follow the specifications for theremainder functions. They
have no further specifications special to IEC 60559 implementations.

F.9.8 Manipulation functions

F.9.8.1 Thecopysign functions

1 copysign is specified in the Appendix to IEC 60559.

F.9.8.2 Thenan functions

1 All IEC 60559 implementations support quiet NaNs, in all floating formats.

F.9.8.3 Thenextafter functions

1 — nextafter(x, y) raises theoverflowandinexactexceptions ifx is finite and the
function value is infinite.

— nextafter(x, y) raises theunderflowand inexact exceptions if the function
value is subnormal or zero andx ≠ y .

F.9.8.4 Thenexttoward functions

No additional requirements.

F.9.9 Maximum, minimum, and positive difference functions

F.9.9.1 Thefdim functions

1 No additional requirements.

F.9.9.2 Thefmax functions

1 — If just one argument is a NaN, thefmax functions return the other argument (if both
arguments are NaNs, the functions return a NaN).

The body of thefmax function might be301)

{ return (isgreaterequal(x, y) ||
isnan(y)) ? x : y; }

301) Ideally, fmax would be sensitive to the sign of zero, for examplefmax(−0.0, +0.0) would

return +0; however, implementation in software might be impractical.

F.9.7.2 IEC 60559 floating-point arithmetic F.9.9.2

WG14/N869 Committee Draft — January 18, 1999 481

F.9.9.3 Thefmin functions

1 Thefmin functions are analogous to thefmax functions. See F.9.9.2.

F.9.10 Floating point multiply-add

F.9.10.1 Thefma functions

1 — fma(x, y, z) computes the sumz plus the productx timesy , correctly rounded
once.

— fma(x, y, z) returns a NaN and optionally raises theinvalid exception if one of
x andy is infinite, the other is zero, andz is a NaN.

— fma(x, y, z) returns a NaN and raises theinvalid exception if one ofx andy is
infinite, the other is zero, andz is not a NaN.

— fma(x, y, z) returns a NaN and raises theinvalid exception ifx timesy is an
exact infinity andz is also an infinity but with the opposite sign.

F.9.9.2 IEC 60559 floating-point arithmetic F.9.10.1

482 Committee Draft — January 18, 1999 WG14/N869

Annex G
(informative)

IEC 60559-compatible complex arithmetic

G.1 Introduction

1 This annex supplements annex F to specify complex arithmetic for compatibility with
IEC 60559 real floating-point arithmetic.An implementation that defines
_ _STD_IEC_559_COMPLEX_ _ shall conform to the specifications in this annex.

G.2 Types

1 There are threeimaginary types, designated asfloat _Imaginary , double
_Imaginary , and long double _Imaginary . The imaginary types (along with
the real floating and complex types) are floating types.

2 For imaginary types, the corresponding real type is given by deleting the keyword
_Imaginary from the type name.

3 Each imaginary type has the same representation and alignment requirements as the
corresponding real type. The value of an object of imaginary type is the value of the real
representation times the imaginary unit.

4 Theimaginary type domaincomprises the imaginary types.

G.3 Conversions

G.3.1 Imaginary types

1 Conversions among imaginary types follow rules analogous to those for real floating
types.

G.3.2 Real and imaginary

1 When a value of imaginary type is converted to a real type, the result is a positive zero.

2 When a value of real type is converted to an imaginary type, the result is a positive
imaginary zero.

G IEC 60559-compatible complex arithmetic G.3.2

WG14/N869 Committee Draft — January 18, 1999 483

G.3.3 Imaginary and complex

1 When a value of imaginary type is converted to a complex type, the real part of the
complex result value is a positive zero and the imaginary part of the complex result value
is determined by the conversion rules for the corresponding real types.

2 When a value of complex type is converted to an imaginary type, the real part of the
complex value is discarded and the value of the imaginary part is converted according to
the conversion rules for the corresponding real types.

G.4 Binary operators

1 The following subclauses supplement 6.5 in order to specify the type of the result for an
operation with an imaginary operand.

2 For most operand types, the value of the result of a binary operator with an imaginary or
complex operand is completely determined, with reference to real arithmetic, by the usual
mathematical formula. For some operand types, the usual mathematical formula is
problematic because of its treatment of infinities and because of undue overflow or
underflow; in these cases the result satisfies certain properties (specified in G.4.1), but is
not completely determined.

G.4.1 Multiplicative operators
Semantics

1 If one operand has real type and the other operand has imaginary type, then the result has
imaginary type. If both operands have imaginary type, then the result has real type. (If
either operand has complex type, then the result has complex type.)

2 If the operands are not both complex, then the result and exception behavior of the*
operator is defined by the usual mathematical formula:

* u iv u + iv

x xu i(xv) (xu) + i(xv)

iy i(yu) −yv (−yv) + i(yu)

x + iy (xu) + i(yu) (−yv) + i(xv)

3 If the second operand is not complex, then the result and exception behavior of the/
operator is defined by the usual mathematical formula:

G.3.3 IEC 60559-compatible complex arithmetic G.4.1

484 Committee Draft — January 18, 1999 WG14/N869

/ u iv

x x/u i(−x/v)

iy i(y/u) y/v

x + iy (x/u) + i(y/u) (y/v) + i(−x/v)

4 A complex or imaginary value with at least one infinite part is regarded as aninfinity
(even if its other part is a NaN). A complex or imaginary value is afinite numberif each
of its parts is a finite number (neither infinite nor NaN). A complex or imaginary value is
a zero if each of its parts is a zero. The* and / operators satisfy the following infinity
properties for all real, imaginary, and complex operands:302)

— if one operand is an infinity and the other operand is a nonzero finite number or an
infinity, then the result of the* operator is an infinity;

— if the first operand is an infinity and the second operand is a finite number, then the
result of the/ operator is an infinity;

— if the first operand is a finite number and the second operand is an infinity, then the
result of the/ operator is a zero;

— if the first operand is a nonzero finite number or an infinity and the second operand is
a zero, then the result of the/ operator is an infinity.

5 If both operands of the* operator are complex or if the second operand of the/ operator
is complex, the operator raises exceptions if appropriate for the calculation of the parts of
the result, and may raise spurious exceptions.

6 EXAMPLE 1 Multiplication of double _Complex operands could be implemented as follows. Note
that the imaginary unitI has imaginary type (see G.5).

302) These properties are already implied for those cases covered in the tables, but are required for all cases

(at least where the state forCX_LIMITED_RANGEis off).

G.4.1 IEC 60559-compatible complex arithmetic G.4.1

WG14/N869 Committee Draft — January 18, 1999 485

#include <math.h>
#include <complex.h>

/* Multiply z * w ... */
double complex _Cmultd(double complex z, double complex w)
{

#pragma STDC FP_CONTRACT OFF
double a, b, c, d, ac, bd, ad, bc, x, y;
a = creal(z); b = cimag(z)
c = creal(w); d = cimag(w);
ac = a * c; bd = b * d;
ad = a * d; bc = b * c;
x = ac - bd;
y = ad + bc;
/* Recover infinities that computed as NaN+iNaN ...*/
if (isnan(x) && isnan(y)) {

int recalc = 0;
if (isinf(a) || isinf(b)) { /* z is infinite */

/* "Box" the infinity ... */
a = copysign(isinf(a) ? 1.0 : 0.0, a);
b = copysign(isinf(b) ? 1.0 : 0.0, b);
/* Change NaNs in the other factor to 0 ...*/
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
if (isinf(c) || isinf(d)) { /* w is infinite */

/* "Box" the infinity ... */
c = copysign(isinf(c) ? 1.0 : 0.0, c);
d = copysign(isinf(d) ? 1.0 : 0.0, d);
/* Change NaNs in the other factor to 0 ...*/
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
recalc = 1;

}
if (!recalc) {

/* *Recover infinities from overflow cases ...*/
if (isinf(ac) || isinf(bd) ||

isinf(ad) || isinf(bc)) {
/* Change all NaNs to 0 ...*/
if (isnan(a)) a = copysign(0.0, a);
if (isnan(b)) b = copysign(0.0, b);
if (isnan(c)) c = copysign(0.0, c);
if (isnan(d)) d = copysign(0.0, d);
recalc = 1;

}
}
if (recalc) {

x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);

}

G.4.1 IEC 60559-compatible complex arithmetic G.4.1

486 Committee Draft — January 18, 1999 WG14/N869

}
return x + I * y;

}

7 This implementation achieves the required treatment of infinities at the cost of only oneisnan test in
ordinary (finite) cases. It is less than ideal in that undue overflow and underflow may occur.

8 EXAMPLE 2 Division of twodouble _Complex operands could be implemented as follows.

G.4.1 IEC 60559-compatible complex arithmetic G.4.1

WG14/N869 Committee Draft — January 18, 1999 487

#include <math.h>
#include <complex.h>

/* Dividez / w ... */
double complex _Cdivd(double complex z, double complex w)
{

#pragma STDC FP_CONTRACT OFF
double a, b, c, d, logbw, denom, x, y;
int ilogbw = 0;
a = creal(z); b = cimag(z);
c = creal(w); d = cimag(w);
logbw = logb(fmax(fabs(c), fabs(d)));
if (isfinite(logbw)) {

ilogbw = (int)logbw;
c = scalbn(c, -ilogbw);
d = scalbn(d, -ilogbw);

}
denom = c * c + d * d;
x = scalbn((a * c + b * d) / denom, -ilogbw);
y = scalbn((b * c - a * d) / denom, -ilogbw);
/*

* Recover infinities and zeros that computed
* as NaN+iNaN; the only cases are non-zero/zero,
* infinite/finite, and finite/infinite, ...
*/

if (isnan(x) && isnan(y)) {
if ((denom == 0.0) &&

(!isnan(a) || !isnan(b))) {
x = copysign(INFINITY, c) * a;
y = copysign(INFINITY, c) * b;

}
else if ((isinf(a) || isinf(b)) &&

isfinite(c) && isfinite(d)) {
a = copysign(isinf(a) ? 1.0 : 0.0, a);
b = copysign(isinf(b) ? 1.0 : 0.0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);

}
else if (isinf(logbw) &&

isfinite(a) && isfinite(b)) {
c = copysign(isinf(c) ? 1.0 : 0.0, c);
d = copysign(isinf(d) ? 1.0 : 0.0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);

}
}
return x + I * y;

}

9 Scaling the denominator alleviates the main overflow and underflow problem, which is more serious than
for multiplication. In the spirit of the multiplication example above, this code does not defend against
overflow and underflow in the calculation of the numerator. Scaling with thescalbn function, instead of

G.4.1 IEC 60559-compatible complex arithmetic G.4.1

488 Committee Draft — January 18, 1999 WG14/N869

with division, provides better roundoff characteristics.

G.4.2 Additive operators
Semantics

1 If both operands have imaginary type, then the result has imaginary type.(If one operand
has real type and the other operand has imaginary type, or if either operand has complex
type, then the result has complex type.)

2 In all cases the result and exception behavior of a+ or - operator is defined by the usual
mathematical formula:

+ or − u iv u + iv

x x ± u x ± iv (x ± u) ± iv

iy ±u + iy i(y ± v) ±u + i(y ± v)

x + iy (x ± u) + iy x + i(y ± v) (x ± u) + i(y ± v)

G.5 Complex arithmetic<complex.h>

1 The macros

imaginary

and

_Imaginary_I

are defined, and the macro

I

is defined to be_Imaginary_I (7.3).

2 This subclause contains specifications for the<complex.h> functions that are
particularly suited to IEC 60559 implementations.

3 The functions are continuous onto both sides of their branch cuts, taking into account the
sign of zero. For example,csqrt(−2 ± 0*I) == ±sqrt(2)*I .

4 Since complex and imaginary values are composed of real values, each function may be
regarded as computing real values from real values. Except as noted, the functions treat
real infinities, NaNs, signed zeros, subnormals, and the exception flags in a manner
consistent with the specifications for real functions in F.9.303)

303) As noted in G.4.1, a complex value with at least one infinite part is regarded as an infinity even if its

other part is a NaN.

G.4.1 IEC 60559-compatible complex arithmetic G.5

WG14/N869 Committee Draft — January 18, 1999 489

5 The functions cimag , conj , cproj , and creal are fully specified for all
implementations, including IEC 60559 ones, in 7.3.9. These functions raise no
exceptions.

6 Each of the functionscabs and carg is specified by a formula in terms of a real
function (whose special cases are covered in annex F):

cabs(x + iy) = hypot(x, y)
carg(x + iy) = atan2(y, x)

7 Each of the functionscasin , catan , ccos , csin , ctan , and cpow is specified
implicitly by a formula in terms of other complex functions (whose special cases are
specified below):

casin(z) = −i casinh(iz)
catan(z) = −i catanh(iz)
ccos(z) = ccosh(iz)
csin(z) = −i csinh(iz)
ctan(z) = −i ctanh(iz)
cpow(z, c) = cexp(c clog(z))

8 For the other functions, the following subclauses specify behavior for special cases,
including treatment of theinvalid and divide-by-zeroexceptions. For families of
functions, the specifications apply to all of the functions even though only the principal
function is shown. For a functionf satisfying f (conj(z)) = conj(f (z)), the specification
for the upper half-plane implies the specification for the lower half-plane; if also the
function f is either even,f (−z) = f (z), or odd, f (−z) = − f (z), then the specification for
the first quadrant implies the specification for the other three quadrants.

9 In the following subclauses, cis(y) is defined as cos(y) + i sin(y).

G.5.1 Trigonometric functions

G.5 IEC 60559-compatible complex arithmetic G.5.1

490 Committee Draft — January 18, 1999 WG14/N869

G.5.1.1 Thecacos functions

1 — cacos(conj(z)) = conj(cacos(z)) .

— cacos(±0 + i0) returnsπ /2 − i0.

— cacos(−∞ + i∞) returns 3π /4 − i∞.

— cacos(+∞ + i∞) returnsπ /4 − i∞.

— cacos(x + i∞) returnsπ /2 − i∞, for finite x.

— cacos(−∞ + iy) returnsπ − i∞, for positive-signed finitey.

— cacos(+∞ + iy) returns+0 − i∞, for positive-signed finitey.

— cacos(±∞ + iNaN) returns NaN± i∞ (where the sign of the imaginary part of the
result is unspecified).

— cacos(±0 + iNaN) returnsπ /2 + iNaN.

— cacos(NaN+ i∞) returns NaN− i∞.

— cacos(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for nonzero finitex.

— cacos(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite y.

— cacos(NaN+ iNaN) returns NaN+ iNaN.

G.5.2 Hyperbolic functions

G.5.2.1 Thecacosh functions

1 — cacosh(conj(z)) = conj(cacosh(z)) .

— cacosh(±0 + i0) returns+0 + iπ /2.

— cacosh(−∞ + i∞) returns+∞ + i3π /4.

— cacosh(+∞ + i∞) returns+∞ + iπ /4.

— cacosh(x + i∞) returns+∞ + iπ /2, for finitex.

— cacosh(−∞ + iy) returns+∞ + iπ , for positive-signed finitey.

— cacosh(+∞ + iy) returns+∞ + i0, for positive-signed finitey.

— cacosh(NaN+ i∞) returns+∞ + iNaN.

— cacosh(±∞ + iNaN) returns+∞ + iNaN.

— cacosh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite x.

G.5.1 IEC 60559-compatible complex arithmetic G.5.2.1

WG14/N869 Committee Draft — January 18, 1999 491

— cacosh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite y.

— cacosh(NaN+ iNaN) returns NaN+ iNaN.

G.5.2.2 Thecasinh functions

— casinh(conj(z)) = conj(casinh(z)) andcasinh is odd.

— casinh(+0 + i0) returns 0+ i0.

— casinh(+∞ + i∞) returns+∞ + iπ /4.

— casinh(x + i∞) returns+∞ + iπ /2 for positive-signed finitex.

— casinh(+∞ + iy) returns+∞ + i0 for positive-signed finitey.

— casinh(NaN+ i∞) returns±∞ + iNaN (where the sign of the real part of the result
is unspecified).

— casinh(+∞ + iNaN) returns+∞ + iNaN.

— casinh(NaN+ i0) returns NaN+ i0.

— casinh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite nonzeroy.

— casinh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite x.

— casinh(NaN+ iNaN) returns NaN+ iNaN.

G.5.2.3 Thecatanh functions

1 — catanh(conj(z)) = conj(catanh(z)) andcatanh is odd.

— catanh(+0 + i0) returns+0 + i0.

— catanh(+∞ + i∞) returns+0 + iπ /2.

— catanh(+∞ + iy) returns+0 + iπ /2, for finite positive-signedy.

— catanh(x + i∞) returns+0 + iπ /2, for finite positive-signedx.

— catanh(+0 + iNaN) returns+0 + iNaN.

— catanh(NaN+ i∞) returns±0 + iπ /2 (where the sign of the real part of the result is
unspecified).

— catanh(+∞ + iNaN) returns+0 + iNaN.

— catanh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite y.

G.5.2.1 IEC 60559-compatible complex arithmetic G.5.2.3

492 Committee Draft — January 18, 1999 WG14/N869

— catanh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for nonzero finitex.

— catanh(NaN+ iNaN) returns NaN+ iNaN.

G.5.2.4 Theccosh functions

1 — ccosh(conj(z)) = conj(ccosh(z)) andccosh is even.

— ccosh(+0 + i0) returns 1+ i0.

— ccosh(+0 + i∞) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified) and raises theinvalid exception.

— ccosh(+∞ + i0) returns+∞ + i0.

— ccosh(+∞ + i∞) returns+∞ + iNaN and raises theinvalid exception.

— ccosh(x + i∞) returns NaN+ iNaN and raises theinvalid exception, for finite
nonzerox.

— ccosh(+∞ + iy) returns+∞ cis(y), for finite nonzeroy.

— ccosh(+0 + iNaN) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified).

— ccosh(+∞ + iNaN) returns+∞ + iNaN.

— ccosh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite nonzerox.

— ccosh(NaN+ i0) returns NaN± i0 (where the sign of the imaginary part of the
result is unspecified).

— ccosh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for all nonzero numbersy.

— ccosh(NaN+ iNaN) returns NaN+ iNaN.

G.5.2.3 IEC 60559-compatible complex arithmetic G.5.2.4

WG14/N869 Committee Draft — January 18, 1999 493

G.5.2.5 Thecsinh functions

1 — csinh(conj(z)) = conj(csinh(z)) andcsinh is odd.

— csinh(+0 + i0) returns+0 + i0.

— csinh(+0 + i∞) returns±0 + iNaN (where the sign of the real part of the result is
unspecified) and raises theinvalid exception.

— csinh(+∞ + i0) returns+∞ + i0.

— csinh(+∞ + i∞) returns±∞ + iNaN (where the sign of the real part of the result is
unspecified) and raises theinvalid exception.

— csinh(+∞ + iy) returns+∞ cis(y), for positive finitey.

— csinh(x + i∞) returns NaN+ iNaN and raises theinvalid exception, for positive
finite x.

— csinh(+0 + iNaN) returns±0 + iNaN (where the sign of the real part of the result is
unspecified).

— csinh(+∞ + iNaN) returns±∞ + iNaN (where the sign of the real part of the result
is unspecified).

— csinh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite nonzerox.

— csinh(NaN+ i0) returns NaN+ i0.

— csinh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for all nonzero numbersy.

— csinh(NaN+ iNaN) returns NaN+ iNaN.

G.5.2.4 IEC 60559-compatible complex arithmetic G.5.2.5

494 Committee Draft — January 18, 1999 WG14/N869

G.5.2.6 Thectanh functions

1 — ctanh(conj(z)) = conj(ctanh(z)) andctanh is odd.

— ctanh(+0 + i0) returns+0 + i0.

— ctanh(+∞ + iy) returns 1+ i0, for all positive-signed numbersy.

— ctanh(x + i∞) returns NaN+ iNaN and raises theinvalid exception, for finitex.

— ctanh(+∞ + iNaN) returns 1± i0 (where the sign of the imaginary part of the
result is unspecified).

— ctanh(NaN+ i0) returns NaN+ i0.

— ctanh(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for all nonzero numbersy.

— ctanh(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite x.

— ctanh(NaN+ iNaN) returns NaN+ iNaN.

G.5.3 Exponential and logarithmic functions

G.5.3.1 Thecexp functions

1 — cexp(conj(z)) = conj(cexp(z)) .

— cexp(±0 + i0) returns 1+ i0.

— cexp(+∞ + i0) returns+∞ + i0.

— cexp(−∞ + i∞) returns±0 ± i0 (where the signs of the real and imaginary parts of
the result are unspecified).

— cexp(+∞ + i∞) returns±∞ + iNaN and raises theinvalid exception (where the sign
of the real part of the result is unspecified).

— cexp(x + i∞) returns NaN+ iNaN and raises theinvalid exception, for finitex.

— cexp(−∞ + iy) returns+0 cis(y), for finite y.

— cexp(+∞ + iy) returns+∞ cis(y), for finite nonzeroy.

— cexp(−∞ + iNaN) returns±0 ± i0 (where the signs of the real and imaginary parts
of the result are unspecified).

— cexp(+∞ + iNaN) returns±∞ + iNaN (where the sign of the real part of the result
is unspecified).

— cexp(NaN+ i0) returns NaN+ i0.

G.5.2.5 IEC 60559-compatible complex arithmetic G.5.3.1

WG14/N869 Committee Draft — January 18, 1999 495

— cexp(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception, for
all non-zero numbersy.

— cexp(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception, for
finite x.

— cexp(NaN+ iNaN) returns NaN+ iNaN.

G.5.3.2 Theclog functions

1 — clog(conj(z)) = conj(clog(z)) .

— clog(−0 + i0) returns−∞ + iπ and raises thedivide-by-zeroexception.

— clog(+0 + i0) returns−∞ + i0 and raises thedivide-by-zeroexception.

— clog(−∞ + i∞) returns+∞ + i3π /4.

— clog(+∞ + i∞) returns+∞ + iπ /4.

— clog(x + i∞) returns+∞ + iπ /2, for finitex.

— clog(−∞ + iy) returns+∞ + iπ , for finite positive-signedy.

— clog(+∞ + iy) returns+∞ + i0, for finite positive-signedy.

— clog(±∞ + iNaN) returns+∞ + iNaN.

— clog(NaN+ i∞) returns+∞ + iNaN.

— clog(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception, for
finite x.

— clog(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception, for
finite y.

— clog(NaN+ iNaN) returns NaN+ iNaN.

G.5.4 Power and absolute-value functions

G.5.3.1 IEC 60559-compatible complex arithmetic G.5.4

496 Committee Draft — January 18, 1999 WG14/N869

G.5.4.1 Thecsqrt functions

1 — csqrt(conj(z)) = conj(csqrt(z)) .

— csqrt(±0 + i0) returns+0 + i0.

— csqrt(−∞ + iy) returns+0 + i∞, for finite positive-signedy.

— csqrt(+∞ + iy) returns+∞ + i0, for finite positive-signedy.

— csqrt(x + i∞) returns+∞ + i∞, for all x (including NaN).

— csqrt(−∞ + iNaN) returns NaN± i∞ (where the sign of the imaginary part of the
result is unspecified).

— csqrt(+∞ + iNaN) returns+∞ + iNaN.

— csqrt(x + iNaN) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite x.

— csqrt(NaN+ iy) returns NaN+ iNaN and optionally raises theinvalid exception,
for finite y.

— csqrt(NaN+ iNaN) returns NaN+ iNaN.

G.6 Type-generic math<tgmath.h>

1 Type-generic macros that accept complex arguments also accept imaginary arguments. If
an argument is imaginary, the macro expands to an expression whose type is real,
imaginary, or complex, as appropriate for the particular function: if the argument is
imaginary, then the types ofcos , cosh , fabs , carg , cimag , andcreal are real; the
types ofsin , tan , sinh , tanh , asin , atan , asinh , andatanh are imaginary; and
the types of the others are complex.

2 Given an imaginary argument, each of the type-generic macroscos , sin , tan , cosh ,
sinh , tanh , asin , atan , asinh , atanh is specified by a formula in terms of real
functions:

cos(iy) = cosh(y)
sin(iy) = i sinh(y)
tan(iy) = i tanh(y)
cosh(iy) = cos(y)
sinh(iy) = i sin(y)
tanh(iy) = i tan(y)
asin(iy) = i asinh(y)
atan(iy) = i atanh(y)
asinh(iy) = i asin(y)
atanh(iy) = i atan(y)

G.5.4 IEC 60559-compatible complex arithmetic G.6

WG14/N869 Committee Draft — January 18, 1999 497

Annex H
(informative)

Language independent arithmetic

H.1 Introduction

1 This annex documents the extent to which the C language supports the ISO/IEC 10967-1
standard for language-independent arithmetic (LIA−1). LIA−1 is more general than IEC
60559 (annex F) in that it covers integer and diverse floating-point arithmetics.

H.2 Types

1 The relevant C arithmetic types meet the requirements of LIA−1 types if an
implementation adds notification of exceptional arithmetic operations and meets the 1
unit in the last place (ULP) accuracy requirement (LIA−1 subclause 5.2.8).

H.2.1 Boolean type

1 The LIA−1 data type Boolean is implemented by the C data typebool with values of
true andfalse , all from<stdbool.h> .

H.2.2 Integer types

1 The signed C integer typesint , long int , long long int , and the corresponding
unsigned types are compatible with LIA−1. If an implementation adds support for the
LIA−1 exceptional valuesinteger_overflowand undefined, then those types are LIA−1
conformant types. C’s unsigned integer types are ‘‘modulo’’ in the LIA−1 sense in that
overflows or out-of-bounds results silently wrap. An implementation that defines signed
integer types as also being modulo need not detect integer overflow, in which case, only
integer divide-by-zero need be detected.

2 The parameters for the integer data types can be accessed by the following:

maxint INT_MAX, LONG_MAX, LLONG_MAX, UINT_MAX, ULONG_MAX,
ULLONG_MAX

minint INT_MIN , LONG_MIN, LLONG_MIN

3 The parameter ‘‘bounded’’ is always true, and is not provided. The parameter ‘‘minint’’
is always 0 for the unsigned types, and is not provided for those types.

H Language independent arithmetic H.2.2

498 Committee Draft — January 18, 1999 WG14/N869

H.2.2.1 Integer operations

1 The integer operations on integer types are the following:

addI x + y

subI x - y

mulI x * y

divI, divtI x / y

remI, remtI x % y

negI - x

absI abs(x) , labs(x) , llabs(x)

eqI x == y

neqI x != y

lssI x < y

leqI x <= y

gtrI x > y

geqI x >= y

wherex andy are expressions of the same integer type.

H.2.3 Floating-point types

1 The C floating-point typesfloat , double , and long double are compatible with
LIA−1. If an implementation adds support for the LIA−1 exceptional valuesunderflow,
floating_overflow, and undefined, then those types are conformant with LIA−1. An
implementation that uses IEC 60559 floating-point formats and operations (see annex F)
along with IEC 60559 status flags and traps has LIA−1 conformant types.

H.2.3.1 Floating-point parameters

1 The parameters for a floating point data type can be accessed by the following:

r FLT_RADIX

p FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG

emax FLT_MAX_EXP, DBL_MAX_EXP, LDBL_MAX_EXP

emin FLT_MIN_EXP, DBL_MIN_EXP, LDBL_MIN_EXP

2 The derived constants for the floating point types are accessed by the following:

H.2.2.1 Language independent arithmetic H.2.3.1

WG14/N869 Committee Draft — January 18, 1999 499

fmax FLT_MAX, DBL_MAX, LDBL_MAX

fminN FLT_MIN, DBL_MIN, LDBL_MIN

epsilon FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON

rnd_style FLT_ROUNDS

H.2.3.2 Floating-point operations

1 The floating-point operations on floating-point types are the following:

addF x + y

subF x - y

mulF x * y

divF x / y

negF - x

absF fabsf(x) , fabs(x) , fabsl(x)

exponentF 1.f+logbf(x) , 1.0+logb(x) , 1.L+logbl(x)

scaleF scalbnf(x, n) , scalbn(x, n) , scalbnl(x, n) ,
scalblnf(x, li) , scalbln(x, li) , scalblnl(x, li)

intpartF modff(x, &y) , modf(x, &y) , modfl(x, &y)

fractpartF modff(x, &y) , modf(x, &y) , modfl(x, &y)

eqF x == y

neqF x != y

lssF x < y

leqF x <= y

gtrF x > y

geqF x >= y

wherex andy are expressions of the same floating point type,n is of typeint , andli
is of typelong int .

H.2.3.3 Rounding styles

1 The C Standard requires all floating types to use the same radix and rounding style, so
that only one identifier for each is provided to map to LIA−1.

2 TheFLT_ROUNDSparameter can be used to indicate the LIA−1 rounding styles:

H.2.3.1 Language independent arithmetic H.2.3.3

500 Committee Draft — January 18, 1999 WG14/N869

truncate FLT_ROUNDS == 0

nearest FLT_ROUNDS == 1

other FLT_ROUNDS != 0 && FLT_ROUNDS != 1

provided that an implementation extendsFLT_ROUNDSto cover the rounding style used
in all relevant LIA−1 operations, not just addition as in C.

H.2.4 Type conversions

1 The LIA−1 type conversions are the following type casts:

cvtI’→I (int)i , (long int)i , (long long int)i , (unsigned
int)i , (unsigned long int)i , (unsigned long long
int)i

cvtF→I (int)x , (long int)x , (long long int)x , (unsigned
int)x , (unsigned long int)x , (unsigned long long
int)x

cvtI→F (float)i , (double)i , (long double)i

cvtF’→F (float)x , (double)x , (long double)x

2 In the above conversions from floating to integer, the use of(cast)x can be replaced with
(cast)round(x) , (cast)rint(x) , (cast)nearbyint(x) , (cast)trunc(x) ,
(cast)ceil(x) , or (cast)floor(x) . In addition, C’s floating-point to integer
conversion functions,lrint() , llrint() , lround() , and llround() , can be
used. They all meet LIA−1’s requirements on floating to integer rounding for in-range
values. For out-of-range values, the conversions shall silently wrap for the modulo types.

3 Thefmod() function is useful for doing silent wrapping to unsigned integer types, e.g.,
fmod(fabs(rint(x)), 65536.0) or (0.0 <= (y = fmod(rint(x),
65536.0)) ? y : 65536.0 + y) will compute an integer value in the range 0.0
to 65535.0 which can then be cast tounsigned short int . But, the
remainder() function is not useful for doing silent wrapping to signed integer types,
e.g., remainder(rint(x), 65536.0) will compute an integer value in the
range −32767.0 to +32768.0 which is not, in general, in the range ofsigned short
int .

4 C’s conversions (casts) from floating-point to floating-point can meet LIA−1
requirements if an implementation uses round-to-nearest (IEC 60559 default).

5 C’s conversions (casts) from integer to floating-point can meet LIA−1 requirements if an
implementation uses round-to-nearest.

H.2.3.3 Language independent arithmetic H.2.4

WG14/N869 Committee Draft — January 18, 1999 501

H.3 Notification

1 Notification is the process by which a user or program is informed that an exceptional
arithmetic operation has occurred. C’s operations are compatible with LIA−1 in that C
allows an implementation to cause a notification to occur when any arithmetic operation
returns an exceptional value as defined in LIA−1 clause 5.

H.3.1 Notification alternatives

1 LIA−1 requires at least the following two alternatives for handling of notifications:
setting indicators or trap-and-terminate. LIA−1 allows a third alternative: trap-and-
resume.

2 An implementation need only support a given notification alternative for the entire
program. An implementation may support the ability to switch between notification
alternatives during execution, but is not required to do so. An implementation can
provide separate selection for each kind of notification, but this is not required.

3 C allows an implementation to provide notification. C’sSIGFPE (for traps) and
FE_INVALID , FE_DIVBYZERO, FE_OVERFLOW, FE_UNDERFLOW(for indicators)
can provide LIA−1 notification.

4 C’s signal handlers are compatible with LIA−1. Default handling ofSIGFPE can
provide trap-and-terminate behavior. User-provided signal handlers forSIGFPE allow
for trap-and-resume behavior.

H.3.1.1 Indicators

1 C’s<fenv.h> status flags are compatible with the LIA−1 indicators.

2 The following mapping is for floating-point types:

undefined FE_INVALID , FE_DIVBYZERO

floating_overflow FE_OVERFLOW

underflow FE_UNDERFLOW

3 The floating-point indicator interrogation and manipulation operations are:

set_indicators feraiseexcept(i)

clear_indicators feclearexcept(i)

test_indicators fetestexcept(i)

current_indicators fetestexcept(FE_ALL_EXCEPT)

wherei is an expression of typeint representing a subset of the LIA−1 indicators.

4 C allows an implementation to provide the following LIA−1 required behavior: at
program termination if any indicator is set the implementation shall send an unambiguous
and ‘‘hard to ignore’’ message (see LIA−1 subclause 6.1.2)

H.3 Language independent arithmetic H.3.1.1

502 Committee Draft — January 18, 1999 WG14/N869

5 LIA−1 does not make the distinction between floating-point and integer forundefined.
This documentation makes that distinction because<fenv.h> covers only the floating-
point indicators.

H.3.1.2 Traps

1 C is compatible with LIA−1’s trap requirements. An implementation can provide an
alternative of notification through termination with a ‘‘hard-to-ignore’’ message (see
LIA−1 subclause 6.1.3).

2 LIA−1 does not require that traps be precise.

3 C does require thatSIGFPE be the signal corresponding to arithmetic exceptions, if there
is any signal raised for them.

4 C supports signal handlers forSIGFPE and allows trapping of arithmetic exceptions.
When arithmetic exceptions do trap, C’s signal-handler mechanism allows trap-and-
terminate (either default implementation behavior or user replacement for it) or trap-and-
resume, at the programmer’s option.

H.3.1.1 Language independent arithmetic H.3.1.2

WG14/N869 Committee Draft — January 18, 1999 503

Annex I
(informative)

Common warnings

1 An implementation may generate warnings in many situations, none of which are
specified as part of this International Standard. The following are a few of the more
common situations.

2 — A newstruct or union type appears in a function prototype (6.2.1, 6.7.2.3).

— A block with initialization of an object that has automatic storage duration is jumped
into (6.2.4).

— An implicit narrowing conversion is encountered, such as the assignment of along
int or adouble to anint , or a pointer tovoid to a pointer to any type other than
a character type (6.3).

— An integer character constant includes more than one character or a wide character
constant includes more than one multibyte character (6.4.4.4).

— The characters/* are found in a comment (6.4.7).

— An ‘‘unordered’’ binary operator (not comma,&& or ||) contains a side-effect to an
lvalue in one operand, and a side-effect to, or an access to the value of, the identical
lvalue in the other operand (6.5).

— A function is called but no prototype has been supplied (6.5.2.2).

— The arguments in a function call do not agree in number and type with those of the
parameters in a function definition that is not a prototype (6.5.2.2).

— An object is defined but not used (6.7).

— A value is given to an object of an enumeration type other than by assignment of an
enumeration constant that is a member of that type, or an enumeration variable that
has the same type, or the value of a function that returns the same enumeration type
(6.7.2.2).

— An aggregate has a partly bracketed initialization (6.7.7).

— A statement cannot be reached (6.8).

— A statement with no apparent effect is encountered (6.8).

— A constant expression is used as the controlling expression of a selection statement
(6.8.4).

I Common warnings I

504 Committee Draft — January 18, 1999 WG14/N869

— An incorrectly formed preprocessing group is encountered while skipping a
preprocessing group (6.10.1).

— An unrecognized#pragma directive is encountered (6.10.6).

I Common warnings I

WG14/N869 Committee Draft — January 18, 1999 505

Annex J
(informative)

Portability issues

1 This annex collects some information about portability that appears in this International
Standard.

J.1 Unspecified behavior

1 The following are unspecified:

— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type ofmain
is not compatible with int (5.1.2.2.3).

— The behavior if a printing character is written when the active position is at the final
position of a line (5.2.2).

— The behavior if a backspace character is written when the active position is at the
initial position of a line (5.2.2).

— The behavior if a horizontal tab character is written when the active position is at or
past the last defined horizontal tabulation position (5.2.2).

— The behavior if a vertical tab character is written when the active position is at or past
the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character
name counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).

— The value of padding bytes when storing values in structures or unions (6.2.6.1).

— The value of a union member other than the last one stored into (6.2.6.1).

— The representation used when storing a value in an object that has more than one
object representation for that value (6.2.6.1).

— The value of padding bits in integer representations (6.2.6.2).

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects
take place, except as specified for the function-call() , &&, || , ?: , and comma
operators (6.5).

J Portability issues J.1

506 Committee Draft — January 18, 1999 WG14/N869

— The order in which the function designator, arguments, and subexpressions within the
arguments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions
(6.5.2.5).

— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

— The choice of using an inline definition or external definition of a function when both
definitions are in scope (6.7.4).

— The size of an array when* is written instead of a size expression (6.7.5.2).

— Whether side effects are produced when evaluating the size expression in a
declaration of a variable length array (6.7.5.2).

— The layout of storage for function parameters (6.9.1).

— When a fully expanded macro replacement list contains a function-like macro name
as its last preprocessing token and the next preprocessing token from the source file is
a (, and the fully expanded replacement of that macro ends with the name of the first
macro and the next preprocessing token from the source file is again a(, whether that
is considered a nested replacement. (6.10.3).

— Whether the# operator inserts a\ character before the\ character that begins a
universal character name in a character constant or string literal (6.10.3.2).

— The order in which# and ## operations are evaluated during macro substitution
(6.10.3.2, 6.10.3.3).

— Whethererrno is a macro or an external identifier (7.5).

— The order of raising floating-point exceptions, except as stated in F.7.6 (7.6.2.3).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, F.9.6.5).

— Whethersetjmp is a macro or an external identifier (7.13).

— Whetherva_end is a macro or an external identifier (7.15.1).

— The hexadecimal digit left of the decimal point when a non-normalized floating-point
number is printed with ana or A conversion specifier (7.19.6.1, 7.24.2.1).

— The value of the file position indicator after a successful call to theungetc function
for a text stream, or theungetwc function for any stream, until all pushed-back
characters are read or discarded (7.19.7.11, 7.24.3.10).

— The details of the value stored by thefgetpos function (7.19.9.1).

J.1 Portability issues J.1

WG14/N869 Committee Draft — January 18, 1999 507

— The details of the value returned by theftell function for a text stream (7.19.9.4).

— The order and contiguity of storage allocated by successive calls to thecalloc ,
malloc , andrealloc functions (7.20.3).

— The amount of storage allocated by a successful call to thecalloc , malloc , or
realloc function when 0 bytes was requested (7.20.3).

— Which of two elements that compare as equal is matched by thebsearch function
(7.20.5.1).

— The order of two elements that compare as equal in an array sorted by theqsort
function (7.20.5.2).

— The encoding of the calendar time returned by thetime function (7.23.2.4). ∗

— The resulting value when the invalid exception is raised during IEC 60559 floating to
integer conversion (F.4).

— Whether conversion of non-integer IEC 60559 floating values raises the inexact
exception (F.4).

— The value stored byfrexp for a NaN or infinity (F.9.3.4).

— The sign of one part of thecomplex result of several math functions for certain
exceptional values in IEC 60559 compatible implementations (G.5.1.1, G.5.2.2,
G.5.2.3, G.5.2.4, G.5.2.5, G.5.2.6, G.5.3.1, G.5.4.1).

J.2 Undefined behavior

1 The behavior is undefined in the following circumstances:

— A nonempty source file does not end in a new-line character, ends in new-line
character immediately preceded by a backslash character, or ends in a partial
preprocessing token or comment (5.1.1.2).

— Physical source line splicing or token concatenation produces a character sequence
matching the syntax of a universal character name (5.1.1.2).

— A universal character name specifies a character identifier in the range 00000000
through 00000020 or 0000007F through 0000009F, or designates a character in the
required source character set (5.1.1.2).

— A program in a hosted environment does not define a function namedmain using one
of the two specified forms (5.1.2.2.1).

— A character not in the required basic source character set is encountered in a source
file, except in an identifier, a character constant, a string literal, a header name, a
comment, or a preprocessing token that is never converted to a token (5.2.1).

J.1 Portability issues J.2

508 Committee Draft — January 18, 1999 WG14/N869

— An identifier, comment, string literal, character constant, or header name contains an
invalid multibyte character or does not begin and end in the initial shift state (5.2.1.2).

— The same identifier is used more than once as a label in the same function (6.2.1).

— The same identifier has both internal and external linkage in the same translation unit
(6.2.2).

— The value of an object with automatic storage duration is used while it is
indeterminate. (6.2.4, 6.7.8, 6.8.2).

— An object is referred to when storage is not allocated for it (6.2.4).

— The value of a pointer that referred to an object with automatic storage duration is
used after the storage is no longer guaranteed to be reserved (6.2.4).

— A trap representation is accessed by an lvalue expression that does not have character
type (6.2.6.1).

— A trap representation is produced by a side effect that modifies any part of the object
using an lvalue expression that does not have character type. (6.2.6.1).

— Two declarations of the same object or function specify types that are not compatible
(6.2.7).

— Conversion to or from an integer type produces a value outside the range that can be
represented (6.3.1.4).

— Demotion of one real floating type to another produces a value outside the range that
can be represented (6.3.1.5).

— An lvalue does not designate an object when evaluated (6.3.2.1).

— A non-array lvalue with an incomplete type is used in a context that requires the value
of the designated object (6.3.2.1).

— An lvalue having array type is converted to a pointer to the initial element of the
array, and the array object has register storage class (6.3.2.1).

— An attempt is made to use the value of a void expression, or an implicit or explicit
conversion (except tovoid) is applied to a void expression (6.3.2.2).

— Conversion of a pointer to an integer type produces a value outside the range that can
be represented (6.3.2.3).

— Conversion between two pointer types produces a result that is incorrectly aligned
(6.3.2.3).

— A pointer to a function is converted to point to a function of a different type and used
to call a function of a type not compatible with the type of the called function
(6.3.2.3).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 509

— An unmatched’ or " character is encountered on a logical source line during
tokenization (6.4).

— A reserved keyword token is used in translation phase 7 or 8 for some purpose other
than as a keyword (6.4.1).

— A universal character name does not designate a code value in one of the specified
ranges (6.4.2.1).

— The first character of an identifier is a universal character name designating an
extended digit (6.4.2.1).

— Two identifiers differ only in nonsignificant characters (6.4.2.1).

— An unspecified escape sequence is encountered in a character constant or a string
literal (6.4.4.4).

— An attempt is made to modify a string literal of either form (6.4.5).

— The characters’ , \ , " , // , or /* are encountered between the< and> delimiters, or
the characters’ , \ , // , or /* are encountered between the" delimiters, in a header
name preprocessing token (6.4.7).

— Between two sequence points, an object is modified more than once, or is modified
and the prior value is accessed other than to determine the value to be stored (6.5).

— An exception occurs during the evaluation of an expression (6.5).

— An object has its stored value accessed other than by an lvalue expression having one
of the following types: a type compatible with the effective type of the object, a
qualified version of a type compatible with the effective type of the object, a type that
is the signed or unsigned type corresponding to the effective type of the object, a type
that is the signed or unsigned type corresponding to a qualified version of the
effective type of the object, an aggregate or union type that includes one of the
aforementioned types among its members (including, recursively, a member of a
subaggregate or contained union), or a character type (6.5).

— For a function call without a function prototype, the number of arguments does not
agree with the number of parameters (6.5.2.2).

— For a function call without a function prototype, the function is defined without a
function prototype, and the types of the arguments after promotion are not compatible
with those of the parameters after promotion, with certain exceptions (6.5.2.2).

— For a function call without a function prototype, the function is defined with a
function prototype, and the types of the arguments after promotion are not compatible
with the types of the parameters, or the prototype ends with an ellipsis (6.5.2.2).

J.2 Portability issues J.2

510 Committee Draft — January 18, 1999 WG14/N869

— A function is defined with a type that is not compatible with the type pointed to by the
expression that denotes the called function (6.5.2.2).

— An attempt is made to modify the result of a function call or to access it after the next
sequence point (6.5.2.2).

— The operand of the unary* operator has an invalid value (6.5.3.2).

— A pointer is converted to other than an integer or pointer type (6.5.4).

— The value of the second operand of the/ or %operator is zero (6.5.5).

— Addition or subtraction of a pointer into, or just beyond, an array object and an
integer type produces a result that does not point into, or just beyond, the same array
object (6.5.6).

— Addition or subtraction of a pointer into, or just beyond, an array object and an
integer type produces a result that points just beyond the array object and is used as
the operand of a unary* operator that is evaluated. (6.5.6).

— Pointers that do not point into, or just beyond, the same array object are subtracted
(6.5.6).

— An array subscript is out of range, even if an object is apparently accessible with the
given subscript (as in the lvalue expressiona[1][7] given the declarationint
a[4][5]) (6.5.6).

— The result of subtracting two pointers is not representable in an object of type
ptrdiff_t (6.5.6).

— An expression is shifted by a negative number or by an amount greater than or equal
to the width of the promoted expression (6.5.7).

— An expression having signed promoted type is left-shifted and either the value of the
expression is negative or the result of shifting would be not be representable in the
promoted type. (6.5.7).

— Pointers that do not point to the same aggregate or union (nor just beyond the same
array object) are compared using relational operators (6.5.8).

— An attempt is made to modify the result of a conditional operator or to access it after
the next sequence point (6.5.15).

— An attempt is made to modify the result of an assignment operator or to access it after
the next sequence point (6.5.16).

— An object is assigned to an inexactly overlapping object or to an exactly overlapping
object with incompatible type (6.5.16.1).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 511

— An attempt is made to modify the result of a comma operator or to access it after the
next sequence point (6.5.17).

— An expression that is required to be an integer constant expression does not have an
integer type, contains casts (outside operands tosizeof operators) other than
conversions of arithmetic types to integer types, or has operands that are not integer
constants, enumeration constants, character constants, fixed-lengthsizeof
expressions, or immediately-cast floating constants (6.6).

— A constant expression in an initializer does not evaluate to one of the following: an
arithmetic constant expression, a null pointer constant, an address constant, or an
address constant for an object type plus or minus an integer constant expression (6.6).

— An arithmetic constant expression does not have arithmetic type, contains casts
(outside operands tosizeof operators) other than conversions of arithmetic types to
arithmetic types, or has operands that are not integer constants, floating constants,
enumeration constants, character constants, orsizeof expressions (6.6).

— An address constant is created neither explicitly using the unary& operator or an
integer constant cast to pointer type, nor implicitly by the use of an expression of
array or function type (6.6).

— The value of an object is accessed by an array-subscript[] , member-access. or −>,
address&, or indirection* operator or a pointer cast in creating an address constant
(6.6).

— An identifier for an object is declared with no linkage and the type of the object is
incomplete after its declarator, or after its init-declarator if it has an initializer (6.7).

— A function is declared at block scope with an explicit storage-class specifier other
thanextern (6.7.1).

— A structure or union is defined as containing no named members (6.7.2.1).

— A bit-field is declared with a type other than a qualified or unqualified version of
_Bool , signed int , or unsigned int (6.7.2.1).

— An attempt is made to access, or generate a pointer to just past, a flexible array
member of a structure when the referenced object provides no elements for that array
(6.7.2.1).

— A tag is declared with the bracketed list twice within the same scope (6.7.2.3).

— When the complete type is needed, an incomplete structure or union type is not
completed in the same scope by another declaration of the tag that defines the content
(6.7.2.3).

J.2 Portability issues J.2

512 Committee Draft — January 18, 1999 WG14/N869

— An attempt is made to modify an object defined with a const-qualified type through
use of an lvalue with non-const-qualified type (6.7.3).

— An attempt is made to refer to an object defined with a volatile-qualified type through
use of an lvalue with non-volatile-qualified type (6.7.3).

— An attempt is made to access an object through a restrict-qualified pointer and another
pointer not based on it (6.7.3, 6.7.3.1).

— The specification of a function type includes a type qualifier (6.7.3).

— Two qualified types that are required to be compatible do not have the identically
qualified version of a compatible type (6.7.3).

— A function with external linkage is declared with aninline function specifier, but is
not also defined in the same translation unit (6.7.4).

— Two pointer types that are required to be compatible are not identically qualified, or
are not pointers to compatible types (6.7.5.1).

— The size expression in an array declaration is not a constant expression and evaluates
at program execution time to a nonpositive value (6.7.5.2).

— In a context requiring two array types to be compatible, they do not have compatible
element types, or their size specifiers evaluate to unequal values (6.7.5.2).

— A storage-class specifier or type qualifier modifies the keywordvoid as a function
parameter type list (6.7.5.3).

— In a context requiring two function types to be compatible, they do not have
compatible return types, or their parameters disagree in use of the ellipsis terminator
or the number and type of parameters (after default argument promotion, when there
is no parameter type list or when one type is specified by a function definition with
identifier list) (6.7.5.3).

— The value of an unnamed member of a structure or union is used (6.7.8).

— The initializer for a scalar is neither a single expression nor a single expression
enclosed in braces (6.7.8).

— The initializer for a structure or union object is neither an initializer list nor a single
expression that has compatible structure or union type (6.7.8).

— The initializer for an aggregate or union, other than an array initialized by a string
literal, is not a brace-enclosed list of initializers for its elements or members. (6.7.8).

— An identifier with external linkage is used, but in the program there does not exist
exactly one external definition for the identifier, or the identifier is not used and there
exist multiple external definitions for the identifier. (6.9).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 513

— A function definition includes an identifier list, but the types of the parameters are not
declared in a following declaration list. (6.9.1).

— A function that accepts a variable number of arguments is defined without a
parameter type list that ends with the ellipsis notation (6.9.1).

— An adjusted parameter type in a function definition is not an object type (6.9.1).

— The } that terminates a function is reached, and the value of the function call is used
by the caller (6.9.1).

— An identifier for an object with internal linkage and an incomplete type is declared
with a tentative definition (6.9.2).

— The token defined is generated during the expansion of a#if or #elif
preprocessing directive, or the use of thedefined unary operator does not match
one of the two specified forms prior to macro replacement (6.10.1).

— The #include preprocessing directive that results after expansion does not match
one of the two header name forms (6.10.2).

— The character sequence in an#include preprocessing directive does not start with a
letter (6.10.2).

— There are sequences of preprocessing tokens within the list of macro arguments that
would otherwise act as preprocessing directive lines (6.10.3).

— The result of the preprocessing operator# is not a valid character string literal
(6.10.3.2).

— The result of the preprocessing operator## is not a valid preprocessing token
(6.10.3.3).

— The#line preprocessing directive that results after expansion does not match one of
the two well-defined forms, or its digit sequence specifies zero or a number greater
than 2147483647 (6.10.4).

— A non-STDC #pragma preprocessing directive that is documented as causing
translation failure or some other form of undefined behavior is encountered (6.10.6).

— A #pragma STDC preprocessing directive does not match one of the nine well-
defined forms (6.10.6).

— One of the following identifiers is the subject of a#define or #undef
preprocessing directive:__LINE_ _, __FILE_ _, __DATE_ _, __TIME_ _,
__STDC_ _, __STDC_VERSION_ _, __STDC_IEC_559_ _,
__STDC_IEC_559_COMPLEX_ _, or defined (6.10.8).

J.2 Portability issues J.2

514 Committee Draft — January 18, 1999 WG14/N869

— An attempt is made to copy an object to an overlapping object by use of a library
function other thanmemmove(7).

— A file with the same name as one of the standard headers, not provided as part of the
implementation, is placed in any of the standard places that are searched for included
source files (7.1.2).

— A header is included within an external declaration or definition (7.1.2).

— A function, object, type, or macro that is specified as being declared or defined by
some standard header is used before any header that declares or defines it is included
(7.1.2).

— A standard header is included while a macro is defined with the same name as a
keyword (7.1.2).

— The program attempts to declare a library function itself, rather than via a standard
header, but the declaration does not have external linkage (7.1.2).

— The program declares or defines a reserved identifier (other than as allowed by 7.1.4)
(7.1.3).

— The program removes the definition of a macro whose name begins with an
underscore and either an uppercase letter or another underscore (7.1.3).

— An argument to a library function has an invalid value or a type not expected by a
function with variable number of arguments (7.1.4).

— The macro definition ofassert is suppressed in order to access an actual function
(7.2).

— The CX_LIMITED_RANGEpragma is used in any context other than outside all
external declarations or preceding all explicit declarations and statements inside a
compound statement (7.3.4).

— The value of an argument to a character handling function is neither equal to the value
of EOFnor representable as anunsigned char (7.4).

— A macro definition oferrno is suppressed in order to access an actual object, or the
program defines an identifier with the nameerrno (7.5).

— The FENV_ACCESSpragma is used in any context other than outside all external
declarations or preceding all explicit declarations and statements inside a compound
statement (7.6.1).

— Part of the program tests flags or runs under non-default mode settings, but was
translated with the state for theFENV_ACCESSpragmaoff (7.6.1).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 515

— The exception-mask argument for one of the functions that provide access to the
exception flags has a value not obtained by bitwiseOR of the exception macros
(7.6.2).

— The fesetexceptflag function is used to set the status for exception flags not
specified in the call to thefegetexceptflag function that provided the value of
the correspondingfexcept_t object (7.6.2.4).

— The program modifies the string pointed to by the value returned by thesetlocale
function (7.11.1.1).

— The program modifies the structure pointed to by the value returned by the
localeconv function (7.11.2.1).

— The FP_CONTRACTpragma is used in any context other than outside all external
declarations or preceding all explicit declarations and statements inside a compound
statement (7.12.2).

— An argument to a floating-point classification macro is not of real floating type
(7.12.3).

— A macro definition ofsetjmp is suppressed in order to access an actual function, or
the program defines an identifier with the namesetjmp (7.13.1).

— An inv ocation of thesetjmp macro occurs in a context other than as the entire
controlling expression in a selection or iteration statement, or in a comparison with an
integer constant expression (possibly as implied by the unary! operator) as the entire
controlling expression of a selection or iteration statement, or as the entire expression
of an expression statement (possibly cast tovoid) (7.13.2.1).

— The longjmp function is invoked to restore a nonexistent environment (7.13.2.1).

— After a longjmp , there is an attempt to access the value of an object of automatic
storage class with non-volatile-qualified type, local to the function containing the
invocation of the correspondingsetjmp macro, that was changed between the
setjmp invocation andlongjmp call (7.13.2.1).

— The longjmp function is invoked from a nested signal handler (7.13.2.1).

— The program uses a nonpositive value for a signal number (7.14).

— The program specifies an invalid pointer to a signal handler function (7.14.1.1).

— A signal handler returns when the signal corresponded to a computational exception
(7.14.1.1).

— A signal occurs other than as the result of calling theabort or raise function, and
the signal handler calls a function in the standard library other than thesignal
function (for the same signal number) or refers to an object with static storage
duration other than by assigning a value to an object declared asvolatile

J.2 Portability issues J.2

516 Committee Draft — January 18, 1999 WG14/N869

sig_atomic_t (7.14.1.1).

— The value oferrno is referred to after a signal occurred other than as the result of
calling theabort or raise function and the corresponding signal handler obtained
aSIG_ERRreturn from a call to thesignal function (7.14.1.1).

— A function with a variable number of arguments attempts to access its varying
arguments other than through a properly declared and initializedva_list object, or
before theva_start macro is invoked (7.15, 7.15.1.1, 7.15.1.4).

— The macrova_arg is invoked using the parameterap that was passed to a function
that invoked the macrova_arg with the same parameter (7.15).

— A macro definition ofva_start , va_arg , va_copy , or va_end is suppressed in
order to access an actual function, or the program defines an external identifier with
the nameva_end (7.15.1).

— Theva_end macro is invoked without a corresponding invocation of theva_start
or va_copy macro, or vice versa. (7.15.1, 7.15.1.3, 7.15.1.4).

— The va_arg macro is invoked when there is no actual next argument, or with a
specified type that is not compatible with the promoted type of the actual next
argument, with certain exceptions (7.15.1.1).

— The parameterparmN of a va_start macro is declared with theregister
storage class, with a function or array type, or with a type that is not compatible with
the type that results after application of the default argument promotions (7.15.1.4).

— The member-designatorparameter of anoffsetof macro is an invalid right
operand of the. operator for thetypeparameter, or themember-designatorparameter
designates a bit-field (7.17).

— The argument in an instance of one of the integer-constant macros is not a decimal,
octal, or hexadecimal constant, or it has a value that exceeds the limits for the
corresponding type (7.18.4).

— A byte input/output function is applied to a wide-oriented stream, or a wide-character
input/output function is applied to a byte-oriented stream (7.19.2).

— Use is made of any portion of a file beyond the most recent wide character written to
a wide-oriented stream (7.19.2).

— The value of a pointer to aFILE object is used after the associated file is closed
(7.19.3).

— The stream for thefflush function points to an input stream or to an update stream
in which the most recent operation was input (7.19.5.2).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 517

— The string pointed to by themode argument in a call to thefopen function does not
exactly match one of the specified character sequences (7.19.5.3).

— An output operation on an update stream is followed by an input operation without an
intervening call to thefflush function or a file positioning function, or an input
operation on an update stream is followed by an output operation with an intervening
call to a file positioning function (7.19.5.3).

— An attempt is made to use the contents of the array that was supplied in a call to the
setvbuf function (7.19.5.6).

— There are insufficient arguments for the format in a call to thefprintf , fscanf ,
fwprintf , or fwscanf function, or an argument does not have an appropriate type
(7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

— The format in a call to thefprintf , fscanf , fwprintf , fwscanf , strftime , ∗
or wcsftime function is not a valid multibyte character sequence that begins and
ends in its initial shift state (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2, 7.23.3.5, 7.24.5.1

— In a call to the fprintf or fwprintf function, a precision appears with a
conversion specifier other thana, A, d, e, E, f , F, g, G, i , o, s , u, x , or X (7.19.6.1,
7.24.2.1).

— A conversion specification for thefprintf , fscanf , fwprintf , or fwscanf
function uses a length modifier with a conversion specifier in a combination not
specified in this International Standard (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

— An asterisk is used to denote an argument-supplied field width or precision, but the
corresponding argument is not provided (7.19.6.1, 7.24.2.1).

— A conversion specification for thefprintf or fwprintf function uses a# flag
with a conversion specifier other thana, A, e, E, f , F, g, G, o, x , or X (7.19.6.1,
7.24.2.1).

— A conversion specification for thefprintf or fwprintf function uses a0 flag
with a conversion specifier other thana, A, d, e, E, f , F, g, G, i , o, u, x , or X
(7.19.6.1, 7.24.2.1).

— An s conversion specifier is encountered by thefprintf or fwprintf function,
and the argument is missing the null terminator (unless a precision is specified that
does not require null termination) (7.19.6.1, 7.24.2.1).

— An n conversion specification includes any flags, an assignment-suppressing
character, a field width, or a precision (7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

— A %conversion specifier is encountered by thefprintf , fscanf , fwprintf , or
fwscanf function, but the complete conversion specification is not exactly%%
(7.19.6.1, 7.19.6.2, 7.24.2.1, 7.24.2.2).

J.2 Portability issues J.2

518 Committee Draft — January 18, 1999 WG14/N869

— An inv alid conversion specification is found in the format for thefprintf ,
fscanf , strftime , fwprintf , fwscanf , or wcsftime function (7.19.6.1,
7.19.6.2, 7.23.3.5, 7.24.2.1, 7.24.2.2, 7.24.5.1).

— An argument to thefprintf or fwprintf function is not the correct type for the
corresponding conversion specification (7.19.6.1, 7.24.2.1).

— The number of characters transmitted by a formatted output function is greater than
INT_MAX (7.19.6.1, 7.19.6.3, 7.19.6.8, 7.19.6.10)

— The result of a conversion by thefscanf or fwscanf function cannot be
represented in the corresponding object, or the receiving object does not have an
appropriate type (7.19.6.2, 7.24.2.2).

— A c , s , or [conversion specifier is encountered by thefscanf or fwscanf
function, and the character array pointed to by the corresponding argument is not
large enough to accept the input sequence (and a null terminator if the conversion
specifier iss or [) (7.19.6.2, 7.24.2.2).

— An c , s , or [conversion specifier with anl qualifier is encountered by thefscanf
or fwscanf function, but the input is not a valid multibyte character sequence that
begins in the initial shift state (7.19.6.2, 7.24.2.2).

— The input item for%p conversion by thefscanf or fwscanf function is not a
value converted earlier during the same program execution (7.19.6.2, 7.24.2.2).

— The snprintf , sprintf , sscanf , vsnprintf , vsprintf , mbstowcs ,
wcstombs , memcpy, strcpy , strncpy , strcat , strncat , strxfrm , or
strftime function, or any of the functions declared by<wchar.h> (except where
otherwise specified), is used to copy between overlapping objects (7.19.6.5, 7.19.6.6,
7.19.6.7, 7.19.6.12, 7.19.6.13, 7.20.8.1, 7.20.8.2, 7.21.2.1, 7.21.2.3, 7.21.2.4, 7.21.3.1,
7.21.3.2, 7.21.4.5, 7.23.3.5, 7.24.1). ∗

— The vfprintf , vfscanf , vprintf , vscanf , vsnprintf , vsprintf ,
vsscanf , vfwprintf , vfwscanf , vswprintf , vswscanf , vwprintf , or
vwscanf . function is called with an improperly initializedva_list argument
(7.19.6.8, 7.19.6.9, 7.19.6.10, 7.19.6.11, 7.19.6.12, 7.19.6.13, 7.19.6.14, 7.24.2.5,
7.24.2.6, 7.24.2.7, 7.24.2.8, 7.24.2.9, 7.24.2.10).

— The contents of the array supplied in a call to thefgets , gets , or fgetws function
are used after a read error occurred (7.19.7.2, 7.19.7.7, 7.24.3.2).

— The file position indicator for a binary stream is used after a call to theungetc
function where its value was zero before the call (7.19.7.11).

— The file position indicator for a stream is used after an error occurred during a call to
thefread or fwrite function (7.19.8.1, 7.19.8.2).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 519

— A partial element read by a call to thefread function is used (7.19.8.1).

— The fseek function is called for a text stream with other thanSEEK_SET, or with a
non-zero offset that was not returned by a previous successful call to theftell
function for the same file (7.19.9.2).

— The fsetpos function is called to set a position that was not returned by a previous
successful call to thefgetpos function for the same file (7.19.9.3).

— The value of the result of converting a string to a number by theatof , atoi , atol ,
or atoll function cannot be represented (7.20.1).

— A non-null pointer returned by a call to thecalloc , malloc , or realloc function
with a zero requested size is used to access an object (7.20.3).

— The value of a pointer that refers to space deallocated by a call to thefree or
realloc function is used (7.20.3).

— The pointer argument to thefree or realloc function does not match a pointer
earlier returned bycalloc , malloc , or realloc , or the space has been
deallocated by a call tofree or realloc (7.20.3.2, 7.20.3.4).

— The value of the object allocated by themalloc function is used (7.20.3.3).

— The value of the newly allocated portion of an object expanded by therealloc
function is used (7.20.3.4).

— The program executes more than one call to theexit function (7.20.4.3).

— The string set up by thegetenv or strerror function is modified by the program
(7.20.4.4, 7.21.6.2).

— A command is executed through thesystem function in a way that is documented as
causing termination or some other form of undefined behavior (7.20.4.5).

— The comparison function called by thebsearch or qsort function returns ordering
values inconsistently (7.20.5.1, 7.20.5.2).

— The array being searched by thebsearch function does not have its elements in
proper order (7.20.5.1).

— The result of an integer arithmetic function (abs , div , labs , llabs , ldiv , or
lldiv) cannot be represented (7.20.6.1, 7.20.6.2).

— The current shift state is used with a multibyte character function after the
LC_CTYPEcategory was changed (7.20.7).

— A string or wide-string utility function is instructed to access an array beyond the end
of an object (7.21.1, 7.24.4).

J.2 Portability issues J.2

520 Committee Draft — January 18, 1999 WG14/N869

— The contents of the destination array are used after a call to thestrxfrm ,
strftime , wcsxfrm , or wcsftime function in which the specified length was
too small to hold the entire null-terminated result (7.21.4.5, 7.23.3.5, 7.24.4.4.4,
7.24.5.1).

— A non-real argument is supplied for a generic parameter of a type-generic macro
(7.22.1).

— The argument corresponding to ans specifier without anl qualifier in a call to the∗
fwprintf function does not point to a valid multibyte character sequence that
begins in the initial shift state (7.24.2.11).

— The first argument in a call to thewcstok function does not point to a wide string on
the first call or is not a null pointer for subsequent calls to continue parsing the same
wide string, or when continuing parsing, the saved pointer value pointed to by the
third argument does not match that stored by the previous call for the same wide
string (7.24.4.5.8).

— An mbstate_t object is used inappropriately (7.24.6).

— The conversion state is used after thembrtowc , wcrtomb , mbsrtowcs , or
wcsrtombs function reports an encoding error (7.24.6.3.2, 7.24.6.3.3, 7.24.6.4.1,
7.24.6.4.2).

— The value of an argument of typewint_t to a wide-character classification or
mapping function is neither equal to the value ofWEOFnor representable as a
wchar_t (7.25.1).

— The iswctype function is called using a differentLC_CTYPEcategory from the
one in effect for the call to thewctype function that returned the description
(7.25.2.2.1).

— The towctrans function is called using a differentLC_CTYPEcategory from the
one in effect for the call to thewctrans function that returned the description
(7.25.3.2.1).

J.2 Portability issues J.2

WG14/N869 Committee Draft — January 18, 1999 521

J.3 Implementation-defined behavior

1 A conforming implementation shall document its choice of behavior in each of the areas
listed in this subclause. The following are implementation-defined:

J.3.1 Translation

1 — How a diagnostic is identified (3.8, 5.1.1.3).

— Whether each nonempty sequence of white-space characters other than new-line is
retained or replaced by one space character in translation phase 3 (5.1.1.2).

J.3.2 Environment

1 — The name and type of the function called at program startup in a freestanding
environment (5.1.2.1).

— The effect of program termination in a freestanding environment (5.1.2.1).

— An alternative manner in which themain function may be defined (5.1.2.2.1).

— The values given to the strings pointed to by theargv argument tomain (5.1.2.2.1).

— What constitutes an interactive device (5.1.2.3).

— Signals for which the equivalent ofsignal(sig, SIG_IGN); is executed at
program startup (7.14.1.1).

— The form of the status returned to the host environment to indicate unsuccessful
termination when theSIGABRTsignal is raised and not caught (7.20.4.1).

— The forms of the status returned to the host environment by theexit function to
report successful and unsuccessful termination (7.20.4.3).

— The status returned to the host environment by theexit function if the value of its
argument is other than zero,EXIT_SUCCESS, or EXIT_FAILURE (7.20.4.3).

— The set of environment names and the method for altering the environment list used
by thegetenv function (7.20.4.4).

— The manner of execution of the string by thesystem function (7.20.4.5).

J.3 Portability issues J.3.2

522 Committee Draft — January 18, 1999 WG14/N869

J.3.3 Identifiers

1 — Which additional multibyte characters may appear in identifiers and their
correspondence to universal character names (6.4.2).

— The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).

J.3.4 Characters

1 — The number of bits in a byte (3.4).

— The values of the members of the execution character set (5.2.1).

— The unique value of the member of the execution character set produced for each of
the standard alphabetic escape sequences (5.2.2).

— The value of achar object into which has been stored any character other than a
member of the required source character set (6.2.5).

— Which of signed char or unsigned char has the same range, representation,
and behavior as ‘‘plain’’char (6.2.5, 6.3.1.1).

— The mapping of members of the source character set (in character constants and string
literals) to members of the execution character set (6.4.4.4).

— The value of an integer character constant that contains more than one character or a
wide character constant that contains more than one multibyte character (6.4.4.4).

— The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or a wide character
constant that contains a multibyte character or escape sequence not represented in the
extended execution character set (6.4.4.4).

— The current locale used to convert a wide character constant consisting of a single
multibyte character that maps to a member of the extended execution character set
into a corresponding wide-character code (6.4.4.4).

— The current locale used to convert a wide string literal into corresponding wide-
character codes (6.4.5).

— The value of a string literal containing a multibyte character or escape sequence not
represented in the execution character set (6.4.5).

J.3.3 Portability issues J.3.4

WG14/N869 Committee Draft — January 18, 1999 523

J.3.5 Integers

1 — Any extended integer types that exist in the implementation (6.2.5).

— The rank of any extended integer type relative to another extended integer type with
the same precision (6.3.1.1).

— The result of converting an integer to a signed integer type when the value cannot be
represented in an object of that type (6.3.1.3).

— The results of some bit-wise operations on signed integers (6.5).

J.3.6 Floating point

1 — The accuracy of the floating-point operations and of the library functions in
<math.h> and<complex.h> that return floating-point results (5.2.4.2.2)

— Rounding behavior for values ofFLT_ROUNDSless than −1 or greater than 3
(5.2.4.2.2).

— Rounding behavior for values ofFLT_EVAL_METHODless than −1 (5.2.4.2.2).

— The direction of rounding when an integer is converted to a floating-point number that
cannot exactly represent the original value (6.3.1.4).

— The direction of rounding when a floating-point number is converted to a narrower
floating-point number (6.3.1.5).

— How the nearest representable value or the larger or smaller representable value
immediately adjacent to the nearest representable value is chosen for certain floating
constants (6.4.4.2).

— Whether and how floating expressions are contracted when not disallowed by the
FP_CONTRACTpragma (6.5).

J.3.7 Arrays and pointers

1 — The result of converting a pointer to an integer or vice versa (6.3.2.3).

— The size of the result of subtracting two pointers to elements of the same array
(6.5.6).

J.3.5 Portability issues J.3.7

524 Committee Draft — January 18, 1999 WG14/N869

J.3.8 Hints

1 — The extent to which suggestions made by using theregister storage-class
specifier are effective (6.7.1).

— The extent to which suggestions made by using theinline function specifier are
effective (6.7.4).

J.3.9 Structures, unions, enumerations, and bit-fields

1 — The behavior when a member of a union object is accessed using a member of a
different type (6.5.2.3).

— Whether a ‘‘plain’’ int bit-field is treated as asigned int bit-field or as an
unsigned int bit-field (6.7.2).

— Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).

— The order of allocation of bit-fields within a unit (6.7.2.1).

— The alignment of non-bit-field members of structures (6.7.2.1). This should present
no problem unless binary data written by one implementation is read by another.

— The integer type compatible with each enumerated type (6.7.2.2).

J.3.10 Qualifiers

1 — What constitutes an access to an object that has volatile-qualified type (6.7.3).

J.3.11 Preprocessing directives

1 — How sequences in both forms of header names are mapped to headers or external
source file names (6.4.7).

— Whether the value of a character constant in a constant expression that controls
conditional inclusion matches the value of the same character constant in the
execution character set (6.10.1).

— Whether the value of a single-character character constant in a constant expression
that controls conditional inclusion may have a neg ative value (6.10.1).

— The places that are searched for an included< > delimited header, and how the places
are specified or the header is identified (6.10.2).

— How the named source file is searched for in an included" " delimited header
(6.10.2).

— The method by which preprocessing tokens are combined into a header name
(6.10.2).

J.3.8 Portability issues J.3.11

WG14/N869 Committee Draft — January 18, 1999 525

— The nesting limit for#include processing (6.10.2).

— The behavior on each recognized non-STDC #pragma directive (6.10.6).

— The definitions for__DATE_ _ and__TIME_ _ when respectively, the date and time
of translation are not available (6.10.8).

J.3.12 Library functions

1 — Any library facilities available to a freestanding program, other than the minimal set
required by clause 4 (5.1.2.1).

— The format of the diagnostic printed by theassert macro (7.2.1.1).

— The default state for theFENV_ACCESSpragma (7.6.1)

— The representation of floating point exception flags stored by the
fegetexceptflag function (7.6.2.2).

— Whether theferaiseexcept function raises the inexact exception in addition to
the overflow or underflow exception (7.6.2.3).

— Floating environment macros other thanFE_DFL_ENV that can be used as the
argument to thefesetenv or feupdateenv function (7.6.4.3, 7.6.4.4).

— Strings other than"C" and "" that may be passed as the second argument to the
setlocale function (7.11.1.1).

— The types defined forfloat_t and double_t when the value of the
FLT_EVAL_METHODmacro is less than 0 or greater than 2 (7.12).

— Domain errors for the mathematics functions, other than those required by this∗
International Standard (7.12.1).

— The values returned by the mathematics functions, and whethererrno is set to the
value of the macroEDOM, on domain errors (7.12.1).

— Whether the mathematics functions seterrno to the value of the macroERANGEon
overflow and/or underflow range errors (7.12.1).

— The default state for theFP_CONTRACTpragma (7.12.2)

— Whether a domain error occurs or zero is returned when thefmod function has a
second argument of zero (7.12.10.1).

— The base-2 logarithm of the modulus used by theremquo function in reducing the
quotient (7.12.10.3).

— The set of signals, their semantics, and their default handling (7.14).

— If the equivalent ofsignal(sig, SIG_DFL); is not executed prior to the call of
a signal handler, the blocking of the signal that is performed (7.14.1.1).

J.3.11 Portability issues J.3.12

526 Committee Draft — January 18, 1999 WG14/N869

— Whether the equivalent ofsignal(sig, SIG_DFL); is executed prior to the call
of a signal handler for the signalSIGILL (7.14.1.1).

— Signal values other thanSIGFPE, SIGILL , and SIGSEGV that correspond to a
computational exception (7.14.1.1).

— The null pointer constant to which the macroNULLexpands (7.17).

— Whether the last line of a text stream requires a terminating new-line character
(7.19.2).

— Whether space characters that are written out to a text stream immediately before a
new-line character appear when read in (7.19.2).

— The number of null characters that may be appended to data written to a binary
stream (7.19.2).

— Whether the file position indicator of an append-mode stream is initially positioned at
the beginning or end of the file (7.19.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that
point (7.19.3).

— The characteristics of file buffering (7.19.3).

— Whether a zero-length file actually exists (7.19.3).

— The rules for composing valid file names (7.19.3).

— Whether the same file can be open multiple times (7.19.3).

— The nature and choice of encodings used for multibyte characters in files (7.19.3).

— The effect of theremove function on an open file (7.19.4.1).

— The effect if a file with the new name exists prior to a call to therename function
(7.19.4.2).

— Whether an open temporary file is removed upon abnormal program termination
(7.19.4.3).

— What happens when thetmpnam function is called more thanTMP_MAXtimes
(7.19.4.4).

— Which changes of mode are permitted (if any), and under what circumstances
(7.19.5.4).

— The style used to print an infinity or NaN, and the meaning of then-char-sequenceif
that style is printed for a NaN (7.19.6.1, 7.24.2.1).

— The output for%p conversion in thefprintf or fwprintf function (7.19.6.1,
7.24.2.1).

J.3.12 Portability issues J.3.12

WG14/N869 Committee Draft — January 18, 1999 527

— The interpretation of a- character that is neither the first nor the last character, nor
the second where â character is the first, in the scanlist for%[conversion in the
fscanf or fwscanf function (7.19.6.2, 7.24.2.1).

— The set of sequences matched by the%p conversion in thefscanf or fwscanf
function (7.19.6.2, 7.24.2.2).

— The interpretation of the input item corresponding to a%pconversion in thefscanf
or fwscanf function (7.19.6.2, 7.24.2.2).

— The value to which the macroerrno is set by thefgetpos , fsetpos , or ftell
functions on failure (7.19.9.1, 7.19.9.3, 7.19.9.4).

— The meaning of then-char-sequencein a string converted by thestrtod , strtof ,
strtold , wcstod , wcstof , or wcstold function (7.20.1.3, 7.24.4.1.1).

— Whether or not thestrtod , strtof , strtold , wcstod , wcstof , or wcstold
function setserrno to ERANGEwhen underflow occurs (7.20.1.3, 7.24.4.1.1).

— Whether thecalloc , malloc , and realloc functions return a null pointer or a
pointer to an allocated object when the size requested is zero (7.20.3).

— Whether open output streams are flushed, open streams are closed, or temporary files
are removed when theabort function is called (7.20.4.1).

— The termination status returned to the host environment by theabort function
(7.20.4.1).

— The value returned by thesystem function when its argument is not a null pointer
(7.20.4.5).

— The local time zone and Daylight Saving Time (7.23.1).

— The era for theclock function (7.23.2.1).

— The replacement string for the%Z specifier to thestrftime , and wcsftime
functions in the"C" locale (7.23.3.5, 7.24.5.1).

— Whether or when the trigonometric, hyperbolic, base-e exponential, base-e
logarithmic, error, and log gamma functions raise the inexact exception in an IEC
60559 conformant implementation (F.9).

— Whether the inexact exception may be raised when the rounded result actually does
equal the mathematical result in an IEC 60559 conformant implementation (F.9).

— Whether the underflow (and inexact) exception may be raised when a result is tiny but
not inexact in an IEC 60559 conformant implementation (F.9).

— Whether the functions honor the rounding direction mode (F.9).

J.3.12 Portability issues J.3.12

528 Committee Draft — January 18, 1999 WG14/N869

J.3.13 Architecture

1 — The values or expressions assigned to the macros specified in the headers
<float.h> , <limits.h> , and<stdint.h> (5.2.4.2, 7.18.2, 7.18.3).

— The number, order, and encoding of bytes in any object (when not explicitly specified
in this International Standard) (6.2.6.1).

— The value of the result of thesizeof operator (6.5.3.4).

J.4 Locale-specific behavior

1 The following characteristics of a hosted environment are locale-specific and shall be
documented by the implementation:

— Additional members of the execution character set beyond the required members
(5.2.1).

— The presence, meaning, and representation of additional multibyte characters in the
execution character set beyond the required single-byte characters (5.2.1.2).

— The shift states used for the encoding of multibyte characters (5.2.1.2).

— The direction of writing of successive printing characters (5.2.2).

— The decimal-point character (7.1.1).

— The set ofprinting characters(7.4).

— The set ofcontrol characters(7.4).

— The sets of characters tested for by theisalpha , islower , ispunct , isspace ,
or isupper functions (7.4.1.2, 7.4.1.6, 7.4.1.8, 7.4.1.9, 7.4.1.10).

— The native environment (7.11.1.1).

— Additional subject sequences accepted by the string conversion functions (7.20.1) and
the wide string numeric conversion function (7.24.4.1).

— The collation sequence of the execution character set (7.21.4.3, 7.24.4.4.2).

— The contents of the error message strings set up by thestrerror function
(7.21.6.2).

— The formats for time and date (7.23.3.5).

— Character mappings that are supported by thetowctrans function (7.25.1).

— Character classifications that are supported by theiswctype function (7.25.1).

— The set ofprinting wide characters(7.25.2).

J.3.13 Portability issues J.4

WG14/N869 Committee Draft — January 18, 1999 529

— The set ofcontrol wide characters(7.25.2).

— The sets of wide characters tested for by theiswalpha , iswlower , iswpunct ,
iswspace , or iswupper functions (7.25.2.1.2, 7.25.2.1.6, 7.25.2.1.8, 7.25.2.1.9,
7.25.2.1.10).

J.5 Common extensions

1 The following extensions are widely used in many systems, but are not portable to all
implementations. The inclusion of any extension that may cause a strictly conforming
program to become invalid renders an implementation nonconforming. Examples of such
extensions are new keywords, extra library functions declared in standard headers, or
predefined macros with names that do not begin with an underscore.

J.5.1 Environment arguments

1 In a hosted environment, themain function receives a third argument,char *envp[] ,
that points to a null-terminated array of pointers tochar , each of which points to a string
that provides information about the environment for this execution of the program
(5.1.2.2.1).

J.5.2 Specialized identifiers

1 Characters other than the underscore _, letters, and digits, that are not defined in the
required source character set (such as the dollar sign $, or characters in national character
sets) may appear in an identifier (6.4.2).

J.5.3 Lengths and cases of identifiers

1 All characters in identifiers (with or without external linkage) are significant (6.4.2).

J.5.4 Scopes of identifiers

1 A function identifier, or the identifier of an object the declaration of which contains the
keywordextern , has file scope (6.2.1).

J.5.5 Writable string literals

1 String literals are modifiable (in which case, identical string literals should denote distinct
objects) (6.4.5).

J.4 Portability issues J.5.5

530 Committee Draft — January 18, 1999 WG14/N869

J.5.6 Other arithmetic types

1 Additional arithmetic types, such as__int128 , and their appropriate conversions are
defined (6.2.5, 6.3.1). Additional floating types may have more range or precision than
long double , may be used for evaluating expressions of other floating types, and may
be used to definefloat_t or double_t .

J.5.7 Function pointer casts

1 A pointer to an object or tovoid may be cast to a pointer to a function, allowing data to
be invoked as a function (6.5.4).

2 A pointer to a function may be cast to a pointer to an object or tovoid , allowing a
function to be inspected or modified (for example, by a debugger) (6.5.4).

J.5.8 Extended bit-field types

1 A bit-field may be declared with a type other than_Bool , unsigned int , or
signed int , with an appropriate maximum width (6.7.2.1).

J.5.9 Thefortran keyword

1 The fortran function specifier may be used in a function declaration to indicate that
calls suitable for FORTRAN should be generated, or that a different representation for the
external name is to be generated (6.7.4).

J.5.10 Theasm keyword

1 The asm keyword may be used to insert assembly language directly into the translator
output (6.8). The most common implementation is via a statement of the form:

asm (character-string-literal);

J.5.11 Multiple external definitions

1 There may be more than one external definition for the identifier of an object, with or
without the explicit use of the keywordextern ; if the definitions disagree, or more than
one is initialized, the behavior is undefined (6.9.2).

J.5.12 Predefined macro names

1 Macro names that do not begin with an underscore, describing the translation and
execution environments, are defined by the implementation before translation begins
(6.10.8).

J.5.6 Portability issues J.5.12

WG14/N869 Committee Draft — January 18, 1999 531

J.5.13 Extra arguments for signal handlers

1 Handlers for specific signals may be called with extra arguments in addition to the signal
number (7.14.1.1).

J.5.14 Additional stream types and file-opening modes

1 Additional mappings from files to streams may be supported (7.19.2).

2 Additional file-opening modes may be specified by characters appended to themode
argument of thefopen function (7.19.5.3).

J.5.15 Defined file position indicator

1 The file position indicator is decremented by each successful call to theungetc or
ungetwc function for a text stream, except if its value was zero before a call (7.19.7.11,
7.24.3.10).

J.5.13 Portability issues J.5.15

532 Committee Draft — January 18, 1999 WG14/N869

Bibliography

1. ‘‘The C Reference Manual’’ by Dennis M. Ritchie, a version of which was
published inThe C Programming Languageby Brian W. Kernighan and Dennis
M. Ritchie, Prentice-Hall, Inc., (1978). Copyright owned by AT&T.

2. 1984 /usr/group Standardby the /usr/group Standards Committee, Santa Clara,
California, USA, November 1984.

3. ANSI X3/TR−1−82 (1982),American National Dictionary for Information
Processing Systems, Information Processing Systems Technical Report.

4. ANSI/IEEE 754−1985,American National Standard for Binary Floating-Point
Arithmetic.

5. ANSI/IEEE 854−1988,American National Standard for Radix-Independent
Floating-Point Arithmetic.

6. IEC 60559:1989,Binary floating-point arithmetic for microprocessor systems,
second edition(previously designated IEC 559:1989).

7. ISO/IEC 646:1991,Information technology —ISO 7-bit coded character set for
information interchange.

8. ISO/IEC 2382−1:1993,Information technology — Vocabulary — Part 1:
Fundamental terms.

9. ISO 4217:1995,Codes for the representation of currencies and funds.

10. ISO 8601:1988,Data elements and interchange formats — Information
interchange — Representation of dates and times.

11. ISO/IEC 9899:1990,Programming languages — C.

12. ISO/IEC 9899/COR1:1994,Technical Corrigendum 1.

13. ISO/IEC 9899/COR2:1996,Technical Corrigendum 2.

14. ISO/IEC 9899/AMD1:1995,Amendment 1 to ISO/IEC 9899:1990 C Integrity.

15. ISO/IEC 9945−2:1993,Information technology — Portable Operating System
Interface (POSIX) — Part 2: Shell and Utilities.

16. ISO/IEC TR 10176:1998,Information technology — Guidelines for the
preparation of programming language standards.

17. ISO/IEC 10646:1993,Information technology — Universal Multiple-Octet Coded
Character Set (UCS).

Bibliography

WG14/N869 Committee Draft — January 18, 1999 533

18. ISO/IEC 10967−1:1994,Information technology — Language independent
arithmetic — Part 1: Integer and floating point arithmetic.

Bibliography

534 Committee Draft — January 18, 1999 WG14/N869

Bibliography

WG14/N869 Committee Draft — January 18, 1999 535

Index

! (logical negation operator),6.5.3.3
!= (inequality operator),6.5.9
operator,6.10.3.2
preprocessing directive,6.10.7
punctuator,6.10
operator,6.10.3.3
#define preprocessing directive,6.10.3
#elif preprocessing directive,6.10.1
#else preprocessing directive,6.10.1
#endif preprocessing directive,6.10.1
#error preprocessing directive, 4,6.10.5
#if preprocessing directive, 5.2.4.2.1, 5.2.4.2.2,

6.10.1, 7.1.4
#ifdef preprocessing directive,6.10.1
#ifndef preprocessing directive,6.10.1
#include preprocessing directive, 5.1.1.2,

6.10.2
#line preprocessing directive,6.10.4
#pragma preprocessing directive,6.10.6
#undef preprocessing directive,6.10.3.5, 7.1.3,

7.1.4
%(remainder operator),6.5.5
%: (alternative spelling of#), 6.4.6
%:%: (alternative spelling of##), 6.4.6
%=(remainder assignment operator),6.5.16.2
%>(alternative spelling of}), 6.4.6
& (address operator), 6.3.2.1,6.5.3.2
& (bitwiseAND operator),6.5.10
&& (logical AND operator),6.5.13
&= (bitwiseAND assignment operator),6.5.16.2
’ ’ (space character), 5.1.1.2,5.2.1, 6.4, 7.4.1.9
() (cast operator),6.5.4
() (function-call operator),6.5.2.2
() (parentheses punctuator), 6.7.5.3, 6.8.4, 6.8.5
(){ } (compound-literal operator),6.5.2.5
* (asterisk punctuator), 6.7.5.1, 6.7.5.2
* (indirection operator), 6.5.2.1,6.5.3.2
* (multiplication operator),6.5.5
*= (multiplication assignment operator),6.5.16.2
+ (addition operator), 6.5.2.1, 6.5.3.2,6.5.6
+ (unary plus operator),6.5.3.3
++ (postfix increment operator), 6.3.2.1,6.5.2.4
++ (prefix increment operator), 6.3.2.1,6.5.3.1
+= (addition assignment operator),6.5.16.2
, (comma operator),6.5.17
, (comma punctuator), 6.5.2, 6.7, 6.7.2.1, 6.7.2.2,

6.7.2.3, 6.7.8
− (subtraction operator),6.5.6
− (unary minus operator),6.5.3.3

−− (postfix decrement operator), 6.3.2.1,6.5.2.4
−− (prefix decrement operator), 6.3.2.1,6.5.3.1
−= (subtraction assignment operator),6.5.16.2
−> (structure/union pointer operator),6.5.2.3
. (structure/union member operator), 6.3.2.1,

6.5.2.3
. punctuator, 6.7.8
... (ellipsis punctuator), 6.5.2.2,6.7.5.3, 6.10.3
/ (division operator),6.5.5
/* */ (comment delimiters),6.4.9
// (comment delimiters),6.4.9
/= (division assignment operator),6.5.16.2
: (colon punctuator), 6.7.2.1
:> (alternative spelling of]), 6.4.6
; (semicolon punctuator), 6.7, 6.7.2.1, 6.8.3,

6.8.5, 6.8.6
< (less-than operator),6.5.8
<%(alternative spelling of{), 6.4.6
<: (alternative spelling of[), 6.4.6
<< (left-shift operator),6.5.7
<<= (left-shift assignment operator),6.5.16.2
<= (less-than-or-equal-to operator),6.5.8
<assert.h> header,7.2, B.1
<complex.h> header, 5.2.4.2.2,7.3, 7.22,

7.26.1,G.5
<ctype.h> header,7.4, 7.26.2
<errno.h> header,7.5, 7.26.3
<fenv.h> header, 5.1.2.3, 5.2.4.2.2,7.6, F, H
<float.h> header, 4,5.2.4.2.2, 7.7, 7.20.1.3,

7.24.4.1.1
<inttypes.h> header,7.8, 7.26.4
<iso646.h> header, 4,7.9
<limits.h> header, 4,5.2.4.2.1, 6.2.5,7.10
<locale.h> header,7.11, 7.26.5
<math.h> header, 5.2.4.2.2, 6.5,7.12, 7.22, F,

F.9
<setjmp.h> header,7.13
<signal.h> header,7.14, 7.26.6
<stdarg.h> header, 4, 6.7.5.3,7.15
<stdbool.h> header, 4,7.16, 7.26.7, H
<stddef.h> header, 4, 6.3.2.1, 6.3.2.3, 6.4.4.4,

6.4.5, 6.5.3.4, 6.5.6,7.17
<stdint.h> header, 4, 5.2.4.2, 6.10.1, 7.8,

7.18, 7.26.8
<stdio.h> header,7.19, 7.26.9, F
<stdlib.h> header,7.20, 7.26.10, F
<string.h> header,7.21, 7.26.11
<tgmath.h> header,7.22, G.6
<time.h> header,7.23
<wchar.h> header, 7.19.1,7.24, 7.26.12, F

Index

536 Committee Draft — January 18, 1999 WG14/N869

<wctype.h> header,7.25, 7.26.13
= (equal-sign punctuator), 6.7, 6.7.2.2, 6.7.8
= (simple assignment operator),6.5.16.1
== (equality operator),6.5.9
> (greater-than operator),6.5.8
>= (greater-than-or-equal-to operator),6.5.8
>> (right-shift operator),6.5.7
>>= (right-shift assignment operator),6.5.16.2
? : (conditional operator),6.5.15
?? (trigraph sequences),5.2.1.1
[] (array subscript operator),6.5.2.1, 6.5.3.2
[] (brackets punctuator), 6.7.5.2, 6.7.8
\ (backslash character), 5.1.1.2,5.2.1, 6.4.4.4
\ (escape character),6.4.4.4
\" (double-quote escape sequence),6.4.4.4,

6.4.5, 6.10.9
\\ (backslash escape sequence),6.4.4.4, 6.10.9
\’ (single-quote escape sequence),6.4.4.4, 6.4.5
\0 (null character),5.2.1, 6.4.4.4, 6.4.5

padding of binary stream,7.19.2
\? (question-mark escape sequence),6.4.4.4
\a (alert escape sequence),5.2.2, 6.4.4.4
\b (backspace escape sequence),5.2.2, 6.4.4.4
\f (form-feed escape sequence),5.2.2, 6.4.4.4,

7.4.1.9
\n (new-line escape sequence),5.2.2, 6.4.4.4,

7.4.1.9
\octal digits(octal-character escape sequence),

6.4.4.4
\r (carriage-return escape sequence),5.2.2,

6.4.4.4, 7.4.1.9
\t (horizontal-tab escape sequence),5.2.2,

6.4.4.4, 7.4.1.9
\U (universal character names),6.4.3
\u (universal character names),6.4.3
\v (vertical-tab escape sequence),5.2.2, 6.4.4.4,

7.4.1.9
\x hexadecimal digits(hexadecimal-character

escape sequence),6.4.4.4
ˆ (bitwise exclusiveOR operator),6.5.11
ˆ= (bitwise exclusiveOR assignment operator),

6.5.16.2
_ _bool_true_false_are_defined

macro,7.16
_ _DATE_ _ macro,6.10.8
_ _FILE_ _ macro,6.10.8, 7.2.1.1
_ _func_ _ identifier,6.4.2.2, 7.2.1.1
_ _LINE_ _ macro,6.10.8, 7.2.1.1
_ _STDC_ _ macro,6.10.8
_ _STDC_CONSTANT_MACROSmacro,7.18.4
_ _STDC_FORMAT_MACROSmacro,7.8.1

_ _STDC_IEC_559_ _ macro,6.10.8, F.1
_ _STDC_IEC_559_COMPLEX_ _ macro,

6.10.8, G.1
_ _STDC_ISO_10646_ _ macro,6.10.8
_ _STDC_LIMIT_MACROSmacro,7.18.2,

7.18.3
_ _STDC_VERSION_ _ macro,6.10.8
_ _TIME_ _ macro,6.10.8
_Bool type,6.2.5, 6.3.1.1, 6.3.1.2, 6.7.2
_Bool type conversions,6.3.1.2
_Complex types,6.2.5, 6.7.2
_Complex_I macro,7.3.1
_Imaginary types, 6.7.2,G.2
_Imaginary_I macro,7.3.1, G.5
_IOFBF macro,7.19.1, 7.19.5.5,7.19.5.6
_IOLBF macro,7.19.1, 7.19.5.6
_IONBF macro,7.19.1, 7.19.5.5,7.19.5.6
_Pragma operator, 5.1.1.2,6.10.9 ∗
{ } (braces punctuator), 6.7.2.2, 6.7.2.3, 6.7.8,

6.8.2
{ } (compound-literal operator),6.5.2.5
| (bitwise inclusiveOR operator),6.5.12
|= (bitwise inclusiveOR assignment operator),

6.5.16.2
|| (logical OR operator),6.5.14
˜ (bitwise complement operator),6.5.3.3

abort function, 7.2.1.1, 7.14.1.1, 7.19.3,
7.20.4.1

abs function,7.20.6.1
absolute-value functions

complex,7.3.8, G.5.4
integer,7.20.6.1
real,7.12.7, F.9.4

abstract declarator,6.7.6
abstract machine,5.1.2.3
access,6.7.3
accuracy, floating-point,5.2.4.2.2
acos functions,7.12.4.1, F.9.1.1
acos type-generic macro,7.22.1
acosh functions,7.12.5.1, F.9.2.1
acosh type-generic macro,7.22.1
active position,5.2.2
actual argument,3.2
actual parameter (deprecated),3.2
addition assignment operator (+=), 6.5.16.2
addition operator (+), 6.5.2.1, 6.5.3.2,6.5.6
additive expressions,6.5.6
address constant,6.6
address operator (&), 6.3.2.1,6.5.3.2
aggregate initialization,6.7.8

Index

WG14/N869 Committee Draft — January 18, 1999 537

aggregate types,6.2.5
alert escape sequence (\a), 5.2.2, 6.4.4.4
aliasing,6.5
alignment,3.1

structure/union member,6.7.2.1
allocated storage, order and contiguity,7.20.3
and macro,7.9
AND operators

bitwise (&), 6.5.10
bitwise assignment (&=), 6.5.16.2
logical (&&), 6.5.13

and_eq macro,7.9
ANSI/IEEE 754,F.1
ANSI/IEEE 854,F.1
argc (main function parameter),5.1.2.2.1
argument,3.2

array,6.9.1
default promotions,6.5.2.2
function,6.5.2.2, 6.9.1
macro, substitution,6.10.3.1

argument, complex, 7.3.9.1
argv (main function parameter),5.1.2.2.1
arithmetic constant expression,6.6
arithmetic conversions, usual,seeusual arithmetic

conversions
arithmetic operators

additive,6.5.6
bitwise,6.5.10, 6.5.11, 6.5.12
increment and decrement,6.5.2.4, 6.5.3.1
multiplicative,6.5.5
shift, 6.5.7
unary,6.5.3.3

arithmetic types,6.2.5
arithmetic, pointer,6.5.6
array

argument,6.9.1
declarator,6.7.5.2
initialization,6.7.8
multidimensional,6.5.2.1
parameter,6.9.1
storage order,6.5.2.1
subscript operator ([]), 6.5.2.1, 6.5.3.2
subscripting,6.5.2.1
type,6.2.5
type conversion,6.3.2.1
wide-character functions,7.24.4.6

arrow operator (−>), 6.5.2.3
as−if rule,5.1.2.3
ASCII code set,5.2.1.1
asctime function,7.23.3.1
asin functions,7.12.4.2, F.9.1.2

asin type-generic macro,7.22.1, G.6
asinh functions,7.12.5.2, F.9.2.2
asinh type-generic macro,7.22.1, G.6
asm keyword,J.5.10
assert macro,7.2.1.1
assert.h header,7.2, B.1
assignment

compound,6.5.16.2
conversion,6.5.16.1
expression,6.5.16
operators, 6.3.2.1,6.5.16
simple,6.5.16.1

associativity of operators,6.5
asterisk punctuator (*), 6.7.5.1, 6.7.5.2
atan functions,7.12.4.3, F.9.1.3
atan type-generic macro,7.22.1, G.6
atan2 functions,7.12.4.4, F.9.1.4
atan2 type-generic macro,7.22.1
atanh functions,7.12.5.3, F.9.2.3
atanh type-generic macro,7.22.1, G.6
atexit function,7.20.4.2, 7.20.4.3
atof function, 7.20.1,7.20.1.1
atoi function, 7.20.1,7.20.1.2
atol function, 7.20.1,7.20.1.2
atoll function, 7.20.1,7.20.1.2
auto storage-class specifier,6.7.1, 6.9
automatic storage duration, 5.1.2.3, 5.2.3,6.2.4

backslash character (\), 5.1.1.2,5.2.1, 6.4.4.4
backslash escape sequence (\\), 6.4.4.4, 6.10.9
backspace escape sequence (\b), 5.2.2, 6.4.4.4
basic character set,5.2.1
basic types,6.2.5
binary streams,7.19.2, 7.19.7.11, 7.19.9.2, ∗

7.19.9.4
bit, 3.3

high order,3.4
low order,3.4

bit-field, 6.7.2.1, J.5.8
bitand macro,7.9
bitor macro,7.9
bitwise operators,6.5

AND, 6.5.10
AND assignment (&=), 6.5.16.2
complement (̃), 6.5.3.3
exclusiveOR, 6.5.11
exclusiveOR assignment (ˆ=), 6.5.16.2
inclusiveOR, 6.5.12
inclusiveOR assignment (|=), 6.5.16.2
shift, 6.5.7

block,6.8, 6.8.2, 6.8.4, 6.8.5

Index

538 Committee Draft — January 18, 1999 WG14/N869

block scope,6.2.1
block structure,6.2.1
bold type convention,6.1
bool macro,7.16
boolean type, 6.3.1.2
boolean type conversion,6.3.1.1, 6.3.1.2
braces punctuator ({ }), 6.7.2.2, 6.7.2.3, 6.7.8,

6.8.2
brackets operator ([]), 6.5.2.1, 6.5.3.2
brackets punctuator ([]), 6.7.5.2, 6.7.8
branch cuts,7.3.3
break statement,6.8.6.3
broken-down time,7.23.1, 7.23.2.3, 7.23.3,

7.23.3.1, 7.23.3.3, 7.23.3.4, 7.23.3.5
bsearch function, 7.20.5,7.20.5.1
btowc function,7.24.6.1.1
BUFSIZ macro,7.19.1, 7.19.2, 7.19.5.5
byte,3.4, 6.5.3.4
byte input/output functions,7.19.1
byte-oriented stream,7.19.2

C program,5.1.1.1
C++, 7.8.1, 7.18.2, 7.18.3, 7.18.4
cabs functions,7.3.8.1, G.5

type-generic macro for,7.22.1
cacos functions,7.3.5.1, G.5.1.1

type-generic macro for,7.22.1
cacosh functions,7.3.6.1, G.5.2.1

type-generic macro for,7.22.1
calendar time,7.23.1, 7.23.2.2, 7.23.2.3, 7.23.2.4,

7.23.3.2, 7.23.3.3, 7.23.3.4
call by value,6.5.2.2
calloc function, 7.20.3,7.20.3.1, 7.20.3.2,

7.20.3.4
carg functions,7.3.9.1, G.5
carg type-generic macro,7.22.1, G.6
carriage-return escape sequence (\r), 5.2.2,

6.4.4.4, 7.4.1.9
case label, 6.8.1,6.8.4.2
case mapping functions

character,7.4.2
wide character,7.25.3.1

extensible,7.25.3.2
casin functions,7.3.5.2, G.5

type-generic macro for,7.22.1
casinh functions,7.3.6.2, G.5.2.2

type-generic macro for,7.22.1
cast expression,6.5.4
cast operator (()), 6.5.4
catan functions,7.3.5.3, G.5

type-generic macro for,7.22.1

catanh functions,7.3.6.3, G.5.2.3
type-generic macro for,7.22.1

cbrt functions,7.12.7.1, F.9.4.1
cbrt type-generic macro,7.22.1
ccos functions,7.3.5.4, G.5

type-generic macro for,7.22.1
ccosh functions,7.3.6.4, G.5.2.4

type-generic macro for,7.22.1
ceil functions,7.12.9.1, F.9.6.1
ceil type-generic macro,7.22.1
cerf function,7.26.1
cerfc function,7.26.1
cexp functions,7.3.7.1, G.5.3.1

type-generic macro for,7.22.1
cexp2 function,7.26.1
cexpm1 function,7.26.1
char type,6.2.5, 6.3.1.1, 6.7.2 ∗
char type conversion,6.3.1.1, 6.3.1.3, 6.3.1.4,

6.3.1.8
CHAR_BITmacro,5.2.4.2.1
CHAR_MAXmacro,5.2.4.2.1, 7.11.2.1
CHAR_MINmacro,5.2.4.2.1
character,3.5
character array initialization,6.7.8
character case mapping functions,7.4.2
character classification functions,7.4.1

wide character
extensible,7.25.2.2

character constant, 5.1.1.2, 5.2.1,6.4.4.4
character display semantics,5.2.2
character handling header,7.4, 7.11.1.1
character input/output functions,7.19.7
character sets,5.2.1
character string literal,seestring literal
character testing functions,7.4.1
character type conversion,6.3.1.1
character types,6.2.5, 6.7.8
cimag functions,7.3.9.2, 7.3.9.4,G.5
cimag type-generic macro,7.22.1, G.6
cis function,G.5
classification functions

character,7.4.1
wide character,7.25.2.1

clearerr function,7.19.10.1
clgamma function,7.26.1
clock function,7.23.2.1
clock_t type,7.23.1, 7.23.2.1
CLOCKS_PER_SECmacro,7.23.1, 7.23.2.1
clog functions,7.3.7.2, G.5.3.2

type-generic macro for,7.22.1
clog10 function,7.26.1

Index

WG14/N869 Committee Draft — January 18, 1999 539

clog1p function,7.26.1
clog2 function,7.26.1
collating sequences,5.2.1
colon punctuator (:), 6.7.2.1
comma operator (,), 6.5.17
comma punctuator (,), 6.5.2, 6.7, 6.7.2.1, 6.7.2.2,

6.7.2.3, 6.7.8
command processor,7.20.4.5
comment delimiters (/* */ and//), 6.4.9
comments, 5.1.1.2, 6.4,6.4.9
common extensions,J.5
common initial sequence,6.5.2.3
common real type,6.3.1.8
common warnings,I
comparison functions,7.20.5, 7.20.5.1, 7.20.5.2

string,7.21.4
wide string,7.24.4.4

comparison macros,7.12.14
comparison, pointer,6.5.8
compatible type,6.2.7, 6.7.2, 6.7.3, 6.7.5
compl macro,7.9
complement operator (˜), 6.5.3.3
complex macro,7.3.1
complex numbers,6.2.5, G
complex type conversion,6.3.1.6, 6.3.1.7
complex type domain,6.2.5
complex types,6.2.5, 6.7.2
complex.h header, 5.2.4.2.2,7.3, 7.22, 7.26.1,

G.5
compliance,seeconformance
components of time,7.23.1
composite type,6.2.7
compound assignment,6.5.16.2
compound literals,6.5.2.5
compound statement,6.8.2
compound-literal operator ((){ }), 6.5.2.5
concatenation functions

string,7.21.3
wide string,7.24.4.3

concatenation, preprocessing,see preprocessing
concatenation

conceptual models,5.1
conditional inclusion,6.10.1
conditional operator (? :), 6.5.15
conformance,4
conforming implementation,4 ∗
conforming program,4
conj functions,7.3.9.3, G.5
conj type-generic macro,7.22.1
const type qualifier,6.7.3
const-qualified type,6.2.5, 6.3.2.1, 6.7.3

constant expression,6.6
constants,6.4.4

as primary expression,6.5.1
character,6.4.4.4
enumeration,6.2.1, 6.4.4.3
floating,6.4.4.2
hexadecimal,6.4.4.1
integer,6.4.4.1
octal,6.4.4.1

constraints,3.6
content of structure/union/enumeration,6.7.2.3
contiguity of allocated storage,7.20.3
continue statement,6.8.6.2
control character, 5.2.1,7.4
control wide character,7.25.2
conversion,6.3

arithmetic operands,6.3.1
array,6.3.2.1
array argument,6.9.1
array parameter,6.9.1
boolean,6.3.1.2
boolean, characters, and integers,6.3.1.1
by assignment,6.5.16.1
by return statement,6.8.6.4
complex types,6.3.1.6
explicit, 6.3
function,6.3.2.1
function argument, 6.5.2.2,6.9.1
function parameter,6.9.1
imaginary,G.3.1
imaginary and complex,G.3.3
implicit, 6.3
lvalues and function designators,6.3.2.1
pointer, 6.3.2.1,6.3.2.3
real and complex,6.3.1.7
real and imaginary,G.3.2
real floating and integer,6.3.1.4
real floating types,6.3.1.5
signed and unsigned integers,6.3.1.3
usual arithmetic,seeusual arithmetic

conversions
void type,6.3.2.2

conversion functions
multibyte/wide character

restartable,7.24.6.3
multibyte/wide-string

restartable,7.24.6.4
numeric

wide string,7.24.4.1
single byte

wide character,7.24.6.1

Index

540 Committee Draft — January 18, 1999 WG14/N869

time,7.23.3
wide character

single byte,7.24.6.1
conversion specifier,7.19.6.1, 7.19.6.2, 7.24.2.1,

7.24.2.2
conversion state,7.24.6, 7.24.6.2, 7.24.6.3,

7.24.6.3.2, 7.24.6.3.3, 7.24.6.4, 7.24.6.4.1,
7.24.6.4.2

conversion utilities
multibyte

extended,7.24.6
wide string

extended,7.24.6
copying functions

string,7.21.2
wide string,7.24.4.2

copysign functions, 7.3.9.4,7.12.11.1, F.9.8.1
copysign type-generic macro,7.22.1
correctly rounded result,3.7
corresponding real type,6.2.5
cos functions,7.12.4.5, F.9.1.5
cos type-generic macro,7.22.1, G.6
cosh functions,7.12.5.4, F.9.2.4
cosh type-generic macro,7.22.1, G.6
cpow functions,7.3.8.2, G.5

type-generic macro for,7.22.1
cproj functions,7.3.9.4, G.5
cproj type-generic macro,7.22.1
creal functions,7.3.9.5, G.5
creal type-generic macro,7.22.1, G.6
csin functions,7.3.5.5, G.5

type-generic macro for,7.22.1
csinh functions,7.3.6.5, G.5.2.5

type-generic macro for,7.22.1
csqrt functions,7.3.8.3, G.5.4.1

type-generic macro for,7.22.1
ctan functions,7.3.5.6, G.5

type-generic macro for,7.22.1
ctanh functions,7.3.6.6, G.5.2.6

type-generic macro for,7.22.1
ctgamma function,7.26.1
ctime function,7.23.3.2
ctype.h header,7.4, 7.26.2
current object,6.7.8
CX_LIMITED_RANGEpragma, 6.10.6,7.3.4

data stream,see streams
date and time header,7.23
Daylight Saving Time,7.23.1
DBL_DIG macro,5.2.4.2.2
DBL_EPSILONmacro,5.2.4.2.2

DBL_MANT_DIGmacro,5.2.4.2.2
DBL_MAXmacro,5.2.4.2.2
DBL_MAX_10_EXPmacro,5.2.4.2.2
DBL_MAX_EXPmacro,5.2.4.2.2
DBL_MINmacro,5.2.4.2.2
DBL_MIN_10_EXPmacro,5.2.4.2.2
DBL_MIN_EXPmacro,5.2.4.2.2
decimal constant,6.4.4.1
decimal digits,5.2.1
decimal-point character,7.1.1, 7.11.2.1
DECIMAL_DIGmacro,5.2.4.2.2, 7.12, 7.19.6.1,

7.20.1.3, 7.24.2.1, 7.24.4.1.1
declaration specifiers,6.7
declarations,6.7

function,6.7.5.3
pointer,6.7.5.1
structure/union,6.7.2.1
typedef , 6.7.7

declarator,6.7.5
abstract,6.7.6

declarator type derivation,6.2.5, 6.7.5
decrement operators,seearithmetic operators,

increment and decrement
default argument promotions,6.5.2.2
default initialization,6.7.8
default label, 6.8.1,6.8.4.2
define preprocessing directive,6.10.3
defined operator,6.10.1, 6.10.8
definition,6.7

function,6.9.1
definitions of terms,3
derived declarator types,6.2.5
derived types,6.2.5
designated initializer,6.7.8
destringizing,6.10.9
device input/output,5.1.2.3
diagnostic message,3.8, 5.1.1.3
diagnostics,5.1.1.3
diagnostics header,7.2
difftime function,7.23.2.2
digraphs,6.4.6
direct input/output functions,7.19.8
display device,5.2.2
div function,7.20.6.2
div_t type,7.20
division assignment operator (/=), 6.5.16.2
division operator (/), 6.5.5
do statement,6.8.5.2
documentation of implementation,4
domain error,7.12.1, 7.12.4.1, 7.12.4.2, 7.12.4.4,

7.12.5.1, 7.12.5.3, 7.12.6.7, 7.12.6.8,

Index

WG14/N869 Committee Draft — January 18, 1999 541

7.12.6.9, 7.12.6.10, 7.12.6.11, 7.12.7.4,
7.12.7.5, 7.12.8.4, 7.12.10.1

dot operator (.), 6.5.2.3
double _Complex type,6.2.5
double _Complex type conversion,6.3.1.6,

6.3.1.7, 6.3.1.8
double _Imaginary type,G.2
double type,6.2.5, 6.4.4.2, 6.7.2
double type conversion,6.3.1.4, 6.3.1.5, 6.3.1.7,

6.3.1.8
double-precision arithmetic,5.1.2.3
double-quote escape sequence (\"), 6.4.5
double-quote escape sequence (\"), 6.4.4.4,

6.10.9
double_t type,7.12, J.5.6

EDOMmacro,7.5, 7.12.1,see alsodomain error
effective type,6.5
EILSEQ macro,7.5, 7.19.3, 7.24.3.1, 7.24.3.3,

7.24.6.3.2, 7.24.6.3.3, 7.24.6.4.1, 7.24.6.4.2,
see alsoencoding error

element type,6.2.5
elif preprocessing directive,6.10.1
ellipsis punctuator (...), 6.5.2.2,6.7.5.3, 6.10.3
else preprocessing directive,6.10.1
else statement,6.8.4.1
empty statement,6.8.3
encoding error,7.19.3, 7.24.3.1, 7.24.3.3,

7.24.6.3.2, 7.24.6.3.3, 7.24.6.4.1, 7.24.6.4.2
end-of-file,7.25.1
end-of-file indicator,7.19.1, 7.19.5.3, 7.19.7.1,

7.19.7.5, 7.19.7.6, 7.19.7.11, 7.19.9.2,
7.19.9.3, 7.19.10.1, 7.19.10.2, 7.24.3.1,
7.24.3.10

end-of-file macro,seeEOFmacro
end-of-line indicator,5.2.1
endif preprocessing directive,6.10.1
enum type,6.2.5, 6.7.2,6.7.2.2
enumerated type,6.2.5
enumeration,6.2.5, 6.7.2.2
enumeration constant,6.2.1, 6.4.4.3
enumeration content,6.7.2.3
enumeration members,6.7.2.2
enumeration specifiers,6.7.2.2
enumeration tag, 6.2.3,6.7.2.3
enumerator,6.7.2.2
environment,5
environment functions,7.20.4
environment list,7.20.4.4
environmental considerations,5.2
environmental limits,5.2.4, 7.13.1.1, 7.19.2,

7.19.3, 7.19.4.4, 7.19.6.1, 7.20.2.1, 7.20.4.2,
7.24.2.1

EOFmacro, 7.4,7.19.1, 7.19.5.1, 7.19.5.2,
7.19.6.2, 7.19.6.7, 7.19.6.9, 7.19.6.11,
7.19.6.14, 7.19.7.1, 7.19.7.3, 7.19.7.4,
7.19.7.5, 7.19.7.6, 7.19.7.9, 7.19.7.10,
7.19.7.11, 7.24.2.2, 7.24.2.4, 7.24.2.6,
7.24.2.8, 7.24.2.10, 7.24.2.12, 7.24.3.4,
7.24.6.1.1, 7.24.6.1.2, 7.25.1

equal-sign punctuator (=), 6.7, 6.7.2.2, 6.7.8
equal-to operator,seeequality operator
equality expressions,6.5.9
equality operator (==), 6.5.9
ERANGEmacro,7.5, 7.8.2.1, 7.8.2.2, 7.12.1,

7.20.1.3, 7.20.1.4, 7.24.4.1.1, 7.24.4.1.2,see
alsorange error

erf functions,7.12.8.1, F.9.5.1
erf type-generic macro,7.22.1
erfc functions,7.12.8.2, F.9.5.2
erfc type-generic macro,7.22.1
errno macro, 7.3.2,7.5, 7.8.2.1, 7.8.2.2, 7.12.1,

7.14.1.1, 7.19.3, 7.19.9.3, 7.19.10.4, 7.20.1,
7.20.1.3, 7.20.1.4, 7.21.6.2, 7.24.3.1,
7.24.3.3, 7.24.4.1.1, 7.24.4.1.2, 7.24.6.3.2,
7.24.6.3.3, 7.24.6.4.1, 7.24.6.4.2

errno.h header,7.5, 7.26.3
error conditions,7.12.1
error functions,7.12.8, F.9.5
error indicator,7.19.1, 7.19.5.3, 7.19.7.1,

7.19.7.3, 7.19.7.5, 7.19.7.6, 7.19.7.8,
7.19.7.9, 7.19.9.2, 7.19.10.1, 7.19.10.3,
7.24.3.1, 7.24.3.3

error preprocessing directive,6.10.5
error, domain,seedomain error
error, encoding,seeencoding error
error, range,seerange error
error-handling functions,7.19.10, 7.21.6.2
escape character (\), 6.4.4.4
escape sequences,5.2.1, 5.2.2, 6.4.4.4, 6.11.2
evaluation

order,6.5
exception,6.5, 7.6,7.6.2, F.9
exclusiveOR operators

bitwise (̂), 6.5.11
bitwise assignment (ˆ=), 6.5.16.2

executable program,5.1.1.1
execution character set,5.2.1
execution environment,5, 5.1.2, see also

environmental limits
execution sequence,5.1.2.3, 6.8
exit function, 5.1.2.2.3, 7.19.3, 7.20,7.20.4.3

Index

542 Committee Draft — January 18, 1999 WG14/N869

EXIT_FAILURE macro,7.20, 7.20.4.3
EXIT_SUCCESSmacro,7.20, 7.20.4.3
exp functions,7.12.6.1, F.9.3.1
exp type-generic macro,7.22.1
exp2 functions,7.12.6.2, F.9.3.2
exp2 type-generic macro,7.22.1
explicit conversion,6.3
expm1 functions,7.12.6.3, F.9.3.3
expm1 type-generic macro,7.22.1
exponent part,6.4.4.2
exponential functions

complex,7.3.7, G.5.3
real,7.12.6, F.9.3

expression,6.5
assignment,6.5.16
cast,6.5.4
constant,6.6
full, 6.8
order of evaluation,6.5
parenthesized,6.5.1
primary,6.5.1
unary,6.5.3

expression statement,6.8.3
extended character set,5.2.1.2
extended integer types,6.2.5, 7.18
extended multibyte conversion utilities,7.24.6
extended wide-string conversion utilities,7.24.6
extensible wide-character case mapping

functions,7.25.3.2
extensible wide-character classification functions,

7.25.2.2
extern storage-class specifier, 6.2.2,6.7.1
external definition,6.9
external identifiers, underscore,7.1.3
external linkage,6.2.2
external name,6.4.2.1
external object definitions,6.9.2

fabs functions,7.12.7.2, F.9.4.2
fabs type-generic macro,7.22.1, G.6
false macro,7.16
fclose function,7.19.5.1
fdim functions,7.12.12.1, F.9.9.1
fdim type-generic macro,7.22.1
FE_ALL_EXCEPTmacro,7.6
FE_DFL_ENVmacro,7.6, 7.6.4.3, 7.6.4.4
FE_DIVBYZEROmacro,7.6
FE_DOWNWARDmacro,7.6
FE_INEXACTmacro,7.6
FE_INVALID macro,7.6
FE_OVERFLOWmacro,7.6

FE_TONEARESTmacro,7.6
FE_TOWARDZEROmacro,7.6
FE_UNDERFLOWmacro,7.6
FE_UPWARDmacro,7.6
feclearexcept function, 7.6.2,7.6.2.1
fegetenv function,7.6.4.1, 7.6.4.3, 7.6.4.4
fegetexceptflag function, 7.6.2,7.6.2.2
fegetround function, 7.6,7.6.3.1
feholdexcept function,7.6.4.2, 7.6.4.3,

7.6.4.4
fenv.h header, 5.1.2.3, 5.2.4.2.2,7.6, F, H
FENV_ACCESSpragma, 6.10.6,7.6.1
fenv_t type,7.6
feof function,7.19.10.2
feraiseexcept function, 7.6.2,7.6.2.3
ferror function,7.19.10.3
fesetenv function,7.6.4.3
fesetexceptflag function, 7.6.2,7.6.2.4
fesetround function, 7.6,7.6.3.2
fetestexcept function, 7.6.2,7.6.2.5
feupdateenv function, 7.6.4.2,7.6.4.4
fexcept_t type,7.6
fflush function,7.19.5.2, 7.19.5.3
fgetc function, 7.19.1, 7.19.3,7.19.7.1, 7.19.7.5
fgetpos function, 7.19.2,7.19.9.1, 7.19.9.3
fgets function, 7.19.1,7.19.7.2
fgetwc function, 7.19.1, 7.19.3,7.24.3.1,

7.24.3.6
fgetws function, 7.19.1,7.24.3.2
field width,7.19.6.1, 7.24.2.1
file, 7.19.3

access functions,7.19.5
name,7.19.3
operations,7.19.4
position indicator, 7.19.1, 7.19.2,7.19.3,

7.19.5.3, 7.19.7.1, 7.19.7.3, 7.19.7.11,
7.19.8.1, 7.19.8.2, 7.19.9.1, 7.19.9.2,
7.19.9.3, 7.19.9.4, 7.19.9.5, 7.24.3.1,
7.24.3.3, 7.24.3.10, J.5.15

positioning functions,7.19.9
file scope,6.2.1, 6.9
FILE type,7.19.1, 7.19.3
file-opening modes, J.5.14
FILENAME_MAXmacro,7.19.1
flags,7.19.6.1, 7.24.2.1
flexible array member,6.7.2.1
float _Complex type,6.2.5
float _Complex type conversion,6.3.1.6,

6.3.1.7, 6.3.1.8
float _Imaginary type,G.2
float type,6.2.5, 6.4.4.2, 6.7.2

Index

WG14/N869 Committee Draft — January 18, 1999 543

float type conversion,6.3.1.4, 6.3.1.5, 6.3.1.7,
6.3.1.8

float.h header, 4,5.2.4.2.2, 7.7, 7.20.1.3,
7.24.4.1.1

float_t type,7.12, J.5.6
floating constant,6.4.4.2
floating suffix,f or F, 6.4.4.2
floating type conversion, 6.3.1.4, 6.3.1.5, 6.3.1.7
floating types,6.2.5, 6.11.1
floating-point accuracy,5.2.4.2.2
floating-point arithmetic functions,7.12, F.9
floating-point control mode,7.6
floating-point environment,7.6
floating-point numbers,6.2.5
floating-point rounding mode,5.2.4.2.2
floating-point status flag,7.6
floor functions,7.12.9.2, F.9.6.2
floor type-generic macro,7.22.1
FLT_DIG macro,5.2.4.2.2
FLT_EPSILON macro,5.2.4.2.2
FLT_EVAL_METHODmacro,5.2.4.2.2, 7.12
FLT_MANT_DIGmacro,5.2.4.2.2
FLT_MAXmacro,5.2.4.2.2
FLT_MAX_10_EXPmacro,5.2.4.2.2
FLT_MAX_EXPmacro,5.2.4.2.2
FLT_MIN macro,5.2.4.2.2
FLT_MIN_10_EXP macro,5.2.4.2.2
FLT_MIN_EXPmacro,5.2.4.2.2
FLT_RADIX macro,5.2.4.2.2, 7.19.6.1, 7.20.1.3,

7.24.2.1, 7.24.4.1.1
FLT_ROUNDSmacro,5.2.4.2.2, 7.6, 7.12.13.1
fma functions, 7.12,7.12.13.1, F.9.10.1
fma type-generic macro,7.22.1
fmax functions,7.12.12.2, F.9.9.2
fmax type-generic macro,7.22.1
fmin functions,7.12.12.3, F.9.9.3
fmin type-generic macro,7.22.1
fmod functions,7.12.10.1, F.9.7.1
fmod type-generic macro,7.22.1
fopen function,7.19.5.3, 7.19.5.4
FOPEN_MAXmacro,7.19.1, 7.19.3
for statement, 6.8.5,6.8.5.3
form-feed character, 5.2.1,6.4
form-feed escape sequence (\f), 5.2.2, 6.4.4.4,

7.4.1.9
formal argument (deprecated),3.16
formal parameter,3.16
formatted input/output functions, 7.11.1.1,7.19.6
formatted wide-character input/output functions,

7.24.2
fortran keyword,J.5.9

forward references,3.9
FP_CONTRACTpragma, 6.10.6,7.12.2
FP_FAST_FMAmacro,7.12
FP_FAST_FMAFmacro,7.12
FP_FAST_FMALmacro,7.12
FP_ILOGB0 macro,7.12, 7.12.6.5
FP_ILOGBNANmacro,7.12, 7.12.6.5
FP_INFINITE macro,7.12
FP_NANmacro,7.12
FP_NORMALmacro,7.12
FP_SUBNORMALmacro,7.12
FP_ZEROmacro,7.12
fpclassify macro,7.12.3.1
fpos_t type,7.19.1, 7.19.2
fprintf function, 7.8.1, 7.19.1,7.19.6.1,

7.19.6.2, 7.19.6.3, 7.19.6.5, 7.19.6.6,
7.19.6.8, 7.24.2.2

fputc function, 5.2.2, 7.19.1, 7.19.3,7.19.7.3,
7.19.7.8

fputs function, 7.19.1,7.19.7.4
fputwc function, 5.2.2, 7.19.1, 7.19.3,7.24.3.3,

7.24.3.8
fputws function, 7.19.1,7.24.3.4
fread function, 7.19.1,7.19.8.1
free function,7.20.3.2, 7.20.3.4
freestanding execution environment,4, 5.1.2,

5.1.2.1
freopen function, 7.19.2,7.19.5.4
frexp functions,7.12.6.4, F.9.3.4
frexp type-generic macro,7.22.1
fscanf function, 7.8.1, 7.19.1,7.19.6.2,

7.19.6.4, 7.19.6.7, 7.19.6.9
fseek function, 7.19.1, 7.19.5.3, 7.19.7.11,

7.19.9.2, 7.19.9.4, 7.19.9.5, 7.24.3.10
fsetpos function, 7.19.2, 7.19.5.3, 7.19.7.11,

7.19.9.1,7.19.9.3, 7.24.3.10
ftell function, 7.19.9.2,7.19.9.4
full declarator,6.7.5
full expression,6.8
fully buffered stream,7.19.3
function

argument,6.5.2.2, 6.9.1
body,6.9.1
call, 6.5.2.2

library, 7.1.4
declarator,6.7.5.3, 6.11.4
definition, 6.7.5.3,6.9.1, 6.11.5
designator,6.3.2.1
image,5.2.3
library, 5.1.1.1,7.1.4
name length,6.4.2.1

Index

544 Committee Draft — January 18, 1999 WG14/N869

parameter, 5.1.2.2.1,6.5.2.2, 6.9.1
pointer casts, J.5.7
prototype,6.2.1, 6.5.2.2,6.7.5.3, 6.9.1
prototype scope,6.2.1
recursive call,6.5.2.2
return,6.8.6.4
scope,6.2.1
type,6.2.5
type conversion,6.3.2.1

function specifiers,6.7.4
function type,6.2.5
function-call operator (()), 6.5.2.2
function-like macro,6.10.3
future directions

language,6.11
library, 7.26

fwide function, 7.19.2,7.24.3.5
fwprintf function, 7.19.1, 7.19.6.2,7.24.2.1,

7.24.2.2, 7.24.2.3, 7.24.2.5, 7.24.2.11
fwrite function, 7.19.1,7.19.8.2
fwscanf function, 7.19.1,7.24.2.2, 7.24.2.4,

7.24.2.6, 7.24.2.12, 7.24.3.10

gamma functions,7.12.8, F.9.5
general utilities,7.20

wide string,7.24.4
general wide-string utilities,7.24.4
getc function, 7.19.1,7.19.7.5, 7.19.7.6
getchar function, 7.19.1,7.19.7.6
getenv function,7.20.4.4
gets function, 7.19.1,7.19.7.7
getwc function, 7.19.1,7.24.3.6, 7.24.3.7
getwchar function, 7.19.1,7.24.3.7
gmtime function,7.23.3.3
goto statement, 6.2.1, 6.8.1,6.8.6.1
graphic characters,5.2.1
greater-than operator (>), 6.5.8
greater-than-or-equal-to operator (>=), 6.5.8

header,7.1.2
header names, 6.4,6.4.7, 6.10.2
hexadecimal constant,6.4.4.1
hexadecimal digit,6.4.4.1, 6.4.4.2, 6.4.4.4
hexadecimal prefix,6.4.4.1
hexadecimal-character escape sequence

(\x hexadecimal digits), 6.4.4.4
high-order bit,3.4
horizontal-tab character, 5.2.1,6.4
horizontal-tab escape sequence (\t), 5.2.2,

6.4.4.4, 7.4.1.9
hosted execution environment,4, 5.1.2,5.1.2.2

HUGE_VALmacro,7.12, 7.12.1, 7.20.1.3,
7.24.4.1.1

HUGE_VALFmacro,7.12, 7.12.1, 7.20.1.3,
7.24.4.1.1

HUGE_VALLmacro,7.12, 7.12.1, 7.20.1.3,
7.24.4.1.1

hyperbolic functions
complex,7.3.6, G.5.2
real,7.12.5, F.9.2

hypot functions,7.12.7.3, F.9.4.3
hypot type-generic macro,7.22.1

I macro,7.3.1, 7.3.9.4,G.5
identifier,6.4.2.1, 6.5.1

linkage,seelinkage
maximum length,6.4.2.1
name spaces,6.2.3
reserved,7.1.3
scope,6.2.1
type,6.2.5

identifier list,6.7.5
identifier nondigit,6.4.2.1
IEC 559,F.1
IEC 60559, 2, 5.1.2.3,5.2.4.2.2, 6.10.8, 7.3.3, 7.6,

7.6.4.2, 7.12.1, 7.12.10.2, 7.12.14,F, G, H.1
IEEE 754,F.1
IEEE 854,F.1
IEEE floating-point arithmetic standard,seeIEC

60559, ANSI/IEEE 754, ANSI/IEEE 854
if preprocessing directive, 5.2.4.2.1, 5.2.4.2.2,

6.10.1, 7.1.4
if statement,6.8.4.1
ifdef preprocessing directive,6.10.1
ifndef preprocessing directive,6.10.1
ilogb functions, 7.12,7.12.6.5, F.9.3.5
ilogb type-generic macro,7.22.1
imaginary macro,7.3.1, G.5
imaginary numbers,G.2
imaginary type domain,G.2
imaginary types, 6.7.2,G.2
implementation,3.10
implementation limits,3.12, 5.2.4.2, 6.4.2.1,

6.7.5, 6.8.4.2, E
implementation-defined behavior,3.11, J.3
implicit conversion,6.3
implicit initialization,6.7.8
include preprocessing directive, 5.1.1.2,6.10.2
inclusiveOR operators

bitwise (|), 6.5.12
bitwise assignment (|=), 6.5.16.2

incomplete type,6.2.5

Index

WG14/N869 Committee Draft — January 18, 1999 545

increment operators,seearithmetic operators,
increment and decrement

indirection operator (*), 6.5.2.1,6.5.3.2
inequality operator (!=), 6.5.9
INFINITY macro, 7.3.9.4,7.12
initial position, 5.2.2
initial shift state,5.2.1.2, 7.20.7
initialization, 5.1.2, 6.2.4, 6.3.2.1, 6.5.2.5,6.7.8

in blocks, 6.8
initializer, 6.7.8

permitted form,6.6
string literal, 6.3.2.1

inline, 6.7.4
inner scope,6.2.1
input failure, 7.19.6.2, 7.24.2.2, 7.24.2.6, 7.24.2.8,

7.24.2.10
input/output functions

character,7.19.7
direct,7.19.8
formatted,7.19.6

wide character,7.24.2
wide character,7.24.3

formatted,7.24.2
input/output header,7.19
input/output, device,5.1.2.3
int type,6.2.5, 6.3.1.1, 6.3.1.3, 6.4.4.1, 6.7.2
int type conversion,6.3.1.1, 6.3.1.3, 6.3.1.4,

6.3.1.8
INT_FASTN_MAXmacros,7.18.2.3
INT_FASTN_MIN macros,7.18.2.3
int_fast N_t types,7.18.1.3
INT_LEASTN_MAXmacros,7.18.2.2
INT_LEASTN_MIN macros,7.18.2.2
int_least N_t types,7.18.1.2
INT_MAXmacro,5.2.4.2.1, 7.12, 7.12.6.5
INT_MIN macro,5.2.4.2.1, 7.12
integer arithmetic functions,7.20.6
integer character constant,6.4.4.4
integer constant,6.4.4.1
integer constant expression,6.6
integer conversion rank,6.3.1.1
integer promotions, 5.1.2.3, 5.2.4.2.1,6.3.1.1,

6.5.2.2, 6.5.3.3, 6.5.7, 6.8.4.2, 7.18.2, 7.18.3,
7.19.6.1, 7.24.2.1

integer suffix,6.4.4.1
integer type conversion,6.3.1.1, 6.3.1.3, 6.3.1.4
integer types,6.2.5, 7.18

extended,7.18
interactive device,5.1.2.3, 7.19.3, 7.19.5.3
internal linkage,6.2.2
internal name,6.4.2.1

interrupt,5.2.3
INTMAX_Cmacro,7.18.4.2
INTMAX_MAXmacro, 7.8.2.1, 7.8.2.2,7.18.2.5
INTMAX_MINmacro, 7.8.2.1, 7.8.2.2,7.18.2.5
intmax_t type,7.18.1.5
INT N_C macros,7.18.4.1
INT N_MAXmacros,7.18.2.1
INT N_MIN macros,7.18.2.1
int N_t types,7.18.1.1
INTPTR_MAXmacro,7.18.2.4
INTPTR_MIN macro,7.18.2.4
intptr_t type,7.18.1.4
inttypes.h header,7.8, 7.26.4
isalnum function,7.4.1.1, 7.4.1.8, 7.4.1.9
isalpha function, 7.4.1.1,7.4.1.2
iscntrl function, 7.4.1.2,7.4.1.3, 7.4.1.6,

7.4.1.10
isdigit function, 7.4.1.1, 7.4.1.2,7.4.1.4,

7.4.1.6, 7.4.1.10, 7.11.1.1
isfinite macro,7.12.3.2
isgraph function,7.4.1.5
isgreater macro,7.12.14.1
isgreaterequal macro,7.12.14.2
isinf macro,7.12.3.3
isless macro,7.12.14.3
islessequal macro,7.12.14.4
islessgreater macro,7.12.14.5
islower function, 7.4.1.2,7.4.1.6, 7.4.2.1,

7.4.2.2
isnan macro,7.12.3.4
isnormal macro,7.12.3.5
ISO 4217, 2, 7.11.2.1
ISO 8601, 2,7.23.3.5
ISO/IEC 10646, 2, 6.4.2.1,6.4.3, 6.10.8
ISO/IEC 2382−1, 2,3
ISO/IEC 646, 2,5.2.1.1
ISO/IEC 9945−2, 7.11
ISO/IEC TR 10176,D
iso646.h header, 4,7.9
isprint function, 5.2.2,7.4.1.7
ispunct function, 7.4.1.2, 7.4.1.6,7.4.1.8,

7.4.1.10
isspace function, 7.4.1.2, 7.4.1.6, 7.4.1.8,

7.4.1.9, 7.4.1.10, 7.19.6.2, 7.20.1.3, 7.20.1.4,
7.24.2.2

isunordered macro,7.12.14.6
isupper function, 7.4.1.2,7.4.1.10, 7.4.2.1,

7.4.2.2
iswalnum function,7.25.2.1.1, 7.25.2.1.8,

7.25.2.1.9, 7.25.2.2.1
iswalpha function, 7.25.2.1.1,7.25.2.1.2,

Index

546 Committee Draft — January 18, 1999 WG14/N869

7.25.2.2.1
iswcntrl function, 7.25.2.1.2,7.25.2.1.3,

7.25.2.1.6, 7.25.2.1.10, 7.25.2.2.1
iswctype function,7.25.2.2.1, 7.25.2.2.2
iswdigit function, 7.25.2.1.1, 7.25.2.1.2,

7.25.2.1.4, 7.25.2.1.6, 7.25.2.1.10, 7.25.2.2.1
iswgraph function, 7.25.2.1,7.25.2.1.5,

7.25.2.1.9, 7.25.2.2.1
iswlower function, 7.25.2.1.2,7.25.2.1.6,

7.25.2.2.1, 7.25.3.1.1, 7.25.3.1.2
iswprint function, 5.2.2, 7.25.2.1.5,7.25.2.1.7,

7.25.2.2.1
iswpunct function, 7.25.2.1, 7.25.2.1.2,

7.25.2.1.6,7.25.2.1.8, 7.25.2.1.9,
7.25.2.1.10, 7.25.2.2.1

iswspace function, 7.19.6.2, 7.24.2.2,
7.24.4.1.1, 7.24.4.1.2, 7.25.2.1.2, 7.25.2.1.5,
7.25.2.1.6, 7.25.2.1.8,7.25.2.1.9,
7.25.2.1.10, 7.25.2.2.1

iswupper function, 7.25.2.1.2,7.25.2.1.10,
7.25.2.2.1, 7.25.3.1.1, 7.25.3.1.2

iswxdigit function,7.25.2.1.11, 7.25.2.2.1
isxdigit function,7.4.1.11, 7.11.1.1
italic typeconvention,3, 6.1
iteration statements,6.8.5

jmp_buf type,7.13
jump statements,6.8.6

keywords,6.4.1

L_tmpnam macro,7.19.1, 7.19.4.4
label name, 6.2.1,6.2.3
labeled statement,6.8.1
labs function,7.20.6.1
language,6

future directions,6.11
syntax summary,A

Latin alphabet,5.2.1
LC_ALL macro,7.11, 7.11.1.1, 7.11.2.1
LC_COLLATEmacro,7.11, 7.11.1.1, 7.21.4.3,

7.24.4.4.2
LC_CTYPEmacro,7.11, 7.11.1.1, 7.20, 7.20.7,

7.20.8, 7.24.6, 7.25.1, 7.25.2.2.1, 7.25.2.2.2,
7.25.3.2.1, 7.25.3.2.2

LC_MONETARYmacro,7.11, 7.11.1.1, 7.11.2.1
LC_NUMERICmacro,7.11, 7.11.1.1, 7.11.2.1
LC_TIME macro,7.11, 7.11.1.1, 7.23.3.5
lconv structure type,7.11
LDBL_DIG macro,5.2.4.2.2
LDBL_EPSILONmacro,5.2.4.2.2

LDBL_MANT_DIGmacro,5.2.4.2.2
LDBL_MAXmacro,5.2.4.2.2
LDBL_MAX_10_EXPmacro,5.2.4.2.2
LDBL_MAX_EXPmacro,5.2.4.2.2
LDBL_MIN macro,5.2.4.2.2
LDBL_MIN_10_EXPmacro,5.2.4.2.2
LDBL_MIN_EXPmacro,5.2.4.2.2
ldexp functions,7.12.6.6, F.9.3.6
ldexp type-generic macro,7.22.1
ldiv function,7.20.6.2
ldiv_t type,7.20
leading underscore in identifiers,7.1.3
left-shift assignment operator (<<=), 6.5.16.2
left-shift operator (<<), 6.5.7
length

external name,6.4.2.1
function name,6.4.2.1
identifier,6.4.2.1
internal name,6.4.2.1

length function, 7.20.7.1, 7.21.6.3, 7.24.4.5.3,
7.24.6.3.1

length modifier,7.19.6.1, 7.19.6.2, 7.24.2.1,
7.24.2.2

less-than operator (<), 6.5.8
less-than-or-equal-to operator (<=), 6.5.8
letter,7.1.1
lexical elements, 5.1.1.2,6.4
lgamma functions,7.12.8.3, F.9.5.3
lgamma type-generic macro,7.22.1
library, 5.1.1.1,7

future directions,7.26
summary,B
terms,7.1.1
use of functions,7.1.4

limits
environmental,seeenvironmental limits
numerical,seenumerical limits
translation,seetranslation limits

limits.h header, 4,5.2.4.2.1, 6.2.5,7.10
line buffered stream,7.19.3
line number,6.10.4, 6.10.8
line preprocessing directive,6.10.4
lines,5.1.1.2, 7.19.2

preprocessing directive,6.10
linkage,6.2.2, 6.7, 6.7.4, 6.7.5.2, 6.9, 6.9.2
llabs function,7.20.6.1
lldiv function,7.20.6.2
lldiv_t type,7.20
LLONG_MAXmacro,5.2.4.2.1, 7.20.1.4,

7.24.4.1.2
LLONG_MINmacro,5.2.4.2.1, 7.20.1.4,

Index

WG14/N869 Committee Draft — January 18, 1999 547

7.24.4.1.2
llrint functions,7.12.9.5, F.9.6.5
llrint type-generic macro,7.22.1
llround functions,7.12.9.7, F.9.6.7
llround type-generic macro,7.22.1
local time,7.23.1
locale,3.13
locale-specific behavior,3.13, J.4
locale.h header,7.11, 7.26.5
localeconv function, 7.11.1.1,7.11.2.1
localization,7.11
localtime function, 7.23.2.3,7.23.3.4
log functions,7.12.6.7, F.9.3.7
log type-generic macro,7.22.1
log10 functions,7.12.6.8, F.9.3.8
log10 type-generic macro,7.22.1
log1p functions,7.12.6.9, F.9.3.9
log1p type-generic macro,7.22.1
log2 functions,7.12.6.10, F.9.3.10
log2 type-generic macro,7.22.1
logarithmic functions

complex,7.3.7, G.5.3
real,7.12.6, F.9.3

logb functions,7.12.6.11, F.9.3.11
logb type-generic macro,7.22.1
logical operators

AND (&&), 6.5.13
negation (!), 6.5.3.3
OR (||), 6.5.14

logical source lines,5.1.1.2
long double _Complex type,6.2.5
long double _Complex type conversion,

6.3.1.6, 6.3.1.7, 6.3.1.8
long double _Imaginary type,G.2
long double suffix,l or L, 6.4.4.2
long double type,6.2.5, 6.4.4.2, 6.7.2
long double type conversion,6.3.1.4, 6.3.1.5,

6.3.1.7, 6.3.1.8
long int type,6.2.5, 6.3.1.1, 6.7.2
long int type conversion,6.3.1.1, 6.3.1.3,

6.3.1.4, 6.3.1.8
long integer suffix,l or L, 6.4.4.1
long long int type,6.2.5, 6.3.1.1, 6.7.2
long long int type conversion,6.3.1.1,

6.3.1.3, 6.3.1.4, 6.3.1.8
long long integer suffix,ll or LL , 6.4.4.1
LONG_MAXmacro,5.2.4.2.1, 7.20.1.4, 7.24.4.1.2
LONG_MINmacro,5.2.4.2.1, 7.20.1.4, 7.24.4.1.2
longjmp function, 7.13.1.1,7.13.2.1
loop body,6.8.5
low-order bit,3.4

lrint functions,7.12.9.5, F.9.6.5
lrint type-generic macro,7.22.1
lround functions,7.12.9.7, F.9.6.7
lround type-generic macro,7.22.1
lvalue,6.3.2.1, 6.5.1, 6.5.2.4, 6.5.3.1, 6.5.16

machine dependency, J.3
macro argument substitution,6.10.3.1
macro definition

library function,7.1.4
macro invocation, 6.10.3
macro name, 5.2.4.1,6.10.3

predefined,6.10.8
redefinition,6.10.3
scope,6.10.3.5

macro parameter,6.10.3
macro preprocessor,6.10
macro replacement,6.10.3
magnitude, complex, 7.3.8.1
main function,5.1.2.2.1, 5.1.2.2.3, 7.19.3
malloc function, 7.20.3, 7.20.3.2,7.20.3.3,

7.20.3.4
manipulation functions

complex,7.3.9
real,7.12.11, F.9.8

mapping utilities
wide character,7.25.3

matching failure, 7.19.6.2, 7.24.2.2, 7.24.2.6,
7.24.2.8, 7.24.2.10

math.h header, 5.2.4.2.2, 6.5,7.12, 7.22, F,F.9
maximum functions,7.12.12, F.9.9
MB_CUR_MAXmacro, 7.1.1,7.20, 7.20.7.2,

7.20.7.3, 7.24.6.3.3
MB_LEN_MAXmacro,5.2.4.2.1, 7.1.1, 7.20
mblen function,7.20.7.1, 7.24.6.3
mbrlen function,7.24.6.3.1
mbrtowc function, 7.19.3, 7.19.6.1, 7.19.6.2,

7.24.2.1, 7.24.2.2, 7.24.6.3.1,7.24.6.3.2,
7.24.6.4.1

mbsinit function,7.24.6.2
mbsrtowcs function,7.24.6.4.1
mbstate_t type, 7.19.2, 7.19.3, 7.19.6.1,

7.19.6.2,7.24.1, 7.24.2.1, 7.24.2.2, 7.24.6,
7.24.6.2, 7.24.6.3, 7.24.6.3.1, 7.24.6.4

mbstowcs function, 6.4.5,7.20.8.1, 7.24.6.4
mbtowc function, 7.20.7.1,7.20.7.2, 7.20.8.1,

7.24.6.3
member access operators (. and->), 6.5.2.3
member alignment,6.7.2.1
memchr function,7.21.5.1
memcmpfunction, 7.21.4,7.21.4.1

Index

548 Committee Draft — January 18, 1999 WG14/N869

memcpyfunction,7.21.2.1
memmovefunction,7.21.2.2
memory management functions,7.20.3
memset function,7.21.6.1
minimum functions,7.12.12, F.9.9
minus operator, unary,6.5.3.3
mktime function,7.23.2.3
modf functions,7.12.6.12, F.9.3.12
modifiable lvalue,6.3.2.1
modulus functions,7.12.6.12
modulus, complex, 7.3.8.1
multibyte character,3.14, 5.2.1.2, 6.4.4.4, 7.20.7,

7.20.8
multibyte character functions,7.20.7, 7.20.8
multibyte conversion functions

wide character
restartable,7.24.6.3

wide string
restartable,7.24.6.4

multibyte string,7.1.1
multibyte string functions,7.20.8
multibyte/wide-character conversion functions

restartable,7.24.6.3
multibyte/wide-string conversion functions

restartable,7.24.6.4
multidimensional array, 6.5.2.1
multiple external definitions, J.5.11
multiplication assignment operator (*=), 6.5.16.2
multiplication operator (*), 6.5.5
multiplicative expressions,6.5.5

n-char sequence,7.20.1.3
n-wchar sequence,7.24.4.1.1
name

external,6.4.2.1
file, 7.19.3
internal,6.4.2.1
label,6.2.3
structure/union member,6.2.3

name spaces,6.2.3
named label,6.8.1
NaN,5.2.4.2.2
nan functions,7.12.11.2, F.9.8.2
NANmacro,7.12
NDEBUGmacro,7.2
nearbyint functions,7.12.9.3, 7.12.9.4,F.9.6.3
nearbyint type-generic macro,7.22.1
nearest integer functions,7.12.9, F.9.6
negation operator (!), 6.5.3.3
new-line character, 5.1.1.2,5.2.1, 6.4, 6.10, 6.10.4
new-line escape sequence (\n), 5.2.2, 6.4.4.4,

7.4.1.9
nextafter functions,7.12.11.3, 7.12.11.4,

F.9.8.3
nextafter type-generic macro,7.22.1
nexttoward functions,7.12.11.4, F.9.8.4
nexttoward type-generic macro,7.22.1
no linkage,6.2.2
nongraphic characters,5.2.2, 6.4.4.4
nonlocal jumps header,7.13
norm, complex, 7.3.8.1
not macro,7.9 ∗
not-equal-to operator,seeinequality operator
not_eq macro,7.9
null character (\0), 5.2.1, 6.4.4.4, 6.4.5

padding of binary stream,7.19.2
NULLmacro, 7.11,7.17, 7.19.1, 7.20, 7.21.1,

7.23.1, 7.24.1
null pointer,6.3.2.3
null pointer constant,6.3.2.3
null preprocessing directive,6.10.7
null statement,6.8.3
null wide character,7.1.1
numeric conversion functions

wide string,7.24.4.1
numerical limits,5.2.4.2

object,3.15
object type,6.2.5
object-like macro,6.10.3
obsolescence,6.11, 7.26
octal constant,6.4.4.1
octal digit,6.4.4.1, 6.4.4.4
octal-character escape sequence (\octal digits),

6.4.4.4
offsetof macro,7.17
on-off switch,6.10.6
operand,6.4.6, 6.5
operating system,5.1.2.1, 7.20.4.5
operations on files, 7.19.4
operator,6.4.6
operators, 6.5

assignment,6.5.16
associativity,6.5
equality,6.5.9
multiplicative,6.5.5
postfix,6.5.2
precedence,6.5
preprocessing,6.10.1, 6.10.3.2, 6.10.3.3, 6.10.9
relational,6.5.8
shift, 6.5.7
unary,6.5.3

Index

WG14/N869 Committee Draft — January 18, 1999 549

unary arithmetic,6.5.3.3
or macro,7.9
OR operators

bitwise exclusive (̂), 6.5.11
bitwise exclusive assignment (ˆ=), 6.5.16.2
bitwise inclusive (|), 6.5.12
bitwise inclusive assignment (|=), 6.5.16.2
logical (||), 6.5.14

or_eq macro,7.9
order of allocated storage,7.20.3
order of evaluation of expressions,6.5
ordinary identifier name space,6.2.3
orientation of stream,7.19.2, 7.24.3.5
outer scope,6.2.1

padding
binary stream,7.19.2
structure/union,6.7.2.1

parameter,3.16
array,6.9.1
ellipsis,6.7.5.3, 6.10.3
function,6.5.2.2, 6.9.1
macro,6.10.3
main function,5.1.2.2.1
program,5.1.2.2.1

parameter type list,6.7.5.3
parentheses punctuator (()), 6.7.5.3, 6.8.4, 6.8.5
parenthesized expression,6.5.1
parse state, 7.19.2
permitted form of initializer,6.6
perror function,7.19.10.4
phase angle, complex, 7.3.9.1
physical source lines,5.1.1.2
placemarker,6.10.3.3
plus operator, unary,6.5.3.3
pointer arithmetic,6.5.6
pointer comparison,6.5.8
pointer declarator,6.7.5.1
pointer operator (−>), 6.5.2.3
pointer to function,6.5.2.2
pointer type,6.2.5
pointer type conversion, 6.3.2.1,6.3.2.3
pointer, null,6.3.2.3
portability, 4,J
position indicator, file,seefile position indicator
positive difference,7.12.12.1
positive difference functions,7.12.12, F.9.9
postfix decrement operator (−−), 6.3.2.1,6.5.2.4
postfix expressions,6.5.2
postfix increment operator (++), 6.3.2.1,6.5.2.4
pow functions,7.12.7.4, F.9.4.4

pow type-generic macro,7.22.1
power functions

complex,7.3.8, G.5.4
real,7.12.7, F.9.4

pp-number, 6.4.8
pragma operator,6.10.9
pragma preprocessing directive,6.10.6, 6.11.6
precedence of operators,6.5
precedence of syntax rules,5.1.1.2
precision,6.2.6.2, 6.3.1.1, 6.3.1.8,7.19.6.1,

7.24.2.1
predefined macro names,6.10.8, J.5.12
prefix decrement operator (−−), 6.3.2.1,6.5.3.1
prefix increment operator (++), 6.3.2.1,6.5.3.1
preprocessing concatenation,6.10.3.3
preprocessing directives, 5.1.1.2,6.10
preprocessing file,5.1.1.1, 6.10
preprocessing numbers, 6.4,6.4.8
preprocessing operators

#, 6.10.3.2
, 6.10.3.3
_Pragma , 5.1.1.2,6.10.9
defined , 6.10.1

preprocessing tokens, 5.1.1.2,6.4, 6.10
preprocessing translation unit,5.1.1.1
preprocessor,6.10
PRIcFASTN macros,7.8.1
PRIcLEASTN macros,7.8.1
PRIcMAXmacros,7.8.1
PRIcNmacros,7.8.1
PRIcPTRmacros,7.8.1
primary expression,6.5.1
printf function, 7.19.1,7.19.6.3, 7.19.6.10
printing character, 5.2.2,7.4, 7.4.1.7
printing wide character,7.25.2
program diagnostics,7.2.1
program execution, 5.1.2.2.2,5.1.2.3
program file,5.1.1.1
program image,5.1.1.2
program name (argv[0]), 5.1.2.2.1
program parameters,5.1.2.2.1
program startup,5.1.2, 5.1.2.1, 5.1.2.2.1
program structure,5.1.1.1
program termination,5.1.2, 5.1.2.1, 5.1.2.2.3,

5.1.2.3
program, conforming,4
program, strictly conforming,4
promotions

default argument,6.5.2.2
integer, 5.1.2.3,6.3.1.1

prototype,seefunction prototype

Index

550 Committee Draft — January 18, 1999 WG14/N869

pseudo-random sequence functions,7.20.2
PTRDIFF_MAXmacro,7.18.3
PTRDIFF_MIN macro,7.18.3
ptrdiff_t type,7.17, 7.18.3
punctuators,6.4.6
putc function, 7.19.1,7.19.7.8, 7.19.7.9
putchar function, 7.19.1,7.19.7.9
puts function, 7.19.1,7.19.7.10
putwc function, 7.19.1,7.24.3.8, 7.24.3.9
putwchar function, 7.19.1,7.24.3.9

qsort function, 7.20.5,7.20.5.2
qualified types,6.2.5
qualified version of type,6.2.5
question-mark escape sequence (\?), 6.4.4.4
quiet NaN,5.2.4.2.2

raise function, 7.14, 7.14.1.1,7.14.2.1, 7.20.4.1
rand function, 7.20,7.20.2.1, 7.20.2.2
RAND_MAXmacro,7.20, 7.20.2.1
range error,7.12.1, 7.12.5.3, 7.12.5.4, 7.12.5.5,

7.12.6.1, 7.12.6.2, 7.12.6.3, 7.12.6.5,
7.12.6.6, 7.12.6.7, 7.12.6.8, 7.12.6.9,
7.12.6.10, 7.12.6.13, 7.12.7.3, 7.12.7.4,
7.12.8.2, 7.12.8.3, 7.12.8.4, 7.12.9.5,
7.12.11.3, 7.12.12.1

rank,seeinteger conversion rank
real floating type conversion, 6.3.1.4, 6.3.1.5,

6.3.1.7
real floating types,6.2.5
real type domain,6.2.5
real types,6.2.5
realloc function, 7.20.3, 7.20.3.2,7.20.3.4
recommended practice,3.17
recursion, 6.5.2.2
recursive function call,6.5.2.2
redefinition of macro,6.10.3
reentrancy, 5.1.2.3,5.2.3

library functions,7.1.4
referenced type,6.2.5
register storage-class specifier,6.7.1, 6.9
relational expressions,6.5.8
reliability of data, interrupted,5.1.2.3
remainder assignment operator (%=), 6.5.16.2
remainder functions,7.12.10, F.9.7
remainder functions,7.12.10.2, 7.12.10.3,

F.9.7.2
remainder operator (%), 6.5.5
remainder type-generic macro,7.22.1
remove function,7.19.4.1, 7.19.4.4
remquo functions,7.12.10.3, F.9.7.3

remquo type-generic macro,7.22.1
rename function,7.19.4.2
rescanning and replacement, 6.10.3.4
reserved identifiers,7.1.3
reserved words,6.4.1
restartable multibyte/wide-character conversion

functions,7.24.6.3
restartable multibyte/wide-string conversion

functions,7.24.6.4
restore calling environment function,7.13.2
restrict type qualifier,6.7.3, 6.7.3.1
restrict-qualified type,6.2.5, 6.7.3
restrictions on registers, J.3.8
return statement,6.8.6.4
rewind function, 7.19.5.3, 7.19.7.11,7.19.9.5,

7.24.3.10
right-shift assignment operator (>>=), 6.5.16.2
right-shift operator (>>), 6.5.7
rint functions,7.12.9.4, F.9.6.4
rint type-generic macro,7.22.1
round functions,7.12.9.6, F.9.6.6
round type-generic macro,7.22.1
rounding mode, floating point, 5.2.4.2.2
rvalue,6.3.2.1

save calling environment function,7.13.1
scalar types,6.2.5
scalbln function,7.12.6.13, F.9.3.13
scalbln type-generic macro,7.22.1
scalbn function,7.12.6.13, F.9.3.13
scalbn type-generic macro,7.22.1
scanf function, 7.19.1,7.19.6.4, 7.19.6.11
scanlist,7.19.6.2, 7.24.2.2
scanset,7.19.6.2, 7.24.2.2
SCHAR_MAXmacro,5.2.4.2.1
SCHAR_MINmacro,5.2.4.2.1
SCNcFASTN macros,7.8.1
SCNcLEASTN macros,7.8.1
SCNcMAXmacros,7.8.1
SCNcNmacros,7.8.1
SCNcPTRmacros,7.8.1
scope of externals,6.9.2
scope of identifier,6.2.1
search functions

string,7.21.5
utility, 7.20.5
wide string,7.24.4.5

SEEK_CURmacro,7.19.1, 7.19.9.2
SEEK_ENDmacro,7.19.1, 7.19.9.2
SEEK_SETmacro,7.19.1, 7.19.9.2
selection statements,6.8.4

Index

WG14/N869 Committee Draft — January 18, 1999 551

self-referential structure,6.7.2.3
semicolon punctuator (;), 6.7, 6.7.2.1, 6.8.3,

6.8.5, 6.8.6
separate compilation,5.1.1.1
separate translation,5.1.1.1
sequence points,5.1.2.3, 6.5, 6.8, 7.1.4, 7.19.6,

7.20.5, 7.24.2, C
sequencing of statements,6.8
setbuf function, 7.19.3,7.19.5.5
setjmp macro,7.13.1.1, 7.13.2.1
setjmp.h header,7.13
setlocale function,7.11.1.1, 7.11.2.1
setvbuf function, 7.19.1, 7.19.3, 7.19.5.5,

7.19.5.6
shift expressions,6.5.7
shift sequence,7.1.1
shift states,5.2.1.2, 7.20.7
short int type,6.2.5, 6.3.1.1, 6.7.2
short int type conversion,6.3.1.1, 6.3.1.3,

6.3.1.4, 6.3.1.8
SHRT_MAXmacro,5.2.4.2.1
SHRT_MINmacro,5.2.4.2.1
side effects,5.1.2.3, 6.5
SIG_ATOMIC_MAXmacro,7.18.3
SIG_ATOMIC_MINmacro,7.18.3
sig_atomic_t type,7.14, 7.14.1.1, 7.18.3
SIG_DFL macro,7.14, 7.14.1.1
SIG_ERRmacro,7.14, 7.14.1.1
SIG_IGN macro,7.14, 7.14.1.1
SIGABRTmacro,7.14, 7.20.4.1
SIGFPE macro,7.14, 7.14.1.1
SIGILL macro,7.14, 7.14.1.1
SIGINT macro,7.14
signal function,7.14.1.1
signal handler, 5.1.2.3, 5.2.3,7.14.1.1, 7.14.2.1
signal handler arguments, J.5.13
signal handling functions,7.14.1
signal.h header,7.14, 7.26.6
signaling NaN,5.2.4.2.2
signals, 5.1.2.3, 5.2.3,7.14.1
signbit macro,7.12.3.6
signed char type,6.2.5
signed character, 6.3.1.1
signed integer types,6.2.5, 6.3.1.3, 6.4.4.1
signed type conversion,6.3.1.1, 6.3.1.3, 6.3.1.4,

6.3.1.8
signed types,6.2.5, 6.7.2
significand part,6.4.4.2
SIGSEGVmacro,7.14, 7.14.1.1
SIGTERMmacro,7.14
simple assignment operator (=), 6.5.16.1

sin functions,7.12.4.6, F.9.1.6
sin type-generic macro,7.22.1, G.6
single-byte character,5.2.1.2
single-byte wide-character conversion functions,

7.24.6.1
single-precision arithmetic,5.1.2.3
single-quote escape sequence (\’), 6.4.4.4, 6.4.5
sinh functions,7.12.5.5, F.9.2.5
sinh type-generic macro,7.22.1, G.6
SIZE_MAXmacro,7.18.3
size_t type,7.17, 7.18.3,7.19.1, 7.20, 7.21.1,

7.23.1, 7.24.1
sizeof operator, 6.3.2.1, 6.5.3,6.5.3.4
snprintf function,7.19.6.5, 7.19.6.12
sorting utility functions,7.20.5
source character set, 5.1.1.2,5.2.1
source file,5.1.1.1

name,6.10.4, 6.10.8
source file inclusion,6.10.2
source lines,5.1.1.2
source text,5.1.1.2
space character (’ ’), 5.1.1.2,5.2.1, 6.4, 7.4.1.9
sprintf function,7.19.6.6, 7.19.6.13
sqrt functions,7.12.7.5, F.9.4.5
sqrt type-generic macro,7.22.1
srand function,7.20.2.2
sscanf function,7.19.6.7, 7.19.6.14
standard error stream, 7.19.1,7.19.3, 7.19.10.4
standard headers, 4,7.1.2

<assert.h> , 7.2, B.1
<complex.h> , 5.2.4.2.2,7.3, 7.22, 7.26.1,

G.5
<ctype.h> , 7.4, 7.26.2
<errno.h> , 7.5, 7.26.3
<fenv.h> , 5.1.2.3, 5.2.4.2.2,7.6, F, H
<float.h> , 4,5.2.4.2.2, 7.7, 7.20.1.3,

7.24.4.1.1
<inttypes.h> , 7.8, 7.26.4
<iso646.h> , 4,7.9
<limits.h> , 4,5.2.4.2.1, 6.2.5,7.10
<locale.h> , 7.11, 7.26.5
<math.h> , 5.2.4.2.2, 6.5,7.12, 7.22, F,F.9
<setjmp.h> , 7.13
<signal.h> , 7.14, 7.26.6
<stdarg.h> , 4, 6.7.5.3,7.15
<stdbool.h> , 4,7.16, 7.26.7, H
<stddef.h> , 4, 6.3.2.1, 6.3.2.3, 6.4.4.4,

6.4.5, 6.5.3.4, 6.5.6,7.17
<stdint.h> , 4, 5.2.4.2, 6.10.1, 7.8,7.18,

7.26.8
<stdio.h> , 7.19, 7.26.9, F

Index

552 Committee Draft — January 18, 1999 WG14/N869

<stdlib.h> , 7.20, 7.26.10, F
<string.h> , 7.21, 7.26.11
<tgmath.h> , 7.22, G.6
<time.h> , 7.23
<wchar.h> , 7.19.1,7.24, 7.26.12, F
<wctype.h> , 7.25, 7.26.13

standard input stream, 7.19.1,7.19.3
standard integer types,6.2.5
standard output stream, 7.19.1,7.19.3
standard signed integer types,6.2.5
state-dependent encoding,5.2.1.2, 7.20.7
statements,6.8

break , 6.8.6.3
compound,6.8.2
continue , 6.8.6.2
do , 6.8.5.2
else , 6.8.4.1
expression,6.8.3
for , 6.8.5.3
goto , 6.8.6.1
if , 6.8.4.1
iteration,6.8.5
jump,6.8.6
labeled,6.8.1
null, 6.8.3
return , 6.8.6.4
selection,6.8.4
sequencing,6.8
switch , 6.8.4.2
while , 6.8.5.1

static storage duration,6.2.4
static storage-class specifier, 6.2.2, 6.2.4,6.7.1
stdarg.h header, 4, 6.7.5.3,7.15
stdbool.h header, 4,7.16, 7.26.7, H
STDC, 6.10.6, 6.11.6
stddef.h header, 4, 6.3.2.1, 6.3.2.3, 6.4.4.4,

6.4.5, 6.5.3.4, 6.5.6,7.17
stderr macro,7.19.1, 7.19.2, 7.19.3
stdin macro,7.19.1, 7.19.2, 7.19.3, 7.19.6.4,

7.19.7.6, 7.19.7.7, 7.24.2.12, 7.24.3.7
stdint.h header, 4, 5.2.4.2, 6.10.1, 7.8,7.18,

7.26.8
stdio.h header,7.19, 7.26.9, F
stdlib.h header,7.20, 7.26.10, F
stdout macro,7.19.1, 7.19.2, 7.19.3, 7.19.6.3,

7.19.7.9, 7.19.7.10, 7.24.2.11, 7.24.3.9
storage duration,6.2.4
storage order of array,6.5.2.1
storage-class specifiers,6.7.1, 6.11.3
strcat function,7.21.3.1
strchr function,7.21.5.2

strcmp function, 7.21.4,7.21.4.2
strcoll function, 7.11.1.1,7.21.4.3, 7.21.4.5
strcpy function,7.21.2.3
strcspn function,7.21.5.3
streams,7.19.2, 7.20.4.3, J.5.14

fully buffered,7.19.3
line buffered,7.19.3
orientation,7.19.2
standard error, 7.19.1,7.19.3
standard input, 7.19.1,7.19.3
standard output, 7.19.1,7.19.3
unbuffered,7.19.3

strerror function, 7.19.10.4,7.21.6.2
strftime function, 7.11.1.1, 7.23.3,7.23.3.5,

7.24.5.1
strictly conforming program,4
string,7.1.1

comparison functions,7.21.4
concatenation functions,7.21.3
conversion functions, 7.11.1.1,7.20.1
copying functions,7.21.2
library function conventions,7.21.1
literal, 5.1.1.2, 5.2.1, 6.3.2.1,6.4.5, 6.5.1, 6.7.8
miscellaneous functions,7.21.6
search functions,7.21.5

string handling header,7.21
string.h header,7.21, 7.26.11
stringizing,6.10.3.2, 6.10.9
strlen function,7.21.6.3
strncat function,7.21.3.2
strncmp function, 7.21.4,7.21.4.4
strncpy function,7.21.2.4
strpbrk function,7.21.5.4
strrchr function,7.21.5.5
strspn function,7.21.5.6
strstr function,7.21.5.7
strtod function, 7.12.11.2, 7.19.6.2,7.20.1.3,

7.24.2.2
strtof function, 7.12.11.2,7.20.1.3
strtoimax function,7.8.2.1
strtok function,7.21.5.8
strtol function, 7.8.2.1, 7.19.6.2, 7.20.1.2,

7.20.1.4, 7.24.2.2
strtold function, 7.12.11.2,7.20.1.3
strtoll function, 7.8.2.1, 7.20.1.2,7.20.1.4
strtoul function, 7.8.2.1, 7.19.6.2, 7.20.1.2,

7.20.1.4, 7.24.2.2
strtoull function, 7.8.2.1, 7.20.1.2,7.20.1.4
strtoumax function,7.8.2.1
struct hack,seeflexible array member
structure

Index

WG14/N869 Committee Draft — January 18, 1999 553

arrow operator (−>), 6.5.2.3
content,6.7.2.3
dot operator (.), 6.5.2.3
initialization,6.7.8
member alignment,6.7.2.1
member name space,6.2.3
member operator (.), 6.3.2.1,6.5.2.3
pointer operator (−>), 6.5.2.3
specifier,6.7.2.1
tag, 6.2.3,6.7.2.3
type,6.2.5, 6.7.2.1

strxfrm function, 7.11.1.1,7.21.4.5
subscripting,6.5.2.1
subtraction assignment operator (−=), 6.5.16.2
subtraction operator (−), 6.5.6
suffix

floating constant,6.4.4.2
integer constant,6.4.4.1

switch body,6.8.4.2
switchcase label, 6.8.1,6.8.4.2
switchdefault label, 6.8.1,6.8.4.2
switch statement, 6.8.1,6.8.4.2
swprintf function,7.24.2.3, 7.24.2.7
swscanf function,7.24.2.4, 7.24.2.8
syntactic categories,6.1
syntax notation,6.1
syntax rule precedence,5.1.1.2
syntax summary, language,A
system function,7.20.4.5

tab characters,5.2.1, 6.4
tag name space,6.2.3
tags,6.7.2.3
tan functions,7.12.4.7, F.9.1.7
tan type-generic macro,7.22.1, G.6
tanh functions,7.12.5.6, F.9.2.6
tanh type-generic macro,7.22.1, G.6
tentative definition,6.9.2
text streams,7.19.2, 7.19.7.11, 7.19.9.2, 7.19.9.4
tgamma functions,7.12.8.4, F.9.5.4
tgamma type-generic macro,7.22.1
tgmath.h header,7.22, G.6
time

broken down, 7.23.2.3, 7.23.3, 7.23.3.1,
7.23.3.3, 7.23.3.4, 7.23.3.5

calendar,7.23.1, 7.23.2.2, 7.23.2.3, 7.23.2.4,
7.23.3.2, 7.23.3.3, 7.23.3.4

components,7.23.1
conversion functions,7.23.3
local,7.23.1
manipulation functions,7.23.2

time function,7.23.2.4
time.h header,7.23
time_t type,7.23.1
tm structure type,7.23.1, 7.24.1
TMP_MAXmacro,7.19.1, 7.19.4.4
tmpfile function,7.19.4.3, 7.20.4.3
tmpnam function, 7.19.1,7.19.4.4
token, 5.1.1.2,6.4, see alsopreprocessing tokens ∗
token concatenation,6.10.3.3
token pasting,6.10.3.3
tolower function,7.4.2.1
toupper function,7.4.2.2
towctrans function,7.25.3.2.1, 7.25.3.2.2
towlower function,7.25.3.1.1, 7.25.3.2.1
towupper function,7.25.3.1.2, 7.25.3.2.1
translation environment,5, 5.1.1
translation limits,5.2.4.1
translation phases,5.1.1.2
translation unit,5.1.1.1, 6.9
trap representation,6.2.6.1
trigonometric functions

complex,7.3.5, G.5.1
real,7.12.4, F.9.1

trigraph sequences, 5.1.1.2,5.2.1.1
true macro,7.16
trunc functions,7.12.9.8, F.9.6.8
trunc type-generic macro,7.22.1
truncation toward zero,6.5.5
type category,6.2.5 ∗
type conversion,6.3
type definitions,6.7.7
type domain,6.2.5, G.2
type names,6.7.6
type qualifiers,6.7.3
type specifiers,6.7.2
type-generic macros,7.22, G.6
typedef declaration,6.7.7
typedef storage-class specifier, 6.7.1,6.7.7
types,6.2.5

character, 6.7.8
compatible,6.2.7, 6.7.2, 6.7.3, 6.7.5
complex,6.2.5
composite,6.2.7
const qualified, 6.7.3
conversions,6.3
imaginary,G.2
restrict qualified, 6.7.3
volatile qualified, 6.7.3

UCHAR_MAXmacro,5.2.4.2.1
UINT_FASTN_MAXmacros,7.18.2.3

Index

554 Committee Draft — January 18, 1999 WG14/N869

uint_fast N_t types,7.18.1.3
UINT_LEASTN_MAXmacros,7.18.2.2
uint_least N_t types,7.18.1.2
UINT_MAXmacro,5.2.4.2.1
UINTMAX_Cmacro,7.18.4.2
UINTMAX_MAXmacro, 7.8.2.1, 7.8.2.2,7.18.2.5
uintmax_t type,7.18.1.5
UINTN_C macros,7.18.4.1
UINTN_MAXmacros,7.18.2.1
uint N_t types,7.18.1.1
UINTPTR_MAXmacro,7.18.2.4
uintptr_t type,7.18.1.4
ULLONG_MAXmacro,5.2.4.2.1, 7.20.1.4,

7.24.4.1.2
ULONG_MAXmacro,5.2.4.2.1, 7.20.1.4,

7.24.4.1.2
unary arithmetic operators,6.5.3.3
unary expression,6.5.3
unary minus operator (−), 6.5.3.3
unary operators,6.5.3
unary plus operator (+), 6.5.3.3
unbuffered stream,7.19.3
undef preprocessing directive,6.10.3.5, 7.1.3,

7.1.4
undefined behavior,3.18, J.2
underscore character,6.4.2.1
underscore, leading, in identifier,7.1.3
ungetc function, 7.19.1,7.19.7.11, 7.19.9.2,

7.19.9.3
ungetwc function, 7.19.1,7.24.3.10
union

arrow operator (−>), 6.5.2.3
content,6.7.2.3
dot operator (.), 6.5.2.3
initialization,6.7.8
member alignment,6.7.2.1
member name space,6.2.3
member operator (.), 6.3.2.1,6.5.2.3
pointer operator (−>), 6.5.2.3
specifier,6.7.2.1
tag, 6.2.3,6.7.2.3
type,6.2.5, 6.7.2.1

universal character name,6.4.3
unqualified type,6.2.5
unqualified version of type,6.2.5
unsigned integer suffix,u or U, 6.4.4.1
unsigned integer types,6.2.5, 6.3.1.3, 6.4.4.1
unsigned type conversion,6.3.1.1, 6.3.1.3,

6.3.1.4, 6.3.1.8
unsigned types,6.2.5, 6.7.2
unspecified behavior,3.19, J.1

use of library functions,7.1.4
USHRT_MAXmacro,5.2.4.2.1
usual arithmetic conversions,6.3.1.8, 6.5.5, 6.5.6,

6.5.8, 6.5.9, 6.5.10, 6.5.11, 6.5.12, 6.5.15
utilities

general
wide string,7.24.4

va_arg macro, 7.15, 7.15.1,7.15.1.1, 7.15.1.2,
7.15.1.4, 7.19.6.8, 7.19.6.9, 7.19.6.10,
7.19.6.11, 7.19.6.12, 7.19.6.13, 7.19.6.14,
7.24.2.5, 7.24.2.6, 7.24.2.7, 7.24.2.8,
7.24.2.9, 7.24.2.10

va_copy macro, 7.15, 7.15.1,7.15.1.2
va_end macro, 7.15, 7.15.1,7.15.1.3, 7.15.1.4,

7.19.6.8, 7.19.6.9, 7.19.6.10, 7.19.6.11,
7.19.6.12, 7.19.6.13, 7.19.6.14, 7.24.2.5,
7.24.2.6, 7.24.2.7, 7.24.2.8, 7.24.2.9,
7.24.2.10

va_list type,7.15, 7.15.1.1, 7.15.1.2, 7.15.1.3
va_start macro, 7.15, 7.15.1, 7.15.1.1,

7.15.1.2, 7.15.1.3,7.15.1.4, 7.19.6.8,
7.19.6.9, 7.19.6.10, 7.19.6.11, 7.19.6.12,
7.19.6.13, 7.19.6.14, 7.24.2.5, 7.24.2.6,
7.24.2.7, 7.24.2.8, 7.24.2.9, 7.24.2.10

variable arguments,6.10.3, 7.15
variable arguments header,7.15
variable length array, 6.7.5,6.7.5.2
variably modified type,6.7.5, 6.7.5.2
vertical-tab character,5.2.1, 6.4
vertical-tab escape sequence (\v), 5.2.2, 6.4.4.4,

7.4.1.9
vfprintf function, 7.19.1,7.19.6.8
vfscanf function, 7.19.1, 7.19.6.8,7.19.6.9
vfwprintf function, 7.19.1,7.24.2.5
vfwscanf function, 7.19.1,7.24.2.6, 7.24.3.10
visibility of identifier,6.2.1
void expression,6.3.2.2
void function parameter,6.7.5.3
void type,6.2.5, 6.3.2.2, 6.7.2
void type conversion,6.3.2.2
volatile storage,5.1.2.3
volatile type qualifier,6.7.3
volatile-qualified type,6.2.5, 6.7.3
vprintf function, 7.19.1, 7.19.6.8,7.19.6.10
vscanf function, 7.19.1, 7.19.6.8,7.19.6.11
vsnprintf function, 7.19.6.8,7.19.6.12
vsprintf function, 7.19.6.8,7.19.6.13
vsscanf function, 7.19.6.8,7.19.6.14
vswprintf function,7.24.2.7
vswscanf function,7.24.2.8

Index

WG14/N869 Committee Draft — January 18, 1999 555

vwprintf function, 7.19.1,7.24.2.9
vwscanf function, 7.19.1,7.24.2.10, 7.24.3.10

warnings, I
wchar.h header, 7.19.1,7.24, 7.26.12, F
WCHAR_MAXmacro,7.18.3, 7.24.1
WCHAR_MINmacro,7.18.3, 7.24.1
wchar_t type, 6.4.4.4, 6.4.5, 6.7.8, 6.10.8,7.17,

7.18.3,7.20, 7.24.1
wcrtomb function, 7.19.3, 7.19.6.2, 7.24.2.2,

7.24.6.3.3, 7.24.6.4.2
wcscat function,7.24.4.3.1
wcschr function,7.24.4.5.1
wcscmp function,7.24.4.4.1, 7.24.4.4.4
wcscoll function,7.24.4.4.2, 7.24.4.4.4
wcscpy function,7.24.4.2.1
wcscspn function,7.24.4.5.2
wcsftime function,7.24.5.1
wcslen function,7.24.4.5.3
wcsncat function,7.24.4.3.2
wcsncmp function,7.24.4.4.3
wcsncpy function,7.24.4.2.2
wcspbrk function,7.24.4.5.4
wcsrchr function,7.24.4.5.5
wcsrtombs function,7.24.6.4.2
wcsspn function,7.24.4.5.6
wcsstr function,7.24.4.5.7
wcstod function, 7.19.6.2, 7.24.2.2
wcstod function,7.24.4.1.1
wcstof function,7.24.4.1.1
wcstoimax function,7.8.2.2
wcstok function,7.24.4.5.8
wcstol function, 7.8.2.2, 7.19.6.2, 7.24.2.2,

7.24.4.1.2
wcstold function,7.24.4.1.1
wcstoll function, 7.8.2.2,7.24.4.1.2
wcstombs function,7.20.8.2, 7.24.6.4
wcstoul function, 7.8.2.2, 7.19.6.2, 7.24.2.2,

7.24.4.1.2
wcstoull function, 7.8.2.2,7.24.4.1.2
wcstoumax function,7.8.2.2
wcsxfrm function,7.24.4.4.4
wctob function,7.24.6.1.2, 7.25.2.1
wctomb function,7.20.7.3, 7.20.8.2, 7.24.6.3
wctrans function, 7.25.3.2.1,7.25.3.2.2
wctrans_t type,7.25.1, 7.25.3.2.2
wctype function, 7.25.2.2.1,7.25.2.2.2
wctype.h header,7.25, 7.26.13
wctype_t type,7.25.1, 7.25.2.2.2
WEOFmacro,7.24.1, 7.24.3.1, 7.24.3.3, 7.24.3.6,

7.24.3.7, 7.24.3.8, 7.24.3.9, 7.24.3.10,

7.24.6.1.1,7.25.1
while statement,6.8.5.1
white space, 5.1.1.2,6.4, 6.10, 7.4.1.9, 7.25.2.1.9
white-space characters,6.4
wide character,6.4.4.4, 7.1.1

array functions,7.24.4.6
case mapping functions,7.25.3.1

extensible,7.25.3.2
classification functions,7.25.2.1

extensible,7.25.2.2
constant,6.4.4.4
formatted input/output functions,7.24.2
input functions,7.19.1
input/output functions,7.19.1, 7.24.3
mapping utilities,7.25.3
output functions,7.19.1
single-byte conversion functions,7.24.6.1

wide string,7.1.1
wide string literal,seestring literal
wide-oriented stream,7.19.2
wide-string comparison functions,7.24.4.4
wide-string concatenation functions,7.24.4.3
wide-string copying functions,7.24.4.2
wide-string numeric conversion functions,

7.24.4.1
wide-string search functions,7.24.4.5
width, 6.2.6.2
WINT_MAXmacro,7.18.3
WINT_MINmacro,7.18.3
wint_t type, 7.18.3,7.24.1, 7.25.1
wmemchr function,7.24.4.6.1
wmemcmpfunction,7.24.4.6.2
wmemcpyfunction,7.24.4.6.3
wmemmovefunction,7.24.4.6.4
wmemset function,7.24.4.6.5
wprintf function, 7.19.1, 7.24.2.9,7.24.2.11
wscanf function, 7.19.1, 7.24.2.10,7.24.2.12,

7.24.3.10

xor macro,7.9
xor_eq macro,7.9 ∗

Index

556 Committee Draft — January 18, 1999 WG14/N869

Index

